
THE
SE

DE
DO

CTO
RAT

NN
T:2

024
UPA

SG0
53

Hexahedral Curved Block-Structured
Mesh Generation for Atmospheric

Re-Entry
Génération de Maillages Hexaédriques Structurés par

Blocs Courbes pour la Rentrée Atmosphérique

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦580, Sciences et Technologies de l’Information et de la
Communication (STIC)

Spécialité de doctorat: Informatique Mathématique
Graduate School : Informatique et sciences du numérique, Référent :

Université d’Évry Val d’Essonne

Thèse préparée dans l’unité de recherche LiHPC (Université Paris-Saclay, CEA),
sous la direction de Franck LEDOUX, Directeur de Recherche, le co-encadrement

de Jérôme BREIL, Ingénieur-Chercheur, et de Thierry HOCQUELLET,
Ingénieur-Chercheur

Thèse soutenue à Paris-Saclay, le 1er octobre 2024, par

Claire ROCHE

Composition du jury
Membres du jury avec voix délibérative

Éric ANGEL Président & Examinateur
Professeur des Universités, Université d’Évry
Paris-Saclay
Héloïse BEAUGENDRE Rapporteure & Examinatrice
Professeure des Universités, Bordeaux INP
Xevi ROCA Rapporteur & Examinateur
Chef d’Équipe, Barcelona Supercomputing Center
Jeanne PELLERIN Examinatrice
Cadre Scientifique, TotalEnergies, entreprise

Titre: Génération de Maillages Hexaédriques Structurés par Blocs Courbes pour la Rentrée Atmo-
sphérique

Mots clés: Maillage Hexaédrique, Structure de Blocs Courbes, Mécanique des Fluides Numérique,
Hypersonique

Résumé: Le Commissariat à l’Énergie Atomique
et aux Énergies Alternatives (CEA) s’intéresse à la
simulation d’écoulements fluides en régime super-
sonique et hypersonique dans le cadre de la rentrée
atmosphérique. Pour ce faire, un code de simula-
tion numérique dédié y est développé. Pour répon-
dre à des contraintes fortes, ce code ne prend en
entrée que des maillages hexaédriques structurés
par blocs. Ce type de maillage est compliqué à
générer, c’est le plus souvent réalisé à la main via
l’utilisation de logiciels interactifs dédiés. Pour des
géométries industrielles complexes, la génération
d’un maillage est très couteuse en temps. A l’heure
actuelle, la génération automatique de maillages
hexaédriques est un sujet de recherche ouvert et
complexe.

Dans le cadre de ces travaux de thèse, nous
proposons une méthode permettant de générer des
maillages structurés par blocs courbes de domaines
fluides autour de géométries dédiées pour les prob-
lématiques visées. Cette méthode a d’abord été
prototypée dans le cadre de domaines 2D, puis
étendue au cas 3D. Ici, la méthode est présentée
dans le cas général, en dimension n. Elle se dé-
coupe en plusieurs étapes qui sont les suivantes.
Dans un premier temps, une structure de blocs
linéaire est obtenue par extrusion d’une première
discrétisation de la paroi. Ces travaux sont une ex-
tension des travaux proposés par Ruiz-Girones
et al. [RG11, RGRS12]. Une fois cette struc-

ture de blocs linéaire obtenue, nous proposons
deux manières distinctes de courber les blocs afin
d’améliorer la représentation de la géométrie, et
de limiter le lissage sur le maillage final. La pre-
mière est à travers d’un processus de lissage de
maillage à topologie fixe à l’aide d’un problème
d’optimisation, auquel un terme de pénalité est
ajouté pour aligner certaines arêtes du maillage
aux interfaces. Dans notre processus, nous ap-
pliquons cette méthode de lissage à la structure
de blocs pour l’aligner sur la surface du véhicule.
Cette méthode étant pour l’instant trop couteuse
en temps de calcul dans le cas 3D, nous proposons
une seconde manière de courber les blocs, à travers
une représentation à l’aide de courbes polynomi-
ales de Béziers. Nous appliquons cette fois des
opérations géométriques et locales afin d’aligner
les blocs à la géométrie. Enfin, en partant du
principe que les blocs sont représentés à l’aide
de courbes de Bézier, nous générons un maillage
final sur ces blocs courbes sous différentes con-
traintes. Finalement, nous évaluons la qualité des
maillages générés à travers des critères purement
géométriques, en étudiant l’impact des différents
paramètres de notre méthode sur le maillage final.
Nous évaluons également les maillages générés par
la simulation d’écoulements fluides sur ces mail-
lages, avec la comparaison à des données expéri-
mentales, analytiques, ainsi qu’à des calculs de
référence.

Title: Hexahedral Curved Block-Structured Mesh Generation for Atmospheric Re-Entry

Keywords: Hexahedral Mesh, Curved Block Structure, Computational Fluid Dynamics, Hypersonic

Abstract: The French Alternative Energies and
Atomic Energy Commission (CEA) studies Com-
putational Fluid Dynamics (CFD) in the case of
supersonic and hypersonic flows. To do so, a ded-
icated code is developed. To deal with strong
constraints, this code only performs on block-
structured meshes. This specific type of mesh is
complicated to generate, and this generation is
usually handled by hand using dedicated interac-
tive software. In the case of industrial complex
geometries, the mesh generation is highly time-
consuming. Currently, automatic hexahedral mesh
generation is a complex open research field.

In this thesis work, we propose a method to
generate block-structured hexahedral meshes on
curved blocks of the fluid domain around vehi-
cles, dedicated for the problems of interest. This
method is first proposed in 2D and then extended
to 3D. Here, it is presented in the generic nD case.
This method is composed of several steps. First,
a linear block structure is extruded from a first
vehicle surface discretization. This work is an ex-
tension of the previous work of Ruiz-Girones
et al. [RG11, RGRS12]. Once this linear block

structure is generated, we propose two different
methods to curve the block structure to improve
the vehicle surface representation and limit the
smoothing on the final mesh. The first method
is through an algorithm of mesh adaptation at
fixed topology by solving an optimization problem
to which a penalty term is added to align certain
mesh edges to an implicit interface. Our global ap-
proach uses this method to align the block struc-
ture to the vehicle surface. This method remains
time-consuming in 3D, so we proposed a second
method to curve our block structure through poly-
nomial Bézier curves. Considering our blocks as
Bézier blocks, we apply geometric and local oper-
ations to align the high-order block structure to the
vehicle surface. Then, considering we curved the
block structure using Bézier elements, we gener-
ate a mesh on the curved blocks under constraints.
Finally, the generated mesh quality is evaluated in
two ways. The first one is through purely geomet-
rical criteria analysis. The second one is through
numerical simulations of flows around vehicles on
our meshes, comparing the simulation results to
experimental data, analytical results, and reference
simulations.

AKNOWLEDGEMENTS

I would like to thank the jury members Éric ANGEL, Xevi ROCA, Héloïse BEAUGENDRE, and Jeanne
PELLERIN, for accepting to evaluate my PhD work.

Je souhaite remercier Franck du fond du cœur. Pour m’avoir fait confiance en premier lieu, puis pour
m’avoir encadrée et accompagnée tout au long de la thèse. Merci pour tous les échanges stimulants. Je me
suis énormément amusée pendant ces trois années, merci.

Évidemment, je remercie Simon d’avoir porté une multiple casquette, de collègue de thèse, à ami, puis
presque encadrant. Merci d’avoir pris tout ce temps pour discuter et travailler avec moi. J’espère maintenant
que je trouverai la force au plus profond de moi de te mettre des buts à l’escalade. Merci aussi à toi Flo.

Merci à Nico pour tout. Je resterai à jamais impressionnée par, entre autres, tes hautes compétences et
connaissances en Git. J’ai adoré discuter avec toi tout au long de cette thèse, visiter Washinton DC, aller
voir un match de NBA, parler lecture et photographie.

Plus généralement, merci aux personnes du laboratoire et service de Franck pour m’avoir accueillie parmi
eux pour la deuxième partie de mon aventure de thèse.

Un grand merci à François d’être toujours présent et enthousiaste. C’est à chaque fois un plaisir de
parler de sciences avec toi.

De nouveau merci à Jeanne, pour tout.

Je n’oublie pas les personnes qui étaient là quand mon long périple à commencer, et qui m’ont donné
l’envie et le courage de prendre cette voie. Merci à Paul, Coco et Stéphane.

Merci à Maxime le californien, et à Julien pour vos précieux cours de CFD, même si je ne suis pas l’élève
la plus appliquée.

Je souhaite remercier chaudement Thierry et les membres de son laboratoire, qui m’ont accueillie dans
leur couloir pendant plus d’une année. J’ai beaucoup rigolé, et plus qu’un soutien moral, vous m’avez
encouragée à ouvrir ma curiosité sur beaucoup de sujets. Un merci tout particulier à Valentin pour ses
bruits d’animaux ainsi que ses précieux cours de C++.

Merci à tous les copains de Teratec. Merci à Valentin, d’avoir partagé un long bout de chemin et de
nombreuses pauses café avec moi (et pour m’avoir fait découvrir, avec Nico, la meilleure série de livres de
tout les temps). Merci à Paul, d’être incroyablement épuisant et bavard mais également un vrai rayon de
soleil à Teratec. Merci pour toutes tes attentions et ta gentillesse. Merci à Clément d’avoir fait briller le

5

6
soleil du sud dans le ciel un peu gris du nord. Merci aux personnes du meilleur open-space, Julie, Alexiane,
Axelle, Alexandre, Victor (j’espère que les feuilletés aux saucisses étaient à la hauteur de tes espérances).
Merci à cette incroyable équipe de doctorants de Teratec, Sébastien, Manu, Mina, Gabriel, Luc, etc, et
aussi aux futurs doctorants, Arzhela et Tristan. Je vous souhaite à tous le meilleur pour la suite, et plein
de réussite.

I want to acknowledge Ketan for being such a great supervisor, and a fun person. Thank you to the
MFEM team members for welcoming me to their team during the summer of 2023 at the Lawrence Livermore
National Laboratory. I want to thank Christine Z., and Kyle for saving my first days in the U.S. I want
to thank Jon, Mike, Anton, Francesco, Leonardo, Peter, Clément R, Kyle (again), Asya, Kenneth & Kim,
Taoli, Jaryd, Alper, Sam, Gabriel, Akash, Shahbaj, Rajib, Abi, and all the other interns from the LLNL
summer 2023. Thank you for all the crazy adventures, for the cornhole games, the tacos & karaoke nights,
and your support in my quarter coins collection!

Of course, I want to express a special thanks to Yu & Anh. You made me have the best summer of my
life exploring California, and I am glad I made friends for life. I can’t wait to explore more of the world with
you.

Merci à mes super copines, Léa, Mira et Margaux. Merci à mes super copains de grimpe (et plus),
Brice, Coco, Thomas, et toute l’équipe. Merci à Thomas V.

Merci à ma petite Lilou, et à ma grosse Rainette.

J’aimerais remercier mes parents, mon frère, et toute ma famille pour leur soutien depuis la maternelle.
Pour m’avoir toujours encouragée à faire ce que j’aime. Tout particulièrement, je souhaite remercier ma
mamie Annie, pour son soutien toutes ces années. Tu es un symbole de force et d’amour.

Last but not least, I want to thank Yann. Mon amour, je te remercie d’avoir été à mes côtés tout du
long, et de m’avoir soutenue et supportée de manière inconditionnelle.

TABLE OF CONTENTS

AKNOWLEGMENTS 5

LIST OF TERMS AND ACRONYMS 21

RÉSUMÉ EN FRANÇAIS 23

1 Introduction . 23
2 Génération de Structure de Blocs par Avancées de Fronts 26
3 Courbure d’une Structure de Blocs & Génération de Maillages 29
4 Analyse de la Qualité des Maillages Générés . 32
5 Conclusion & Perspectives . 34

INTRODUCTION 35

1 Numerical Simulation in a Nutshell . 36
2 Computational Fluid Dynamics for Atmospheric Re-Entry 37
3 Principal Steps of our Approach . 38

1 DEFINITIONS & STATE OF THE ART 45

1.1 Mesh Definitions & Terminology . 46
1.1.1 Mesh Generalities . 46
1.1.2 High-Order Meshes . 48
1.1.3 Meshing Tools . 49
1.1.4 Mesh Quality . 51

1.2 Mesh & Geometry Representation . 56
1.2.1 Cellular Mesh Representation . 56

7

8 TABLE OF CONTENTS

1.2.2 Geometry Representation & Geometric Classification 57
1.3 Computational Fluid Dynamics for Atmospheric Re-Entry 58

1.3.1 Mathematical Modeling for Computational Fluid Dynamics 58
1.3.2 Mesh for Computational Fluid Dynamics . 59

1.4 Hexahedral Mesh Generation: State of the Art . 61
2 ADVANCING FRONT FOR LINEAR BLOCK STRUCTURE GENERATION 69

2.1 Fields Computation . 73
2.1.1 Distance Fields . 73
2.1.2 Vector Fields . 75

2.2 Block Layers Extrusion . 77
2.2.1 Surface Geometry Block Structure . 78
2.2.2 Generation of One Layer . 79

2.3 Conflict Management on a 2D Layer . 85
2.4 Conflict Management on a 3D Layer . 91

2.4.1 Front Edges Classification . 92
2.4.2 Patterns Considered to Solve Conflicts . 93
2.4.3 Paths of Feature Block Edges on a Front . 95

2.5 Results . 99
2.6 Perspectives . 104

3 BLOCK STRUCTURE CURVING 109

3.1 Mixed-Order Mesh Adaptivity for Surface Alignment . 111
3.1.1 Target-Matrix Optimization Paradigm (TMOP) 113
3.1.2 rp-Adaptivity for Interface Alignment . 115
3.1.3 Application to Block Structures . 118

3.2 Curving of the Structure Using Bézier Elements . 121
3.2.1 Bézier Elements . 122
3.2.2 Block Curving to Interpolate Boundaries . 124

3.3 Mesh Generation from the Curved Block Structure . 128
3.3.1 Interval Assignment . 128

TABLE OF CONTENTS 9
3.4 Perspectives . 133

4 BLOCK-STRUCTURED MESHES QUALITY ANALYSIS 139

4.1 Geometrical Mesh Quality . 140
4.1.1 HyTRV . 140
4.1.2 RAM-C II . 142
4.1.3 HIFiRE-5 . 144
4.1.4 Vehicle with wings . 146

4.2 Application to Computational Fluid Dynamics Simulations 147
4.2.1 Subsonic 2D NACA 0012 Airfoil . 147
4.2.2 Supersonic 2D Diamond Shaped Airfoil . 148
4.2.3 Hypersonic Stardust 2D . 149
4.2.4 Supersonic RAM-C II 3D . 150

CONCLUSION 154

1 Perspectives . 155
APPENDIX 157

A Transfinite Interpolation . 158
B Geometries Guide . 160

B.1 Apollo Experimental Model . 160
B.2 Caretwing . 160
B.3 Double Ellipsoid . 161
B.4 HIFiRE-5 . 162
B.5 Hypersonic Transition Research Vehicle (HyTRV) 162
B.6 Mars Entry Spacecraft Experimental Model . 163
B.7 NACA 0012 Airfoil . 163
B.8 RAM-C II Spacecraft . 164
B.9 Sphere Cone Cylinder Flare (CCF) . 164

C Vector Field Impact Analysis . 166
D Axisymmetry Block-Structured Mesh Generation . 170

10 TABLE OF CONTENTS

E Block Structure Smoothing . 172
F Bézier Block Edge Curving Analysis . 175

F.1 Methods to Curve Bézier Block Edges . 176
F.2 Methods Comparison on Curve Examples . 177

G Line-Sweeping Smoothing . 182
H Shock Abacus . 184

LIST OF FIGURES

1 Topologie traditionelle d’un fluide autour d’un véhicule supersonique. 24
2 Données d’entrée de notre méthode. 25
3 Principales étapes de notre approche illustrées dans le cas 3D. 25
4 Champs de distances autour d’un véhicule 3D. 26
5 Génération d’une couche régulière de blocs en 3D. 27
6 Calcul de la position d’un sommet de blocs d’un front en 3D. 28
7 Insertion d’un bloc dûe à l’extension du domaine physique. 28
8 Exemples de combinaisons de blocs () appliquées sur un front () pour gérer des conflits

en 3D. 29
9 Exemple d’alignement de maillage à une interface dans . 30
10 Exemples de courbes et quadrangles de Bézier. 31
11 Comparaison de la qualité géométrique de deux maillages générés sur deux structures de

blocs différentes (a), et (b). 32
12 Résultats de la simulation autour du RAM-C II 3D. 33
13 Meshes in nature. 35
14 Flow simulation around an airfoil [SU2]. 36
15 Artistic representation of a capsule re-entry [esa]. 37
16 Traditional flow topology around a supersonic vehicle. 38
17 Inputs of our method. 39
18 Main stages of our approach illustrated in 3D. 40
19 Main stages of our approach illustrated in 2D. 41
1.1 Examples of 2-cells. 46
1.2 Examples of 3-cells. 46

11

12 LIST OF FIGURES

1.3 Examples of 2D meshes. 47
1.4 Conformal Mesh. 47
1.5 Blocking or Block structure. 48
1.6 High order quadrangular cells. 48
1.7 Transfinite interpolation 2D. 50
1.8 Transfinite interpolation 3D. 51
1.9 Notations to compute the Scaled Jacobian of a quadrangle. 52
1.10 Examples of scaled Jacobian over different quadrangular cells. 53
1.11 Skew examples over different quadrangular cells. 53
1.12 Notations to compute the Scaled Jacobian of a hexahedron. 54
1.13 Scaled Jacobian examples over different hexahedral cells. 55
1.14 Skew examples over different hexahedral cells. 55
1.15 Elementary mesh models in GMDS [gmd]. 56
1.16 Cellular Mesh Representation 3D. 57
1.17 Surfaces geometric classification. 58
1.18 Example of axisymmetric geometry. 59
1.19 Body-fitted meshes (a), (b), and (c), and immersed-body mesh (d) in Computational Fluid

Dynamics [SD13]. 60
1.20 Examples of classical mesh topologies used in Computational Fluid Dynamics. 60
1.21 THex method: how to split a tetrahedron into 4 hexahedra. 62
1.22 Example of a mesh generated using THex method. 62
1.23 Plastering. 63
1.24 Overlay grids method. 63
1.25 Medial axis method. 64
1.26 Polycube based approach. 64
1.27 Frame fields approach [Cal22]. 65
1.28 Paving row nodes classification [BS91]. 65
1.29 Example of full paving sequence [BS91]. 66
1.30 Plastering [Owe98]. 66
1.31 Receding front [RG11, RGRS12]. 67

LIST OF FIGURES 13
2.1 Steps of the pipeline detailed in Chapter 2. 70
2.2 Plastering process [Owe98]. 70
2.3 Paving [BS91] conflict management example for domain expansion. 71
2.4 Distance fields computed around the 2D NACA 0012 airfoil geometry (see Appx. B). . . . 73
2.5 Distance fields computed around the 3D RAM-C II geometry (see Appx. B). 74
2.6 Vector field computation. 75
2.7 The gradient of two different distance fields of interest around RAM-C II 3D geometry. . . 76
2.8 A practical example of vector fields computed around the 2D NACA 0012 geometry. 77
2.9 2D surface geometry block structure example (Front F0). 78
2.10 3D surface geometry block structure example (front F0). 79
2.11 A practical example of generation of one regular block layer on a 3D front. 80
2.12 Front of n−1-cells. 81
2.13 Building of one n-cell of a layer on one n−1-cell of a front. 81
2.14 Layer of n-cells. 82
2.15 3D Front block corner location. 83
2.16 A practical example of the extrusion of blocks around Apollo 2D geometry 84
2.17 Example of block insertion (2D). 85
2.18 Block shrinking example (2D). 86
2.19 Practical example of 2D conflicts management around Mars Spacecraft geometry. 87
2.20 Examples of 2D geometries with very sharp angles. 87
2.21 Double block insertion on the boundary layer (2D). 88
2.22 Practical example of 2D double block insertions. 88
2.23 Practical example of 2D layers extrusion to handle conflicts. 90
2.24 Topology Preservation 2D. 91
2.25 Topology propagation in 3D. 92
2.26 Block edges classification on a front . 92
2.27 Example of block edges classification on a front. 93
2.28 Conflict management 3D: patterns applied on a feature block edge of the front () depending

on its classification. 94
2.29 Conflict management 3D: patterns to apply on feature block corners. 94

14 LIST OF FIGURES

2.30 Pattern on face. 95
2.31 Practical example of block edges classification on a front. 97
2.32 Practical example of a block layer generated on classified front. 98
2.33 Practical example of second block layer generated around RAM-C II. 99
2.34 Practical example of five block layers extrusion around RAM-C II. 100
2.35 Double Ellipsoid 3D input geometry [AADLC91] and block discretization of the vehicle surface.100
2.36 Three different second block layer topologies generated on the same front. 101
2.37 Practical example of two different blocking topologies generated around the Double Ellipsoid

vehicle. 101
2.38 Caretwing 3D input geometry (see Appx. B) and block discretization of the vehicle surface. 102
2.39 Linear blocks extruded on 4 different layers around Caretwing geometry. 103
2.40 Main stages of pre-treatment approach considered to handle non-convex vehicles. 104
2.41 Levet set computation methods. 105
3.1 Steps of the pipeline detailed in Chapter 3. 110
3.2 Comparison of mesh generation on a linear and curved 3D block structure. 110
3.3 Mesh elements order propagated in the volume around the Onera M6 wing [KKSW22]. . . 112
3.4 Representation of the major Target-Matrix Optimization Paradigm (TMOP) matrices [MDK+24].114
3.5 Practical example of interface alignment using TMOP. 115
3.6 Constrained Degrees of Freedom (DOFs) on a n−1-cell shared by two n-cell with different

polynomial degrees [MDK+24]. 117
3.7 Example of 2D mixed-order mesh alignment to an implicit interface. 117
3.8 Maximal interpolated error comparison between uniform and mixed-order mesh aligned to an

implicit interface. 118
3.9 Practical example of rp-adaptivity on a block structure generated around Apollo 2D vehicle

using the pipeline presented in Chapter 2. 120
3.10 Practical example of rp-adaptivity of a block structure generated around Apollo 2D vehicle. 121
3.11 Bézier Curve. 122
3.12 Bézier Quadrangle. 123
3.13 Bézier Hexahedron. 124
3.14 Practical example of a part on the vehicle surface and two linear hexahedral blocks previously

generated. 125

LIST OF FIGURES 15
3.15 Two p=3 hexahedral Bézier block control points. 125
3.16 Projected control points corresponding to the surface onto the vehicle surface. 126
3.17 Final control points over a hexahedral Bézier block and example of final mesh generated on it.126
3.18 Example of a first block layer around RAM-C II curved using Bézier elements. 127
3.19 nD examples of topological chord. 129
3.20 Hard constrained block edges in the interval assignment algorithm. 129
3.21 Bézier block discretization in the parametric space to physical space. 130
3.22 Mesh generation example around 3D Double Ellipsoid geometry. 131
3.23 Mesh refinement in the boundary block layer. 132
3.24 Comparison of high-order blocks around Apollo vehicle (see Appx. B). 133
3.25 Block edges classification of first front on Sphere-Cone-Cylinder-Flare vehicle (see Appx. B). 134
3.26 Brutal edge size transition between two different layers around HIFiRE-5 vehicle (see Appx. B).135
3.27 Continuity between two adjacent Bézier edges. 136
3.28 Continuity between two adjacent Bézier quadrangles. 137
3.29 Meshes (a) generated on non-aligned control points (see Fig. 3.28.a), and (b) on aligned

control points (see Fig. 3.28.b). 137
4.1 Two block structures generated with 4 block layers around HyTRV, without patterns (a),

and with patterns on first block layer (b). 140
4.2 Two meshes (a), and (b) generated respectively on block structures of Figure 4.1.a, and

Figure 4.1.b. 141
4.3 Scaled Jacobian of resulting meshes generated on block structures of Figure 4.1 around HyTRV.141
4.4 Skewness of resulting meshes generated on block structures of Figure 4.1 around HyTRV. . 142
4.5 Four block structures generated with 5 block layers around RAM-C II, without patterns (a),

with patterns allowed except on the first block layer (b), and with patterns allowed every-
where (c). The last block structure (d) is obtained with patterns allowed all over the domain
and using 4 smoothing iterations on the linear block structure. 142

4.6 Scaled Jacobian of resulting meshes generated on block structures of Figure 4.5 around
RAM-C II. 143

4.7 Skewness of resulting meshes generated on block structures of Figure 4.5 around RAM-C II. 143
4.8 Mesh generated on block structure 4.5.c around RAM-C II. 144
4.9 Two block structures generated with 4 block layers around HIFiRE-5, without smoothing (a),

and with smoothing (b). 144

16 LIST OF FIGURES

4.10 Scaled Jacobian distrobution on final meshes generated on non-smoothed (a), and smoothed (b)
block structure of Figure 4.9 around HIFiRE-5. 145

4.11 Skewness distribution on final meshes generated on non-smoothed (a), and smoothed (b)
block structure of Figure 4.9. 145

4.12 Block structure around the vehicle with wings. 146
4.13 Scaled Jacobian distribution on final meshes generated on non-smoothed (a), and smoothed (b)

block structure of Figure 4.12 around vehicle with wings. 146
4.14 Pressure coefficient on the NACA 0012 airfoil. 148
4.15 Scheme of the various zones and angles around the diamond airfoil [FCK16]. 149
4.16 Mach-number distribution around a diamond-shaped airfoil. 149
4.17 Two different block structures generated around the axisymmetric Stardust vehicle. 150
4.18 Pressure fields and velocity magnitude around Stardust vehicle. 151
4.19 Mach field around vehicle stagnation point in case of supersonic flow simulations. 151
4.20 Undimensionalized pressure field around supersonic RAM-C II 3D. 152
B.1 Apollo experimental model [Sca07]. 160
B.2 Caretwing [Küc65]. 161
B.3 Double ellipsoid [DGP12]. 161
B.4 HIFiRE-5 vehicle with dimensions in mm [JAK15]. 162
B.5 Hypersonic Transition Research Vehicle (HyTRV) [QLYT21]. 163
B.6 Mars entry spacecraft model [Sca07]. 163
B.7 NACA 0012 airfoil [Rum21]. 164
B.8 RAM-C II spacecraft [Sca07]. 164
B.9 Sphere-Cone-Cylinder-Flare (CCF) vehicle. 164
C.10 Physical fluid domain around Apollo 2D and vehicle surface block discretization. 166
C.11 Block structure around Apollo vehicle using ∇dV as leading vector field. 166
C.12 Block structure around Apollo vehicle using ∇d as leading vector field. 167
C.13 Block structure around Apollo vehicle with combined vector field using ∇d and ∇dV 168
C.14 Block structure around Apollo vehicle with combined vector field using ∇d and −→u∞. 168
C.15 Block structure around Apollo vehicle with combined vector field using ∇d and −→u∞ with an

AoA of 30°. 169
D.16 Axisymmetric block structure around RAM-C II. 170

LIST OF FIGURES 17
D.17 Axisymmetric mesh around RAM-C II. 171
E.18 Non-smoothed block structure (b) around HIFiRE-5 (see Appx. B) and smoothed block

structure (c). Block corners of (b) inserted orange blocks () are located on the same
isoline (a). 172

E.19 Non-smoothed block structure (a) around HIFiRE-5 (see Appx. B) and smoothed block
structure (b). 174

F.20 Geometric curve (), and curved Bézier block edge () defined by its white control
points (). 175

F.21 Naive approach to compute the control points of an arbitrary Bézier curve of degree p to
interpolate a geometrical curve. 176

F.22 Naive approach to compute the control points of an arbitrary Bézier curve of degree p to
interpolate a geometrical curve. 177

F.23 Results of precedent methods to approximate the red geometric curve () with the black
curved Bézier block edge () on first analytical curve. 178

F.24 Results of precedent methods to approximate the red geometric curve () with the black
curved Bézier block edge () on second analytical curve. 179

F.25 Results of precedent methods to approximate red geometric curve () with black curved
Bézier block edge () on third analytical curve. 181

G.26 Comparison of the near wall mesh before and after smoothing. 182
G.27 Modified Line-Sweeping method on an internal node in a block. 182
H.28 Deflection angle θ and oblique shock (). 184
H.29 Shock abacus [rs53]. 185
H.30 Mach number abacus [rs53]. 186

LIST OF ALGORITHMS

1 Receding-Front Method [RG11, RGRS12] . 71
2 Block Structure Generation Layer by Layer . 72
3 Build One Regular block layer on a Front . 80
4 Build the First Block Layer . 83
5 Build One Block Layer on a 2D Front . 89
6 Single Path Computation . 96
7 All Paths Computation . 96
8 Successive Polynomial Order Increase . 116
9 Successive Polynomial Order Decrease . 119
10 DeCasteljau . 123
11 Block Structure Bézier Polynomial Degree Computation 127
12 Linear Transfinite Interpolation 2D . 158
13 Linear Transfinite Interpolation 3D . 159
14 Linear Block Structure Smoothing . 173

19

LIST OF TERMS AND ACRONYMS

Acronyms

AoA Angle of Attack. 16, 38, 59, 72, 75, 77, 167–169, 184

CAD Computer Aided Design. 36, 57, 63, 74, 112

CCF Sphere-Cone-Cylinder-Flare. 15, 16, 134, 164, 165

CEA French Alternative Energies and Atomic Energy Commission. 42, 43, 139, 147, 150, 153, 155

CFD Computational Fluid Dynamics. 12, 38, 40, 45, 58–61, 68, 71, 139, 147, 152–155, 160

CST Class/Shape Function Transformation. 162

DOFs Degrees of Freedom. 14, 113, 116, 117

HyTRV Hypersonic Transition Research Vehicle. 16, 162, 163

LLNL Lawrence Livermore National Laboratory. 111

LSDD Least Squares fit of Directional Derivatives. 76

NASA National Aeronautics and Space Administration. 37

NS Navier-Stokes. 58, 150

RANS Reynolds Averaged Navier-Stokes. 58, 147, 148

TFI Transfinite Interpolation. 49–51, 111, 126

TMOP Target-Matrix Optimization Paradigm. 14, 112–117, 119

21

22 Glossary

Glossary

p-adaptivity High-order mesh element degree adaptation. 112

r-adaptivity Mesh adaptation at constant topology. 112, 113

RÉSUMÉ EN FRANÇAIS

1 Introduction

Un maillage peut être définit comme la représentation discrète d’un espace physique continu
en un ensemble finit d’éléments simples.

En informatique, les maillages sont utilisés principalement dans deux domaines. Le premier
est celui de la représentation graphique (par exemple pour des films d’animation, ou bien
des jeux vidéos), où le maillage sert à représenter de manière discrète des personnages, des
objets, etc.. Le deuxième est la simulation numérique, et c’est d’ailleurs dans ce cadre que
s’inscrivent ces travaux de thèse.

La simulation numérique a connu un essort important ces dernières années. Il s’agit d’un do-
maine rassemblant des outils mathématiques afin de reproduire ou de prédire un comportement
physique par des moyens informatiques. La simulation numérique est utilisée quotidiennement,
par exemple pour des prédictions météorologiques, mais également des simulations de tremble-
ment de terre, la conception d’automobiles, d’avions, etc.. Au cours de ces dernières années,
la simulation numérique a pris une place importante car cela permet d’accéder à des quantités
difficiles, voir impossibles à mesurer expérimentalement, cela permet également de modifier des
paramètres facilement, parmi d’autres avantages.

Mécanique des Fluides pour la Rentrée Atmosphérique

La rentrée atmosphérique fait référence à l’entrée d’un véhicule (par exemple un débris
spatial ou une navette spatiale) dans l’atmosphére d’une planète. Lors de cette rentrée dans
l’atmosphère, l’objet est soumis à de très fortes conditions de température et de pression. La
vitesse supersonique ou bien hypersonique (c’est-à-dire au dessus de la vitesse du son) de l’objet
peut mener à l’ablation de sa surface, voir même à sa désintégration.

La Figure 1 illustre les phénomènes observés lors d’un écoulement fluide autour d’un
véhicule () en régime supersonique ou hypersonique. La direction du fluide à l’infini est
décrite par le vecteur −→u∞ () et l’Angle d’Attaque (AA) α. Du fait des effets de viscosité,
une très fine couche limite représentée en orange () se développe autour de la surface de
l’objet. C’est une zone caractérisée par un très fort gradient de vitesse et de pression dans la
direction orthogonale à la paroi. En général, afin de calculer ce phénomène de manière précise,
il est nécessaire d’avoir des mailles alignées avec le sens de l’écoulement, ainsi que des mailles
très fines dans la couche limite. Une onde de choc () se développe également. Une onde
de choc est une discontinuité du fluide caractérisée par un changement brutal de pression, tem-

23

24 RÉSUMÉ EN FRANÇAIS

Couche limite
fluide

Vitesse amont
−→u∞

Véhicule

Choc

Frontière externe

AA
α

Figure 1: Topologie traditionelle d’un fluide autour d’un véhicule supersonique.

pérature, et de densité du milieu. Afin de calculer des résultats précis, il est nécessaire d’avoir
des maillages très réguliers, surtout dans la partie amont du véhicule.

Afin d’étudier ce type de phénomènes, le Commissariat à l’Énergie Atomique et aux Énergies
Alternatives (CEA) développe un code dédié pour le calcul d’écoulements fluides autour de
véhicules en régime supersonique ou hypersonique. Afin de répondre à des contraintes fortes,
ce code ne prend en entrée que des maillages structurés par blocs. Á l’heure actuelle, la
génération de ce type de maillages en 3D est très compliqué. Le plus souvent, elle est réalisé à
la main à l’aide de logiciels interactifs dédiés et peut nécessiter plusieurs semaines de travail pour
des géométries industrielles complexes. Pour ces raisons, de nombreuses recherches portent sur
l’automatisation de la génération de maillages hexaédriques.

Le but de ces travaux de thèse est donc de proposer une méthode permettant de générer
des maillages hexaédriques 3D structurés par blocs dédiés aux écoulements fluides autour de
véhicules en régime supersonique. Pour ce faire, nous avons travaillé sous certaines hypothèses
sur le domaine. Tout d’abord, les véhicules sont complétement immergés dans le fluide (), et
le véhicule ne posséde qu’une seule paroi. De plus, la frontière extérieure () est lisse (par
exemple circulaire ou elliptique).

Principales Étapes de notre Approche

Dans le but de générer des maillages 3D hexaédriques structurés par blocs dédiés pour des
applications de mécanique des fluides dans le cadre de la rentrée atmosphérique, nous avons
prototypé un algorithme de maillage en 2D que nous avons étendu au cas 3D. Notre méthode
de maillage est découpée en plusieurs étapes, et s’appuie sur les données d’entrée suivantes:

1. Un premier maillage du domaine fluide en un ensemble de simplex (i.e., triangles en 2D,
et tétrahèdres en 3D) comme celui proposé en Figure 2.b;

2. Le découpage en blocs de la surface du véhicule similaire à celui de la Figure 2.c;

3. Un ensemble de paramètres pour contrôler les différentes étapes de l’algorithme.

Les principales étapes de notre approche, illustrée en 3D sur la Figure 3, sont les suivantes.
Sur la première représentation discrète du domaine fluide (voir Fig. 3.a), on calcule des champs
de distance (voir Fig. 3.b), ainsi qu’un champ de vecteurs (voir Fig. 3.c). Ces champs vont

1. INTRODUCTION 25

(a) Vehicule (b) Maillage tétrahédrique dufluide autour du véhicule (a) (c) Discrétisation en blocs de lasurface du véhicule (a)
Figure 2: Données d’entrée de notre méthode.

nous permettre de guider l’algorithme de génération de blocs, qui seront extrudés couche par
couche, à partir de la discrétisation initiale de la surface du véhicule. La Figure 3.d représente
une vue suivant un plan de coupe d’une structure de bloc extrudée sur 8 couches. Chaque
couleur représente une couche de blocs différente. Cette méthode est inspirée des travaux de
Ruiz-Gironés et al. [RG11, RGRS12] et adaptée à nos problématiques.

(a) Maillage tétrahédrique (b) Champ de distances (c) Champ de vecteurs

(d) Blocs linéaires (e) Blocs courbes (f) Maillage hexaédrique
Figure 3: Principales étapes de notre approche illustrées dans le cas 3D.

Une fois la première structure de blocs est générée, on ajoute une étape afin de courber
les blocs dans le but d’améliorer la représentation de la géométrie (voir Fig. 3.e). Cette étape
permet d’éviter l’appel à un algorithme de lissage sur le maillage final, qui serait couteux en
temps étant donné que le maillage finil peut comporter un nombre important d’éléments. Pour
courber les blocs, dans le cadre de ces travaux de thèse, deux méthodes ont été étudiées.

• La première méthode s’inscrit dans la cadre d’un algorithme permettant de faire du lissage
de maillage à topologie fixe par la résolution d’un problème d’optimisation global.

26 RÉSUMÉ EN FRANÇAIS

• La seconde approche consiste à considérer nos blocs comme étant des blocs de Bézier,
auxquels nous appliquons un ensemble d’opérations géométriques et locales afin d’aligner
les faces de blocs à la surface de la géométrie.

En considérant que nous avons courbé notre structure de blocs à l’aide d’éléments de Bézier,
nous générons un maillage sur cette structure à l’aide d’un algorithme dédié (voir Fig. 3.f).

2 Génération de Structure de Blocs par Avancées de
Fronts

Les champs de distances et vecteurs sont des composantes clés dans notre approche. L’idée,
inspirée de Ruiz-Gironés et al. [RG11, RGRS12] est de mélanger différents champs afin
de guider le processus d’extrusion par couches de blocs. Ces champs sont discrets, calculés sur
un maillage de support composé d’éléments simples (triangles en 2D et tétraèdres en 3D) du
domaine fluide à mailler.

Calcul des Champs

(a) Distance Euclidienne à la surface duvéhicule dV

(b) Distance Euclidienne à la frontière externe
dFF

(c) Champs de distances combinées d
Figure 4: Champs de distances autour d’un véhicule 3D.

2. GÉNÉRATION DE STRUCTURE DE BLOCS PAR AVANCÉES DE FRONTS 27
Tout d’abord, trois champs de distance sont calculés. Le premier, dV , illustré en Figure 4.a

représente la distance Euclidienne de chaque nœud du maillage support à la surface du véhicule.
Le second champ, dFF illustré en Figure 4.b est calculé comme étant la distance Euclidienne
de chaque nœud du maillage support par rapport à la frontière externe. Le dernier champ de
distance d, illustré en Figure 4.c, est une combinaison des deux premiers champs tel que:

d =
dV

dV + dFF
. (1)

Ce dernier champs d vérifie 0 ≤ d(x) ≤ 1, ∀x ∈ Ω, et les conditions limites sont données par
d|∂ΩV

= 0 and d|∂ΩFF
= 1.

En addition de ces champs de distances, un champ de vecteurs est calculé sur le maillage
de support du domaine. Ce champs de vecteurs est calculé entre autre à l’aide des gradients
des différents champs de distances, et il nous permet de guider la direction de l’extrusion de
chaque bloque dans une couche. Ce champs nous permet donc d’assurer certaines propriétés,
comme l’orthogonalité des arêtes de blocs à la paroi du véhicule.

Génération d’une Couche

Dans le but de générer une structure de blocs autour d’un véhicule, nous adoptons une
stratégie d’avancée de fronts basée sur les travaux de Ruiz-Gironés et al. [RG11, RGRS12],
dans lesquels ils proposent cette approche pour générer un maillage hexahédrique autour d’un
véhicule, à partir d’un découpage en quadrangles de la surface du véhicule, et d’une frontière
extérieure non pré-maillée, et lisse. Ici, nous utilisons cette méthode modifiée pour générer la
structure de blocs, qui contient moins d’éléments, ce qui est plus contraignant. Pour ce faire,
nous adaptons certaines étapes de l’approche à nos besoins spécifiques.

(a) Front (b) Couche (c) Nouveau front
Figure 5: Génération d’une couche régulière de blocs en 3D. Chaque quadrangle du front (a) crééun unique bloc hexahédrique par extrusion de cette face. Cet ensemble de blocs () représentéspar une vue éclatée (b) forme une couche de blocs. Cette couche fournit un nouveau front (c).

A chaque étape de l’algorithme, une couche complète de blocs est générée sur un front (voir
Fig. 5.a). La création de chaque couche est indépendante des précédentes. Un front est définit
ici comme un ensemble de quadrangles, d’arêtes et de sommets de blocs qui respectent certaines
propriétés. Par exemple, chaque arête de bloc du front est adjacente à strictement deux faces
quadrangulaires sur ce front. Afin de créer une couche régulière, chaque face quadrangulaire
du front est extrudée pour créer un bloc hexahédrique (voir Fig. 5.b). Cette couche fournit
un nouveau front (voir Fig. 5.c) qui respecte les mêmes propriétés qu’énoncées précédemment.
Ainsi, on peut construire une nouvelle couche sur ce front, et ainsi de suite, jusqu’à ce que la
frontière extérieure soit atteinte.

28 RÉSUMÉ EN FRANÇAIS

(a) Trajectoire d’un sommet de bloc (b) Nouveaux blocs ()
Figure 6: Calcul de la position d’un sommet de bloc d’un front en 3D, à partir de la position dusommet de bloc du front précédent. En (a), la première couche de bloc () est préalablementconstruite. Pour calculer la position du prochain sommet de bloc, la position du sommet est ad-vectée suivant le champ de vecteur (), jusqu’à ce qu’une distance cible soit atteinte. Une foisles positions calculées, la nouvelle couche de blocs () est créée.

Le calcul de la position des sommets d’une couche, à partir des positions des sommets
de la couche précédente est illustré sur un cas réel présenté en Figure 6. Sur cet exemple
pratique, le sommet de bloc est advecté suivant le champ de vecteurs représenté par les flèches
bleues foncées (), jusqu’à ce qu’une valeur cible soit atteinte dans le champ des distances
représenté en fond. Cette distance cible est la même pour tous les sommets de blocs d’un
front. La trajectoire discrète effectuée par le sommet de bloc est représentée sur la Figure 6.a
à l’aide des points blancs. Comme on peut le voir, cette trajectoire ne suit pas spécifiquement
une droite. Enfin, sur la Figure 2.15.b, la couche de blocs construite à l’aide de cette position
calculée est illustrée à l’aide d’un plan de coupe suivant le plan (O,

−→
X ,
−→
Y).

Chaque sommet d’un front est placé à la même iso-valeur dans le champ des distances
combinés. Ceci nous assure qu’un front ne peut pas se séparer, et qu’au cours du processus,
chaque front généré respectera bien les propriétés d’un front.

Gestion de Conflits sur une Couche

(a) (b) (c)
Figure 7: Exemple de gestion d’un conflit dans le cas d’une expansion du domaine physique en2D [BS91]. Dans le cas régulier, chaque arête créé un bloc tracé avec les arêtes bleues () sur lacouche (b). Cependant, pour améliorer la qualité géométrique des blocs, un bloc suplémentaireest créé sur un sommet de blocs (c).

3. COURBURE D’UNE STRUCTURE DE BLOCS & GÉNÉRATION DE MAILLAGES 29
Sur une couche, il est possible d’avoir envie de gérer des conflits dûs à l’expansion ou la

contraction du domaine physique. Le cas de la Figure 7 illustre une expansion du domaine
physique en 2D. Dans ce cas, deux possibilités s’offrent à nous en suivant la méthode du
Paving [BS91]. La première consiste à créer des blocs de manière régulière (voir Fig. 7.b), ou
bien insérer un bloc sur un sommet de bloc (voir Fig. 7.c).

En 3D, le nombre de combinaisons possibles de blocs à construire autour d’un sommet de
bloc ou d’une arête de bloc se démultiplient. Un échantillon de ces combinaisons est illustré
en Figure 8. Pour référence, la combinaison présentée en Figure 8.a représente l’extension
naturelle de la combinaison présentée en Figure 7.c en 2D. La différence principale est qu’en
2D, l’opération est locale au sommet, alors qu’en 3D, l’utilisation d’une telle combinaison de
blocs sur une arête ou un sommet se propage dans la structure topologique de la couche.
Ainsi, en plus d’utiliser une liste de critères locaux aux sommets d’un front pour appliquer une
combinaison de blocs permettant d’améliorer la qualité des blocs, il est nécessaire de vérifier
préalablement que l’utilisation de ces combinaisons va fournir une couche de blocs cohérentes,
dans laquelle tous les blocs sont bien connectés.

(a) Insertion de bloc sur unearête () (b) Contraction de blocs surune arête () (c) Insertion de deux blocs surune arête ()
Figure 8: Exemples de combinaisons de blocs () appliquées sur un front () pour gérer desconflits en 3D.

2D
Si la méthode globale de génération de la structure de blocs par avancée de fronts est
la même en 2D et en 3D, la différence principale est lors de l’étape de traitement des
conflits sur une couche, qui est plus direct en 2D. Pour ce faire, des règles similaires à
celles présentées pour la méthode de Paving introduite par Blacker et al. [BS91] sont
utilisées. Cette approche 2D présentée dans [RBHL23] constitue un prototype fonctionnel
que nous avons ensuite étendu au cas 3D.

3 Courbure d’une Structure de Blocs & Génération
de Maillages

Dans cette partie, nous nous intéressons à la représentation courbe d’une structure de blocs.
Au lieu de considérer nos arêtes de blocs hexahédriques comme étant des segments droits, ces
arêtes sont représentées ici à l’aide de polynômes. Cela permet entre autre de réduire l’erreur
(c’est-à-dire l’écart) entre les blocs (ainsi que le maillage final) et la géométrie.

30 RÉSUMÉ EN FRANÇAIS

Dans le cadre de cette thèse, nous avons étudié deux approches afin de courber une structure
de blocs linéaire. La première s’inscrit dans un processus d’adaptation de maillages développé
dans MFEM1 [mfe, AAB+21, BKMT23, AAB+24], bibliothèque notoire pour le calcul par
méthode des éléments finis. La seconde approche étudiée s’appuie sur une représentation des
blocs à l’aide de courbes de Bézier, et d’un ensemble d’opérations locales et géométriques afin
d’aligner ces blocs à la géométrie.

Adaptation de Maillages d’Ordres Mixtes pour l’Alignement
d’Interfaces

La première méthode s’inscrit dans une chaîne utilisant un algorithme d’adaptation de
maillages développé dans MFEM [mfe, AAB+21, BKMT23, AAB+24]. Dans [DKK+19], une
méthode est introduite pour adapter un maillage à topologie fixe (c’est-à-dire sans changer le
nombre d’éléments du maillage ni la connectivité entre ces éléments) reposant sur la minimisa-
tion d’une fonction d’énergie construite à l’aide de métriques de qualité. En mettant à disposi-
tion différentes métriques [Knu20, Knu22], cela permet d’optimiser un maillage en se focalisant
sur la taille des mailles, leurs formes, ou d’autre critères. Dans d’autres travaux [BKMT23],
un terme de pénalité est ajouté à la fonction objective. Le but est de permettre l’alignement
d’un maillage à une interface représentée à travers d’une fonction de distance discrète sur un
maillage support.

(a) Maillage initial (b) Fonction distance σ (c) Maillage finald’ordre p=1
(d) Maillage finald’ordre p=2

Figure 9: Example d’alignement à une interface à l’aide de l’algorithmedéveloppédansMFEM, dansle cadre de maillages d’ordres uniformes. Le maillage initial (a) est composé d’éléments quadran-gulaires. Le domaine est séparé entre deux matériaux, représentés en bleu () et en jaune ().La frontière entre ces deux matériaux est donnée par l’iso-valeur 0 de la fonction distance σ (b)sur un maillage de support.
La Figure 9 illustre l’alignement d’un maillage quandrangulaire initial (voir Fig. 9.a) représen-

tant un domaine partagé entre deux matériaux. L’interface entre ces deux matériaux est
représentée à travers l’iso-valeur 0 de la fonction distance σ en Figure 9.b. Ici, cette inter-
face est circulaire. Cette méthode permet d’aligner un maillage dont les éléments ont tous le
même ordre sur le domaine. Le maillage de la Figure 9.c est obtenu en utilisant l’algorithme
pour optimiser et aligner le maillage en considérant que tous les éléments sont d’ordre 1 (c’est-
à-dire linéaires). Dans le cas de la Figure 9.d, le maillage aligné est d’ordre 2 (c’est-à-dire que
tous les éléments sont d’ordre 2). Dans ce second cas, on peut voir que l’interface circulaire
entre les deux matériaux est mieux représentée. Cependant, ce qui n’est pas visible, c’est le

1https://github.com/mfem/mfem

https://github.com/mfem/mfem

3. COURBURE D’UNE STRUCTURE DE BLOCS & GÉNÉRATION DE MAILLAGES 31
nombre de degrés de liberté utilisés pour représenter le maillage. Dans le cas du maillage en
Figure 9.c, chaque élément est représenté par 4 points. Dans le cas du maillage d’ordre 2 de
la Figure 9.d, 9 points sont nécessaires pour représenter chaque quadrangle, ce qui augmente
grandement le nombre de degrés de liberté sur le maillage global.

Dans ces travaux [MDK+24], une boucle itérative permet d’adapter l’ordre des éléments
autour de l’interface que l’on souhaite représenter, afin d’utiliser des mailles d’ordre élevé dans
les zones de forte courbure, tout en gardant des éléments d’ordre faible dans les autres parties
du domaine. Ceci résulte en un maillage avec des éléments d’ordres mixtes dans le domaine,
qui comporte moins de degrés de liberté qu’un maillage d’ordre élevé uniforme sur le domaine,
mais une erreur d’interpolation entre le maillage et l’interface similaire.

Cette méthode a montré de bons résultats en 2D et 3D, sur des maillages avec des types
d’éléments différents, et sur des problèmes d’intérêt pratique. Cependant, en 3D, cette méthode
est pour l’instant trop couteuse en temps.

Courbure des Blocs par Polynômes de Bézier

P0

P1

P2

(a) Courbe de Bézierd’ordre p=2

P0

P1

P2

P3

(b) Courbe de Bézierd’ordre p=3
(c) Quadrangle deBézier d’ordre p=2

(d) Quadrangle deBézier d’ordre p=3

Figure 10: Courbes de Bézier () d’ordre p=2 (a), et d’ordre p=3 (b). Quadrangles de Bézier ()d’ordre p=2 (c), et d’ordre p=3 (d). Les Pi () sont les points de contrôle de chaque courbe.
Une seconde approche est étudiée dans ces travaux afin de courber les blocs, basée sur

une représentation des blocs par des polynômes de Bézier. Dans les travaux de Feuil-
let [Feu19], différents éléments de Béziers ainsi que leurs propriétés sont explicités. Ici, nous
utilisons la formulation des quadrangles et hexahédres de Bézier pour les blocs. Les courbes de
Bézier [Bez86, DC59, GB12, Feu19] sont des polynômes bien étudiés, sur lesquelles multiples
propriétés sont connues, et algorithmes disponibles. La Figure 10 présentes des exemples de
courbes de Bézier de différents ordres (voir Fig. 10.a et b), ainsi que deux exemples de quadran-
gles de Béziers (voir Fig. 10.c et d). Une courbe de Bézier d’ordre p est définie par un ensemble
de p+1 points Pi, appelés points de contrôle. Par extension, un bloc hexahédrique de Bézier
d’ordre p est représenté à l’aide de (p+1)3 points de contrôle. Ces positions ne sont pas inter-
polées, sauf pour les deux extrémités. Un ensemble d’opérations locales et géométriques sont
effectuées afin d’aligner les faces de blocs correspondantes au véhicule à la surface géométrique
de celui-ci. Ces modifications sont propagées pour assurer de ne pas générer des blocs courbes
croisés.

La génération du maillage final s’effectue à l’aide d’un algorithme d’optimisation sur la
structure de blocs pour répondre aux contraintes imposées en entrée. A partir d’une arête

32 RÉSUMÉ EN FRANÇAIS

de blocs, on calcule l’ensemble des arêtes de blocs opposées dans la structure. Cet ensemble
d’arêtes partage la même discrétisation finale. Pour chaque ensemble d’arêtes, un problème
d’optimisations sous contraintes est résolu afin de déterminer le nombre final de mailles dans le
maillage. Une fois les nombres de mailles fixés, le maillage final est généré en utilisant l’espace
paramétrique de chaque bloc de Bézier.

4 Analyse de la Qualité des Maillages Générés

Dans ces travaux, la qualité des maillages hexaédriques structurés par blocs courbes générés
est évaluée de deux manières différentes. La première est par le biais de critères purement
géométriques sur ces maillages. La seconde est par la simulation numérique d’écoulements
fluides sur les maillages générés.

La première étude, basée purement sur des critères géométriques bien connus tels que le
Scaled Jacobian et la Skewness comme introduits dans la bibliothèque Verdict [KET+06],
permet de mettre en avant sur plusieurs géométries différentes à la fois les possibilités de notre
méthode, avec un éventail de structures de bloc générés autour d’une même géométrie en
modifiant les paramètres de la méthode. Cette étude permet également de mettre en avant
la qualité des maillages générés sur ces différentes structures de bloc, ainsi que l’impact des
paramètres de l’algorithme sur ce résultat final.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
100

101

102

103

104

105

Scaled Jacobian

N
u
m
b
er

of
el
em

en
ts

(a) Couches régulières
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

100

101

102

103

104

105

Scaled Jacobian

N
u
m
b
er

of
el
em

en
ts

(b) Couches avec gestion de conflits
Figure 11: Comparaison de la qualité géométrique de deux maillages générés sur deux structuresde blocs différentes (a), et (b).

La Figure 11 présente une comparaison entre deux structures de blocs et maillages générés

4. ANALYSE DE LA QUALITÉ DES MAILLAGES GÉNÉRÉS 33
avec cette méthode autour de la même géométrie. Les deux structures sont représentées ici en
utilisant un plan de coupe suivant le plan (O,

−→
X ,
−→
Z). Sur la Figure 11.a, la structure de blocs

est extrudée de manière régulière, comme expliquée précedemment. Dans la seconde structure
présentée en Figure 11.b, des blocs sont insérés sur une couche, représentés en orange (),
pour améliorer la qualité géométrique des blocs. En conséquence, si on regarde les diagrammes
de la qualité géométrique des maillages générés sur chaque structure, la qualité des mailles dans
le second cas est améliorée.

Dans une seconde partie, la qualité des maillages générés est étudiée à travers la simulation
numérique. Pour ce faire, deux codes de calcul différents sont utilisés. Le premier, SU2 [SU2,
EPC+16], est un code multi-physiques développé en C++ dont les sources sont ouvertes. Le
second est un code Navier-Stokes stationnaire et instationnaire développé par le CEA, dédié
pour des calculs de mécanique des fluides en régime hypersonique autour de corps de rentrée.
Pour valider les maillages générés, des calculs ont été effectués en 2D ainsi qu’en 3D, en régime
subsonique, supersonique, et hypersonique. Les résultats obtenus ont été comparés à

• des données expérimentales mises à disposition par la NASA;

• des solutions analytiques;

• des résultats de référence obtenus sur d’autres maillages générés à la main.

Pour les différentes configurations étudiées, les résultats obtenus sur nos maillages sont co-
hérents avec les données de référence. Ceci nous permet de valider l’utilisation de nos maillages
pour des cas d’intérêt pratique.

M∞ AA α p∞ T∞
1, 5 0◦ 101.325, 0N.m−2 288, 15K

Table 1: Paramètres de simulation pour le fluide autour du RAM-C II 3D.

(a) Champ de Mach autour dunez de l’objet (b) Champ de pression adimensionné
Figure 12: Résultats de la simulation autour du RAM-C II 3D.

Parmi les simulations effectuées, nous présentons ici un cas particulier d’un écoulement
supersonique 3D effectué avec le code SU2 [SU2, EPC+16]. Les conditions infinies amonts du
fluides sont celles explicitées en Table 1. Sur la Figure 12, les résultats de la simulation sont
présentés à l’aide d’un plan du coupe suivant le plan (O,

−→
X ,
−→
Y). Plus précisemment, sur la

34 RÉSUMÉ EN FRANÇAIS

Figure 12.a, le champ de Mach est tracé autour du nez de l’objet. Sur la Figure 12.b, le champ
de pression adimensionné est représenté. D’après [And89], ces résultats correspondent à ce à
quoi nous pouvions nous attendre.

Ces résultats couplés aux autres permettent de montrer tout d’abord que nos maillages
passent le test de validité de différents solveurs, c’est-à-dire qu’ils sont capable de lire nos
maillages en entrées et qu’ils sont capables de les utiliser pour calculer. Ensuite, la comparaison
aux diverses données montre que les solutions calculées sur ces maillages sont cohérentes.

5 Conclusion & Perspectives

Dans ces travaux, nous avons proposés une méthode automatique pour générer des maillages
hexahédriques structurés par blocs courbes par une méthode d’avancée de fronts autour d’un
véhicule avec une paroi unique, complétement immergés dans le fluide, dédiés pour des calculs
de mécaniques des fluides autour de corps de rentrée. Plus spécifiquement, la méthode a
été développé en 2D puis étendue au cas 3D. La structure de blocs est générée par extrusion
par couches d’un premier maillage de blocs du véhicule jusqu’à la frontière extérieure. Cet
algorithme inspiré des travaux de Ruiz-Girones et al. [RG11, RGRS12] est adapté ici
à nos applications. Une fois cette structure de blocs hexahédriques linéaires générée, elle est
courbée. Pour ce faire, deux approches sont étudiées. La première est dans le cadre d’une boucle
d’adaptation du degré polynomial des éléments autour de la surface de la géométrie, en utilisant
un algorithme d’optimisation de maillages développé dans MFEM [mfe, AAB+21, AAB+24].
Cette méthode a montré de bons résultats mais elle reste trop couteuse en temps en 3D. Ansi,
une seconde méthode a été étudiée dans le cadre de ces travaux, en considérant les blocs comme
des blocs de Bézier, que l’on aligne à la surface de la géométrie. La dernière partie de ces travaux
est dédiée à l’étude et la validation des maillages générés. Pour ce faire, une première analyse
purement géométrique est menée sur la qualité géométrique des éléments des maillages, en
fonction des différentes topologies de blocs générées. Le processus de validation est complété
par la simulation numérique, avec l’appuie de calculs effectués avec deux codes différents. Le
premier code, SU2 [SU2, EPC+16] est un code développé en C++ spécialisé dans la résolution
de systèmes d’équations aux dérivées partielles, notamment pour des applications de mécanique
des fluides, le second est un code développé par le CEA. Différents types d’écoulements 2D et
3D ont été étudié, en régime subsonique, supersonique, et hypersonique. Les résultats obtenus
ont été comparés à des données expérimentales de la littérature, des solutions analytiques,
ainsi qu’à des résultats obtenus sur des maillages de référence. Nous avons ainsi montré que les
maillages générés par notre méthode permettent d’obtenir des résultats de simulation cohérents
avec la physique d’intérêt.

INTRODUCTION

A mesh can be defined as the discrete representation of a physical domain in a set of finite
and simple elements. Figure 13 illustrates mesh examples in nature. Here, floors of the Giant’s
Causeway in Ireland (see Fig. 13.a), and the salt flats of the Death Valley (see Fig. 13.b)
are marked by a set of polygonal shapes. In the same way, spider nets (see Fig. 13.c) form
quadrangles, or honeycomb (see Fig. 13.d) form assemblies of regular hexagonal shapes. The
last example of the mosaic (see Fig. 13.e) represents a planar surface paved using tiles. Here, it
looks very regular but you may imagine various representations of diverse shapes (e.g., animals,
trees, persons, etc.) using little tiles.

(a) Giant’s Causeway (b) Salt flats

(c) Spider net (d) Honeycomb (e) Mosaic
Figure 13: Meshes in nature.

In computer science, meshes are mainly used in two different contexts to represent a contin-
uous domain through a discrete finite set of points. The first one is graphic representations,
such as in animation or video games (to represents characters, etc.). The second one is nu-
merical simulation, which is the point of interest of this manuscript.

35

36 INTRODUCTION

1 Numerical Simulation in a Nutshell

Numerical simulation is a field that consists in gathering many mathematical tools to reproduce
or predict, using a computer, a physical phenomenon. This is used in various contexts of every-
day life, for instance numerical weather forecast to predict the weather, earthquake simulations,
car crash simulations, airplanes design, etc.. During the last decade, numerical simulation
has taken much more importance contributing to the emergence of the digital industry. With
numerical simulation, it is easier to modify some parameters and access quantities that are
difficult or impossible to measure. It can also be used in a context where "real" experiments
are not possible (e.g., tsunami effect prediction, star-meteorite collision, etc.). The process of
numerical simulation can be divided into several steps.

The first step consists in identifying the physical phenomena to study. Then, to pick the
mathematical modeling, namely the continuous equations that represent the phenomena,
which we want to solve. For a same phenomenon, multiple different mathematical modelings
can exist and choosing one is already an important step (e.g., in case of a flow simulation, do
we want to take viscosity effects of the flow into account or not). Usually, those mathematical
models are complex partial differential equation systems for which an exact solution is unknown2.
However, many different numerical methods are used to approximate the solutions of those
equations. As we expect to approximate the solution using a computer, we can not solve the
continuous equations directly: we have to discretize continuous equations both in space and
time. Such discretizations are handled by the numerical schemes. The best known are the
Finite Differences, the Finite Elements, and the Finite Volumes, but many other methods exist.
Those schemes give the formula that approximates the solution of the equations in each cell or
points of the space discretization (i.e., a mesh).

As space, time is continuous, and the equations can not be solved on an infinite time step.
A time step has to be set to compute the solution on a finite number of time periods. Let us
note that this time step is not necessarily constant and can evolve during the simulation.

(a) Mesh around airfoil (b) Simulation result
Figure 14: Flow simulation around an airfoil [SU2].

Another critical step for numerical simulation is to define the geometry to use for the
simulation (e.g., the shape of an airfoil as in Fig. 14.a, the shape of the bridge in case of a
simulation of a flow under a bridge, etc.). The geometric modeling step is done using Computer
Aided Design (CAD) software. Then, the meshing step sets the physical points on which the
discrete equations are solved. The number of points, the relations between the points, and

2For some well-known systems, the research of an analytical solution remains an open prob-lem.

2. COMPUTATIONAL FLUID DYNAMICS FOR ATMOSPHERIC RE-ENTRY 37
their positions are set during this step and form what we refer to as a mesh (see Fig. 14.a).
Figure 14.b represents the resulting field computed at each point of the mesh 14.a. Depending
on the physical phenomenon (e.g., electromagnetism, mechanic, fluid mechanic, etc.), and the
numerical scheme used, the type and quality of mesh needed differ. Meshing is a core and
critical component of the numerical analysis process. In industrial cases, the mesh generation
is often handled by placing the mesh points and connecting them by hand, using dedicated
interactive software. This process is highly time-consuming, and this is the reason why some
researches focus on the automation of mesh generation. If the mesh does not respect criteria
depending on the physical phenomena, the numerical method, and the physical domain, then
the simulation may fail.

This work focuses on automatic mesh generation and is dedicated to atmospheric re-entry
flow simulations around supersonic and hypersonic re-entry bodies.

2 Computational FluidDynamics forAtmospheric Re-
Entry

Figure 15: Artistic representation of a capsule re-entry [esa].
Atmospheric entry refers to the entry of an object or vehicle (e.g., space debris, spacecraft,

etc.) from outer space into a planet’s atmosphere. Figure 15 represents an artistic view of
a capsule re-entry. During atmospheric entry, the object suffers from high temperature and
pressure conditions. The supersonic or hypersonic velocity (i.e., superior to the sound speed)
of the object can lead to its ablation or disintegration.

Vehicles have been sent into space for years to provide information about our environment.
They provide, for instance, pictures and collect samples to study. The capsule must be slowed
before landing so inhabited space vehicles can return to Earth. In other cases, it is not necessary.
For example, Stardust was a robotic spacecraft launched by National Aeronautics and Space
Administration (NASA) in 1999 to collect dust samples from a comet. It was the first spacecraft
to bring samples from a comet to Earth. To bring back the spacecraft, it was necessary to

38 INTRODUCTION

design it to withstand Earth’s atmospheric re-entry. The rounded vehicle right part in Figure 15
represents the heat shield, which is supposed to ensure the capsule’s integrity.

Boundary
layer flow

Shock

Vehicle ∂ΩV

Far-field ∂ΩFF

Flow −→u∞

AoA
α

Figure 16: Traditional flow topology around a supersonic vehicle.
Figure 16 shows briefly the traditional flow topology observed during a supersonic or hyper-

sonic flow simulation around a vehicle (). The direction of the inflow is represented by the
black vectors −→u∞ () and the Angle of Attack (AoA) α. Due to the effect of viscosity, a
very thin boundary layer plotted in orange () develops along the wall. Extreme gradients of
velocity and temperature characterize this region. In general, for Computational Fluid Dynam-
ics (CFD), gradients are calculated more accurately if the cells are aligned to the streamlines,
particularly in the boundary layer, and along the shock represented in red () too. A shock
wave is a flow discontinuity characterized by an abrupt change in pressure, temperature, and
density of the medium. To compute an accurate solution of the fluid dynamics equations, very
thin and regular cells are needed along the wall in the wall-normal direction. Thus, structured
meshes are well-suited for this area. As few as possible, singular nodes (not valence four nodes)
are admitted in the orange part of the mesh. However, mesh refinement is less restrictive near
the shock to compute it accurately, unlike boundary layers.

In this work, vehicles are completely immersed in the fluid, and a single wall is considered.
The far-field plotted in blue () is a smooth boundary (circle, ellipse), far from the physical
phenomena to simulate. In this way, the flow structures around the vehicle do not impact the
far-field boundary conditions. As the accuracy of the simulation is not needed in this area,
there is no strong constraint on cell quality near the far-field boundary.

The thin region in front of the vehicle (on the left side of the vehicle in Fig. 16) is the key
part that will govern the simulation. In this very specific zone, the mesh has to be as regular
as possible, and singular nodes are not admitted.

3 Principal Steps of our Approach

We aim to generate 3D hexahedral block-structured meshes dedicated for atmospheric re-entry
CFD simulations. Such meshes are created before any simulation (i.e., we don’t know the
potential shock position, etc.). To generate those meshes, we propose a meshing algorithm
that relies on three inputs:

1. A tetrahedral (or triangular in 2D) discretization of the fluid domain to mesh around the

3. PRINCIPAL STEPS OF OUR APPROACH 39
vehicle (see Fig. 17.b).

2. The vehicle surface block discretization (see Fig. 17.c).

3. A set of user parameters to control some algorithm features.

(a) Vehicle surface (b) Tetrahedral mesh of thefluid domain to mesh aroundvehicle (a)
(c) First block discretization ofvehicle surface (a)

Figure 17: Inputs of our method.

Starting from the first tetrahedral mesh of the physical domain as the one of Figure 18.a (this
type of meshes can easily be generated using the free open software GMSH [gms, GR09] [GR09]
for instance), and the block wall surface discretization. We first generate a linear block structure
around the vehicle using an extrusion algorithm that is an extension of the work done by Ruiz-
Gironés et al. [RG11, RGRS12]. To do so, we compute some distance fields (see Fig. 18.b)
and a vector field (see Fig. 18.c) that will lead the block extrusion direction. Then, starting
from a first block discretization of the surface, we extrude the block structure layer by layer
(see Fig. 18.d, where the block structure is extruded on 8 different layers, each one represented
by a different color).

Once the linear block structure is generated, we add a step to represent our blocks as high-
order blocks (see Fig. 18.e). This step aims to improve the geometry representation because
as we work with a coarse block structure, there is an important gap between the real curved
surface of the geometry and the straight cells of the blocks. This step also allows us to avoid
the smoothing step on the final mesh. The final mesh can be made up of a large amount of
cells. Suppose this final mesh is generated on the linear cells. In that case, we will need to
apply a projection step to align the cells on the boundaries of the geometry and then apply a
smoothing step to untangle and improve the quality of the cells around the vehicle. Applying
a smoothing algorithm on such a mesh might be very time-consuming. This is the reason why
we use high-order blocks. In this manuscript, two different strategies are studied to curve the
blocks:

1. The first one uses Bézier cells and applies a set of geometric and local operations around
the boundaries.

2. The other method considers the problem as a global problem. It solves an optimiza-
tion problem to align a high-order block structure around the boundaries while carefully
controlling the polynomial degrees of the elements around the geometry.

40 INTRODUCTION

(a) Tetrahedral mesh (b) Distance field (c) Vector field

(d) Linear blocks (e) Curved blocks (f) Final hexahedral mesh
Figure 18: Main stages of our approach illustrated in 3D.

We decided to base our mesh generation pipeline on the work of Ruiz-Gironés et al.
and we performed various modifications to fit our requirements.

1. First of all, we adapt the work proposed in [RG11, RGRS12] to generate a coarser block
structure, that is more constraining than a mesh. Our pre-meshed block surface can
be anisotropic (i.e., with important aspect ratio between quadrangular cells) while the
pre-meshed surface looks relatively regular in [RG11, RGRS12].

2. We introduce, in addition to the 3 different distance fields (see Fig. 18.b and Fig. 19.b),
a vector field that leads the directions for the extrusion of the blocks (see Fig. 18.c and
Fig. 19.c).

3. We only consider half of the patterns used to solve conflicts on a layer, but we introduce
the notion of closed path.

4. We curve the block structure and use an interval assignment algorithm to generate the
final mesh. In contrast, authors of [RG11, RGRS12] use templates to refine hexahedral
cells (which could degrade the blocking structure).

Considering this global pipeline, this manuscript is divided into four main parts. Chapter 1
is a general part to introduce different notations and definitions linked to the fields of meshing
and Computational Fluid Dynamics in the specific case of supersonic and hypersonic flow
mechanics. This chapter contains all the information necessary for a good understanding of
this manuscript. An already informed reader may want to skip it. The next three chapters
correspond to the main steps of our approach presented in Figures 18 and 19. The method
was first designed in 2D to be extensible to 3D. The main steps of the whole method are the
same (see Fig. 18 and Fig. 19), even if there are a few minor differences. For this reason, in

3. PRINCIPAL STEPS OF OUR APPROACH 41

(a) Triangular mesh (b) Distance field (c) Vector field

(d) Linear blocks (e) Curved blocks (f) Final block-structured mesh
Figure 19: Main stages of our approach illustrated in 2D.

this manuscript, the general method is presented in nD, where n refers to the physical domain
dimension. Dedicated comments related to the 2D or 3D method are presented in specific frames
when needed. The extrusion algorithm to generate the linear block structure is presented in
Chapter 2 (see corresponding steps on Fig. 18.b, c, and d). Chapter 3 is dedicated to the
curving of a linear block structure using two different approaches and the final discretization
of the curved block structure into a mesh (see corresponding steps on Fig. 18.e and f). In
Chapter 4, we discuss the generated mesh quality through purely geometrical criteria analysis
and the application of numerical simulation on meshes generated with our method. Let us note
that our meshing algorithm developed and presented here is freely available and implemented
in the C++ framework GMDS3 [gmd, LWB08].

In addition to this manuscript, we provide a detailed list of the communications linked to
this thesis work.

Peer-Reviewed Papers

• Roche C, Breil J, Hocquellet T, Ledoux F. Block-structured quad meshing for supersonic
flow simulations. International Meshing Roundtable 2023 (SIAM IMR23), Amsterdam,
The Netherlands, March 2023. [RBHL23]

• Mittal K, Dobrev V.A., Knupp P, Kolev T, Ledoux F, Roche C, Tomov V.Z. Mixed-Order

3https://github.com/LIHPC-Computational-Geometry/gmds

https://github.com/LIHPC-Computational-Geometry/gmds

42 INTRODUCTION

Meshing using rp-adaptivity for Surface Alignment with Implicit Geometries. Interna-
tional Meshing Roundtable 2024 (SIAM IMR24), Baltimore, USA, March 2024. [MDK+24]

Research Note

• Roche C, Breil J, Calderan S, Hocquellet T, Ledoux F. Curved Hexahedral Block Structure
Generation by Advancing Front. SIAM International Meshing Roundtable Workshop
(SIAM IMR24), Baltimore, USA, March 2024.

Proceeding

• Roche C, Breil J, Olazabal M. Mesh regularization of ablating hypersonic vehicles. In
8th European Congress on Computational Methods in Applied Sciences and Engineering
(ECCOMAS 2022), Oslo, Norway, June 2022. [RBHL23]

Talks

• Roche C, Breil J, Hocquellet T, Ledoux F. Block-structured quad meshing for supersonic
flow simulations. SIAM International Meshing Roundtable Workshop (SIAM IMR23),
Amsterdam, The Netherlands, March 2023.

• Roche C, Breil J, Hocquellet T, Ledoux F. Advancing-front block structure generation for
atmospheric re-entry simulations. 57th 3AF International Conference on Applied Aero-
dynamics, High speed aerodynamics, from transonic to hypersonic, Bordeaux, France,
March 2023.

• Roche C, Breil J, Hocquellet T, Ledoux F. Level-Set for CFD Quad Meshing. 22th
Computational Fluids Conference (CFC2023), Cannes, France, April 2023.

• Roche C, Breil J, Calderan S, Hocquellet T, Ledoux F. Curved Hexahedral Block Structure
Generation by Advancing Front. SIAM International Meshing Roundtable Workshop
(SIAM IMR24), Baltimore, USA, March 2024.

• Mittal K, Dobrev V.A., Knupp P, Kolev T, Ledoux F, Roche C, Tomov V.Z. Mixed-
Order Meshes through rp-Adaptivity for Surface Fitting to Implicit Geometries. SIAM
International Meshing Roundtable Workshop (SIAM IMR24), Baltimore, USA, March
2024.

• Roche C, Breil J, Hocquellet T, Ledoux F. Génération de maillages hexaédriques struc-
turés par blocs pour la rentrée atmosphérique. Journée des Doctorants de la DAM, the
French Alternative Energies and Atomic Energy Commission, Avrainville, France, April
2024.

Posters

• Roche C, Breil J, Hocquellet T, Ledoux F. Automatic hexahedral mesh generation for at-
mospheric re-entry. Journée des doctorants, the French Alternative Energies and Atomic
Energy Commission, Arcachon, France, May 2022. Best Poster Award.

3. PRINCIPAL STEPS OF OUR APPROACH 43
• Roche C, Breil J, Hocquellet T, Ledoux F. Automatic 2D curved block-structured mesh

generation for atmospheric re-entry. Scientific evaluation of the French Alternative Ener-
gies and Atomic Energy Commission in atmospheric re-entry, Bordeaux, France, Novem-
ber 2022.

• Roche C, Breil J, Hocquellet T, Ledoux F. Block-structured 2D mesh generation for
supersonic flow simulation. Scientific evaluation of the French Alternative Energies and
Atomic Energy Commission in high performance computing, Paris, France, December
2022.

• Roche C, Breil J, Hocquellet T, Ledoux F. Block-Structured Quad Meshing for Supersonic
Flow Simulations. SIAM International Meshing Roundtable Workshop (SIAM IMR23),
Amsterdam, The Netherlands, March 2023.

Chapter 1
DEFINITIONS & STATE OF THE ART

This chapter remains general and allows us to introduce the two fields related to this work:
hexahedral mesh generation and Computational Fluid Dynamics (CFD) in the specific case
of atmospheric re-entry. An advised reader may want to skip this chapter. We first explain
what a mesh is and define multiple terms related to meshes and mesh-related techniques.
We discuss how we represent and manipulate a mesh and the geometry in this work. Then,
we dedicate a section to present the well-known mathematical modeling used in CFD and
a discuss about mesh generation and quality for CFD. Finally, in the next section, we go
through existing state-of-the-art techniques to generate hexahedral meshes automatically.

Contents
1.1 Mesh Definitions & Terminology 46

1.1.1 Mesh Generalities . 46
1.1.2 High-Order Meshes . 48
1.1.3 Meshing Tools . 49
1.1.4 Mesh Quality . 51

1.2 Mesh & Geometry Representation 56
1.2.1 Cellular Mesh Representation 56
1.2.2 Geometry Representation & Geometric Classification . . . 57

1.3 Computational Fluid Dynamics for Atmospheric Re-Entry . . 58
1.3.1 Mathematical Modeling for Computational Fluid Dynamics 58
1.3.2 Mesh for Computational Fluid Dynamics 59

1.4 Hexahedral Mesh Generation: State of the Art 61

45

46 CHAPTER 1. DEFINITIONS & STATE OF THE ART

1.1 Mesh Definitions & Terminology

In this section, we go through a non-exhaustive list of mesh definitions and many words and
adjectives used to qualify a mesh. We also remember some tools widely used in mesh manipu-
lations.

1.1.1 Mesh Generalities

(a) Triangle (b) Quadrangle (c) Polygon
Figure 1.1: Examples of usual 2-cells.

A mesh can be defined as a discretization of a continuous geometric space Ω of dimension n

in a collection of simpler elements K [FG99]. More specifically,M is a mesh of the domain Ω if:

Ω =
⋃̊

K∈M
K, (1.1)

with K ̸= ∅ ∀K ∈ M and K̊1 ∩ K̊2 = ∅, ∀K1,K2 ∈ M. It means that the interior of all the
elements K of M are not empty, the intersection of the interiors of two different elements is
empty, and it wholly covers Ω. The continuous domain Ω is also called the geometry.

(a) Tetrahedron (b) Hexahedron (c) Pyramid
Figure 1.2: Examples of usual 3-cells.

A mesh is composed of a set of simpler elements of dimension n, called n-cells, where n

is also the dimension of the mesh. Examples of usual 2-cells and 3-cells are given respectively
in Figure 1.1 and Figure 1.2. An n-cell is bounded by n−1-cells (e.g., a hexahedron is a 3-cell
bounded by 6 quadrangular 2-cells). Usually, 0-cells are referred as nodes (e.g., a hexahedron
is a 3-cell defined by 8 nodes), and 1-cells as edges (e.g., a hexahedron has 12 edges). The
interface between two n-cells are n−1-cells. When the dimension n is equal to 2 (2D), the
n-cells are 2D shapes (e.g. quadrangles, triangles, polygons, ...). While in dimension n = 3

(3D), the n-cells are 3D shapes (e.g. hexahedra, tetrahedra, pyramids, polyedra, ...). In the 3D
case, the n−1-cells are 2D shapes. Let us note that the n−1-cells are not necessarily planar. The

1.1. MESH DEFINITIONS & TERMINOLOGY 47

(a) Geometry (b) Triangular Mesh (c) Quadrangular Mesh (d) Hybrid Mesh(quadrangular andtriangular n-cells)
Figure 1.3: Example of a triangularmesh (b), a quadrangularmesh (c), and a hybridmesh (d) insidethe geometry (a).

cells are also called entities or elements. The relation between two different mesh entities
is referred to as connectivity.

Meshes are classified into different categories depending on their topology. According to
Frey et al. [FG99], a structured mesh is a mesh whose connectivity table is of finite
difference type. If we take the particular case of a 3D mesh, each node can be stored in a
matrix Ml,m,n, where l, m, and n are the number of nodes in each direction. Those nodes are
connected by cells in a way that, given a node ni,j,k of the mesh, by going through the index
i+1, j+1, k+1, then i−1, j−1 and k−1, we are back on the node ni,j,k. In other words, structured
meshes are, topologically, grids. This type of mesh storage is less memory-consuming, and the
access to the adjacent elements is direct. There is no need for special connectivity tables to
reach the adjacent elements. By opposition, a mesh that does not have this trivial connectivity
is called an un-structured mesh (see Fig. 1.3.b, c, and d).

A mesh composed of n-cells of at least two different geometric shapes (e.g., quadrangular
and triangular in Fig. 1.3.d) is called an hybrid mesh.

(a) Conformal

Q1

Q2

(b) Non-Conformal
Figure 1.4: Example of conformal mesh (a), and non-conformal mesh (b).

A mesh is defined as conformal if the intersection between two elements of this mesh is
empty or a common node, edge, or face to the two elements. Considering the example given in
Figure 1.4, the mesh (a) is conformal while the quadrangular mesh (b) is non-conformal. For
instance, the intersection of the two n-cells Q1 and Q2 is, among other things, composed of
the red node (). This red node participates to define the quadrangular n-cell Q2 but does not

48 CHAPTER 1. DEFINITIONS & STATE OF THE ART

belong to the quadrangular n-cell Q1.

Finally, different words are used to qualify the geometrical properties of a mesh. For
example, a mesh is qualified as anisotropic if its cell size is not uniform in space and direction.
For example, the mesh is considered anisotropic if some cells are stretched out in one direction.

(a) Blocks () (b) Mesh on blocks ()
Figure 1.5: Blocking (a), and an example of mesh generated on this block structure (b).

A blocking, or block structure (see Fig. 1.5.a) is usually considered as a coarse mesh
of quadrangular (2D) or hexahedral (3D) cells. Those cells are referred to as blocks, and
their nodes () as block corners. A blocking is meant to be subdivided to provide a mesh
(see Fig. 1.5.b). As we may observe, the blocking can be unstructured. However, the mesh
generated in each block is structured. One can notice that to obtain a conformal final mesh, two
opposite block edges must share the same discretization (i.e., the same number of mesh nodes).
The main advantage of working with blocks is that we need to manipulate a few elements, and
the structure can benefit from the structured mesh storage by blocks. However, this can lead
to an insufficient representation of the geometry. Moreover, working with a coarse structure
may lead to a shortage of degrees of freedom while applying meshing tools and methods (such
as smoothing).

1.1.2 High-Order Meshes

(a) p1 (b) p2 (c) p3
Figure 1.6: High order quadrangular cells. A cell is plotted in light blue (), the degrees of freedomof the cell are plotted with black dots () while the edges of the element are plotted in black ().

A high-order n−cell is a cell represented by nonlinear elements. Usually, in the case
of a quadrangular cell of order 1, the cell is described by 4 degrees of freedom, or nodes, as
in Figure 1.6.a. All the edges of the cell are linear. In some cases, a cell can be considered
nonlinear. This means that more degrees of freedom are needed to represent the cell. For
instance, in case of a quadrangular cell of degree p = 2, 9 degrees of freedom are used to
define the quadrangular cell (see Fig. 1.6.b), and 16 degrees of freedom for a quadrangular

1.1. MESH DEFINITIONS & TERMINOLOGY 49
cell of degree p=3 (see Fig. 1.6.c), etc. Increasing the order of the mesh elements increases
the number of degrees of freedom, increasing the memory and computing time consumption.
Polynomials represent each edge of the element. Depending on the representation used for the
cells, a high-order cell can be defined only with the degree of freedom on its edges. A cell of
order p>1 can also be referred to as a curved cell.

A high-order mesh, or curved mesh, is a mesh composed of high-order cells. A high-
order mesh can comprise cells of different degrees in the domain. By opposition, a mesh
composed only of cells of degree p = 1 will be referred to as low-order mesh, or linear
mesh.

1.1.3 Meshing Tools

Mesh Adaptation

Mesh adaptation consists of many methods and algorithms that aim to modify a mesh.
Those methods can be divided into different subcategories.

• h−adaptivity is a category of methods concerning mesh adaptation at non-constant
topology. This means the mesh’s topology will change in terms of node number (degree
of freedom) and cells to improve some metrics. The metric to optimize can be a mesh
cell quality criteria or a field. To achieve this optimization, the method can, for instance,
split or fuse some cells (e.g., Adaptive Meshing Refinement).

• r−adaptivity regroups a family of methods concerning mesh adaptation at constant
topology. This means we do not change the connectivities between the different elements
of the mesh; we keep the exact same number of elements from the beginning to the end
of the process. However, the positions of the nodes change to improve some specific
metrics (e.g., size fields, cell’s shape, etc.). Those methods can also be referred to as
mesh smoothing.

• p−adaptivity is a set of methods concerning mesh adaptation by modifying the poly-
nomial order of the elements of the mesh.

Linear Transfinite Interpolation 2D

Transfinite Interpolation (TFI) [TSW98, Smi99] is a well-known method to build a function
over a planar domain by imposing a given function on the boundary. In this section, we re-
develop the linear Transfinite Interpolation formulation. Other types of interpolation exist (e.g.,
Lagrangian TFI) but are not discussed in this document. For complete information on TFI, the
reader should look at [TSW98, Smi99].

Let us consider a 2D grid of Ni × Nj points with known boundary positions. Linear
Transfinite Interpolation is a way to compute the inner positions of the grid points by only
using the boundary points coordinates. We note the function Φ, the mapping function to
compute the physical coordinates of each point (ξi, ηj) of the grid parametrical space (see
Fig. 1.7.a), where ξi=

i−1
Ni−1 ∈ [0, 1], and ηj=

j−1
Nj−1 ∈ [0, 1], with i ∈ J1, NiK, and j ∈ J1, NjK.

50 CHAPTER 1. DEFINITIONS & STATE OF THE ART

According to these notations, for i ∈ J1, NiK, and j ∈ J1, NjK, the physical position of the
corresponding grid point (see Fig. 1.7.c) is computed using only the physical coordinates of
boundary points (see Fig. 1.7.b) with the formula:

Φ(ξi, ηj) =(1− ξi)Φ(0, ηj) + ξiΦ(1, ηj) + (1− ηj)Φ(ξi, 0) + ηjΦ(ξi, 1)

− (1− ξi)(1− ηj)Φ(0, 0)− (1− ξi)ηjΦ(0, 1)

− ξi(1− ηj)Φ(1, 0)− ξiηjΦ(1, 1).

(1.2)

(a) Parametrical space (b) Boundary point positions inphysical space (c) Final grid in physical space
Figure 1.7: Transfinite interpolation 2D example on a 10× 20 grid of points.

Linear Transfinite Interpolation 3D

This part extends the linear Transfinite Interpolation given before to 3D grids. As before, we use
the same notations as in [TSW98]. Let us consider a grid of Ni×Nj×Nk points. We note the
function Φ the mapping function to compute the physical coordinates at each point (ξi, ηj , ζk)
of the grid in parametrical space (see Fig. 1.8.a), where ξi=

i−1
Ni−1 ∈ [0, 1], ηj = j−1

Nj−1 ∈ [0, 1],

and ζk=
k−1
Nk−1 ∈ [0, 1], with i ∈ J1, NiK, j ∈ J1, NjK, and k ∈ J1, NkK.

According to these notations, ξ0=0, and ξNi =1, η0=0 and ηNj =1, ζ0=0, and ζNk
=1.

U(ξi, ηj , ζk) = (1− ξi)Φ(0, ηj , ζk)+ ξiΦ(1, ηj , ζk)
V (ξi, ηj , ζk) = (1− ηj)Φ(ξi, 0, ζk)+ ηjΦ(ξi, 1, ζk)
W (ξi, ηj , ζk) = (1− ζk)Φ(ξi, ηj , 0)+ ζkΦ(ξi, ηj , 1)

(1.3)

UW (ξi, ηj , ζk) = (1− ξi)(1− ζk)Φ(0, ηj , 1)+ (1− ξi)ζkΦ(0, ηj , 1)
+ ξi(1− ζk)Φ(1, ηj , 0)+ ξiζkΦ(1, ηj , 1)

UV (ξi, ηj , ζk) = (1− ξi)(1− ηj)Φ(0, 0, ζk)+ ξiηjΦ(1, 1, ζk)
+ ξi(1− ηj)Φ(1, 0, ζk)+ (1− ξi)ηjΦ(0, 1, ζk)

VW (ξi, ηj , ζk) = (1− ηj)(1− ζk)Φ(ξi, 0, 0)+ (1− ηj)ζkΦ(ξi, 0, 1)
+ ηj(1− ζk)Φ(ξi, 1, 0)+ ηjζkΦ(ξi, 1, 1)

(1.4)

and

1.1. MESH DEFINITIONS & TERMINOLOGY 51

(a) Parametrical space (b) Physical space
Figure 1.8: Transfinite interpolation 3D boundary surfaces [TSW98].

UVW (ξi, ηj , ζk) = (1− ξi)(1− ηj)(1− ζk)Φ(0, 0, 0)+ (1− ξi)(1− ηj)ζkΦ(0, 0, 1)
+ (1− ξi)ηj(1− ζk)Φ(0, 1, 0)+ ξi(1− ηj)ζkΦ(1, 0, 1)
+ ξiηj(1− ζk)Φ(1, 1, 0)+ ξiηjζkΦ(1, 1, 1)
+ (1− ξi)ηjζkΦ(0, 1, 1)+ ξi(1− ηj)(1− ζk)Φ(1, 0, 0)(1.5)

Finally, for i ∈ J1, NiK, j ∈ J1, NjK, and k ∈ J1, NkK, the physical position of the corre-
sponding point is computed using only the boundary points in the physical space (see Fig. 1.8.b)
using the formula:

Φ(ξi, ηj , ζk) = U(ξi, ηj , ζk)+ V (ξi, ηj , ζk)+ W (ξi, ηj , ζk)
− UW (ξi, ηj , ζk)− UV (ξi, ηj , ζk)− VW (ξi, ηj , ζk)
+ UVW (ξi, ηj , ζk).

(1.6)

The corresponding algorithms to compute the point’s positions over a 2D or a 3D grid using
the linear TFI are presented in Appendix A.

1.1.4 Mesh Quality

Mesh quality is a very discussed topic [KET+06, Knu00, Knu01, Knu07] regarding mesh gen-
eration and adaptation. In our case, the quality of a mesh can be evaluated on two different
levels. The first one is the result of the numerical simulation on the mesh of interest, and all
the information given by this simulation (e.g., errors in the domain). The second level is a pure
geometric analysis of the cells of the mesh before any simulation. This is what is explored in
this section.

This part presents some purely geometric quality criteria introduced in the well-known
Verdict Geometric Quality Library [KET+06]. If they introduce many criteria over

52 CHAPTER 1. DEFINITIONS & STATE OF THE ART

different element types, we focus here on the scaled Jacobian and the skewness only on quad-
rangular 2-cells and hexahedral 3-cells.

Quadrangle Scaled Jacobian

This criterion is fully explained by Knupp [KET+06, Knu00] and is re-introduced here as a
reminder.

P0 P1

P2

P3

(a) Quadrangle
P0 P1

P2

P3 X⃗2

X⃗1

(b) Principal axes

α0 α1

α2
α3

P0 P1

P2

P3

(c) Areas
Figure 1.9: Notations used in [KET+06] to compute the Scaled Jacobian of a quadrangle.

Given the quadrangle of Figure 1.9.a, let us note the vectors corresponding to the edges
−→
L0 =

−→
P1 −

−→
P0−→

L1 =
−→
P2 −

−→
P1−→

L2 =
−→
P3 −

−→
P2−→

L3 =
−→
P0 −

−→
P3

(1.7)

and the edges lengths Li = ||
−→
Li||, ∀i ∈ {0, 1, 2, 3}. A normal vector is associated with each

corner
−→
N0 =

−→
L3 ×

−→
L0−→

N1 =
−→
L0 ×

−→
L1−→

N2 =
−→
L1 ×

−→
L2−→

N3 =
−→
L2 ×

−→
L3

, (1.8)

and the associated normalized vector are given by n̂i =
−→
Ni

||
−→
Ni||

, ∀i ∈ {0, 1, 2, 3}. The two

principal axes of the quadrangle (see Fig. 1.9.b) are{−→
X1 = (

−→
P1 −

−→
P0) + (

−→
P2 −

−→
P3)−→

X2 = (
−→
P2 −

−→
P1) + (

−→
P3 −

−→
P0)

, (1.9)

they define a "center" normal
−→
Nc =

−→
X1 ×

−→
X2 of unit-length n̂c =

−→
Nc

||
−→
Nc||

.

Finally, four areas are introduced, corresponding to the subdivision of the quadrangle into
four quadrangles (see Fig. 1.9.c), associated with each vertex. They are noted

∀i ∈ {0, 1, 2, 3}, αi = n̂c ·
−→
Ni. (1.10)

1.1. MESH DEFINITIONS & TERMINOLOGY 53
According to these notations, the value of the scaled Jacobian is given by

qsj = min

(
α0

||−→L0||||
−→
L3||

,
α1

||−→L1||||
−→
L0||

,
α2

||−→L2||||
−→
L1||

,
α3

||−→L3||||
−→
L2||

)
(1.11)

The range of the scaled Jacobian as defined in Equation (1.11) is [−1, 1]. For a square or
a rectangle (see Fig. 1.10.a and .b), the value of the scaled jacobian is equal to 1. If the scaled
jacobian of the cell takes a negative value (see Fig. 1.10.d), the cell is considered as inverted.
It can also be referred to as tangled or overlapping.

0 1

23

(a) qsj = 1

0 1

23

(b) qsj = 1

0 1

2

3

(c) qsj = 0.5547

0 1

2 3

(d) qsj = −0.743294
Figure 1.10: Examples of scaled Jacobian over different quadrangular cells.

Quadrangle Skew

In order to compute the skew of a quadrangle adapted from [Rob87], and presented here as
in [KET+06], we introduce the normalized vectors of principal axes (see Eq. (1.9)):X̂1 =

−→
X1

||
−→
X1||

X̂2 =
−→
X2

||
−→
X2||

, (1.12)

then, the skewness is defined as
qs = |X̂1 · X̂2|. (1.13)

The quadrangle skew normal range is between [0, 1]. For a unit square, this value is equal
to 0. Figure 1.11 represents different quadrangles and their corresponding skew value.

P0 P1

P2P3

(a) qs = 0

P0 P1

P2P3

(b) qs = 0.447214

P0 P1

P2P3

(c) qs = 0.707107

P0 P1

P2P3

(d) qs = 0.894427

Figure 1.11: Skew examples over different quadrangular cells.

Hexahedral Scaled Jacobian

This criterion is also fully explained by Knupp [Knu00, KET+06] and is re-introduced here as
a reminder.

54 CHAPTER 1. DEFINITIONS & STATE OF THE ART

P0

P3

P2

P1

P4

P7

P6

P5

Figure 1.12: Notations used in [KET+06] to compute the Scaled Jacobian of a hexahedron.

Given the hexahedron of Figure 1.12, let us note the vectors corresponding to the edges

−→
L0 =

−→
P1 −

−→
P0

−→
L4 =

−→
P4 −

−→
P0

−→
L8 =

−→
P5 −

−→
P4−→

L1 =
−→
P2 −

−→
P1

−→
L5 =

−→
P5 −

−→
P1

−→
L9 =

−→
P6 −

−→
P5−→

L2 =
−→
P3 −

−→
P2

−→
L6 =

−→
P6 −

−→
P2

−→
L10 =

−→
P7 −

−→
P6−→

L3 =
−→
P0 −

−→
P3

−→
L7 =

−→
P7 −

−→
P3

−→
L11 =

−→
P7 −

−→
P4

(1.14)

with the corresponding lengths Li = ||
−→
Li||, ∀i ∈ J0, 11K. The principal axes are given by

−→
X1 = (

−→
P1 −

−→
P0) + (

−→
P2 −

−→
P3) + (

−→
P5 −

−→
P4) + (

−→
P6 −

−→
P7)−→

X2 = (
−→
P3 −

−→
P0) + (

−→
P2 −

−→
P1) + (

−→
P7 −

−→
P4) + (

−→
P6 −

−→
P5)−→

X3 = (
−→
P4 −

−→
P0) + (

−→
P5 −

−→
P1) + (

−→
P6 −

−→
P2) + (

−→
P7 −

−→
P3)

. (1.15)

Nine 3× 3 Jacobian matrices are defined, using the edge vectors
−→
Li as the columns of each

matrix

A0 = (
−→
L0, −−→L3,

−→
L4)

A1 = (
−→
L1, −−→L0,

−→
L5)

A2 = (
−→
L2, −−→L1,

−→
L6)

A3 = (
−→
L3, −−→L2,

−→
L7)

A4 = (
−→
L11,

−→
L8, −−→L4)

A5 = (−−→L8,
−→
L9, −−→L5)

A6 = (−−→L9,
−→
L10, −−→L6)

A7 = (−−→L10, −
−→
L11, −

−→
L7)

A8 = (
−→
X1,

−→
X2,

−→
X3)

. (1.16)

Given A one of these matrix defined by the column vectors −→v1 , −→v2 , and −→v3 . Then, the
normalized version of the Jacobian matrix A is defined by

Â =

(−→v1
||−→v1 ||

,
−→v2
||−→v2 ||

,
−→v3
||−→v3 ||

)
. (1.17)

Then, ∀i ∈ J0, 8K, the determinant of the normalized Jacobian matrix Âi is α̂i = det(Âi).

1.1. MESH DEFINITIONS & TERMINOLOGY 55
According to these notations, the value of the scaled Jacobian of the hexahedral cell is

given by
qsj = min

i∈{0,1,...,8}
{α̂i}. (1.18)

(a) qsj = 1 (b) qsj = 1 (c) qsj = 0.1126

P0 P2

P1

P4

P7

P6

P5

(d) qsj = −0.707107
Figure 1.13: Scaled Jacobian examples over different hexahedral cells.

Analogously to the scaled Jacobian over a quadrangle, the range of the scaled Jacobian
over a hexahedron as defined in Equation (1.18) is [−1, 1]. For a cube or a rectangular cuboid
(see Fig. 1.13.a and .b), the scaled Jacobian value equals 1. If the scaled Jacobian of the cell
takes a negative value (see Fig. 1.10.d), the cell is considered as inverted. It can also be
referred to as tangled or overlapping.

Hexahedral Skew

P0

P1

P2

P3

P4

P5

P6

P7

(a) qs = 0

P0

P1

P2

P3

P4

P5

P6

P7

(b) qs = 0.351123

P0

P1

P2

P3

P4

P5

P6

P7

(c) qs = 0.6

P0

P1

P2

P3

P4

P5

P6

P7

(d) qs = 0.868243

Figure 1.14: Skew examples over different hexahedral cells.
In order to compute the skew of a hexahedron adapted from [TF89], and presented here as

in [KET+06], we introduce the normalized vectors of principal axes (see Eq. (1.15)):
X̂1 =

−→
X1

||
−→
X1||

X̂2 =
−→
X2

||
−→
X2||

X̂3 =
−→
X3

||
−→
X3||

, (1.19)

then, the skewness is defined as

qs = max{|X̂1 · X̂2|, |X̂1 · X̂3|, |X̂2 · X̂3|}. (1.20)
As for a quadrangle, the skew-normal range is between [0, 1], and the skew value of a cube

is 0. Figure 1.14 presents different hexahedra and their corresponding skew value.

56 CHAPTER 1. DEFINITIONS & STATE OF THE ART

1.2 Mesh & Geometry Representation

Mesh representation is how the cells of a mesh are expressed and linked through the different
connectivities. The representation chosen significantly impacts how different manipulations are
implemented on the mesh. Various ways exist to represent meshes and geometry with different
benefits and drawbacks. For instance, some are meant to optimize memory consumption, while
others intend to make implementing some topological operations easier. The choice of a method
to represent meshes also depends on the type of meshes and elements to use. This section
focuses on the cellular representation of meshes used in GMDS1 [gmd, LWB08], and how
the geometry is handled.

1.2.1 Cellular Mesh Representation

In [LWB08], an n-dimension cellular mesh model can be defined by cells and connectivities
between the different cells. When a mesh is created in GMDS [gmd], a mesh model has to be
picked. The model defines the cell’s dimensions used and the kind of connectivities supported
between the selected cells of different dimensions. The cellular representation is re-introduced
here, but the reader could refer to [Gar02] for more details.

n-cell 0-cell

(a) Elementary mesh model

n-cell 0-cell

(b) One another connectivity is added to themodel (a)
Figure 1.15: Elementary mesh models in GMDS [gmd].

The most elementary model available to represent a mesh of dimension n is illustrated in
Figure 1.15.a. This model only represents the cells of dimension n and the mesh nodes. As the
connectivities supported are represented here using the black vectors (), it is understood
that an n-cells knows the nodes it is connected to, but the nodes don’t know to which cells they
are connected to. In case it is needed to know for a node to which n-cell it is connected to, a
new connectivity must be set in the mesh model. This new model is illustrated in Figure 1.15.b.

Due to the methods we want to implement in this work, we decided to work with a complete
mesh model. In this model, an i-cell, with i ∈ J0, 3K, knows all cells of dimension j ̸= i it
is adjacent to. The main advantage is that we can access all types of cells of our mesh and
all the cells connected to a specific cell when needed. The main drawback is the memory
consumption. However, we can eliminate this because we use this representation to manipulate
the block structure, which is considered as being a very coarse mesh. The other main constraint
is that when we create a cell, we have to build the cells of lower dimensions that do not exist in
the mesh yet and pay attention to giving all the connected cells the information to be connected
to those new cells. For instance, if one wants to create a quadrangular 2-cell, first, we need to
check if the 1-cells of this quadrangular cell have already been created or if we have to build it.
Then, we must initialize all the connectivities corresponding to the 2-cell and the new 1-cells

1https://github.com/LIHPC-Computational-Geometry/gmds

https://github.com/LIHPC-Computational-Geometry/gmds

1.2. MESH & GEOMETRY REPRESENTATION 57

3-cell 2-cell 1-cell 0-cell

Figure 1.16: Very complete cellular mesh model representation for a mesh of dimension n = 3in GMDS [gmd].

(i.e., node) created.

1.2.2 Geometry Representation & Geometric Classification

This subsection provides a basic understanding of the geometric representation through a back-
ground mesh in GMDS [gmd] and its geometric classification, not a formal definition. This
work doesn’t use a Computer Aided Design representation of the physical domain. Instead, a
first mesh is used as the geometry reference (see Fig. 1.17.a).

A physical domain Ω is represented by its boundaries. The geometric classification labels
the geometric features of the physical domain into different geometrical entities:

• Geometrical Point: geometrical entity of dimension 0;

• Geometrical Curve: geometrical entity of dimension 1;

• Geometrical Surface: geometrical entity of dimension 2.

In our case, the geometric classification consists in attributing to each mesh cell the ge-
ometry dimension and entity on which this cell relies on. Let us note that an n-cell lies on a
geometric entity of dimension p with n ≤ p. For instance, a 2-cell (e.g., quadrangle) can not
live on a geometrical curve.

Figure 1.17 represents a practical example of surface classification. In Figure 1.17.a, each
color represents a set of the background mesh cells classified on the same geometric surface.
Using this definition of the surface, we attribute to each coarse 2-cell of the Figure 1.17.b
coarse mesh a value corresponding to the surface on which it lies. Only geometric surfaces are
represented in this case. But on the geometry of Figure 1.17.a, geometric curves and geometric
points are also defined. Each node of Figure 1.17.b is associated with a geometric point, curve,
or surface. Each edge is associated with a curve or a surface. If a node is located at the
intersection between different geometric entities, we choose the one of the lowest dimension.

58 CHAPTER 1. DEFINITIONS & STATE OF THE ART

(a) Geometric surfaces (b) 2-cells lying on the geometric surfaces
Figure 1.17: Surfaces geometric classification. Each color of (a) represents a different geometricsurface. Each quadrangular 2-cell of (b) is associated with one geometric surface of (a).

This geometric classification is particularly useful while performing mesh modifications to
be sure to remain on the initial geometric entity.

1.3 Computational Fluid Dynamics for Atmospheric
Re-Entry

1.3.1 Mathematical Modeling for Computational Fluid Dynam-
ics

Among the different mathematical modeling existing for Computational Fluid Dynamics, we
focus on two different systems of equations in this work: the Navier-Stokes and the Euler
equations. The Navier-Stokes (NS) equations are nonlinear partial differential equations used
in fluid mechanics to describe the flow of a viscous and compressible fluid. The first equation

∂ρ

∂t
+∇ ·

(
ρ
−→
V
)
= 0 (1.21)

is the continuity equation. The momentum conservation equations are

∂
(
ρ
−→
V
)

∂t
+∇ ·

(
ρ
−→
V
−→
V
)
= ∇ · (τ − pI) + ρ−→g . (1.22)

Then, the energy equation is given by

∂ (ρE)

∂t
+∇ ·

(
ρE
−→
V
)
= ∇ ·

(
(τ − pI) · −→V

)
+ ρ−→g · −→V −∇ · −→Φ . (1.23)

In these equations, t is the time (s), ρ is the fluid density (kg.m−3),
−→
V is the fluid particle

velocity vector (m.s−1), p is the pressure (Pa), τ is the viscous stress tensor, I is the unit
tensor, −→g is the gravity vector (m.s−2), and

−→
Φ is the heat flux vector (J.m−2.s−1). This work

considers that a perfect gas equation of state characterizes the fluid.

In Computational Fluid Dynamics, the Reynolds Averaged Navier-Stokes (RANS) equations
formulation is often used. The RANS equations are obtained using Reynolds decomposition
of the flow quantities. Each flow variable is expressed as the sum of a mean and fluctuation
terms. The Euler equations are obtained by considering the Navier-Stokes equations without

1.3. COMPUTATIONAL FLUID DYNAMICS FOR ATMOSPHERIC RE-ENTRY 59
the viscosity effects (i.e., by removing the viscous stress tensor τ in Eq. (1.22) and (1.23)) and
the heat flux.

In CFD, the Mach number is defined as

M =
u

c
, (1.24)

with u the local flow velocity, and c the speed of sound in the medium. Considering this
definition, at M = 1, the local flow velocity equals the sound speed in the medium. In case
M∞ = u∞

c < 1, where u∞ is the magnitude of −→u∞ (see Fig. 16), we refer to the vehicle as
subsonic, and in case M > 5, the vehicle is referred as hypersonic. In between, the object
is considered as supersonic.

The Need of 3D Meshes

Usually, many geometries of interest are axisymmetric, which means symmetrical around
an axis of revolution (see Fig. 1.18.a). To handle those geometries when the flow Angle of
Attack (AoA) is null, many solvers propose a way to simulate a flow around a 3D axisymmetric
geometry by only computing the solution of the equations around a slice of the domain and
imposing a symmetry condition on the boundary corresponding to the symmetry axis () (see
Fig. 1.18.b). This is equivalent to considering the problem as a 2D problem. However, emerging
non-symmetrical geometries arouse the need for real 3D simulation and so 3D hexahedral
meshes. Also, in case the AoA is not equal to 0°, the geometry may be axisymmetric, but
the simulation needs to be a 3D simulation, as the flow around the vehicle is not symmetric
anymore.

Let us recall that this work aims to provide a solution to generate 3D meshes. For this
reason, and as the algorithm was first elaborated in 2D, we decided to work on the 2D case
with constraints similar to those encountered in 3D. To do so, we considered the geometry
completely immersed in the fluid (see Fig. 1.18.c), even if it is not the natural approach for some
2D geometries treated in CFD. However, a post-processing approach is proposed to cut half
part of the domain to provide a suitable block-structured mesh of the domain of Figure 1.18.b
when possible (see Appx. D).

(a) 3D axisymmetric geometry (b) Corresponding 2D fluiddomain for simulation (c) Corresponding 2D mesheddomain in this work
Figure 1.18: Example of 3D axisymmetric geometry (a) around the black axis ().

1.3.2 Mesh for Computational Fluid Dynamics

Mesh generation is a critical component of a computational physics-based analysis process. The
mesh used for a simulation has a considerable impact on the quality of the solution, the stability,

60 CHAPTER 1. DEFINITIONS & STATE OF THE ART

(a) Unstructured (b) Structured (c) Unstructured withmixed elements (d) Immersed-body
Figure 1.19: Body-fitted meshes (a), (b), and (c), and immersed-body mesh (d) in ComputationalFluid Dynamics [SD13].

and the resources expended to complete the simulations. This work considers the specific field
of Computational Fluid Dynamics (CFD) and, more precisely, supersonic and hypersonic flow
simulations. Some works use immersed-body meshes (see Fig. 1.19.d) to reduce the meshing
process. An immersed-body mesh is a regular grid intersecting the vehicle surface. In our case,
we expect to generate a body-fitted mesh (see Fig. 1.19.a, b, and c), which means a mesh that
follows the boundary surfaces.

(a) Unstructured (b) Over-set Grids [SBM21]

(c) Hybrid [cad] (d) Hexahedral [RG11, RGRS12]
Figure 1.20: Examples of classical mesh topologies used in Computational Fluid Dynamics.
According to Chawner et al. [CDT16], multi-block structured meshes provide the most

accurate solutions for CFD. This is among the most popular meshing techniques for flow sim-
ulation [ATS17]. However, generating such meshes is very challenging and time-consuming for

1.4. HEXAHEDRAL MESH GENERATION: STATE OF THE ART 61
high-skilled engineers who can spend weeks or months generating the adequate mesh using
complex interactive tools. It is considered one of the most time-consuming steps in the CFD
process [CDT16, Tho12].

Due to the complexity of supersonic and hypersonic flow simulations, the grid density
required to obtain the resolution of flow field gradients is unknown a priori [Alt04]. Thereby,
some researchers concentrate on using mesh adaptation during the simulation [FA05]. Currently,
unstructured meshes (see Fig.1.20.a) with high cell quality can be generated on complex
geometries in a fully automatic way, which saves time. Unstructured meshes are also easier
to adapt to specific metrics. But, in Computational Fluid Dynamics, solvers may be less
efficient regarding memory, execution speed, and numerical convergence on this type of mesh
topology [SKH+21].

Considering that multi-block structured meshes provide the most accurate solutions for
Computational Fluid Dynamics [CDT16, ATS17], therefore those meshes are preferred. How-
ever, generating such meshes is very challenging and time-consuming for high-skilled engineers,
especially in 3D. Fully automatic 3D multi-block structured mesh generation is a complex prob-
lem, and currently, no algorithm can generate an ideal block topology. Then, other types of
meshes may be used, such as over-set grids [Cha09] (see Fig.1.20.b). This makes the process
of mesh generation on complex multi-component geometries easier. Even if these meshes pro-
vide a solution as accurate as the structured ones, they require the use of specific solvers with
complex interpolation. Hybrid meshes (see Fig.1.20.c) for Computational Fluid Dynamics (a
thin layer of hexahedral elements near the wall and tetrahedral cells in the far field) are easier
and faster to generate. Nevertheless, there is no proof that hybrid meshes provide a solution
as accurate as block-structured or over-set meshes.

In practice, the mesh quality is strongly linked to solver algorithms. Even if the same
physics is solved, each solver has its quality criteria [Tho12]. As explained by Chawner
et al. [CDT16], the mesh quality criteria for Computational Fluid Dynamics simulations are
always stated in a non-quantitatively way. For instance, terms like "nearly orthogonal", "spacing
should not be allowed to change too rapidly", "give consideration to skewness”, "sufficiently
refined", "adequate resolution" and "use high aspect ratios" are used frequently and casually.
Mesh generation relies on engineering experience. Thus, it is easier to check if a mesh is not
"bad" instead of if it is "good". Indeed, an a priori mesh must at least pass the ‘validity’
requirements of the utilized flow solver (i.e., no negative volume cells, no overlapping cells, no
void between cells, etc.). The VERDICT library [KET+06] is a reference software package for
this type of mesh quality evaluation. In fact, the ultimate quality measure for a mesh is the
global error measure on the quantity of interest after the simulation.

1.4 Hexahedral Mesh Generation: State of the Art

To find a way to generate a 2D quad block structure with an approach that extends to 3D, we
can take a look at [BLP+13], [Cam17] and [Owe98, PCS+22] that provide complete surveys of
existing techniques for 2D quadrangular mesh generation, quadrangular 3D mesh generation of
surfaces and hexahedral 3D mesh generation of volumes. Considering we expect to get a block-
structured mesh, polycube-based methods, frame fields, and advancing fronts seem the most
relevant. In this section, we present the main concepts of several hexahedral mesh generation

62 CHAPTER 1. DEFINITIONS & STATE OF THE ART

algorithms in a non-exhaustive way.

THex

(a) Tetrahedron (b) Tetrahedron (a) split into 4hexahedra (c) Shrink view of the 4different hexahedra (b)
Figure 1.21: THex method: how to split a tetrahedron into 4 hexahedra.

The most naive way to generate a full hexahedral mesh is to start from a tetrahedral mesh
of the physical domain and split every tetrahedron of this mesh into 4 different hexahedra (see
Fig. 1.21). However, this solution would lead to a poor-quality mesh unsuitable for numerical
simulation (see Fig. 1.22).

(a) Tetrahedral mesh (b) Hexahedral mesh
Figure 1.22: Example of a mesh generated using THex method.

Sweeping

Introduced in [SS96, Bla96, LG97, SCO99, MBST96], the sweeping strategy consists in, given
a closed physical domain Ω where we can identify two opposite surfaces, one serving as source

1.4. HEXAHEDRAL MESH GENERATION: STATE OF THE ART 63
and the other as target, to provide a 2D quadrangular mesh of the source surface and extrude
it to the target surface (see Fig. 1.23). This method is suitable for CAD models generated by
extrusion, but for more complex geometries, it may be challenging. Other research proposes
first to automatically decompose the domain into different sweepable parts first [LGT01].

Figure 1.23: Sweeping [Owe98].

Overlay Grids

First introduced by Schneiders [Sch96], then studied in many works [Sch97, SLK04, ZB05,
Mar09, She09, ISS09, HQZ13, GSP19, LPC21, PLC+21], the main principle of overlay grids
methods is to immerse the geometry into a regular grid, to eliminate the cells out of the
geometry, and to apply specific operations on the hexahedra, which intersect the boundaries of
the geometry (see Fig. 1.24). This category of method leads to a very regular hexahedral mesh
in the domain, with very poor quality hexahedral cells near the boundaries of the geometry.

Figure 1.24: Overlay grid method [Kow13]

Medial Axis

This approach uses the medial object to extract a block structure [PAS95, PA97]. The medial
object is defined on a domain Ω as the set of points p ∈ Ω such as it exists a sphere centered
on point p that touches at least two distinct points of the boundary of the domain ∂Ω. This
set of points forms a "skeleton" of Ω and can be used to subdivide Ω into several sub-domains
(see Figure 1.25.a). Then, those sub-domains are subdivided to form the mesh [PA97, Qua16]
(see Figure 1.25.b).

64 CHAPTER 1. DEFINITIONS & STATE OF THE ART

(a) (b)
Figure 1.25: Medial axis method [WL16].

Polycube

Polycube methods were first used in computer graphics for seamless texturing of triangulated
surfaces [THCM04].

(a) (b) (c) (d) (e)
Figure 1.26: Polycube based approach [Pro22].

A polycube can be seen as a heap of cubes. The polycube method relies on four main
steps. Starting from a domain Ω (see Fig. 1.26.a), a first triangular mesh TΩ of the surface is
generated. This mesh is colored according to 6 different colors, corresponding to the 6 principal
axis (±−→X,±−→Y ,±−→Z) in 3D (see Fig. 1.26.b). A main axis must be assigned to each TΩ triangle
to do so. A set of adjacent triangles sharing the same color will correspond to a polygonal face
of the polycube. This colored mesh is then deformed (see Fig. 1.26.c), and then a grid is
extracted (see Fig. 1.26.d). Finally, the inverse transformation is applied on the grid to obtain
the final mesh of Figure 1.26.e.

Many techniques [GSZ11, LVS+13, HZ16, HJS+14, FXBH16, FBL16] improved first results.
However, the orientation sensitivity and the simple structure of a final coarse polycube do not
fit our requirements.

Frame Fields

For several years, frame fields methods [KLF16, RSL16, GJTP17, LZC+18, PBS20] have
offered a promising solution for quadrangular and hexahedral mesh generation. They are com-
puted by solving the continuous relaxation problem of an integer-grid map with internal singu-
larities (that overcome some limitations of polycubes). The majority of frame field methods
have three major steps: first they create and optimize a boundary-aligned frame field (see
Fig. 1.27.a); then they generate an integer-grid map, which is aligned with previously defined
frame field [NRP11b, NRP11a]; and finally, they extract integer isolines (in 2D) or isosurfaces
(in 3D) (see Fig. 1.27.c) to form an explicit block-structured mesh [LBK16] (see Fig. 1.27.d).

1.4. HEXAHEDRAL MESH GENERATION: STATE OF THE ART 65

(a) Frame field (b) Singularities (c) Block structure (d) Mesh
Figure 1.27: Frame fields approach [Cal22].

To the best of our knowledge, generating a 3D frame field remains challenging, and state-
of-the-art methods still fail to produce a hex-compatible frame field in 3D.

Advancing Fronts

The paving method was introduced by Blacker et al. [BS91] to generate unstructured 2D
quadrangular meshes of arbitrary domains. They start from pre-meshed boundaries and create
rows of elements one at a time, following some geometrical rules. It is decomposed into several
main steps. First, they select a row (which is a sequence of adjacent nodes and edges), classify
the row nodes according to the angle between the two adjacent edges (see Fig. 1.28.a), and
build quadrangular cells according to this classification (see Fig. 1.28.b). Then, they recompute
a new row and perform the same operations again. In Figure 1.28.a, we see that a row node
can take four different values during the classification according to the angle: side, end, corner,
or reversal. A node classified as "side" will create one new node (see Fig. 1.28.b). A node
classified as "corner" will create three new nodes, an "end" node will not create any node,
and a "reversal" node will create five new nodes. It can also be seen in terms of the creation
of quadrangular cells. One quadrangular cell is inserted on a row node corner, while two are
inserted on a reversal node. On the other hand, two quadrangular cells are fused in one on an
end node.

(a) Row nodes classification (b) Quadrangular cells created on classifiedrow (a)
Figure 1.28: Paving row nodes classification [BS91].

66 CHAPTER 1. DEFINITIONS & STATE OF THE ART

In practice, they may perform those topological operations during the row creation due to
the geometrical shape of the row or after the row creation to improve the mesh quality before
applying a specific smoothing algorithm. They seam quadrangular cells in the domain during
the process to avoid overlapping rows, and they finally mesh the remaining voids in the domain
using patterns of elements based on the number of edges that surround the remaining void. An
example of a complete paving sequence is presented in Figure 1.29.

(a) Intersections withinner holes (b) Cells seamed toholes (c) Second paved rows (d) Final mesh
Figure 1.29: Example of full paving sequence [BS91].

The plastering algorithm [SCB92, Can92, Bla96, BM93] was first introduced as the 3D
extension of the paving algorithm to generate hexahedral mesh. The main principle of this
approach is to start from the pre-meshed boundaries of the domain and to build cells one
by one starting from the boundaries (see Fig. 1.30) until a remaining void is meshed using
hexahedra patterns. One main issue is dealing with front collisions during the advancing process.
Owen et al. [OSCS99] proposed the q-morph 2D approach based on the transformation
of a triangular mesh over the domain to create quadrangular elements. They extended it to
h-morph in 3D [OS00] using an hybrid mesh made of tetrahedra and hexahedra during the
process. If it has been demonstrated that it is possible to provide a full hexahedral mesh of
a remaining void under the constraint to have an even number of quadrangular cells on the
boundary [Mit96], it may result in a very poor quality mesh, not usable for numerical simulation.

Figure 1.30: Plastering [Owe98].
Other works propose an unconstrained version of plastering, starting from non-pre-meshed

boundaries, but directly from the geometry [SOB05, SKOB06, SKO+10]. Advancing front
methods allow to keep control on mesh quality and size near the boundaries, and provide high
quality around those areas. However, those methods may generate internal voids that can not
be meshed with hexahedra or full hexahedral meshes of poor quality. Usually, a hex-dominant

1.4. HEXAHEDRAL MESH GENERATION: STATE OF THE ART 67
mesh is extracted (i.e., a mesh mainly composed of hexahedral cells with a low proportion of
pyramids and tetrahedral cells).

The receding front approach, proposed by Ruiz-Gironés et al. [RGRS12, RG11] is an
advancing front approach that aims to generate an hexahedral mesh of an outer domain around
a geometry. They start from the pre-meshed inner geometry boundary and relax constraints
while advancing towards an outer smoothed non-meshed boundary (see Fig. 1.31).

(a) (b) (c) (d)
Figure 1.31: Receding front [RG11, RGRS12]. A tetrahedral mesh of the domain is generated (a), onwhich three different distance fields are computed (b). Using those distance fields, a hexahedralmesh (c,d) is generated layer by layer starting from the pre-meshed inner boundary.

Considering that our application field is limited to the outer space that surrounds a single
vehicle with a zone of interest near the vehicle wall, we can adopt the strategy proposed by
Ruiz-Gironés et al. [RG11, RGRS12] where they use an advancing-front approach to mesh
such configurations in 3D. Such an algorithm, like the paving algorithm in 2D [BS91], is relevant
for our purpose. For our work, we do not consider the paving method as being relevant. Indeed,
it starts from a pre-meshed boundary, while we do not have constraints far from the vehicle,
only the vehicle wall is pre-meshed. Moreover, we differ from the original paving algorithm in
our way of creating new points: starting from a front point p, we transport p along a flow
(defined by a vector field) to get the next point.

68 CHAPTER 1. DEFINITIONS & STATE OF THE ART

Summary

In this chapter, we introduced the notations and definitions necessary to understand the
following chapters. We gave typical mesh definitions, exhibited examples of different
topologies, and reviewed techniques widely used in mesh generation and adaptation. We
provided information about the computing representation of a mesh and a physical domain,
which is necessary for understanding some meshing method choices. We went through
some notions related to Computational Fluid Dynamics associated with the context of this
work. We discussed mesh quality in terms of purely geometrical and simulation-related
quality. The last section was dedicated to hexahedral mesh generation state-of-the-art.
Several methods were presented, focusing eventually on advancing front methods because
our work belongs to this category of methods.

Chapter 2
ADVANCING FRONT FOR LINEARBLOCK STRUCTURE GENERATION

In this chapter, the algorithm to generate the linear block structure is presented. This
algorithm relies on the previous work of Ruiz-Gironés et al. [RG11, RGRS12] and is
adapted here to specific constraints due to our application to hypersonic fluid mechanic.
The block structure is built starting from the vehicle wall by extruding layers of hexahedral
blocks. This process is driven by different quantities computed on the domain. In the first
part, the computation of those fields is described. Then the process to extrude one block
layer is introduced. Once the general process of building one block layer is explained, we
will deal with the conflict management process on a layer. This process consists of a list of
operations performed on a layer in order to add or delete blocks to improve the geometric
quality of the layer blocks. If the algorithm proposed in this chapter generalizes to 2D
and 3D, it differs for the conflict management stage. At the end of this chapter, we will
know how to generate the linear hexahedral block structure, and the perspectives will be
explained.

Contents
2.1 Fields Computation . 73

2.1.1 Distance Fields . 73
2.1.2 Vector Fields . 75

2.2 Block Layers Extrusion . 77
2.2.1 Surface Geometry Block Structure 78
2.2.2 Generation of One Layer 79

2.3 Conflict Management on a 2D Layer 85
2.4 Conflict Management on a 3D Layer 91

2.4.1 Front Edges Classification 92
2.4.2 Patterns Considered to Solve Conflicts 93
2.4.3 Paths of Feature Block Edges on a Front 95

2.5 Results . 99
2.6 Perspectives . 104

69

70 CHAPTER 2. ADVANCING FRONT FOR LINEAR BLOCK STRUCTURE GENERATION

(a) (b) (c) (d) (e) (f)
Figure 2.1: Principal steps of our approach illustrated in 3D. In this chapter, we deal with the linearblocking generation by an extrusion of layers, corresponding to steps (b), (c) and (d).

We want to generate a block structured mesh around a flying vehicle, with particular care
to the mesh cell sizes and directions close to the vehicle wall. The input is a first physical
domain discretization using simplices (see Fig. 2.1.a). In other words, this input is a triangular
(or tetrahedral in 3D) meshMT of the fluid domain Ω to mesh, around the vehicle of interest.
This mesh can be considered as a background mesh as it defines our physical domain. The
vehicle wall block discretization is also given as an input, as we want a strong control on it.
The far-field boundary is not pre-meshed, which provides flexibility in the chosen approach.

Figure 2.2: Plastering process [Owe98].
Due to our constraints presented above, the most relevant methods to generate the block

structure belong to the category of advancing-front algorithms. Originally, the main principle
of advancing-front methods is to start from a pre-meshed boundary and incrementally insert
quadrangular or hexahedral cells into the domain. The method was first proposed for 2D
quadrangular mesh generation through paving [BS91], then extended to 3D hexahedral mesh
generation with the algorithm called plastering [BM93]. This process fills the domain step by
step, until a remaining void is finally meshed, using specific quadrangular or hexahedral patterns.
Sometimes, in 3D, this remaining internal void is too complex to be meshed with all-hexahedral
cells. The advancing-front methods starting from a pre-meshed boundary are called constrained.
As it can be over-constrained for hexahedral mesh generation, unscontrained methods [SOB05,
SKO+10] propose to relax the problem by generating the mesh starting from the geometry,
and not a first discretization of the boundaries. In the state of the art, considering both
constrained and unconstrained approaches, we identify three different categories of advancing-
front methods. First one relies on advancing the structure element by element (see Fig. 2.2).
A second category of methods aims to generate the mesh by portions of elements (such as
unconstrained plastering where they anticipate layers before creating them) [SOB05, SKO+10].
The last category regroups methods to generate the mesh by extrusion of complete layers of
elements [RG11, RGRS12]. Some advancing-front methods are based on the use of patterns of

71
cells in order to improve the geometrical quality of the created cells (see Fig. 2.3), or to avoid
potential conflicts due to contraction of a physical domain.

(a) (b) (c)
Figure 2.3: Example of conflict management in the paving method [BS91] in case of domain ex-pansion. In order to improve the geometric quality of the new blue cells () of (b), we can insertanother cell (c).

Among the methods of the last category, we have a particular interest in the receding-front
method proposed by Ruis-Gironés et al. [RG11, RGRS12], which has several features. This
method is used in practice to mesh outer space around vehicles (e.g., Computational Fluid Dy-
namics (CFD) for instance) and is limited to geometric domains with smooth outer boundaries
(i.e., no sharp features). This method can be considered as a mix between constrained and
unconstrained methods, as it starts from a pre-meshed boundary (i.e., the discretization of the
vehicle wall) to advance towards the non pre-meshed outer boundary. It relaxes constraints while
making possible to keep a high control on the mesh quality around the vehicle. The method
proposed and summarized in Algorithm 1 is decomposed as follow. In [RG11, RGRS12], they
first generate and combine distance fields by solving the Eikonal equation on a background
simplicial mesh MT , and use the combined resulting field to expand the pre-meshed vehicle
boundary in the volume. They know a priori the number NL of layers to build, and at each step
of the algorithm, they generate a full layer of hexahedral cells on the precedent one (see Algo. 1,
l. 4). They avoid the potential problem of separation of a front by the use of the distance field
to control the layers expansion. On a layer, they perform a specific conflict management based
on a similar principle as presented in Figure 2.3. They apply some set of hexahedra at particular
location to improve the hexahedra quality over a layer.

Algorithm 1 Receding-Front Method [RG11, RGRS12]
Require: Background mesh MT , first front F0, combined distance field d, dis-tance field from the vehicle dV
Ensure: Hexahedral meshMH1: ScalarField dV ← solveEikonal(MT , ∂ΩV)2: ScalarField dFF ← solveEikonal(MT , ∂ΩFF)3: ScalarField d← combineDistanceFields(dV , dFF)4: ∆d← 1/NL5: for all i ∈ 1, ..., NL do6: Li← computeLayer(Fi−1, d, i∆d)
7: end for

Due to our constraint and the capabilities of the method, we decide to base our work on

72 CHAPTER 2. ADVANCING FRONT FOR LINEAR BLOCK STRUCTURE GENERATION

the previous work of Ruis-Gironés et al. [RG11, RGRS12]. We highlight several minor
differences:

1. First of all, we use this method to generate a block structure which is coarser and much
constrained than a mesh. Our pre-meshed block surface can be anisotropic (i.e., with
important aspect ratio between quadrangular cells) while the pre-meshed surface looks
relatively regular in [RG11, RGRS12].

2. We do not compute the distance fields (see Algo. 1, l. 1-2) the same way.

3. We introduce, in addition to the 3 different distance fields (see Fig. 2.1.b), a vector field
(see Fig. 2.1.c) that will lead the directions for the extrusion of the blocks. This vector
field allows us to control the block direction extrusion. Through this vector field, we
can impose the block alignment to the vehicle for the first block layer (i.e., to provide
wall-orthogonal blocks), and to the flow Angle of Attack (AoA) in other parts of the
domain.

4. We generate the very first block layer with particular conditions, not as the other layers.

5. The way we manage conflicts on a layer slightly differs.

Algorithm 2 Block Structure Generation Layer by Layer
Require: Background meshMT , first front F0, boundary layer thickness δBL

Ensure: Block structure B
1: ScalarField dV ← EuclideanDistance(MT , ∂ΩV)2: ScalarField dFF ← EuclideanDistance(MT , ∂ΩFF)3: ScalarField d← combineDistanceFields(dV , dFF)4: VectorField −→v ← computeVectorField(MT , dV , d)5: L1← compute1stLayer(F0, dV , −→v , δBL)6: ∆d← 1/NL7: for all i ∈ 2, ..., NL do8: Li← computeLayer(Fi−1, d, −→v , i∆d)
9: end for

If we look back at the full pipeline of our method presented in Figure 2.1, this chapter
focuses on steps (b), (c), and (d). The principle steps of our process are summarized in
Algorithm 2. In this chapter, we re-introduce the receding-front method proposed by Ruis-
Gironés et al. [RG11, RGRS12], and explain how we adapt it to our constraints to generate
the hexahedral block structure. We first designed a suitable 2D pipeline, then extend it to the
3D case. For this reason, the chapter presents the method for the general nD case and the
outline is decomposed as follows. In the first Section 2.1, we explain how the distance and
vector fields are computed (see respectively Fig. 2.1.b and c) on the input background mesh
MT (see Fig. 2.1.a). The second Section 2.2 is meant to explain how we build a regular block
layer, and the full block structure by extruding some layers, starting from the vehicle. A special
treatment is performed in order to deal with conflicts due to expansion or contraction of the
domain on a layer. To do so, we first examine the front on which we want to build a layer,
then we decide where to create block cells. We know a priori which blocks will be created in

2.1. FIELDS COMPUTATION 73
the layer, before starting its construction. The way conflicts are handled on a layer differs in
2D and 3D. For this reason, this step is presented separately, respectively in Section 2.3 for 2D
and Section 2.4 for 3D. Obtained block structures generated around three different geometries
are presented in Section 2.5. Finally, some identified perspectives related to this part of the
work are addressed in Section 2.6.

2.1 Fields Computation

Distance and vector fields are core components of the approach to drive the block layer extrusion.
The idea, inspired by [RG11, RGRS12] is to mix several fields to know how to insert block corners
during the layer creation process. In practice, those fields are discrete and defined at the nodes
of the background meshMT . In this section, we present the process to compute those fields.

2.1.1 Distance Fields

(a) Euclidean distance to thevehicle dV

(b) Euclidean distance to thefar-field dFF

(c) Combined distance field d

Figure 2.4: Distance fields computed around the 2D NACA 0012 airfoil geometry (see Appx. B).
As in [RG11, RGRS12], we compute a distance field d by merging two distance fields:

the first one encodes the distance from the vehicle boundary ∂ΩV , the second one encodes
the distance from the far-field boundary ∂ΩFF . In the previous work of Ruiz-Gironés et
al. [RG11, RGRS12], the Eikonal Equation given by{

||∇d|| = f in Ω,
d|F = 0,

(2.1)
is solved to compute the distance fields on the domain. In this equation, Ω ⊂ Rn is the
physical domain, f is a known function (considered as constant and equal to 1), || · || is the
Euclidean norm, F is the front and d is the distance to this front. The problem is solved on
the background meshMT .

The first field dV is the distance field from the vehicle boundary (∂ΩV) :{
||∇dV || = 1 in Ω
dV |∂ΩV

= 0.
(2.2)

74 CHAPTER 2. ADVANCING FRONT FOR LINEAR BLOCK STRUCTURE GENERATION

The second field dFF is the distance from the far-field boundary (∂ΩFF):{
||∇dFF || = 1 in Ω
dFF |∂ΩFF

= 0.
(2.3)

In this work, the fields dV (see Fig. 2.4.a and Fig. 2.5.a) and dFF (see Fig. 2.4.b and
Fig. 2.5.b) are simply computed as the Euclidean distance of each node of the background mesh
MT , respectively to the vehicle and the far-field boundaries. The main reason is computational
cost. We do not work with a Computer Aided Design (CAD) representation of the physical
domain but through a discretization given by the background meshMT . For this reason, if the
background mesh is not thin enough around the vehicle wall, we have a terrible representation of
its boundary. So, we need many cells around the vehicle wall, which increases the computational
cost of the method proposed in [RG11, RGRS12]. The two methods are not equivalent in some
specific cases (e.g., in the case of a multi-component object, if we need to compute the distance
to only one component), and it is discussed in the perspectives section at the end of this chapter.
Due to our specific constraint, the fields computed using the Euclidean distance ensure the same
properties.

The third and last field d represented in Figure 2.4.c and Figure 2.5.c is computed the same
way as in [RG11, RGRS12], this field is a combination of the two fields dV and dFF :

d =
dV

dV + dFF
. (2.4)

(a) Euclidean distance to the vehicle dV (b) Euclidean distance to the far-field dFF

(c) Combined distance field d

Figure 2.5: Distance fields computed around the 3D RAM-C II geometry (see Appx. B).
This field d verifies 0 ≤ d(x) ≤ 1, ∀x ∈ Ω and the boundary conditions d|∂ΩV

= 0 and
d|∂ΩFF

= 1. It ensures us to reach the far-field for the same layer during the extrusion, it

2.1. FIELDS COMPUTATION 75
prevents the front to divide. Let us note that the combined distance field d, and the distance
field to the vehicle dV are used in the extrusion algorithm, while dFF is only computed to build
d.

2.1.2 Vector Fields

Vehicle ∂ΩV

Far-field ∂ΩFF

Flow −→u∞

AoA
α

Front

Back

(a) Different areas of domain to mesh ()

Vehicle

Flow −→u∞

AoA
α

xf xb

−→vf
−→vt

−→vb

(b) Vector field −→v computed piecewise
Figure 2.6: The vector field used to lead the extrusion direction over the domain is computedpiecewise on the physical domain tomesh (). Physical limits () used to compute the resultingvector field −→v are set by user parameters. −→vt is computed as a linear transition between −→vf and−→vb on [xf , xb].

In addition to the three previously defined distance fields d, dV , and dFF introduced in
the work of Ruiz-Gironés et al. [RG11, RGRS12], we use a vector field computed on the
background mesh MT . Let us remind that we expect in this chapter to generate a block
structure starting from the vehicle wall () of Figure. 2.6.a to the far-field () of the
physical domain (). In our approach, this vector field drives the blocks extrusion direction.
The resulting vector field aims to ensure block orthogonality close to the vehicle wall () of
Figure 2.6.a, regular blocks in the front vehicle part (see Fig. 2.6.a), while trying to align the
blocks with some privileged directions (e.g., the flow Angle of Attack α) behind the vehicle
(see back area of Fig. 2.6.a). In this subsection, we compute and mix different vector fields to
respect the conditions listed before. Each vector field is computed at nodes of the background
meshMT .

Far-field Flow Direction

In supersonic flow simulation, we want to care particularly about the front of the vehicle, its
near boundary, and the global mesh direction in the vehicle’s back area. We drive the mesh
behavior in the back area with the Angle of Attack (AoA) α, which is flow-related information.
To this purpose, we define the vector field −→u∞ as constant on the domain Ω and equal to the

far-field flow direction, −→u∞ =

(
cos(α)
sin(α)

)
. In practice, this vector field is used as the back vector

field −→vb of −→v (see Fig. 2.6.b).

76 CHAPTER 2. ADVANCING FRONT FOR LINEAR BLOCK STRUCTURE GENERATION

Distance Fields Gradients

For the front of the vehicle, two possible options are considered based on the previously com-
puted distance fields. The first vector field we use is the gradient of the distance field dV ,
noted ∇dV , and the second one is the gradient of the mixed distance field d, noted ∇d. We
compute these vector fields at the vertices of MT with the Least Squares fit of Directional
Derivatives (LSDD) method [MLP19]. Let us consider ni a node ofMT , and {n0, ..., nki} the
set of nodes adjacent1 to ni. The first order Taylor’s expansion of any function f is given by

f(nj)− f(ni) ≈ ∇f · (ni − nj),∀j ∈ [0, ..., ki]. (2.5)
Wa can use the Equation (2.5) to compute the gradient of f by solving a linear system. Most
of the time, ki is higher than the problem’s dimension. We consider the ki × d matrix Ai of
the (nj − ni) coefficients. We solve the linear system of size d× d:

AT
i WiAi∇f(vi) = AT

i WiDi, (2.6)
where Di is the vector of length ki representing the coefficients f(nj)− f(ni), Wi is a ki× ki
diagonal matrix of weights, with Wi(j, j) =

1
dij

2 , and dij is the Euclidean distance between the
nodes ni and nj (i.e., the size of the edge shared by ni and nj).

(a) Distance field from the vehicle gradient
∇dV

(b) Combined distance field gradient∇d
Figure 2.7: The gradient of two different distance fields of interest around RAM-C II 3D geometry(see Appx. B). The corresponding vector field is plotted using dark blue vectors (). The back-ground color map represents the distance field used to compute the vector field.

A dedicated pre-process may be required on the background meshMT for n-cells that have
all their nodes located on the vehicle wall. The value of the distance field will be equal to 0

on all the nodes of this cell. As a result, the gradient of the distance field will be null over
this cell. So if a block corner of the first front has to go through this cell during the extrusion
algorithm, it can stop its trajectory path.

In the algorithm, we can decide to compute the gradient of the Euclidean distance field to
the vehicle dV (see Fig. 2.7.a), or the combined distance field d (see Fig. 2.7.b). In the first
case, the vector field is orthogonal to the vehicle. In practice, the front vector field −→vf (see
Fig. 2.6.b) is chosen between ∇dV and ∇d.

1Two nodes are considered as being adjacent if they share one edge.

2.2. BLOCK LAYERS EXTRUSION 77
Combined Vector Field

In order to consider both the front and back vector fields, we eventually compute the vector
field −→v as a linear combination of those two vector fields in a transition area (see Fig. 2.6.b).
Two physical limits () are set by the user in the physical fluid domain Ω (), xf and xb.
For each node ni ∈ MT at position p = {xi, yi, zi}, we compute the local value of the vector
field −→vi as

−→vi = −→vf,i if xi < xf ,−→vi = −→vb,i if xi > xb,−→vi = (1− θ)−→vf,i + θ−→vb,i if xf ≤ xi ≤ xb.

(2.7)

Where −→vf,i, and −→vb,i are respectively the values of selected vector fields −→vf and −→vb at node
ni. A damping parameter θ = xi−xb

xb−xf
between 0 and 1 controls the transition area. Figure 2.8

illustrates some of the different vector fields we use2. Note that by default, we normalize all
the vector fields as we only use the field direction and not its magnitude. Due to the vector
field computation, our method is sensitive to the geometry’s input orientation through the
background meshMT .

(a) −→vf = ∇dV (b) −→vb = −→u∞ (c) −→v
Figure 2.8: A practical example of vector fields computed around the 2D NACA 0012 geometry.The vector field (c) is a mix from ∇dV (a), and −→u∞ (b), with xf = 1.5 and xb = 5.0. The Angle ofAttack α used in (b) is equal to 15°.

2.2 Block Layers Extrusion

At this algorithm stage, we computed the distance and vector fields necessary to lead our
extrusion algorithm on our input background meshMT . This sections explains how to build a
regular block layer starting from the wall surface discretization.

2A study is performed in Appendix C in order to illustrate different vector fields generated andcombined around a test case, and the impact of the different vector fields on the block structuresgenerated. As this study presents block structure, the reader may want to move forward to thenext sections before checking this Appendix.

78 CHAPTER 2. ADVANCING FRONT FOR LINEAR BLOCK STRUCTURE GENERATION

2.2.1 Surface Geometry Block Structure

The discretization of the vehicle wall is a set of n−1-cells and is considered as the very first step
of our algorithm (see Fig.2.9 and Fig. 2.10). The first block layer will be built on this very first
discretization. We proposed a way to compute it in 2D in this work (see the next 2D frame).
In 3D, we start from a pre-meshed vehicle wall (see the 3D frame).

2D
The wall surface block discretization is a set of block corners and block edges. To au-
tomatically discretize the vehicle geometry (corresponding to the boundary ∂ΩV), we
traverse the nodes n0, ..., nm of the triangular background meshMT located on ∂ΩV in
an ordered way. We select a node ni if and only if it satisfies at least one of the following
conditions:

• ni is located on an extremum of the boundary profile (i.e., a node of ∂ΩV that
minimizes or maximizes the x or y coordinate).

• ni is a geometric corner (geometric point) of ∂ΩV ;

• the curvilinear distance from the previously selected node and ni is greater than the
maximal length given as an input parameter.

The starting node on MT is usually an extremum of the boundary when possible, or a
characteristic node. Let us note that this approach does not guarantee that the boundary
edges will have the same size, or that the block discretization of the boundary will be
symmetric, even though the geometry is symmetric. It is not an issue for our process since
those are block edges and they will be refined later to get the final mesh. Here, the block
corners are set at positions corresponding to nodes of the background mesh MT . The
discretization of the vehicle is automatic here. We can easily imagine taking the set of
block edges and corners corresponding to the discretization of the vehicle geometry as an
input, in order to keep control over those elements.

(a) 2D geometry () (b) 2D vehicle block edges () and blockcorners ()
Figure 2.9: Automatic 2D geometry block structure (front F0) generation example around Apollogeometry (see Appx. B).

2.2. BLOCK LAYERS EXTRUSION 79
3D

The wall surface block discretization is a set of block corners, block edges and quadrangular
block faces. The generation of a quadrangular surface blocking is an open field of research,
but you can find some methods in the survey of Campen [Cam17]. It is worth considering
improving the algorithm by using one of these methods to generate the blocking surface.
However, due to our application, it is needed to keep control over this surface blocking.
Here, the vehicle surface discretization is given as an input. In this work, most of the input
surface block structures were generated using MGXa, an interactive software dedicated to
block-structured hexahedral mesh generation. An example of input discretization is given
on Figure 2.10.b.

ahttps://github.com/LIHPC-Computational-Geometry/magix3d

(a) 3D geometry () (b) 3D surface blocking ()
Figure 2.10: Surface geometry block structure (front F0) example.

This block decomposition of the vehicle surface is considered as the first front F0 (see
Def. 2.2.1) in the algorithm. As we may see in the example of a 3D front represented in
Figure 2.10.b, each block edge of the front is adjacent to exactly two quadrangular blocks
(n−1-cells) on this front and respect the given definition. Then, this front is a suitable input
for our algorithm.

Definition 2.2.1 (Front). In dimension n, a front is defined as a set of adjacent n−1-cells
(of blocks)3 that shares some properties. Each n−2-cell of this front is adjacent to exactly
two n−1-cells on this same front (see Fig. 2.10.b).

2.2.2 Generation of One Layer

At each step of the algorithm, a complete new block layer is generated on a front (see Fig. 2.11).
The computation of a new layer is independent of the computation of the precedent layer. We
generate a complete block layer following Algorithm 3. The algorithm aims to build a block
layer on a front Fi and to provide a new front Fi+1 that respects the same definition. To
produce a block layer (n-cells), each n−1-cell of a front (see Fig. 2.11.a) is extruded to create a
block. This set of blocks forms a layer (see Def. 2.2.2 and Fig. 2.11.b) denoted Li. This block
layer provides us with a new front (see Fig. 2.11.c) noted Fi+1 that shares the same properties
as the precedent one. This way, we can build a new layer on this front, etc., until the outer
boundary of the domain (far-field) is reached.

3Two n−1-cells are adjacent if they share at least one n−2-cell.

https://github.com/LIHPC-Computational-Geometry/magix3d

80 CHAPTER 2. ADVANCING FRONT FOR LINEAR BLOCK STRUCTURE GENERATION

(a) Front (b) Layer (c) New front
Figure 2.11: A practical example of one regular block layer generation on a 3D front. Each quad-rangular block of the front (a) creates one hexahedral block by extrusion of itself. This set of newhexahedral blocks () represented by the exploded view in (b) forms a block layer. This blocklayer provides a new front (c).

Definition 2.2.2 (Layer). In dimension n, a layer is a set of adjacent n-cells (blocks)4. A
layer is bounded by exactly two different fronts. For each block corner of each n-cell of
the layer, this block corner belongs to one of the two fronts. For each n−1-cell of a layer,
either this n−1-cell belongs to one of the two fronts, or this n−1-cell is shared by exactly
two n-cells of this layer.

Algorithm 3 Build One Regular block layer on a Front
Ensure: Blocks B of the layer Li, and the set of block corners and n−1-cells offront Fi+11: for all block corner nj

i ∈ Fi do2: nj
i+1← computeIdealPosition(nj

i , dFi+1
, d, v)

3: end for
4: for all block n−1-cell ∈ Fi do5: B← B+ buildBlock(n−1-cell)
6: end for

New Front Block Corner Location

To build the layer Li+1, the block corner positions of the new front Fi+1 are computed from
the positions of the block corners of the precedent front Fi. All the block corners of the front
Fi+1 are located at the same iso-value di+1 on the distance field of interest.

Let us consider the generation of a block layer Li+1 starting from the front Fi. For each
block corner nj

i of Fi, we compute the ideal location of the next block corner nj
i+1, which

belongs to the next front Fi+1 (see Algo. 3, l. 3) by solving the advection equation

∂
−−→
OM

∂t
= −→v (2.8)

using a 4th-order Runge-Kutta method (see Eq. (2.9)):
yn+1 = yn +

h

6
(k1 + 2k2 + 2k3 + k4), (2.9)

4Two n-cells are adjacent if they share at least one n−1-cell.

2.2. BLOCK LAYERS EXTRUSION 81

(a) 2D front (b) 3D front
Figure 2.12: Local view of a front (). Each block corner of the front () computes the idealposition of the next block corner of the next front ().

where tn+1 = tn + h, h is the step size, k1 = f(tn, yn), k2 = f(tn + h
2 , yn + hk1

2), k3 =

f(tn +
h
2 , yn + hk2

2), and k4 = f(tn + h, yn + hk3). The origin block corner O=nj
i is advected

along the direction of the vector field −→v until its distance dnj in the distance field d reaches
di+1. We obtain then the point M=nj

i+1. Unlike [RGRS12], we define the position of a new
block corner by decoupling the distance to be covered, provided by the distance field d, from
the direction to be followed, provided by the vector field −→v . This way, characteristics of the
flow such as the angle of attack α are taken into account in the vector field built for the
extrusion. While through the use of the combined distance field, we ensure a strong property
on the computed layer: all the block corners of a front Fi are located at the same distance dFi

along the input distance field. This property ensures that the front cannot separate (i.e., the
layer created will always provide a new front that respects the Definition 2.2.1) and that all the
block corners will reach the outer boundary at the same moment on the last layer.

(a) One block of the new layer created on the2D Front (b) One block of the new layer created on the3D Front
Figure 2.13: An n-cell (block) is created on the front (). This n-cell belongs to the new layer.Ideally, each n−1-cell of the front creates one n-cell.

Figure 2.12 presents a schematic local view of a nD front () of n−1-cells. The blocks
created in the precedent layer are plotted in blue (). Each block corner of the front ()
computes the ideal position in the next front (). Trajectories, computed using the advection
equation, followed by the front nodes are plotted using dashed gray lines ().

Then, for each n−1-cell of the front, we create one block (see Fig. 2.13) according to the
ideal positions computed previously. Figure 2.13 represents the extrusion of regular blocks on a
nD layer. In Figure 2.13.a, a small part of a front Fi−1 is plotted in red (), and previously

82 CHAPTER 2. ADVANCING FRONT FOR LINEAR BLOCK STRUCTURE GENERATION

(a) 2D layer (b) 3D layer
Figure 2.14: A layer is defined as the set of n-cells (blocks) created on the n−1-cells of a front. Thislayer is bounded by two fronts, the first one is the one used to build the layer. The other one isthe new front ().

generated blocks (previous layers) in light blue (). If there is no conflict on the layer due to
block expansion or shrinking, all the blocks are built regularly, and the front block corners of
layer Li (see Fig. 2.14) are now the input for another step of Algorithm 3 (see Fig. 2.13.b). We
can note that the computation of each layer is independent, and the main principle of building a
layer is the same in 2D and 3D. In 2D, each block edge of the front generates one quadrangular
block of the layer (see Fig. 2.13.a), while in 3D, each quadrangular block of the front creates
a hexahedral block (see Fig. 2.13.b).

A practical example of the computation of the position of a block corner in the next front,
starting from a front is shown in Figure 2.15. The block corner is advected along the vector
field of Figure 2.15.b until the target distance of the front is reached in the distance field of
Figure 2.15.a. The discrete trajectory followed by the block corner is plotted using white dots
in Figure 2.15.c. A clip view along the plan (O,

−→
X ,
−→
Y) of the blocks of the layer computed is

represented in Figure 2.15.d.

Generation of the First Layer

As mentioned before, the boundary layer is a very thin layer close to the vehicle wall. In this
area, the fluid flow is dominated by viscosity effects, which generate very thin boundary layer
with high gradient of velocity in the normal wall direction. We take particular care in this area,
which we manage with Algorithm 4. The distance field considered for this layer is the Euclidean
distance to the vehicle dΩV

and not the combined distance field d as before. This allows us to
set all the orthogonal block edges to the wall at the same distance of the wall. The distance
of the layer is supposed to be higher than the boundary layer thickness δBL.

A practical example of the block-structured extrusion on six different layers is performed
around the Apollo geometry (see Appx. B) in 2D (see Fig. 2.16). The distance field is computed
on the domain, and we compute the discretization of the vehicle automatically (see Fig. 2.16.a).
Then, the first block layer is created on this front, with the specific Algorithm 4. Once this first
block layer is computed carefully, the second block layer is created (see Fig. 2.16.c). As we may
observe, all the block corners of this layer are located at the same distance on the combined
distance field. The final block structure of Figure 2.16.d is built on six different layers.

2.2. BLOCK LAYERS EXTRUSION 83

(a) Distance field

(c) Block corner trajectory

(b) Vector field

(d) New blocks ()
Figure 2.15: 3D Front block corner location computed by advection of the precedent block corner.In (c), the first block layer () is built. To compute the position of the next block corner, the con-sidered block corner is advected along the path represented with white dots. Once the positionsare computed for each block corner of the front, the new block layer () is created.

Algorithm 4 Build the First Block Layer
Require: Background meshMT , first front F0, expected boundary layer thick-ness δBL, distance field from the vehicle dΩV

, vector field v
Ensure: Blocks of the first layer L1 B1: for all block corner nj

0 ∈ F0 do2: nj
1← computeIdealPosition(nj

0, δBL, dΩV
, v)

3: end for
4: B← computeBlocks(L1)

84 CHAPTER 2. ADVANCING FRONT FOR LINEAR BLOCK STRUCTURE GENERATION

(a) Distance field and front F0 ()

(c) Second block layer ()

(b) First block layer ()

(d) Block-structure extruded on six layers
Figure 2.16: A practical example of the extrusion of blocks around Apollo 2D geometry (seeAppx. B). Starting from the automatically generated front F0 in blue () of (a), the first layer ()is built (b), then the second layer () in (c). Here, the block structure is extruded along six differentlayers (d).

2.3. CONFLICT MANAGEMENT ON A 2D LAYER 85
2.3 Conflict Management on a 2D Layer

The generation of a regular block layer was presented in the precedent section (see Sec. 2.2.2),
where the algorithm is the same in 2D and 3D. However, we have to deal with the expansion
or contraction of blocks on the domain. It may lead to stretched blocks in case of domain
expansion, with an important opposite edge length ratio. In the case of domain contraction,
it may lead to overlapping blocks. The geometric quality of the block impacts the geometric
quality of the mesh generated. To increase the blocks’ geometric quality, it is necessary to
handle those conflicts. To do so specific operations are performed to improve the block quality
on the layer while ensuring to provide an output front that respects the definition. This is
crucial if we want to construct a new layer on this front.

Starting from a front Fi, and once the positions of the next block corners are computed
(see Sec. 2.2.2), we first check some validity rules to ensure that the blocks of the layer Li+1
we want to create have adequate shapes. Those rules are similar to the ones introduced by
Blacker et al. [BS91] for the paving method, but use both geometric and physical criteria
to classify block corners of Fi. We consider here the geometric shapes of the quadrangular
blocks and their alignment with the vector field −→v . As in the paving method, according to this
classification, three different operations are used. We can insert one block, fuse two blocks in
one, or insert two blocks in the layer Li+1 on a block corner of the front.

Block Insertion

nj
ink

i

nℓ
i

nj
i+1nk

i+1

nℓ
i+1

w⃗

a⃗
b⃗

(a) Front Fi and ideal positions of each nextblock corner of front Fi+1

nj
ink

i

nℓ
i

nj
i+1nk

i+1

nℓ
i+1

nj,0
i+1

nj,1
i+1

(b) Extra block built on the layer at blockcorner nj
i

Figure 2.17: Example of block insertion performed on block corner nj
i of the front Fi () of (a).

The block corner nj
i creates two more block corners, nj,0

i+1, and nj,1
i+1 on the new front Fi+1 ()of (b).

To avoid blocks of poor quality, we allow the insertion of blocks on a layer in areas specified
by the user. As explained before, to create a layer Li+1, each block corner of the front Fi

generates a block corner of the front Fi+1 at the distance di+1 in the distance field d, following
the vector field −→v . Let us consider two block corners nj

i and nk
i of the front Fi connected by a

block edge. They are supposed to generate two block corners, respectively nj
i+1 and nk

i+1, of the
next front Fi+1. We may create the regular block on this block edge, defined by the four block
corners (nj

i , n
j
i+1, n

k
i+1, n

k
i). Depending on this block angle quality, we can reject this block. For

86 CHAPTER 2. ADVANCING FRONT FOR LINEAR BLOCK STRUCTURE GENERATION

instance, in Figure 2.17.a, the block corner nj
i of the front Fi will generate the block corner

nj
i+1. The two regular blocks supposed to be created on the layer around the block corner nj

i

will not respect our target angle quality. As a consequence, we would generate two additional
block corners from the block corner nj

i (here, nj,0
i+1, and nj,1

i+1), and insert an extra block on the
layer (see Fig. 2.17.b). In this work, an extra block is inserted on the block corner nj

i if the
four following criteria are respected (using notations given in Fig. 2.17):

1. The block corner is in an area where the insertion is allowed by the user;

2. The adjacent block corners on the same red front have not already inserted or removed
elements;

3. π
4 − σ1 < arccos

(−→w ·−→vn
||−→w ||·||−→vn||

)
< π

4 + σ1, where −→vn is the value of the vector field at the

position of the block corner nj
i ;

4. arccos
(−→w ·−→a
||−→w ||·||−→a ||

)
+ arccos

(
−→w ·

−→
b

||−→w ||·||
−→
b ||

)
> 3π

2 ;

where σ1 = 0.174 is an arbitrary tolerance corresponding to 10°. It is usual to take the
aspect ratio between two opposite edges as an insertion or shrinking criterion. However, for the
applications of this work, there is no constraint on this specific ratio, but one can notice it will
impact the discretization of the final mesh.

To compute the position of one of the two new block corners used to create the inserted
block, we proceed as follows. To build the block corner nj,0

i+1 (see Fig. 2.17.b), the position of
the block corner nj

i is advected following the constant vector
−→w

||−→w || +
−→a

||−→a || until reaching the
distance di+1 in the distance field d. We do the same to compute the location of the second
block corner (nj,1

i+1).

Block Shrinking

nj
i

nk
i

nℓ
i

nj
i+1nk

i+1

nℓ
i+1

(a) Front Fi and ideal positions of each nextblock corner of front Fi+1

nj
i

nk
i

nℓ
i

nj
i+1

(b) Only one block is generated around theblock corner nj
i instead of two

Figure 2.18: Block shrinking example (2D). Each block corner () of the front () of (a) computesthe ideal position of the next block corner (). Three potential new block corners are too close, sothey are merged to provide only one new block instead of two quadrangular blocks on the newlayer (b).
The block shrinking operation can be considered as the opposite of the block insertion.

Considering three consecutive block corners nj
i , n

k
i , and nℓ

i of the front Fi, that respectively

2.3. CONFLICT MANAGEMENT ON A 2D LAYER 87
generate the block corners nj

i+1, n
k
i+1, and nℓ

i+1 of the front Fi+1. We apply the shrinking process
when we meet the configuration of Figure 2.18.a, where the three generated block corners are
geometrically close. More specifically, we fuse the three generated block corners into a single
one. To detect the places where the operation is necessary, the proximity of the ideal positions
of the block corners of the next layer is controlled with a tolerance. After the fusion, the
adjacent block corners on the layer (i.e., connected by an edge) are not able to perform an
insertion or fusion operation anymore. In Figure 2.18.a, block corner nj

i was supposed to be
adjacent to two different quadrangular blocks on the layer, but those two blocks are fused. So
the block corner is only adjacent to one quadrangular block on the new layer (see Fig. 2.18.b).

Figure 2.19 illustrates a practical example of how blocks can be inserted or shrunk in a
layer. The domain represents the fluid around the Mars Spacecraft geometry [Sca07] () (see
Appx. B). On the second block layer, two blocks are fused in one (), while one block is
inserted on the right part of the geometry ().

Figure 2.19: Blocks around Mars Spacecraft geometry (see Appx. B). Only one side of the 2D ge-ometry is represented here (). On the second layer of the quadrangular block structure, twoblocks are fused in one (), and a block is inserted on a block corner of the front ().

Double Block Insertion

(a) Diamond-shaped airfoil (b) NACA 0012 airfoil [Rum21]
Figure 2.20: Examples of 2D geometries with very sharp angles.

As explained before, we expect to generate a block structure as regular as possible, so
we may want to avoid any insertion or shrinking operations on a layer. At least, in the very
thin first block layer, we completely disable the two operations presented before. We consider
that, regarding the geometries treated in this work, the first block layer will be thin enough to
avoid conflicts. However, we still need to solve a very specific type of conflict, due to sharp
geometries (e.g., the 2D NACA 0012 airfoil back in Fig. 2.20.b). Otherwise, the geometry
feature will introduce very sharp blocks, and the resulting mesh may have very poor quality
cells (or overlapping cells).

88 CHAPTER 2. ADVANCING FRONT FOR LINEAR BLOCK STRUCTURE GENERATION

nj
0

nk
0

nℓ
0

nj
1

nk
1

nℓ
1

−→w
−→c1

−→c2

(a)

nj
0

nk
0

nℓ
0

nk
1

nℓ
1

−→c1

−→c2

l1

l2

(b)
Figure 2.21: Double block insertion on the boundary layer. There is a very sharp angle on thegeometry (). To create a valid block layer on the first front () of (a), we perform the insertionof two blocks at block corner nj

0 (b).

The double block insertion is similar to the one exposed before, but this time two blocks
are inserted on a block corner (see Fig. 2.21). If the insertion is not performed, it can lead
to tangled invalid meshes. In Figure 2.21.a, the front considered for the extrusion is F0 (i.e.,
the wall geometry block discretization), and the corresponding block corners of this front are
plotted in red (). This operation can only be performed on this front F0. Each block corner
of the front F0 computes the ideal position of the next block corner. At the position of block
corner nj

0, a sharp angle is detected on the geometry surface. Then, two blocks are inserted. If
the inserted upper right block of Figure 2.21 is considered, the two new block corners are placed
this way. The first one, connected to nk

1 by a block edge, is the position pj0 of block corner nj
0

advected at the distance δBL in the distance field dΩV
following a constant vector equal to the

vector −→c1 in Figure 2.21.a. The second block corner is placed at position p = pj0 + l1
−→c1+−→w

||−→c1+−→w || .

The second block of this insertion is built the same way, from the block corner nℓ
0 on the

other side of nj
0. Figure 2.22 illustrates a practical example of this insertion of two blocks at

a block corner on the boundary layer blocking, around a diamond-shaped airfoil geometry (see
Fig. 2.20.a).

(a) (b)
Figure 2.22: Practical example of 2D double block insertions. Insertions of two blocks on theboundary layer () of a 2D diamond-shaped airfoil (). The two insertions in the front and backof the airfoil are performed to ensure good quality elements in those sensitive areas. Without theblocks inserted, the block structure obtained in (a) has very poor-quality elements.

Finally, in order to handle the different types of conflicts, Algorithm 5 is performed to
build a layer on a 2D front, where the three different operations are performed if necessary.
Figure 2.23 represents a practical example of this 2D algorithm with conflict management to
generate a block structure around the NACA 0012 geometry presented before. Starting from
the automatic block structure generated in Figure 2.23.a, the first block layer of Figure 2.23.b
is built. On this first block layer, an insertion of two blocks at a block corner of the front F0

is performed, on the right part of the geometry. This layer provides a new front on which the
second block layer is computed (see Fig. 2.23.c). On this layer, two blocks are inserted on two
different block corners of the front F1, on the right of the geometry. The final block structure

2.3. CONFLICT MANAGEMENT ON A 2D LAYER 89
Algorithm 5 Build One Block Layer on a 2D Front
Require: BackgroundmeshMT , frontFi, distance field d, vector field−→v , distance

di+1 of the next front block corners in the distance field d
Ensure: Quadrangular blocks B of the layer Li, and the set of block corners andedges of front Fi+11: for all block corner nj

i ∈ Fi do2: nj
i+1← computeIdealPosition(nj

i , dFi
, d, −→v)

3: end for
4: while there is a conflict at block corner nk

i ∈ Fi do5: nk
i ← getBlockCorner(Fi, conflict_type)6: if conflict_type is expansion and i > 1 then

7: Fi+1 ← Fi+1 + {insertQuadBlockAtCorner(nk
i)}8: else if conflict_type is contraction and i > 1 then

9: Fi+1 ← Fi+1 + {contractQuadBlockAtCorner(nk
i)}10: else if conflict_type is sharp geometry and i = 0 then

11: Fi+1 ← Fi+1 + {insertTwoQuadBlocksAtCorner(nk
i)}12: end if

13: end while

generated on six different layers of blocks is represented in Figure 2.23.

We can note several interesting facts about this method. First, if all the fronts and layers
respect the definitions given before, they are not all the same size in terms of the number of
elements. For instance, if an insertion of one quadrangular block is performed on a layer, this
leads directly to the addition of two new n−1-cells in the next front. The second interesting
fact is we can easily generate various block structures with different topologies or sizes just by
changing the input parameters. If we take the example of the second block layer generated
around the NACA 0012 geometry (see Fig. 2.23.c), we could get rid of the block insertions if
the user decides they are not mandatory.

90 CHAPTER 2. ADVANCING FRONT FOR LINEAR BLOCK STRUCTURE GENERATION

(a) Distance field and front F0 ()

(c) Second block layer ()

(b) First block layer ()

(d) Block-structure extruded on six layers
Figure 2.23: Practical example of the extrusion of blocks around NACA 2D geometry. Starting fromthe automatically generated front F0 plotted in blue () in (a), the first layer () is built (b). Onthis layer, an insertion of two blocks is performed on the right side of the geometry to deal with itssharp angle. Then the second layer () is generated (c). The final block structure is then extrudedregularly for the next layers. Finally, the six different layers (d) are generated.

2.4. CONFLICT MANAGEMENT ON A 3D LAYER 91
2.4 Conflict Management on a 3D Layer

As this 2D approach was designed to be extensible to 3D, many steps are performed the same
way in the 2D algorithm and the 3D algorithm. For instance, we compute the distance and
vector fields with the same algorithm in 2D and 3D. But instead of working on a triangular
background mesh, we work on a tetrahedral background mesh. The main difference is in the
way we handle conflicts on a layer.

e

(a) Without insertion

e

(b) With insertion
Figure 2.24: Topology Preservation 2D. The quadrangular blocks of the precedent layer are filledin light blue (), and the block edges are plotted in black. The blocks of the layer in constructionare plotted in blue ().

In the paving algorithm, we can only perform three different operations on a layer to solve
conflicts and the three different operations are performed at block corners (see Sec. 2.3). At
a block corner, you can choose to insert a quad, to insert two quads, or to shrink two quads
into one. In 3D, the different configurations are more numerous and complicated. First, the
different operations can be performed at block corners or edges. In addition, in the 2D case,
if you decide to insert or not a quadrangular block at a block corner, it does not change the
topology for the edges of the front connected to the block corner, there is a preservation of the
structure. If we take a look at Figure 2.24 if an insertion is performed (b) or not (a), in both
cases, when the red block edge e () of the front will have to create its quadrangular block,
the block will connect to a block edge shared by the two fronts. Now consider the 3D case of
an insertion of a hexahedron on a block edge represented in Figure 2.25.b (which is the natural
extension of the insertion of a quadrangular block at a block corner in 2D). The red block edge
e () has to insert a hexahedron too in order to connect to this inserted hexahedron via the
block face. In a way, this insertion will be propagated on a set of adjacent block edges of the
front. While in the case there is no insertion, such as in Figure 2.25.a, the edge e will not be
able to insert any hexahedron, because there is no face to reconnect to properly.

So in 2D, the insertion (or contraction) of a quadrangular block is a local problem, while
in 3D we need to consider first a global problem on the whole front before performing the
operations. The main idea is to ensure the global coherence of the topology of the layer before
applying the local patterns, on each block corners and edges. To build a full layer of hexahedral
blocks on a front, we first analyze and classify all the block edges of the front. Then, according
to this classification, we compute on which block corners and edges we can insert or remove
hexahedra. Once we know where to build each hexahedron, then we build the full layer of
hexahedra.

92 CHAPTER 2. ADVANCING FRONT FOR LINEAR BLOCK STRUCTURE GENERATION

e

(a) Without insertion

e

(b) With insertion
Figure 2.25: Topology propagation in 3D.

2.4.1 Front Edges Classification

To compute a block layer, we take a front as input. A 3D front is a set of quadrangular faces,
edges, and block corners. We first detect the geometrical features of the front and classify all
the edges of the front. The topology of the layer of hexahedra will be defined by solving a
global problem on this front. In our case, as a front can not separate, each edge of the front
is connected to exactly two quadrangular block faces on this front.

The very first step of the algorithm is to compute the classification of each block edge of
the front, according to the angle Φ between the outgoing normal vectors to its two adjacent
quadrangular block faces on the front. As shown in Figure 2.26, an edge can be classified as

(b) CORNER if π

4 ≤ Φ < 3π
4 ,

(d) REVERSAL if 3π
4 ≤ Φ < 5π

4 ,
(c) END if 5π

4 ≤ Φ < 7π
4 ,

(a) SIDE otherwise.

(2.10)

(a) Side blockedge () (b) Corner blockedge () (c) End blockedge ()

(d) Reversal blockedge ()

Figure 2.26: Block edges classification on a front ().
Definition 2.4.1 (Feature block edge). A feature block edge is a block edge of the
front that is not classified as side. Its classification is either corner, end, or reversal (see
Fig. 2.26).
Definition 2.4.2 (Feature block corner). A block corner is defined as a feature block
corner if it is connected to at least three feature block edges on the front.

2.4. CONFLICT MANAGEMENT ON A 3D LAYER 93

(a) (b)
Figure 2.27: Example of block edges classification on a front. The corner block edges are repre-sented in yellow (), and the side block edges in black (). The front (a) is classified followingthe same process as in [RG11, RGRS12], respecting Equation (2.10). While the front (b) is classifiedwith the specific directive to avoid feature block edges on the left part of the front.

A practical example of this classification is illustrated on the front of Figure 2.27. The
classified front of Figure 2.27.a is obtained using the rules of Equation (2.10). This front is
composed of a set of corner block edges plotted using yellow () edges, and a set of side
block edges plotted in black (). Let us note that, unlike in the work of Ruiz-Gironés
et al., we can choose here to declassify an edge (i.e., we may decide that a corner, end, or
reversal edge will be considered as a side edge), according to some physical parameters. As for
the 2D algorithm, we want to introduce a few singularities in the block structure topology. So
the user can decide to declassify block edges of the front depending on their location in the
domain, considering the quality of the blocks will be enough without adding or removing some
blocks in the layer. So, for instance, the classified front of Figure 2.27.a becomes the classified
front of Figure 2.27.b if we want to consider all the block edges on the left part of the figure
as regular edges. A set of corner block edges () in Figure 2.27.a has been declassified, to
be considered as side block edges () in Figure 2.27.b. This choice can impact the whole
block structure and makes it possible to generate different topologies of blocking around the
same vehicle, examples will be given later.

2.4.2 Patterns Considered to Solve Conflicts

The algorithm aims to apply a set of patterns of hexahedra on the front to solve the potential
conflicts due to expansion or contraction on a layer.

Definition 2.4.3 (Pattern). A pattern is defined as a set of hexahedral blocks created
around a block corner or a block edge of a frontFi. This set of blocks belongs to the blocklayer Li built on front Fi.

As this work is based on the work of Ruiz-Girones et al. [RG11, RGRS12], we decided
to implement the same patterns they did to solve conflicts on a layer. We first have the three
patterns on block edges presented in Figure 2.28. They can be seen as a natural extension of
the three 2D patterns on block corners, but on block edges. We can insert a block on a corner
block edge (see Fig. 2.28.a), fuse two blocks to only create one on an end block edge (see
Fig. 2.28.b), or create two new blocks on a reversal block edge (see Fig. 2.28.c). As explained
before, the use of one of those patterns on a block edge will need to be propagated on the
adjacent block edges.

94 CHAPTER 2. ADVANCING FRONT FOR LINEAR BLOCK STRUCTURE GENERATION

(a) Corner block edge () (b) End block edge () (c) Reversal block edge ()
Figure 2.28: Conflict management 3D: patterns applied on a feature block edge of the front ()depending on its classification.

In addition to the patterns on feature block edges, eight different patterns are introduced
to deal with configurations of feature block edges around the block corners of a front (see
Fig. 2.29). Each configuration represents a feature block corner () of the front () adjacent
to at least three feature block edges on this front. Around each of these eight configurations,
we can create a set of hexahedral blocks () that belong to the new block layer. Some
patterns only create one block, while some others create two different blocks.

(a) 3 corners (b) 2 corners and 1 end (c) 1 corner and 2 ends (d) 3 ends

(e) 3 corners and 3ends (f) 2 corners and 2ends (g) 2 corners and 1reversal (h) 2 ends and 1reversal
Figure 2.29: Conflict management 3D: patterns to apply on feature block corners () of thefront (). For one configuration of feature block edges around a feature block corner, the setof block(s) created around the block corner is represented with blue edges ().

Similarly to the 2D case, some patterns provide less number of n−1-cells on the next front
than on the front they are applied (see Fig. 2.28.a, c, Fig. 2.29.a, g, etc.), while some of them
will provide a larger number of n−1-cells on the next front (see Fig. 2.28.b, Fig. 2.29.d, etc.).
For instance, the pattern around three corners of the front (see Fig. 2.29.a) will provide three
new n−1-cells on the next front, and seven block corners on it. The pattern applied around
three end block edges of the front (see Fig. 2.29.d) will not provide any n−1-cell on the next

2.4. CONFLICT MANAGEMENT ON A 3D LAYER 95
front, and only one block corner on it. It is important to note that the patterns aim to deal
with specific conflicts on a part of the front. When it is done, all the quadrangular block cells
of the front are supposed to generate a block in the layer by extrusion of itself as presented
before (see Fig. 2.30). However, due to some specific patterns around block edges or block
corners (e.g., the pattern on an end block edge in Fig. 2.28.b), some quadrangular blocks of
the front will not generate any additional hexahedral block on the layer.

Figure 2.30: Pattern on face.
As in many methods where several cases are considered, there is always the reasonable

question of the completeness of the cases listed. As explained in [RGRS12], there exist additional
patterns to take into account other arrangements of block edges around a block corner of a
front. However, they are not considered in this work. The reason why we can afford to take
those extra cases into account is that we first compute on the front which patterns we can apply
and were, before to build the corresponding hexahedra, and this computation step respects the
list of patterns we implemented.

2.4.3 Paths of Feature Block Edges on a Front

To compute a priori on which feature block edge and feature block corner we can apply patterns
on a front, we compute a set of paths (see Def. 2.4.4).

Definition 2.4.4 (Path). A path is a set of adjacent block edges (and block corners) on
a 3D front sharing the same classification on this front. A path starts by a feature block
corner and stops on a feature block corner. Each block corner in this path is adjacent to
exactly two feature block edges on this path or is a bounding feature block corner. A path
can start and end on the same feature block corner.

To compute a path, we start from a feature block corner and one of its adjacent feature
edges. Then, we try to connect to another feature block corner according to Algorithm 6. Let
us note that the path computation stops here when the last block corner checked is adjacent
to less than two feature edges of the same classification type, or if the last block corner is a
feature block corner as defined before. In the first case, we decide in this work to consider
the path as non-valid because it does not respect the Definition 2.4.4 given before. In this
case, we declassify all the block edges of this path (i.e., we consider them as side edges). This
implies we have to perform again the path computation algorithm on all the block edges of
the front, according to this new classification. This is one of the differences with the work

96 CHAPTER 2. ADVANCING FRONT FOR LINEAR BLOCK STRUCTURE GENERATION

Algorithm 6 Single Path Computation
Require: Classified front Fi, starting block corner ns, starting block edge es
Ensure: Path P
1: n← es.oppositeNode(ns)2: e← es3: P .add(es)4: while n.nbrClassifiedEdges() = 2 and e = es.classification() do5: e← n.nextEdge()
6: P .add(e)
7: end while
8: ne← n

presented in [RGRS12], where they choose to consider those specific paths as semi-paths, and
they introduce additional patterns to deal with those configurations. In fact, to decide if a path
is valid here, the path has to respect some conditions:

1. The two bounding feature block corners have to be connected to at least three feature
block edges of the front, and respect one of the eight configurations listed previously
(see Fig. 2.29).

2. All the edges of the path have to share the same classification according to previous
Section 2.4.1.

Algorithm 7 All Paths Computation
Require: Front Fi

Ensure: List of all valid paths on the front FP1: while List is not valid do
2: clear(FP)3: validList← true
4: for all valid feature block corner ns do5: for all valid feature edge es adjacent to ns do6: P ← PathComputation(ns, es) ▷ (see Algo. 6)
7: if P is valid then
8: LP ← add(PathComputation(ns, es))9: else
10: declassifyEdges(P)
11: validList← false
12: end if
13: end for
14: end for
15: end while

This approach is more restrictive than in [RG11, RGRS12]. In case a path is classified as
invalid, the starting and ending block corners of the path are considered invalid too. The direct
consequence is that front block corners must be re-classified and potentially valid paths are

2.4. CONFLICT MANAGEMENT ON A 3D LAYER 97
now not valid anymore. When they treat those invalid paths with special patterns, we decide
in this work to declassify all the edges of the paths (to classify them as side edges, see Algo. 7,
l. 10) and to recompute all the paths.

After the computation of all paths from one feature block corner to another, we decide
to compute the potential loops of feature block edges on the front, called here closed paths
(see Def. 2.4.4). A closed path is a path of adjacent feature block edges containing no feature
block corner. This means that all the block corners of a closed path are adjacent to strictly two
feature block edges of the front. All the feature block edges of a closed path have to share the
same classification according to Section 2.4.1. To our knowledge, the closed paths were not
considered in the work of Ruiz-Girones et al.. Due to our application, those configurations
are mandatory because the back part of many of our geometries is affected by these particular
paths (e.g., the right part of the vehicle presented in Fig. 2.31).

Definition 2.4.5 (Closed path). A closed path is a set of adjacent feature block edges of
a front sharing the same classification (corner, end, or reversal). A closed path does not
contain any feature block corner. This means that every block corner of a closed path is
adjacent to exactly two feature block edges on the front.

Figure 2.31: Practical example of block edges classification on a front. The corner block edgesare represented in yellow (), the end block edges in purple (), the reversal block edges inorange (), and the side block edges in black ().
Considering the practical example of front classification presented in Figure 2.31, three

different types of paths presented before are illustrated. The most traditional path is represented
here with the three reversal block edges (). This path is bounded by two different feature
block corners. The first one, on the left side, is a block corner adjacent to one reversal block
edge () and two corner block edges () (see Fig. 2.29.g for the corresponding pattern).
The other side of this reversal path is bounded by a block corner adjacent to one reversal block
edge () and two end block edges () (see Fig. 2.29.h for the corresponding pattern).
Another interesting path is the one composed of corner block edges () on the wing (left
part of the figure). This path starts and ends on the same feature block corner, shared by the
precedent path. The last type of path illustrated here is a closed path at the back of the vehicle
(right part of the figure). This path is a corner block edges () path and it is not bounded

98 CHAPTER 2. ADVANCING FRONT FOR LINEAR BLOCK STRUCTURE GENERATION

by any feature block corner. Each block corner of this path is adjacent to exactly two corner
block edges on the front and some side block edges.

Once all the paths are computed on the front, we know a priori at each block corner, block
edge, and block quadrangular face of the front which pattern will be applied. The creation of
the hexahedra of the layer is performed in three steps:

1. Patterns on feature block corners. We start with the creation of a set of new
hexahedra on each marked feature block corner of the front according to the eight valid
configurations of feature block edges around a block corner (see Section 2.4.2).

2. Patterns on feature block edges. Then we apply the block edge patterns presented
in Section 2.4.2 depending on the classification of the edges, and the set of valid paths
computed before.

3. Patterns on remaining block faces. Finally, hexahedra are created regularly (by
extrusion of the face) on all the remaining faces of the front.

Figure 2.32: Practical example of a block layer generated on the previously classified front of Fig-ure 2.31. The layer is represented using a shrunk view. The hexahedra built on a block face ofthe front are represented in gray (), while the hexahedral blocks built using patterns are plottedusing different colors. Here, two sets of blocks are built using patterns on the block corners of thefront, and plotted in blue () and purple (). The other colored blocks are built using patternson the feature block edges of the front.
The layer of hexahedral blocks generated on the classified front of Figure 2.31, after the

paths computation, is presented in Figure 2.32. The hexahedra generated using patterns are
represented in different colors (corresponding to the patterns applied) while the hexahedra
created regularly (by extrusion of a quadrangular block face of the front) are plotted in gray ().
Here, the hexahedral blocks of the layer are represented using a shrunk view in order to see
the patterns applied on front block edges classified as end (), and the two hexahedral blocks
created by the pattern applied on the block corner adjacent to two end block edges and one
reversal block edge of the front (). As we may see, the hexahedra built using those patterns

2.5. RESULTS 99
do not provide any block face on the next front. In this practical example, the use of the two
other patterns is illustrated. The pattern on corner block edges provides one hexahedron on
each block edge (), while the one applied on each reversal block edge provides two hexahedra
each per block edge (). The last pattern illustrated in this example is the one around a block
corner adjacent to two corner block edges, and one reversal block edge. This pattern builds
two hexahedral blocks on the layer plotted here in blue ().

The operations presented to deal with potential conflicts on a layer ensure the layer of
block-cells Li built this way on front Fi provides a new front Fi+1 which respects strictly the
definition of a front. So this new front is suitable for performing a new step of the algorithm,
i.e., to build a new block layer on it.

2.5 Results

This section aims to exhibit some results of this algorithm around vehicles and to comment
on the possibilities of the method. Results are shown in this part around three different 3D
examples: the RAM-C II vehicle, a double ellipsoid, and a caretwing (see Appx. B). The study
of the double ellipsoid geometry shows how to generate different block topologies around the
same input geometric surface by modifying the input parameters of the algorithm. The final
result around the caretwing illustrates more complex patterns used on a layer.

RAM-C II

(a) RAM-C II vehicle (b) Front F0 (c) Second block layer
Figure 2.33: Practical example of second block layer (c) generated generated around RAM-C IIgeometry (a) (see Appx. B) using the initial front (b).

Here is a practical example of a block structure generated around the RAM-C II vehicle (see
Fig. 2.33.a). This vehicle has a conical shape with a spherical nose (left part of the figure).
The vehicle is oriented in such a way we will refer to the spherical part as the nose, or front
part, and the disk as the back. The quadrangular block discretization of the vehicle used as
our first front is given in Figure 2.33.b. The first block layer is extruded regularly (i.e., no
patterns are used), while we allow patterns in the second block layer. As a result, we obtain
in the second block layer of Figure 2.33.c a closed path of hexahedral blocks on the back of
the vehicle. This is the only layer built using patterns. The final block structure composed
of five different block layer is presented in Figure 2.34.b. The block structure is generated on
the fluid domain represented in Figure 2.34.a by the background meshMT , and the combined
distance field computed on it. Here, we decided to represent the domain using two clip plans
for visualization purposes, but the block structure is generated on the plain domain.

100 CHAPTER 2. ADVANCING FRONT FOR LINEAR BLOCK STRUCTURE GENERATION

(a) Distance field d (b) Blocks
Figure 2.34: Practical example of block structure extruded on five layers (b) generated aroundRAM-C II geometry (see Fig. 2.33.a). The combined distance field computed on the backgroundmesh is plotted in (a). Here, we cut a quarter of the domain for visualization purposes, but thedomain meshed around the geometry and the resulting blocking are plain.

Double Ellipsoid

Let us now consider the Double Ellipsoid geometry [AADLC91] of Figure 2.35.a and its surface
discretization given in Figure 2.35.b. Using the algorithm detailed before, we can generate
various different block topologies around a same vehicle, and we illustrate here some example
around this specific geometry. Figure 2.36 shows three different block topologies generated
using the same starting front F0 of Figure 2.35.b.

(a) Double Ellipsoid geometry (b) Double Ellipsoid front F0

Figure 2.35: Double Ellipsoid 3D input geometry [AADLC91] and block discretization of the vehiclesurface.
Figure 2.36.a represents the second block layer generated of a block structure extruded on

eight different layers. This layer is the only one of the blocking where patterns are used. The
first block layer L1 is generated in a fully regular way on front F0 (i.e., each quadrangular cell of
the front generates a hexahedral block, no patterns are used). This first regular layer provides
a new front on which patterns are applied to provide the second block layer of Figure 2.36.a.
The only reason why the patterns are not used in the first block layer is because we decided to
disable the conflict management on the first layer to generate this specific block structure.

The result of Figure 2.36.b is obtained by starting the algorithm again with slightly different

2.5. RESULTS 101

(a) Patterns all over the layer (b) Closed path on the backonly (c) Regular layer
Figure 2.36: Three different second block layer topologies generated on the same front.

parameters. We still disable the use of patterns on the first block layer, as for Figure 2.36.a.
We also disable the use of patterns on the front part of the geometry (corresponding to the left
part of the plot). So now, on the second block layer, there is a closed path of corner edges on
the back of the geometry.

Finally, the result plotted in Figure 2.36.c is the second block layer generated around the
same geometry and front F0 as before. However, no patterns are allowed here. As a conse-
quence, the second layer is built with only regular blocks, as presented in Section 2.2.2.

Only three different block topologies are presented in Figure 2.36 on the specific second
block layer. It is easily to imagine different block topologies, with for instance the same three
variations on the first block layer. This is possible by slightly changing the input parameters of
the method.

(a) Corresponding blocking of Fig. 2.36.a (b) Corresponding blocking of Fig. 2.36.b
Figure 2.37: Two different blocking topologies generated around Double Ellipsoid vehicle. Theblock structure is extruded on eight different block layers, each color corresponds to one layer.Blocking (a) corresponds to the full block structure of Figure 2.36.a, and blocking (b) correspondsto Figure 2.36.b. Figure 2.36 focuses on the second block layer, plotted here in yellow ().

A clip view along the plan (O,
−→
X ,
−→
Y) of the eight different layers of final block structure

corresponding to Figure 2.36.a, and b are plotted respectively in Figure 2.37.a, and b. Each color
represents a different block layer. The difference between the two block structures presented
here are in the second block layer plotted before. As you may see on the left parts of Figure 2.37,
this difference impact the whole block structure (and the final number of blocks). This change

102 CHAPTER 2. ADVANCING FRONT FOR LINEAR BLOCK STRUCTURE GENERATION

of parameters also impact the final number of blocks. The starting front of Figure 2.35.b is
made of 76 block n−1-cell. If the whole block structure is generated in a regular way (i.e.,
without conflicts), the resulting block structure should be made of 608 hexahedral blocks (this
is the case of the final block structure presented in Fig. 2.36.c). In the first case presented
here (see Fig. 2.37.a) the resulting block structure is composed of 932 blocks, while this is 790
hexahedral block for the second one (see Fig. 2.37.b). As explained before, the use of patterns
can increase (or decrease) the number of blocks on the final structure.

Caretwing

(a) Caretwing geometry (b) Caretwing front F0

Figure 2.38: Caretwing 3D input geometry (see Appx. B) and block discretization of the vehiclesurface.
The last geometry presented in this section is a caretwing (see Fig. 2.38.a). We start from

the the front discretization given in Figure 2.38.b. The first block layer built on the front
F0 is presented in Figure 2.39.a and b. On this first block layer, there are hexahedral blocks
generated by patterns to solve conflicts. The ones created on corner block edges are plotted
in orange (), the ones on reversal block edges are plotted in purple (). The last pattern
illustrated on this test case is on two different blocks corners adjacent to two corner block
edges and one reversal block edge each. The hexahedra introduced by this pattern are plotted
in blue (). Once this first layer is generated, the other layers are generated layer by layer.
The final block structure, extruded on four layers is represented in Figure 2.39.c in clip view
(i.e., only one half of the blocking in plotted here) around the plain representation of the first
front F0 (). If we take a look at the blocks on the right part of the first layer (), we may
see the inserted blocks.

2.5. RESULTS 103

(a) First block layer (back view) (b) First block layer (upper front view)

(c) Clip view of the 4 layers of linear blocks
Figure 2.39: Linear blocks extruded on 4 different layers around Caretwing geometry.

104 CHAPTER 2. ADVANCING FRONT FOR LINEAR BLOCK STRUCTURE GENERATION

2.6 Perspectives

In this chapter, we presented our work, based on the previous work of Ruiz-Girones et
al. [RG11, RGRS12] to generate a linear block structure around a vehicle under several con-
straints on our physical domain. In the future, we expect to improve this work to get rid of
some of the constraints. This chapter opens many perspectives, and among the ones we list
bellow, we decide to give specific details about potential future works in this section.

Multi-Vehicle Geometries

One of our constraints on the inputs is we work with a "quasi convex" single-wall vehicle. In
some specific cases, we may want to mesh two separated vehicles or handle vehicles with strong
non-convex areas (like a U-shaped vehicle, see Fig. 2.40). To do that, we think we can take
advantages of the computed distance fields to find particular features in the domain where the
level set functions can meet. The idea would be to detect these particular areas, and use an
other approach (e.g., medial axis) to first generate a block structure between the two elements.
Once the two walls are joined, we can extract a common peel, and use it as the first front for
our algorithm. Here are the main stages we expect for this approach:

1. Compute a distance field on physical domain (see Fig. 2.40.b);

2. Detect an iso-line in the field where the front could meet (see red iso-line () in
Fig. 2.40.b);

3. Use medial axis method to build a first block-structure to connect the different objects
(see Fig. 2.40.c);

4. Use our algorithm to build the full block-structure of the domain, considering the different
objects unified as one vehicle on which the algorithm can be applied (see Fig. 2.40.d).

Vehicle Vehicle Vehicle

(a) U-shapedvehicle () (b) Level set aroundvehicle (a) (c) Block created ()in non-convexdetected area
(d) Initial front ()for our advancing frontalgorithm

Figure 2.40: Main stages of pre-treatment approach considered to handle non-convex vehicles.

Improve Distance Fields Computation

The distance field is a core component of the method, as it is through this distance field we
compute the vector field to lead the block extrusion direction. If this field is not computed

2.6. PERSPECTIVES 105
accurately, then the vector field is not and it impacts the result of the algorithm. One solution
to improve the distance field computation accuracy is to use a more refined background mesh.
However, it increases the time consumption of the distance field computation step.

We expect to work more on the distance field computation to find a method to compute
the fields faster and more accurately. We tried three different approach so far:

1. Compute the distance field the same way they did in Ruiz-Gironés et al. [RG11,
RGRS12] (see Fig. 2.41.a). But it was time-consuming because our background mesh
has to be refined around the vehicle surface, and not accurate enough.

2. Compute the Euclidean distance (see Fig. 2.41.b). It is accurate enough under condition
we have a huge amount of points on the background meshMT located on the geometry
(and in our case, we need to, because the geometry is represented by the discrete input
background mesh of simplices MT). However, the field computed with this method is
not the same as the one before (e.g., in case of multi-objects).

3. Compute the distance field by solving a heat flux system (see Fig. 2.41.c), but this
method was also time-consuming.

(a) Fast Marching [Set99] (b) Euclidean distance (c) Heat flux system
Figure 2.41: Levet set computation methods.

Figure 2.41 represents three distance fields computed with the previous methods. In the
case of Figure 2.41.a and b, two distance fields are previously computed using the corresponding
method; one is the distance from the vehicle surface, and the other is the distance from the
far-field boundary. Then, the two distance fields are combined to provide a normalized distance
field between 0 and 1. If the two fields look similar, it takes 10 times less time to compute
the field using the Euclidean distance than the Fast Marching method in this case (which takes
around 0.2s here). In addition, the field of Figure 2.41.a is more noisy. We are fully aware that
the problem solved in the two cases is different, and the level set result on different vehicles
will differ. In the case of Figure 2.41.c, the heat flux equation is solved with specific boundary
conditions, similarly to what is done in [CWW17]. However, even if there is only one field to

106 CHAPTER 2. ADVANCING FRONT FOR LINEAR BLOCK STRUCTURE GENERATION

compute with this method, it takes around 3 minutes with this simple 2D mesh. Once again,
we can see around the boundaries that this field is not the same as the two before.

In a more practical way, the course given by Charles Dapogny5 gives some tools for
considering more relevant methods for level set computing.

Automatic Generation of Surface Block-Structure

For now, for the 3D case, the first front (the quadrangular block-structure of the vehicle) is
taken as an input. We consider it is generated by hand using a dedicated interactive software.
We proposed a way to generate the first front automatically in 2D and it could be interesting
to have the same in 3D.

The generation of a quadrangular surface blocking is an open field of research, but we can
find some methods in the survey of Campen [Cam17]. It would be interesting to consider
generating the decomposition surface of the vehicle in an automatic way as an alternative of
this needed input. In addition, it would be interesting to propose a method that takes into
account the geometric surface, but also takes into consideration the list of patterns on a layer,
to provide a suitable input to build a layer.

5https://internationalmeshingroundtable.com/imr31/short-courses/#dapogny

https://internationalmeshingroundtable.com/imr31/short-courses/#dapogny

2.6. PERSPECTIVES 107
Summary

This chapter focused on the generation of a block structure around a vehicle, by an
advancing front approach based on the previous work of Ruiz-Girones et al. [RG11,
RGRS12]. This approach is atypical because it relies on extruding a block structure layer
by layer while advancing front methods usually rely on an extrusion cell by cell. In this
chapter, we detailed the different steps of this method. First, the computation of the
distance and vector fields on the background mesh to lead the creation of a block layer
(see Sec. 2.1). Then, we explained how we compute a regular block layer (see Sec. 2.2),
and how to handle conflicts on a block layer in 2D (see Sec. 2.3) and 3D (see Sec. 2.4). If
the approach is inspired by the previous work of Ruiz-Gironés et al. [RG11, RGRS12],
we performed various minor modifications to the method explained in this chapter.

1. The method was previously used for hexahedral mesh generation while it is used
here for block structure generation. We potentially have to deal with anisotropic
input block surface (i.e., with important aspect ratio between quadrangular cells)
while the pre-meshed surface looks relatively regular in [RG11, RGRS12].

2. We use a vector field to lead the directions for the blocks extrusion.

3. We don’t consider a specific type of feature edges called semi-edges in the original
work to solve conflicts on a layer, but we introduce instead the additional notion of
closed path.

Finally, the last part of this chapter was dedicated to several identified perspectives on this
work and potential avenues for future works. At this stage of the algorithm, we have a full
linear block structure around the vehicle of interest. We expect now to generate a final
mesh by subdividing the blocks using grids. However, as we work with coarse blocks, if
we subdivide them we would need to smooth it to align with the geometry. To avoid this
smoothing step, we decide to curve our blocks first. In the next chapter, we will propose a
curved representation of the blocks and a way to align the curved blocks to the geometry.
Then the process of going from the curved blocks to the final mesh will be fully detailed.

Chapter 3
BLOCK STRUCTURE CURVING

At this stage of the method, we have a complete linear block structure. However, as we
work with a blocking, there are few elements, and they need to be subdivided. As there
are few elements, the geometric surface is not well represented. Besides, a smoothing step
to align the final mesh to the physical domain will be mandatory if the linear blocking is
discretized using grids. A smoothing algorithm on such a mesh is highly time-consuming,
and we expect to avoid this step by first considering our block structure as curved and
aligned onto the vehicle surfaces. To do so, two different approaches are considered
in this work. The first is through rp-adaptivity by considering a global problem on the
block structure and solving an optimization problem to improve the quality of the blocks
and align them to a surface while carefully controlling the polynomial degree of elements
adjacent to the vehicle surface. A second approach is studied by considering our blocks as
Bézier blocks to align using local operations. Once the blocks are curved, the discretization
is set in each direction to generate the final mesh.

Constributions
• Mittal, K., Dobrev, V. A., Knupp, P., Kolev, T., Ledoux, F., Roche, C., To-

mov, V. Z. (2024). "Mixed-Order Meshes through rp-adaptivity for Surface Fit-
ting to Implicit Geometries." SIAM International Meshing Roundtable (SIAM IMR
2024). [MDK+24]

Contents
3.1 Mixed-Order Mesh Adaptivity for Surface Alignment 111

3.1.1 Target-Matrix Optimization Paradigm (TMOP) 113
3.1.2 rp-Adaptivity for Interface Alignment 115
3.1.3 Application to Block Structures 118

3.2 Curving of the Structure Using Bézier Elements 121
3.2.1 Bézier Elements . 122
3.2.2 Block Curving to Interpolate Boundaries 124

3.3 Mesh Generation from the Curved Block Structure 128
3.3.1 Interval Assignment . 128

3.4 Perspectives . 133

109

110 CHAPTER 3. BLOCK STRUCTURE CURVING

(a) (b) (c) (d) (e) (f)
Figure 3.1: Principal steps of our approach illustrated in 3D. In this chapter, we deal with the blockstructure curving (e) and the final mesh generation (f) stages.

This chapter describes the two final steps of our global approach represented through the
pipeline of Figure 3.1. The precedent work of Chapter 2 provides us with a linear block structure,
which is composed of a few hexahedral blocks. Consequently, the geometrical error can be too
large and difficult to be controlled. If the final mesh is generated on this linear blocking, a
time-consuming smoothing step will be needed to reduce the geometrical error.

(a) Linear blocks and vehicle surface ()

(b) Mesh generated on linear blocks (a) (c) Mesh generated on previously curved blocks(degree p=2)
Figure 3.2: Example of a 3D linear block structure (a) generated around RAM-C II geometry ()(see Appx. B), and a mesh generated on this linear block structure (b). Another option of meshgeneration on a Bézier block structure (c) is proposed. Curved block edges are plotted using thickblack lines ().

The geometrical error is the error between the mesh, which is a discrete representation of
a physical space, and the boundary of interest. Considering the Figure 3.2.a, the geometrical
error may be represented by an error function computed between the red vehicle surface (),
and the linear blocks (). It exists two main way to reduce this geometrical error, the first
one is by increasing the discretization, which is not wanted here because we work on a block

3.1. MIXED-ORDER MESH ADAPTIVITY FOR SURFACE ALIGNMENT 111
structure. The second approach is to curve the cells to approximate the interface, and this is
the solution explored in this chapter.

Figure 3.2.a represents a clip view along the plan (O,
−→
X ,
−→
Y) of a block structure generated

using the algorithm presented in previous Chapter 2 around RAM-C II geometry (see Appx. B).
Here, the RAM-C II boundary ∂Ωv is plotted in red (). We generate the mesh on this
linear block structure using Transfinite Interpolation in every block. Then, we project the nodes
corresponding to the boundaries onto the vehicle surface. The resulting mesh is plotted in
Figure 3.2.b. As we may see on the left part of the vehicle, some cells overlap because of the
cells’ anisotropy. The mesh presented here as an example is coarse but already composed of
around 475, 000 n-cells. We adopt a high-order representation of the block structure to avoid
dealing with overlapping mesh cells and smoothing the final mesh. The final mesh generated
(see Fig. 3.2.c) on the black curved blocks () is obtained without any smoothing on the
whole mesh.

Curving the blocks aims to improve the representation of the geometry before generating
the final mesh to decrease this smoothing step. In this work, we curve the block structure
after its linear generation and then align it with the vehicle surface. To do so, we explored two
different methods. The first approach considers the problem as global on the block structure to
align it on an implicit surface representation while carefully controlling the polynomial degrees of
blocks around the interface (see Sec. 3.1). This method results in a mixed-order block structure
adapted to the vehicle surface. This method shows good result for both 2D and 3D meshes,
using different topologies of elements on problems of practical interest. However, this solution
remains time consuming in 3D. For this reason, we decided to consider a second approach to
curve the blocks, which is more local and geometric. To do so, we use a Bézier representation
of each hexahedral block [Bez86, DC59, GB12, Feu19] (see Sec. 3.2). The degree of the blocks
is uniform in each direction and the same for all the blocks. Using geometric operations, we
align the n−1-cells corresponding to the vehicle surface, then propagate those modifications in
the block structure to avoid invalid curved blocks. Finally, considering that we have a Bézier
representation of blocks that aligns with the geometry, we will discuss how we generate the
final mesh (see Sec. 3.3).

3.1 Mixed-Order Mesh Adaptivity for Surface Align-
ment to Implicit Geometries

The first approach considered to curve the linear block structure was studied with the MFEM
team at the Lawrence Livermore National Laboratory (LLNL). MFEM1 [mfe, AAB+21, BKMT23,
AAB+24] is an open-source C++ modular finite element methods library that handles arbitrary
high-order finite element meshes and spaces.

Computational analysis with finite element method requires geometrically accurate meshes.
There is existing capability from the LLNL to do interface alignment in MFEM framework [AAB+21,
DKK+19, BKMT23, AAB+24], but it only works for elements of uniform orders. However, using
the same polynomial order for all n-cells away from curvilinear surfaces increases the compu-
tational cost of memory and time consumption without increasing accuracy. This work aims

1https://github.com/mfem/mfem

https://github.com/mfem/mfem

112 CHAPTER 3. BLOCK STRUCTURE CURVING

to provide a solution to elevate the degree of the elements around the interface we want to
align with, but only if necessary. In this work, the interface between the different materials
is represented by the 0-isovalue of a level-set function defined on a denser background mesh.
Starting from a low-order multi-material mesh, we first compute the alignment error at the
interface, then increase the polynomial order of the interface elements if the error is above
a desired threshold, and then perform the optimization and alignment algorithm. We repeat
those three steps several times until the target fitting error is reached on all the n−1-cells or
the maximum order allowed is reached. The results show that we can get the same maximum
fitting error around the interface while using this adaptive approach rather than the uniform
order one, and save an important amount of degree of freedom. We also show that this method
generalizes to meshes with different types of cells (quadrangular, triangular), to 3D meshes,
and to problems of practical interest.

Usually, the generation of body-fitted high-order meshes relies on the generation of a linear
mesh, curved a posteriori by elevating the mesh to a higher polynomial degree and projecting the
higher-order nodes corresponding to the boundary of the domain on the surfaces of this physical
domain [XSHM13, FP16, MGSP15, GPRPS16, TLR16, PSG16, RGR22, MCM+20]. These
approaches focus on uniform-order meshes over the domain. Karman et al. [KKSW22]
tackle the mixed-order meshes problem through mesh generation. In this work, the degree of
some mesh elements is elevated to represent the geometry accurately. Starting from a valid
linear mesh, they elevate the degree of surface elements according to a deviation metric testing
process by placing the new nodes on the CAD boundary surfaces. Then, the perturbation on
those surfaces is propagated into the volumes using a transfer process. As the n-cells in the
boundary layer near the geometry surface are very thin (see Fig. 3.3), curving only the elements
adjacent to the surface can lead to overlapping cells in the volume. To avoid this phenomenon,
they propagate the element orders in the volume. This results in a gradation of mesh element
order into the volume represented by gray shades in Figure 3.3.

Figure 3.3: Mesh elements order propagated in the volume around the Onera M6 wing [KKSW22].According to the legend, each gray shade corresponds to a different polynomial degree.
In this section, we introduce the main components of the TMOP-based r-adaptivity frame-

work [DKK+19]. Then, we explain the principle of the adaptation of this method to perform
surface alignment [BKMT23] and finally go through details of the p-adaptivity approach using

3.1. MIXED-ORDER MESH ADAPTIVITY FOR SURFACE ALIGNMENT 113
this framework [MDK+24] with various practical numerical results.

3.1.1 Target-Matrix Optimization Paradigm (TMOP)

In this section, we present non-exhaustively the mesh representation in MFEM framework,
the Target-Matrix Optimization Paradigm (TMOP) for r-adaptivity for interface alignment to
implicit geometries, and the generalization to mixed-order meshes of arbitrary dimension n = 2

or 3. We advise the reader to refer to corresponding works [DKK+19, BKMT23, MDK+24] for
more technical details, deeper results analysis, and additional test cases.

Mesh Representation in Finite Element Framework

In this section, the physical domain Ω ⊂ Rn of dimension n is discretized as by a mesh M,
which is an union of NE curved n-cells Ωe of order p, with e ∈ J1, NEK. The position of an
n-cell in the meshM is given by a matrix xe of size n×Np whose columns represent the n-cell
Degrees of Freedom (DOFs) coordinates. We select a set of scalar basis functions {w̄i}Np

i=1 on
the reference element Ω̄e. Considering xe, the map between the reference Ω̄e and physical Ωe

n-cell (see Fig. 3.4) is given by

x(x̄) = Φe(x̄) ≡
Np∑
i=1

xe,iw̄i(x̄), x̄ ∈ Ω̄e, x = x(x̄) ∈ Ωe. (3.1)
Here, xe,i is the i-th column of xe (i.e., the i-th degree of freedom of the n-cell Ωe). In this
section, x is the position function defined by Equation (3.1).

The Jacobian A of the mapping function Φe given in Equation (3.1) at any reference point
x̄ ∈ Ω̄e is defined by

A(x̄) =
∂Φe

∂x̄
(x̄) =

Np∑
i=1

xe,i[∇w̄i(x̄)]
T . (3.2)

A is a matrix n× n, with

Aa,b(x̄) =
∂xa(x̄)

∂x̄b
=

Np∑
i=1

xi,a
∂w̄i(x̄)

∂x̄b
, a, b ∈ J1, nK . (3.3)

r-Adaptivity Through TMOP

The Target-Matrix Optimization Paradigm aims to optimize the mesh (i.e.,, modify the mesh
node positions without changing the mesh topology) to match a user-defined transformation W

in the best way. This transformation corresponds to the target (or ideal) geometric properties of
each n-cell of the mesh. This transformation can be written as a combination of four geometric
components [Knu22]:

114 CHAPTER 3. BLOCK STRUCTURE CURVING

A W

T = AW−1

Reference (Ω̄e)

Physical (Ωe) Target (Ωet)
Figure 3.4: Representation of the major Target-Matrix Optimization Paradigm (TMOP) matri-ces [MDK+24].

Wn×n = ζ︸︷︷︸
[volume]

◦ Rn×n︸ ︷︷ ︸
[rotation]

◦ Qn×n︸ ︷︷ ︸
[skewness]

◦ Dn×n︸ ︷︷ ︸
[aspect-ratio]

. (3.4)

Using the Equations 3.2 and 3.4, the mapping from the target element to the current
coordinates (see Fig. 3.4) is

T = AW−1. (3.5)
A quality metric µ(T) is introduced to compare the geometric parameters between the

transformations A and W . Different metrics are used to optimize different components of T .
For instance, µ2 = |T |2

2det(T) − 1 is a shape metric that depends on the skewness and aspect
ratio only. Here, |T | is the Frobenius norm of T . Numerous different quality metrics are used,
and we can find more details in [Knu20, Knu22]. Using the chosen mesh quality metric, the
optimization problem is minimizing the global objective function

Fµ(x) =
∑

Ωe∈M

∫
Ωet

µ(T (x))dxt, (3.6)

where Ωet is the target element corresponding to the element Ωe (see Fig. 3.4).

r-Adaptivity for Interface Alignment to Implicit Geometries

In previous work [BKMT23], a penalty-type term Fσ is added to the previous formulation
(see Eq. 3.6)

F (x) =
∑
E∈M

∫
Et

µ(T (x))dxt︸ ︷︷ ︸
Fµ

+wσ

∑
s∈S

σ2(xs)︸ ︷︷ ︸
Fσ

, (3.7)

which aims to align the set S of n−1-cells and n−2-cells to the 0-isovalue of a level set function σ

defined on a background meshMT . Here, xs is the position of each node s of the S n−1-cells
set. We refer to the interface as implicit because it is represented by the discrete 0-isovalue

3.1. MIXED-ORDER MESH ADAPTIVITY FOR SURFACE ALIGNMENT 115
of σ. The penalization weight is given by wσ. The method handles high-order meshes but
only with uniform element order over the mesh (i.e., all the n-cells of the mesh share the same
polynomial degree).

(a) Initial mesh (b) Level set function σ (c) Mesh fitted,uniform elementorder p=1

(d) Mesh fitted,uniform elementorder p=2

Figure 3.5: Practical example of interface alignment using TMOP. The initial 2D mesh (a) is com-posed of coarse quadrangular cells. The domain is separated between two different materialsrepresented with blue () and yellow () cells. The border between the two materials is given bythe 0-isovalue of the level set function σ (b).

Let us consider the practical example of Figure 3.5. The physical square domain is separated
between two different materials. The 0-isovalue of the level set function σ (see Fig. 3.5.b) gives
the border between the two materials. Here, the interface is a circle. The initial mesh comprises
coarse quadrangular cells (see Fig. 3.5.a). This initial mesh is labeled to assign a material value
to each quadrangular n-cell. Here, the two different materials are represented in blue ()
and yellow (). The set S of n−1-cells to align is defined by the edges shared by one blue
quadrangular cell on one side and one yellow quadrangular cell on the other. Figure 3.5.c shows
a result of mesh optimization with uniform element degrees p = 1 (i.e., linear cells), while
Figure 3.5.d illustrates the result of the mesh optimization with uniform element degrees p=2

over the domain. As we may see, the circular interface is better approximated in the second
case, with elements of degrees p=2. However, far from the interface (e.g., the top or bottom
corners), the cells are shaped the same, but the number of degree of freedom necessary to
represent those cells is higher in case p=2. So, we potentially need to increase the polynomial
degree of mesh elements in order to compute the interface accurately. Still, we want to have a
low polynomial degree where it is not mandatory to avoid a large number of degrees of freedom.

3.1.2 rp-Adaptivity for Interface Alignment

This part aims to adapt the polynomial degree of each n-cell of the mesh in order to represent
the interface in an accurate way with high-order cells in areas of high curvatures and low-order
cells in areas far from the curvatures. This results in a mesh with fewer degrees of freedom
more suitable for fast numerical analysis.

The process is fully explained in Algorithm 8. Given a mesh M to optimize, and a back-
ground meshMT with a level set function σ whose isovalue 0 represents an interface we want
to be aligned with, the first step is to label the mesh M to assign a material value to each
n-cell of the mesh (see previous work [BKMT23] for more information). We compute the set

116 CHAPTER 3. BLOCK STRUCTURE CURVING

Algorithm 8 Successive Polynomial Order Increase
Require: Mesh to optimizeM, background meshMT , level set function σ, max-imum polynomial degree of elements pmax, polynomial degree increment∆p,maximal fitting error emax

Ensure: Fitted meshM
1: M←materialsLabeling() ▷ (see [BKMT23])
2: M← interfaceAlignment(MT ,σ) ▷ TMOP
3: for i=1, pmax−1 do4: for all n−1-cells f ∈ S do
5: ef ← computeAlignmentError(f , σ,MT)6: if ef > emax then7: el← getElements(f) ▷ Get the two n-cells adjacent to the n−1-cell f
8: el0← setElementOrder(el0.order+∆p)
9: el1← setElementOrder(el1.order+∆p)
10: end if
11: end for
12: M← interfaceAlignment(MT ,σ) ▷ TMOP
13: end for

S of n−1-cells shared by two n-cells that belong to two different materials2. Then, we suc-
cessively increase the polynomial degree of the n−1-cells by ∆p if the threshold error emax

of alignment over the n−1-cell is not reached. At each step of the main loop on polynomial
orders (see Algo. 8, l. 3), the interface alignment is performed after the elevation of polynomial
degrees (see Algo. 8, l. 11). This is on this mixed-order aligned mesh that the alignment error
is computed in the next step of the loop (see Algo. 8, l. 4).

As the problem formulated in Equation (3.7) aims to align the DOFs of the mesh to the
interface to compute the error alignment (see Algo. 8, l. 4) we need to check the error at more
points than only the error at each DOFs. To do so, we compute the integrated error ef over
the n−1-cell f to verify the alignment of the n−1-cell to the interface. This integrated error

ef = ||σ||2L2,f =

∫
f
σ2(x) (3.8)

is the squared L2 norm of the level-set function σ on that n−1-cell. This integration requires
interpolating the discrete level set function σ at the quadrature points associated with the
n−1-cell. This process is detailed in [MDK+24].

Let us note that a n−1-cell shared by two adjacent n-cells is constrained by the lowest
polynomial degree of the two adjacent n-cells (see Fig. 3.6). So if a n−1-cell is located at the
interface between two different materials, its two adjacent n-cells share the same polynomial
degree.

Figure 3.7 illustrates a result of the Algorithm 8. Here, we want to align the initial 2D
mesh (see Fig. 3.7.a) to a rounded-square interface represented by the 0-isovalue of the level
set function σ (see Fig. 3.7.b). The input mesh is linear (i.e., uniform order p = 1), and the

2A n−1-cell is adjacent to one or maximum of two n-cells. In the first case, the n−1-cell bordersthe domain. In the second case, the n−1-cell is in the inner part of the mesh.

3.1. MIXED-ORDER MESH ADAPTIVITY FOR SURFACE ALIGNMENT 117

Constrained DOFs

True DOFs

p = 3 p = 2

Figure 3.6: Constrained Degrees of Freedom (DOFs) on a n−1-cell shared by two n-cells with dif-ferent polynomial degrees [MDK+24].

maximal degree allowed is pmax = 5. The increase polynomial order step for this test case
is ∆p = 1. After one iteration of the main loop (see Algo. 8, l. 3), the polynomial orders of
the n-cells are plotted in Figure 3.7.c. All the n-cells far from the interface remain at a low
polynomial degree p = 1, while the polynomial order of every n-cells around the interface is
elevated to p = 2. The final aligned mesh obtained after 4 steps of the loop is plotted in
Figure 3.7.d. As we may see, the final polynomial degree far from the interface remains low
while it increases in the area of high curvature. This mesh is composed of elements of degree
p = 2, 3, or 5 around the interface, and of linear n-cells far from it.

(a) Initial mesh (b) Level set function σ (c) Polynomial orders ofaligned mesh after 1step
(d) Polynomial orders ofaligned mesh after 4steps

Figure 3.7: Example of 2D mixed-order mesh alignment to the implicit interface (b). The mesh iscomposed of n-cells of degree p = 2 around the interface and p = 1 everywhere else after oneiteration (c). After several iterations, the polynomial degree around the interface varies from p = 2to p = 5 in areas of high curvatures (d).
Regarding the final number of Degrees of Freedom, we can see Figure 3.8 where five

different meshes are compared. The five 2D meshes, corresponding to the four red points ()
and the blue square () have the same number of n-cells. This graph represents the maximum
alignment error over a n−1-cell of the mesh, according to the number of nodes of the mesh. The
red points () correspond to meshes with uniform order over the mesh. At the same time, the
blue value represents the mixed-order mesh of Figure 3.7.d. As expected, with the mixed-order
mesh, we approximate the interface with the same accuracy as with uniform high-order meshes,
and we save a large number of degrees of freedom.

The time-consuming step of the algorithm corresponds to the interface alignment part
(i.e., call to TMOP algorithm, see Alg. 8, l. 13), and the more the mesh contains degrees of
freedoms (i.e., nodes), the more it is time consuming. Indeed, each time we raise the polynomial
degree of an element, it is mandatory to align the mesh to the interface again. However, the

118 CHAPTER 3. BLOCK STRUCTURE CURVING

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500

10−9

10−8

p = 1

p = 2

p = 3

p = 4

Number of nodes (dof)

M
ax

fi
tt
in
g
er
ro
r

Uniform
Adaptive

70% fewer DOFs

Figure 3.8: Maximal interpolated error comparison between uniform and mixed-order meshaligned to an implicit interface. The integrated error of the mixed-order mesh Figure 3.7.c is plot-ted here with the blue square ().

fitting is not required if the polynomial degree is decreased. That is why the strategy proposed
in Algorithm 9 consists in increasing first the polynomial degree of every n-cells around the
interface of an arbitrary value, performing the fitting algorithm, and then in decreasing step by
step the degrees. For each n−1-cell f of polynomial degree pf of the interface, we create two
artificial elements of degree p < pf on the two n-cells of degree pf . We use those two fake
elements to compute the potential error between the interface and the n−1-cell (see Alg. 9,
l. 4). If the local error is below the input threshold maximal error, then the polynomial degree
of the two elements is decreased (see Alg. 9, l. 5−9).

In addition to Algorithms 8 and 9 presented before, we can decide to control the gap of
polynomial degrees between two adjacent n-cells. This way, once the cells’ orders are set around
the interface, the degrees are propagated in the domain. As the n−1-cell shared by two adjacent
n-cells is constrained by the lower degree (see Fig. 3.6), if the polynomial degree difference
between two adjacent n-cells is important, the n−1-cell may be over-constrained. As mentioned
in the previous work of Karman et al. [KKSW22], this transition is of practical interest for
anisotropic mesh cells around the interface alignment.

3.1.3 Application to Block Structures

In MFEM, the method presented in this section is used to adapt high-order meshes. In this
manuscript, our framework uses it on the linear block structures generated using the method of
Chapter 2 to smooth it and align it with the vehicle surface. To use the method, we consider
our block structure as a coarse mesh of quadrangular (2D) or hexahedral (3D) cells. As the
block structure will be refined when generating the final mesh, we are less strict about the
maximal alignment error allowed than before. The background mesh MT on which the level
set function σ is represented is roughly the same as the one used in Chapter 2. However,

3.1. MIXED-ORDER MESH ADAPTIVITY FOR SURFACE ALIGNMENT 119
Algorithm 9 Successive Polynomial Order Decrease
Require: MeshM, background meshMT , level set function σ, minimal polyno-mial order pmin, maximal polynomial order pmax

Ensure: Fitted meshM
1: M←materialsLabeling() ▷ (see [BKMT23])
2: for all n−1-cells f at the interface of two different materials do
3: el← getElements(f) ▷ Get the two n-cells adjacent to n−1-cell f
4: el0← setElementOrder(pmax)5: el1← setElementOrder(pmax)6: end for
7: M← interfaceAlignment(MT , σ) ▷ TMOP
8: for all n−1-cells f at the interface of two different materials do
9: for i=1, pmin−1 do10: e← computeAlignmentError(f , σ,MT , pf−i)11: if e < emax then12: el← getElements(f) ▷ Get the two elements adjacent to the face f
13: el0← setElementOrder(el0.order−1)14: el1← setElementOrder(el1.order−1)15: end if
16: end for
17: end for

we need to add elements inside the vehicle and compute the value of the level set on those
elements, too. To calculate the value of σ, we consider all the nodes on the vehicle surface at
distance 0; then, we compute the Euclidean distance of the inner nodes to this surface. We
need to slightly modify our block structure to provide suitable input to the MFEM framework.
This pre-processing differs depending on the block structure dimension n, which is explained
below in the dedicated 2D and 3D frames.

2D
Ghost triangular block-cells are added to mesh the inside of the vehicle in order to use
the interface alignment algorithm (see Fig. 3.9.b). Those cells are built only to align the
block edges on the surface. They are removed afterward.

Figure 3.9 presents a 2D linear block structure made of quadrangular orange cells ()
(see Fig. 3.9.b) generated with the method presented in Chapter 2. Here, we adapt the block
structure by adding the blue triangular cells () to give a suitable input to MFEM. In this
example, the vehicle surface is represented by the red iso-line () in the level set field of
Figure 3.9.a. The resulting adapted block structured is presented in Figure 3.9.c with the
corresponding polynomial degree of each block cell.

120 CHAPTER 3. BLOCK STRUCTURE CURVING

(a) Level set function σ with iso-value 0 ()on background meshMT

(b) Inital blocks, with triangular ghost blockcells ()

(c) Optimized final block orders, aligned to the red interface ()
Figure 3.9: Practical example of rp-adaptivity on a block structure generated around Apollo 2Dvehicle using the pipeline presented in Chapter 2.

3.2. CURVING OF THE STRUCTURE USING BÉZIER ELEMENTS 121
3D

As MFEM does not support high-order pyramids, we can not extend the 2D naive approach
to 3D. Instead, a very thin ghost layer of hexahedral block-cells is extruded inward the
vehicle in order to use the interface alignment algorithm. Those cells are built only to
align the block edges on the surface. They are removed, then. This method illustrates
the framework capabilities of our 3D problem of practical interest. However, in the case
of complex geometries, it may be challenging to generate this inward hexahedral blocks
layer.

(a) Level set function σ with iso-value 0 ()on background meshMT

(b) Optimized final block orders, aligned to thered interface () (a)
Figure 3.10: Practical example of rp-adaptivity of a block structure generated around Apollo 3Dvehicle.

The example of Figure 3.10 illustrates the possibilities of the algorithm for 3D problems of
practical interest. The linear block structure is generated using the method of Chapter 2 and
made of 224 hexahedral blocks, including an extruded layer of ghost blocks inward of the vehicle.
As the block structure will be refined later, we do not search for a very low integrated error as
in [MDK+24]. Diverse 2D and 3D mesh alignment examples are presented in [MDK+24].

For the two presented cases in Figure 3.9 and 3.10, the algorithm is performed to align the
cells to the vehicle surface. We can also imagine performing the same algorithm to align the
cells with the outer boundary.

3.2 Curving of the Structure Using Bézier Elements

The previous work of Section 3.1 provides an accurate solution to curve an existing linear block
structure to align it to an interface. The method shows good results for both 2D and 3D test
cases. However, this solution remains time-consuming, especially for 3D cases. For this reason,
we propose a second way to curve a block structure in this section. This method relies on a
Bézier representation of our blocks. It is less time-consuming than the approach presented in
Section 3.1 but provides less numerical accurate results. This is not a problem in our case, as
the approximation of the vehicle surface remains sufficient to generate a mesh on it.

122 CHAPTER 3. BLOCK STRUCTURE CURVING

In this part, we present the Bézier block representation we work with and how we manage
to approximate the boundaries using these Bézier blocks.

3.2.1 Bézier Elements

This section presents the Bézier elements we use in this work in a non-exhaustive manner. The
reader can find more details in the work of Feuillet [Feu19], where the high-order formulations
are exposed on various other elements, with complete definitions and properties of the elements.
The main advantage of Bézier elements is that they are well-studied simple analytical functions.
Multiple works rely on those functions; they are well-documented, many good properties of the
functions and their derivatives are known, and algorithms are easily available.

Bézier Curve

A Bézier curve γ of order p is defined by a set of p + 1 control points (P0, ..., Pp). The
control points are of arbitrary dimension. In the parametric space, we can represent the physical
curve by the relation

γ(u) =

p∑
i=0

Bp
i (u)Pi, (3.9)

where u ∈ [0, 1], and Bp
i is the i−th Bernstein polynomial of degree p, defined by:

Bp
i (u) =

(
p

i

)
ui(1− u)p−i; (3.10)

where
(
p
i

)
= p!

i!(p−i)! is a binomial coefficient.

P0

P1

P2

(a) Order p=2

P0

P1

P2

P3

(b) Order p=3

Figure 3.11: Example of Bézier curves () of degree p=2 (a), and of degree p=3 (b), with Pi thecontrol points () of each curve.
Let us notice that P0, ..., Pp are named control points because they control the shape of

the curve. However, the curve does not interpolate those points, except for γ(u = 0) = P0,
and γ(u = 1) = Pp (see Fig. 3.11). For u ∈ [0, 1],

∂Bp
i

∂u
(u) =

(
p

i

)
(iui−1(1− u)p−1 − (p− i)ui(1− u)p−i−1). (3.11)

One particular Bézier curve property of interest is the tangent to the curve extremities (see
Eq. 3.11). A Bézier curve of degree p > 1 is tangent to vector

−−−→
P0P1 at interpolated control

point P0, and tangent to vector
−−−−→
PpPp−1 at interpolated control point Pp (see Fig. 3.11).

3.2. CURVING OF THE STRUCTURE USING BÉZIER ELEMENTS 123
The de Casteljau’s method in Algorithm 10 is an optimized recursive algorithm proposed

to evaluate the Bézier curve at the parametric point u ∈ [0, 1].

Algorithm 10 DeCasteljau
Require: Degree p ∈ N∗, Control Points Pi, Parameter u ∈ [0, 1]
Ensure: P (u)
1: if p = 0 then
2: return P03: else
4: for all i ∈ {0, p− 1} do
5: P̂i = (1− u)Pi + uPi+16: end for
7: return DeCasteljau(p−1, P̂i, u)8: end if

Bézier Quadrangle

It is possible to define a Bézier quadrangle only with four Bézier curves, considering that the
quadrangle is defined by its four boundaries. However, as we want to consider our blocks as
Bézier elements, we expect to use the Bézier definition of the elements to generate the inner
mesh of each block. For this reason, we also consider the inner control points of each Bézier
element.

Let us note Pp,m the matrix of size p×m of the control points. Then we can express the
Bézier quadrangle by its control points in the parametric space:

∀u, v ∈ [0, 1], γ(u, v) =

p∑
i=0

m∑
j=0

Bp
i (u), B

m
j (v)Pi,j . (3.12)

(a) Order p=2 (b) Order p=3

Figure 3.12: Example of a Bézier quadrangles () of degree p=2 (a), and of degree p=3 (b), withthe corresponding control points ().
The restriction of a Bézier quadrangle to a boundary is a Bézier curve. Figure 3.12 shows

examples of Bézier quadrangles of uniform degree per direction (i.e., degree p× p).

124 CHAPTER 3. BLOCK STRUCTURE CURVING

Bézier Hexahedron

Let us note Pp,m,l the matrix of size p×m× l of the control points. Then, we can express the
Bézier hexahedron (see Fig. 3.13) by its control points in the parametric space:

∀u, v, w ∈ [0, 1], γ(u, v, w) =

p∑
i=0

m∑
j=0

l∑
k=0

Bp
i (u), B

m
j (v)Bl

k(w)Pi,j,k, (3.13)

where Bl(u) is the l-th order Bernstein polynomial.

(a) Order p=1 (b) Order p=2

Figure 3.13: Example of a Bézier Hexahedron () of degree p = 1 (a) (i.e., linear block), and ofdegree p=2 (b). For degree p=2, there is one additional control point on each edge (), one oneach face (), and one another hidden here in the volume.

Theoretically, we can imagine having a different order for a Bézier quadrangular or hexahe-
dral element in each direction. However, for a sake of simplicity, this work considers that the
degree is the same in each direction. Through misuse of language, we will refer to an element
of degree p in each direction (i.e., a Bézier hexahedral element of degree p × p × p) as an
element of degree p.

3.2.2 Block Curving to Interpolate Boundaries

The first step is to compute the ideal order needed to represent the geometry. To do so, we
select the set of n−1-cells corresponding to the front F0 located on the geometry, and the front
FNL

(the last front, corresponding to the far-field).

We compute the positions of the control points of the Bézier faces of the front F0 to
interpolate some positions on the geometry. Then, in order to avoid potential intersections
with the first front due to the very thin block layer, we add the same offset on each control
point of the opposite quadrangular face. As a result, we get a curved first block layer. The
same operation is performed on the last front, corresponding to the surface blocking of the
far-field.

3.2. CURVING OF THE STRUCTURE USING BÉZIER ELEMENTS 125
2D

For a better understanding, the reader may refer to Appendix F where the process is
explained in 2D for curving one Bézier edge to approximate the geometry. In this Appendix,
different methods are explored to curve a Bézier edge, and the impact on the final curved
edge is studied.

(a) Part of the vehicle surface (b) 2 blocks of the linear block structure
Figure 3.14: Practical example of a part on the vehicle surface (a) and two linear hexahedral blockspreviously generated (b). The block corners are here represented in dark blue ().

The process is geometric and local and can be decomposed as follows. Considering a small
part of the surface such as Figure 3.14.a which is discretized by the two linear hexahedral blocks
of Figure 3.14.b. We elevate the degree of all the blocks of the block structure to the same
value p (e.g., p=3 in Fig. 3.15.a). The (p+1)3 control points of each block are initially set
uniformly on the linear blocks. Here, the control points corresponding to the hexahedral block
corners are plotted in dark blue (). The control points over the block edges are plotted in
light blue (), the control points over the faces are in orange (), and the control points in the
volume are plotted in red ().

(a) Initial control points (elements of degree
p=3), set uniformly on the linear blocks (b) (b) Initial control points on the n−1-cellscorresponding to the geometric surface

Figure 3.15: The two hexahedral blocks of Figure 3.14.a are represented here with Bézier hexahe-dral blocks of degree p=3 (a) (i.e., degree p=3 in each direction). The control points correspondingto the vehicle surface are represented in (b). The control points plotted in light blue () are thecontrol points over the block edges, in orange () over the block faces, and in red () in the vol-ume.
The initial control points {Pi,j}i,j∈J0,pK of the n−1-cells corresponding to the vehicle wall

(see Fig. 3.15.b) are projected on the geometric surface of Figure 3.14.a. We note Ai,j the
projected position of control point Pi,j onto the vehicle surface ∂Ωv. This projected set of
points is presented in Figure 3.16.a. We consider this set of points as the physical positions to
interpolate with our Bézier surfaces. Using those positions, we compute the physical coordinates
of the corresponding control points Pi,j . To do so, we invert the (p+1)2 equations system

126 CHAPTER 3. BLOCK STRUCTURE CURVING

built using the Bézier expression over a quadrangular surface (see Eq. (3.12)). We consider the
control points as uniform in the parametric space. With that say, we can express the system as

∀i, j ∈ J0, pK, Ai,j = γ

(
u =

i

p
, v =

j

p

)
=

p∑
i=0

p∑
j=0

Bp
i (u), B

p
j (v)Pi,j , (3.14)

with P , the matrix of control points we want to compute, and γ(u, v) is determined by the
physical interpolated positions of Figure 3.16.a. To interpolate the positions of Figure 3.16.a,
the resulting control points computed are the ones of Figure 3.16.b. Once those positions
are computed, we re-compute the positions of the inner control points using Transfinite Inter-
polation to avoid overlapping curved blocks. The final control points of the 2 Bézier blocks
considered are represented in Figure 3.17.a.

(a) Points to interpolate on the geometricsurface, computed as the projection of thecontrol points of (a) onto the geometry
(b) Control points computed to interpolatepositions of (a)

Figure 3.16: The control points corresponding to the vehicle surface (see Fig. 3.15.b) are projectedonto the vehicle surface. This set of points (a) are the positions we want our Bézier surfaces bsto interpolate. The Bézier surfaces control points positions (b) are computed to interpolate thephysical positions (a).
As the first block layer can be very thin, we add the same offset as the control points

moved in Figure 3.16.b to the opposite n−1-cells in the blocks. This step is not illustrated here
and could be included between Figure 3.16.b and Figure 3.17.a. This step avoids overlapping
curved blocks for anisotropic blocks. Using the parametric space of those two Bézier blocks, an
example of the resulting mesh is represented in Figure 3.17.b. As we may notice, for the right
part block, this process may not be sufficient to approximate accurately the geometric surface.

(a) Control points of the 2 Bézier blocks (b) Final mesh generated on the 2 Bézierblocks (a)
Figure 3.17: Final control points of the 2 hexahedral Bézier blocks (a) with a practical example ofthe final mesh generated on those blocks (b).

Now comes the legitimate degree p value choice question. In this work, we perform a
preliminary study on the linear block structure to pick the degree p. The process is performed

3.2. CURVING OF THE STRUCTURE USING BÉZIER ELEMENTS 127
Algorithm 11 Block Structure Bézier Polynomial Degree Computation
Require: Maximal polynomial degree pmax, threshold error emax, set of block n−1-cells S located onto the vehicle wall, geometric vehicle surface ∂Ωv

Ensure: Bézier blocks polynomial degree p
1: for all block n−1-cell s ∈ S do
2: ps← 1 ▷ init polynomial degree over n−1-cell s
3: bs← buildBézierCell(ps) ▷ computes control points to interpolate ∂Ωvpositions
4: es← error(bs, ∂Ωv) ▷ error between Bézier cell of degree ps and ∂Ωv5: if es > emax and ps < pmax then6: ps← ps + 1
7: else
8: if ps > p then
9: p← ps ▷ Eq. (3.15)
10: end if
11: end if
12: end for

as presented in Algorithm 11. We first select the set S of Bézier block n−1-cells (i.e., block
edges if n = 2, and block surfaces if n = 3) located onto the surface geometry. We choose
a maximal approximation error threshold emax between a quadrangular Bézier surface and
the physical vehicle boundary. Using this, for each quadrangular Bézier surface bs ∈ S, we
incrementally increase the degree of the Bézier surface ps = 1, 2, ..., pmax until the maximal
degree pmax allowed or the maximal error emax is reached. The polynomial degree needed for
the local Bézier surface bs is ps. Then the uniform order over the block structure is chosen as
the maximal polynomial degree needed over the Bézier surfaces corresponding to the vehicle
surface

p = max
bs∈S
{ps}. (3.15)

In this part, the error es over a Bézier surface bs is computed as the maximal deviation between
a sample of points ai,j = bs(ui, vj), with i, j ∈ J0, NT K and ui, vj chosen uniformly over
the parametric space, and their projection onto the surface geometry. The sample number of
comparison points chosen NT is arbitrary.

(a) Linear first block layer (b) Curved first block layer
Figure 3.18: Example of a first linear block layer (a) generated around RAM-C II curved using Bézierblocks of degree p=2 to align to the vehicle wall (b).

128 CHAPTER 3. BLOCK STRUCTURE CURVING

The result of this algorithm is illustrated in Figure 3.18 on the first block layer. The linear
first block layer (see Fig. 3.18.a) generated using the algorithm presented in Chapter 2 is curved
a posteriori using Bézier blocks of degree p=2. The final aligned high-order first block layer is
plotted in Figure 3.18.b. For visualization purposes, the layer is represented using a clip view
here.

3.3 Mesh Generation from the Curved Block Struc-
ture

Once the curved block structure is built, we generate the final mesh. It requires assigning the
proper discretization to every block’s edge and discretizing each block with the appropriate reg-
ular grid. The boundary layer is meshed considering strong constraints about wall-orthogonality
and aspect ratio. In this section, we consider that the block structure is represented using
Bézier elements (see Sec. 3.2).

3.3.1 Interval Assignment

The interval assignment algorithm aims to select the number of mesh edges for each block
edge. This is fundamentally an integer-valued optimization problem that was tackled in several
works [BM10, GMF11, Mit21]. In particular, an incremental interval assignment using integer
linear algebra is proposed by [Mit21] and gives very satisfying results in terms of target size
respect and speed performance. In this work, we follow a simple procedure that we describe
thereafter. Even if the problem is initially composed of N integer unknowns, with N the
number of block edges, it can be reduced considering the topological chords of the blocking. A
topological chord C (see Def. 3.3.1) is defined as a set of opposite edges [SSS08] (see Fig. 3.19).
We perform the computation of a blocking topological chord such as in Figure 3.19 in two steps:
First we select a block edge like one of the blue ones () on Figure 3.19.a; then, traversing
adjacent blocks through opposite block edges, all the blue block edges () of the orange
chord () are obtained. The process is the same no matter the dimension n. Figure 3.19.b
represents the set of red blocks () adjacent to the block edges of the same topological chord.
For visualization purposes, the blocking is represented here using a clip view. In theory, a block
in dimension n is included at most in n different topological chords. As a conformal mesh is
expected, all the block edges {ei}i=1..nc of the same chord C need to have the exact same
discretization. Otherwise, the blocking discretization is not valid.

Definition 3.3.1 (Topological Chord). A topological chord is a set of adjacent opposite
edges [SSS08] (see Fig. 3.19).

Then, starting from a block structure composed of Ne block edges, the problem can be
reduced to ne integer variables, where ne is the number of topological chords in the block
structure. For instance, in the case of Figure 3.19.a, we count eight different topological
chords, hence eight integer unknowns.

This number of unknowns decreases again due to our application case, where the thin
boundary layer along the vehicle wall is handled specifically. Let us consider Figure 3.20,

3.3. MESH GENERATION FROM THE CURVED BLOCK STRUCTURE 129

(a) Topological chord C () composed of theblue block edges () on 2D block structure (b) Topological sheet ()
Figure 3.19: Examples of 2D and 3D topological chords.

where the yellow block edges () are on the vehicle wall, and the purple ones () are
in the boundary layer. The discretization of the yellow block edges () is controlled by an
input parameter sw that fixes a target length of each final mesh edge on the vehicle wall and
propagates along the corresponding chords. The discretization of the purple block edges ()
helps to capture the boundary layer flow. This discretization is again an input parameter s⊥w ,
which strongly depends on the simulation. Again, some unknowns are so removed.

Figure 3.20: The block edges hard constrained in our algorithm are set in yellow () and pur-ple ().
It is essential to notice that if two block edges of a chord Ci have different hard constraints,

the problem can not be solved, and the mesh is not generated. In our 2D case, it should
not happen. The simple structure of our problem (full conform block structure) and the small
number of hard constraints allow us to avoid building over-constrained systems in practice.
However, for the 3D case, we choose the maximum number of final mesh cells over the conflicted
edges as the final discretization for the whole chord. This may result in an over-discretized mesh
in some parts of the domain.

When there is no hard constraint on the given chord C composed of the block edges
e0, ..., enc , we get the number of mesh edges for the chord by minimizing:

F (t) =
∑
ei∈C

ωi(t− Ti)
2, (3.16)

where ωi is the weight of the block edge ei and Ti is the ideal discretization of the block edge
ei. To compute Ti, a target parameter sG corresponds to the ideal default size of the target

130 CHAPTER 3. BLOCK STRUCTURE CURVING

final mesh edges. We use the length of the Bézier block curved edge ei to compute Ti. To
estimate a Bézier edge length, we discretize the curve using a large sample of points and sum
the discrete segment lengths. F is a second-degree polynomial in t made of positive terms that
reaches a minimum when F (t)

∂t = 0. We have

F

∂t
(t) = 2

∑
ei∈C

ωi(t− Ti). (3.17)

So, the minimum is reached for

t0 =

∑
ei∈C ωiTi∑
ei∈C ωi

. (3.18)
Then, we choose the closest integer from t0 as a solution, and so the discretization of the block
edges of the chord C.

(a) Block discretization in parametric space (b) Block discretization in physical space
Figure 3.21: 3D Bézier block discretization in the parametric space (a), according to the number ofedges in each direction given by the interval assignment algorithm. The final block discretizationin physical space (b) is obtained using the parametrization of the Bézier block.

Once the discretization is set on all the block edges, we can generate the mesh in each
block. To do so, given a block B, we discretize the parametric space [0, 1]n uniformly (see the
3D example in Fig. 3.21.a), according to the previously computed number of mesh cells in each
direction (using the interval assignment algorithm). Then, we compute the final coordinates of
each mesh node in the physical space using the parametrization of the block (see Fig. 3.21.b).

A practical example of mesh generation is presented in Figure 3.22 around a Double Ellipsoid
geometry (see Figure 3.22.a). The linear block structure is generated on 3 different block layers
using the method presented in Chapter 2. We use this linear block structure to obtain the
curved block structure represented with black curved edges () in Figure 3.22.c, around the
final mesh generated. The block structure is made of 270 blocks, and the final mesh (see
Fig. 3.22.c) is composed of around 1, 500, 000 hexahedral cells. The computation of this mesh
takes about 3 minutes with the implementation of our algorithm, starting from the different
fields computation to the final mesh generation, including mesh quality metrics computation.

3.3. MESH GENERATION FROM THE CURVED BLOCK STRUCTURE 131

(a) Geometry () and physical domain (b) Linear blocks extruded over 3 layers

(c) Final mesh generated on curved blocks ()
Figure 3.22: Mesh generation example around 3D Double Ellipsoid geometry (a). The linear block-ing (b) is curved using Bézier elements of degree p=3 (c).

132 CHAPTER 3. BLOCK STRUCTURE CURVING

Refinement law for first block layer final mesh

In the wall-normal direction, a refinement law is performed on any opposite block edges set
containing at least one block edge orthogonal to the vehicle wall (i.e., a block edges with one
block corner on front F0, with the other block corner on front F1). This implies the cells can
be very anisotropic, which is not a problem since gradients are in the wall’s normal direction.
Considering a vector of adjacent nodes n1, ..., nN+1. Each node ni is a 1D point at the position
li. According to the refinement law used, the new position of the node ni is given by

li = l1 + fn(lN+1 − l1), (3.19)

where fn = 1 + β 1−ep

1+ep , p = z(1− i−1
N), z = log(r) and r = β+1

β−1 .

From this law and a set of adjacent edges, the β parameter can be computed using a
Newton method and three values: the sum of the length of the edges, the length of the first
edge s⊥w , the number of nodes n⊥

w . This refinement law is particularly adapted to the boundary
layer where the size of the first cell can be tiny. It avoids generating too large cell sizes far from
the boundary layer.

(a) Without refinement (b) β law refinement
Figure 3.23: Example of the samemesh without refinement (a) or refined (b) in the boundary layerblocks generated around RAM-C II vehicle.

Figure 3.23 illustrates an example of the refinement law applied on the first layer blocks.
Here, the mesh generated without refinement (see Fig. 3.23.a), or with refinement (see Fig. 3.23.b)
are topologically equivalent (i.e., they share the same number of elements, and same connec-
tivities). However, in case of Figure 3.23.b, we impose the first orthogonal mesh edge size and
apply the β refinement law presented before.

3.4. PERSPECTIVES 133
2D

A mesh smoothing may be perform on blocks of the first block layer connected to the
vehicle surface by an edge lying on the vehicle surface. This smoothing (see Appx. G) aims
to orthogonilize cells to the wall. This smoothing is performed before the refinement, but
the result of the smoothing algorithm, and refinement step is illustrated on a 2D mesh in
Appendix G.

3.4 Perspectives

In this chapter, we presented how we curve a linear block structure using two different methods;
the first one is in MFEM framework through rp-adaptivity, while the second approach relies on
Bézier block representation and local and geometric operations. In the last section, we explained
how we generate a mesh on a curved Bézier block structure. This work offers many perspectives.
Here, we decide to focus on some of them and to provide details about potential future works.

Surface Block Edge Curving Using Geodesics

Through the Bézier block surfaces curving presented in Section 3.2, and the Bézier block edges
curving analysis of Appendix F, we can conclude that the approach chosen here to compute
the positions of control points is not sufficient to approximate the vehicle surface, and we
could improve it by changing our approach. One lead we could explore is to use the notion of
geodesic [BSK21, GR24] in order to build the curved block edges.

(a) MFEM high-order blocks (b) GMDS Bézier blocks and resulting mesh
Figure 3.24: Comparison of high-order blocks around Apollo vehicle (see Appx. B).

Through our approach using Bézier block elements, and the approach through rp-adaptivity,
we arrived at the conclusion that the criterion over minimizing the approximation error is
not sufficient. Figure 3.24 represents the same block structure topology generated around

134 CHAPTER 3. BLOCK STRUCTURE CURVING

Apollo vehicle (see Appx. B) with rp-adaptivity (see Fig. 3.24.a), and using Bézier blocks (see
Fig. 3.24.b). The two pictures represent the same clip view of the blocks among the plan
(O,
−→
X ,
−→
Y). In Figure 3.24.a, only the high-order blocks are represented using a shrinked view3

with their corresponding polynomial orders, while in Figure 3.24.b the Bézier block edges are
plotted in black (), and the final mesh in blue (). In both cases, to curve the block
structure, we focus on the geometrical error between the surface vehicle and the block surfaces.
However, if we pay attention in both cases to the vertical block edges in the center, we may
observe that even if the curved edges are on the vehicle surface, their directions are not as
expected. To correct this effect, we expect to use the notion of geodesic over the vehicle
surface, by also imposing some privileged directions linked to the surface curvature to lead the
edges constructions.

This raises two other questions. The first one is, for now, with Bézier blocks, we use uniform
degrees in all directions and all over the Bézier block structure. We could discuss about the
potential choice of having non-uniform degree per direction first, and then, by block, in a
similar way to what they do in MFEM framework. In addition, to curve our Bézier elements,
we consider the control points as set uniformly in the parametrical space of the element. We
could imagine a more strategic way to set the control points in the parametrical space in order
to reduce the approximation error between a geometric curve and a Bézier curve for instance.

Curved Advancing Front Algorithm

(a) CCF vehicle surface (b) Block edges classification of first front

(c) Linear first block layer
Figure 3.25: Block edges classification of first front on Sphere-Cone-Cylinder-Flare vehicle (seeAppx. B).

3Here, the block edges of Fig. 3.24.a looks linear due to artefact visualization. The greenblocks () are of polynomial order p=2, so they are represented piecewise linearly using p+1points per direction.

3.4. PERSPECTIVES 135
In this chapter, we presented how we manage to curve a linear block structure to approx-

imate a vehicle surface. We expect to go further by building directly a curved block structure
with the advancing front method presented in Chapter 2, starting from the curved first front.
The main idea would consist in performing the block edges classification on a curved front.

If we consider the practical example given in Figure 3.25, the vehicle surface (see Fig. 3.25.a)
is discretized with the input front of Figure 3.25.b. When we performed the block edges
classification on this linear front, some block edges are classified as corner () according to
the angle between the two adjacent block n−1-cells while considering the vehicle surface of
Figure 3.25.a, there is no such feature on the geometry. This classification leads to unwanted
inserted blocks (see Fig. 3.25.c). If for now we propose a solution to unable the use of patterns
in certain parts of the domain, classified a previously curved front could make it automatic in
those situations.

Starting from a curved front, we could generate directly a curved block structure, layer by
layer, using the same algorithm as in Chapter 2. As express in the advancing-front algorithm
presented, when we compute the positions of the next front block corners starting from a
front, to compute a layer, the advected block corner trajectory computed with the Runge-
Kutta method does not follow a straight line. We could use this curved trajectory to generate
the curved Bézier edges between two fronts. Then, when building the layer, we could imagine
aligning the curved Bézier n−1-cell of the front to the iso-value of the distance field corresponding
to the front.

Edge Size Transition

Figure 3.26: Brutal edge size transition between two different layers around HIFiRE-5 vehicle (seeAppx. B).
If we manage through the β-law refinement to have a controlled transition of cell edge

size in the first block layer () (see Fig. 3.26), corresponding to the boundary block layer,

136 CHAPTER 3. BLOCK STRUCTURE CURVING

this size transition is not controlled everywhere. In the given example of Figure 3.26, we see a
mesh generated around HIFiRE-5 vehicle, with the curved Bézier block edges of degree p=2

plotted in thick black (). The picture represents a clip view of the mesh along the plan
(O,
−→
X ,
−→
Z) and focus on the two first block layers. As we see here, there is a brutal edge size

transition between the first green block layer (), and the second one in yellow (). It would
be advantageous to propagate the mesh size over the block layers, starting from the second one
until the last one, by getting the size of the edge mesh cells of the precedent layer and applying
a similar refinement law in the block layer, similar to what is perform for the first block layer.

High-Order Block Smoothing

The aim is to smooth the control points of high-order blocks to:

• Improve the mesh cells continuity between adjacent blocks,

• Improve the blocks’ quality.

P0

P1

P2 Q0

Q1

Q2

Q3

Figure 3.27: Continuity between two adjacent Bézier edges.
Considering the two adjacent Bézier edges of Figure 3.27. The orange one () of de-

gree p = 2 is represented through the orange control points {Pi}i∈J0,2K (), and the blue
one () of degree q= 3 is represented with the blue control points {Qj}j∈J0,3K (). They
share one control point (i.e., P2 = Q0) represented in green (). Using the Bézier curve prop-
erties, we know we conserve the continuity between the two curved edges at point P2 = Q0 if
the control points P1, P2 = Q0, and Q1 are aligned.

By imposing the same principle on control points over Bézier quadrangular blocks (see
Fig. 3.28) or hexahedral blocks, we may improve the mesh cell continuity when generating
the final mesh using the parametrical space of the Bézier elements. Here, the green Bézier
edge () shared by both Bézier quadrangles is represented as straight, but in practice, it
could be curved as the others. The orange block () is a Bézier quadrangle of degree 2× 2.
The blue one () is of degree 2× 3.

The example of Figure 3.28 only illustrates two adjacent blocks in 2D, but we may imagine
other adjacent blocks on each Bézier edge. This results in cross-constraints around some control

3.4. PERSPECTIVES 137

(a) Non-aligned inner control points (b) Aligned inner control points
Figure 3.28: Continuity between two adjacent Bézier quadrangles.

points. We think that we probably need to have Bézier blocks of at least degree p > 3 to relax
the alignment constraints around the control points corresponding to block corners.

Figure 3.29 illustrates an example of a mesh generated on the two adjacent Bézier blocks
of Figure 3.28. Each block is discretized by a 10 × 10 grid, with points set uniformly in the
parametric space. The physical positions illustrated in Figure 3.29 were obtained using the
mapping functions of each Bézier block. The mesh of Figure 3.29.a is generated on the non-
aligned control points of Figure 3.28.a. The mesh of Figure 3.29.b is generated using the
aligned control points given in Figure 3.28.b. As a result, the boundary mesh nodes of the
two Bézier quadrangles are located at the same positions, but the mesh cells’ continuity at the
interface between the two blocks is better in the second case.

(a) With non-aligned control points (b) With aligned control points
Figure 3.29: Meshes (a) generated on non-aligned control points (see Fig. 3.28.a), and (b) on alignedcontrol points (see Fig. 3.28.b).

138 CHAPTER 3. BLOCK STRUCTURE CURVING

Summary

In this chapter, we presented how, starting from a linear block structure around a vehicle,
we curve the block structure before generating the final mesh. In order to curve the block
structure, we explored two possibilities. The first one is through rp-adaptivity by solving
a global problem on the block structure. It aims to improve the block geometric quality,
and to align a set of n−1-cells with an interface (i.e., the vehicle surface in our case)
while carefully controlling the polynomial degree of elements around the interface. As
this method remains time consumming in 3D, we proposed a second approach based on
a Bézier representation of blocks. We curve the structure using local and geometrical
operations to align to the vehicle surface, and then propagate the modifications in the
volume to avoid tangled blocks. Finally, we generate the mesh by solving an optimization
problem to set the discretization of each block edge, and then use the parametric space
of our Bézier block to compute the positions of the mesh nodes in the physical space.

Chapter 4
BLOCK-STRUCTURED MESHESQUALITY ANALYSIS

This last chapter discusses the block-structured final mesh quality generated by our
method. We illustrate this quality through two main axes. The first one is a purely
geometrical analysis of final hexahedral mesh cells. We compare different block structure
topologies generated and the resulting final mesh quality. The second way to evaluate
mesh quality presented here is through practical results of numerical simulations performed
on meshes generated with our method. The first step was to perform 2D numerical simu-
lations over well-known geometries using the open-source Computational Fluid Dynamics
code SU2 [SU2, EPC+16]. The aim was to ensure that our meshes passed the validity
check of the solver and then to show that we captured the right phenomena. To do so, we
simulated a subsonic flow around the well-known NACA 0012 airfoil and a supersonic flow
around a 2D diamond-shaped airfoil. In the first case, we compare our simulation results
to an experimental data set given by NASA. In the second case, we compare our results to
analytical solutions for shock position. The second step was to perform a 2D hypersonic
flow simulation around a vehicle using the target CEA CFD code. A comparison is done
using a mesh generated by hand as a reference. In the last section, we perform a 3D
supersonic flow simulation around the RAM-C II vehicle using SU2.

Contents
4.1 Geometrical Mesh Quality . 140

4.1.1 HyTRV . 140
4.1.2 RAM-C II . 142
4.1.3 HIFiRE-5 . 144
4.1.4 Vehicle with wings . 146

4.2 Application to Computational Fluid Dynamics Simulations . 147
4.2.1 Subsonic 2D NACA 0012 Airfoil 147
4.2.2 Supersonic 2D Diamond Shaped Airfoil 148
4.2.3 Hypersonic Stardust 2D . 149
4.2.4 Supersonic RAM-C II 3D . 150

139

140 CHAPTER 4. BLOCK-STRUCTURED MESHES QUALITY ANALYSIS

4.1 Geometrical Mesh Quality

This section proposes an overview of different block structures and resulting mesh quality
comparisons and analysis based on purely geometrical quality criteria. We only present mesh
quality evaluations for 3D vehicles. We propose first to analyze the impact of block patterns on
the resulting mesh quality, then the effect of smoothing the linear block structure (see Appx. E)
prior to generating the curved block structure and the resulting mesh.

4.1.1 HyTRV

(a) Without patterns (b) With patterns
Figure 4.1: Two block structures generated with 4 block layers around HyTRV, without patterns (a),and with patterns on first block layer (b).

Here, we propose to study the geometrical quality of a mesh generated around HyTRV (see
Appx. B) depending on the patterns used to create the block structure. Figure 4.1 represents
a clip view along the plan (O,

−→
X ,
−→
Z) of two different block structures generated using the same

parameters, except for Figure 4.1.a, patterns are not allowed during the extrusion (i.e., every
block layer is regular). In the case of Figure 4.1.b, the number of block layers is the same (and
equal to 4), input background mesh and wall surface block discretization (first front) are the
same, the distance and vector fields are computed the same way, etc. The only difference is
we allow patterns on the first block layer. As a result, we see orange hexahedral blocks ()
inserted by patterns on the first block layer. Two patterns inserted on block corners are also
used in this example but are not visible in this image. In this example, we do not apply any
smoothing procedure on the two linear block structures.

To generate the curved block structure and the resulting mesh, in both cases, the parameters
used are the same (i.e., curved Bézier block degree, target size of final mesh edges on wall,
target default size of final mesh edges in the domain, number of cell in boundary block layer,
etc.). The Bézier blocks are of degree p = 2. However, the topological structure of the
two blockings results in very different final meshes. In the case of Figure 4.1.a, the resulting
mesh (see Fig. 4.2.a) has 113, 920 elements, and the minimal value of the scaled Jacobian
is around −0.29. For this mesh, it takes around 35 seconds to execute the full algorithm,
from the fields computation on the tetrahedral background meshMT , to the hexahedral mesh
generation, including the mesh quality evaluation.

In the case of Figure 4.1.b, the final mesh (see Fig. 4.2.b) comprises 226, 320 mesh cells,

4.1. GEOMETRICAL MESH QUALITY 141

(a) Without patterns (b) With patterns
Figure 4.2: Two meshes (a), and (b) generated respectively on block structures of Figure 4.1.a, andFigure 4.1.b.

but the minimal scaled Jacobian equals 0.42. The final mesh cell difference number is due to
the patterns () used in the first block layer. As we want many cells in this block layer, the
number of mesh cells for block edges of the first block layer () in the wall-normal direction is
imposed by a user parameter. In the case of Figure 4.1.b, this refinement propagates in other
blocks in the domain due to the blocks inserted () in this first block layer. This phenomenon
is illustrated on the corresponding mesh of Figure 4.2.b. The mesh is presented using a clip view
along the plan (O,

−→
X ,
−→
Z) as for Figure 4.1.b. On the top and bottom right part of the domain,

we can see the increase of mesh cells density due to the propagation of the discretization of the
first block layer. For this second mesh, it takes around 1 minute to execute the full algorithm.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
100

101

102

103

104

105

Scaled Jacobian

N
u
m
b
er

of
el
em

en
ts

(a) Without patterns
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

100

101

102

103

104

105

Scaled Jacobian

N
u
m
b
er

of
el
em

en
ts

(b) With patterns
Figure 4.3: Scaled Jacobian of resultingmeshes generated on block structures of Figure 4.1 aroundHyTRV.

Figure 4.3 shows the scaled Jacobian distribution on both meshes. In case patterns are
not allowed (see Fig. 4.1.a), this results in inverted final mesh cells (see Fig. 4.3.a). While
in case patterns are allowed (see Fig. 4.1.a), the resulting scaled Jacobian distribution over

142 CHAPTER 4. BLOCK-STRUCTURED MESHES QUALITY ANALYSIS

the mesh improves (see Fig. 4.3.b). In this case, using patterns on the first block layer also
enhances the skewness of mesh elements (see Fig. 4.4). The execution time for the entire
method, including the distance and vector fields computation on the background mesh, until
the geometrical quality computation on the final mesh takes about 1 minute. If the user judges
that the final mesh quality or block topology is not convenient, it is reasonable to change the
input parameters and run the algorithm again.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
100

101

102

103

104

105

Skew

N
u
m
b
er

of
el
em

en
ts

(a) Without patterns
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

100

101

102

103

104

105

Skew

N
u
m
b
er

of
el
em

en
ts

(b) With patterns
Figure 4.4: Skewness of resulting meshes generated on block structures of Figure 4.1 aroundHyTRV.

4.1.2 RAM-C II

(a) Without patterns (b) With patterns on the second block layer

(c) With patterns (d) With patterns and smoothing
Figure 4.5: Four block structures generated with 5 block layers around RAM-C II, without pat-terns (a), with patterns allowed except on the first block layer (b), and with patterns allowed every-where (c). The last block structure (d) is obtained with patterns allowed all over the domain andusing 4 smoothing iterations on the linear block structure.

4.1. GEOMETRICAL MESH QUALITY 143
This subsection compares four different meshes obtained around RAM-C II (see Appx. B)

vehicle. The four corresponding linear block structures are represented in Figure 4.5 using a
clip view along the plan (O,

−→
X ,
−→
Y). To generate the four meshes, we use the same parameters

(i.e., vector field computation, default mesh edge size, etc.), except we play here with patterns
over the layers. Figure 4.5.a represents the most regular block structure without any patterns
applied. In Figure 4.5.b, we allow patterns over the layers but not on the first block layer.
Consequently, a closed path of corner block edges is computed, and orange () is inserted on
the second block layer. In Figure 4.5.c, we allow patterns on all layers. As a result, a closed path
is detected on the first front, and corresponding orange hexahedral blocks () are inserted. In
this case, patterns are also inserted on the second block layer. The last linear block structure
of Figure 4.5.d is obtained by applying 4 smoothing iterations (see Appx. E) to the linear block
structure of Figure 4.5.c.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
100

101

102

103

104

105

Scaled Jacobian

N
u
m
b
er

of
el
em

en
ts

(a) Without patterns
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

100

101

102

103

104

105

Scaled Jacobian

N
u
m
b
er

of
el
em

en
ts

(b) With patterns onthe second block layer

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
100

101

102

103

104

105

Scaled Jacobian

N
u
m
b
er

of
el
em

en
ts

(c) With patterns
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

100

101

102

103

104

105

Scaled Jacobian

N
u
m
b
er

of
el
em

en
ts

(d) With patterns andsmoothing
Figure 4.6: Scaled Jacobian of resultingmeshes generated on block structures of Figure 4.5 aroundRAM-C II.

The curved blocks of all four linear block structures are computed the same way, and every
Bézier block is of degree p = 2, and the final meshes are generated using the same target
sizes. All four meshes have an approximate number of 500, 000 cells. If we take a look at the
scaled Jacobian distribution in Figure 4.6, using patterns in different layers improves this quality
criterion and avoids inverted cells (see Fig. 4.6.a).

Adding patterns also improves the skewness distribution (see Fig. 4.7.a and b). But in
case we allow insertions all over the domain (see Fig. 4.5.c), it increases the skewness of some
elements (see Fig. 4.7.c). This is partly due to the flattened inserted blocks on the second block
layer (see Fig. 4.5). By smoothing this linear block structure (see Fig. 4.5.d), it improves both
the scaled Jacobian distribution (see Fig. 4.6.d) and the skewness distribution (see Fig. 4.7.d)
of the mesh.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
100

101

102

103

104

105

Skew

N
u
m
b
er

of
el
em

en
ts

(a) Without patterns
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

100

101

102

103

104

105

Skew

N
u
m
b
er

of
el
em

en
ts

(b) With patterns onthe second block layer

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
100

101

102

103

104

105

Skew

N
u
m
b
er

of
el
em

en
ts

(c) With patterns
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

100

101

102

103

104

105

Skew

N
u
m
b
er

of
el
em

en
ts

(c) With patterns andsmoothing
Figure 4.7: Skewness of resultingmeshes generated on block structures of Figure 4.5 around RAM-C II.

Figure 4.8 represents the mesh generated on the block structure of Figure 4.5.c and corre-
sponds to the scaled Jacobian and skewness distributions of Figure 4.6.c and Figure 4.7. The

144 CHAPTER 4. BLOCK-STRUCTURED MESHES QUALITY ANALYSIS

RAM-C II vehicle surface is represented in gray (). The mesh is represented using two clip
views along plans (O,

−→
X ,
−→
Y) and (O,

−→
Y ,
−→
Z) for visualization purpose.

Figure 4.8: Mesh generated on block structure 4.5.c around RAM-C II.

4.1.3 HIFiRE-5

(a) Without smoothing (b) With smoothing
Figure 4.9: Two block structures generated with 4 block layers around HIFiRE-5, without smooth-ing (a), and with smoothing (b).

Here, we compare two different meshes generated around HIFiRE-5 vehicle (see Appx. B)
using the same parameters and with the same block structure topology. But in one case, we
perform 10 smoothing iterations (see Appx. E) on the linear block structure before curving
the blocks and generating the final mesh. The non-smoothed block structure is represented

4.1. GEOMETRICAL MESH QUALITY 145
in Figure 4.9.a using a clip view along the plan (O,

−→
X ,
−→
Z). In contrast, the smoothed one

is represented in Figure 4.9.b. In both cases, the block structure topology is the same, with
patterns inserted () on the second block layer. Due to how we compute the final discretization
of the block structure, two block structures with the same topology may have a different final
number of mesh cells, as is the case here.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
100

101

102

103

104

105

106

Scaled Jacobian

N
u
m
b
er

of
el
em

en
ts

(a) Without smoothing
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

100

101

102

103

104

105

106

Scaled Jacobian
N
u
m
b
er

of
el
em

en
ts

(b) With smoothing
Figure 4.10: Scaled Jacobian distrobution on final meshes generated on non-smoothed (a), andsmoothed (b) block structure of Figure 4.9 around HIFiRE-5.

In Figure 4.10a, we plot the scaled Jacobian distribution over the final meshes generated
on the non-smoothed block structure (see Fig. 4.9.a), and Figure 4.10.b corresponds to the
scaled Jacobian distribution over the final mesh generated on the smoothed block structure
(see Fig. 4.9.b). If we lose the block alignment to the vector field after smoothing, generating
the final mesh on the smooth block structure allows us to avoid inverted mesh cells. In the
first case, the mesh comprises approximately 1, 700, 000 cells, and the worst cell has a scaled
Jacobian equal to −0.13. In the case of the smoothed block structure, the final mesh is made
of approximately the same number of cells, but the worst element has a scaled Jacobian of 0.28.
Finally, if we consider the skewness distribution of mesh cells given in Figure 4.11, the smoothing
also improves the quality of the generated mesh cells. For the two meshes generated, the full
computation time is around 3 minutes and 30 seconds.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
100

101

102

103

104

105

106

Skew

N
u
m
b
er

of
el
em

en
ts

(a) Without smoothing
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

100

101

102

103

104

105

106

Skew

N
u
m
b
er

of
el
em

en
ts

(b) With smoothing
Figure 4.11: Skewness distribution on final meshes generated on non-smoothed (a), andsmoothed (b) block structure of Figure 4.9.

146 CHAPTER 4. BLOCK-STRUCTURED MESHES QUALITY ANALYSIS

4.1.4 Vehicle with wings

Figure 4.12: Block structure around the vehicle with wings.
This vehicle is challenging because the wings create a non-convex domain. As a conse-

quence, we need to solve conflicts due to the contraction of the domain, and those opera-
tions are mandatory. Otherwise, we can not reach an acceptable final mesh quality even after
smoothing. This section compares three meshes generated around a geometry with wings.
Unlike before, we only present the block structure of one of them in Figure 4.12 for clarity.

Figure 4.12 represents a block structure generated around a vehicle with two wings. This
block structure is generated along 4 layers, and patterns are used in the first block to solve
conflicts due to sharp geometrical features on the vehicle surface. Here, the block structure is
represented in a clip view along the plan (O,

−→
X ,
−→
Z). The vehicle surface is symmetric along this

same plan.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
100

101

102

103

104

105

106

Scaled Jacobian

N
u
m
b
er

of
el
em

en
ts

(a) Without patterns
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

100

101

102

103

104

105

106

Scaled Jacobian

N
u
m
b
er

of
el
em

en
ts

(b) With patterns
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

100

101

102

103

104

105

106

Scaled Jacobian

N
u
m
b
er

of
el
em

en
ts

(c) With patterns andsmoothing
Figure 4.13: Scaled Jacobian distribution on final meshes generated on non-smoothed (a), andsmoothed (b) block structure of Figure 4.12 around vehicle with wings.

In Figure 4.13, we present the scaled Jacobian distribution of the three different meshes.
Once again, the three meshes are generated using the same global parameters. For the first

4.2. APPLICATION TO COMPUTATIONAL FLUID DYNAMICS SIMULATIONS 147
one of Figure 4.13.a, the block structure topology is generated regularly without any patterns
over the layers. The second result in Figure 4.13.b refers to the mesh generated with the same
global parameters, but this time, patterns are used in the first block layer. Unlike in the previous
example, adding patterns in a layer is insufficient to improve the resulting mesh’s quality. But
by applying 14 iterations of the smoothing algorithm (see Appx. E), we obtain the final result
of Figure 4.13.c. This third mesh is generated on the block structure of Figure 4.12. We
create a mesh with no inverted cells by adding patterns and smoothing the block structure (see
Fig. 4.13.c).

4.2 Application to Computational Fluid Dynamics
Simulations

In this section, we evaluate the mesh quality generated with our algorithm on numerical
simulation practical examples. To do so, we detail a sample of simulations run on 2D and 3D
meshes for subsonic, supersonic, and hypersonic vehicles, with two different Computational Fluid
Dynamics (CFD) code: SU2 [SU2, EPC+16], and the legacy Navier-Stokes steady/unsteady
solver of the French Alternative Energies and Atomic Energy Commission (CEA). Our first
quality criterion is that two different solvers accept our meshes as input and can compute a
solution on them. So, our meshes pass the solver validity check. Then, we compare results
obtained on our meshes to experimental data sets, analytical solutions, and reference solutions
obtained on a different mesh generated by hand.

SU2 is an open multiphysics simulation software developed by Stanford University that
provides computational analysis tools for numerical simulation. SU2 is an unstructured solver,
and in this work, we adapted our output meshes to express them as unstructured hexahedral
meshes instead of block-structured ones. Remember that a subsonic vehicle refers to a Mach
number M∞ < 1, a hypersonic vehicle refers to M∞ > 5, and a vehicle is considered supersonic
in between.

4.2.1 Subsonic 2D NACA 0012 Airfoil

M∞ AoA α Re T∞
0.3 15◦ 3× 106 293K

Table 4.1: Simulation parameters for the subsonic NACA 0012 airfoil.

A simulation of a flow around the NACA 0012 airfoil (see Appx. B) is performed with the
data set provided in Table 4.1 to validate the accuracy of the results on our generated mesh. This
simulation uses the Reynolds Averaged Navier-Stokes (RANS) solver of SU2 [SU2, EPC+16]
and the k-ω SST turbulence model [Men92, Men94]. The angle of attack is α = 15◦, the
Mach number is M∞ = 0.3, the Reynolds number is set to Re = 3×106, and the temperature
T∞ = 293K.

In Figure 4.14, pressure coefficients

CP =
p− p∞
1
2ρ∞u2∞

(4.1)

148 CHAPTER 4. BLOCK-STRUCTURED MESHES QUALITY ANALYSIS

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
−10

−8

−6

−4

−2

0

2

x/c

P
re
ss
u
re

C
o
effi

ci
en
t
(C

p
)

Cp on our mesh
Cp - Experimental data set Gregory et al.

Figure 4.14: Pressure coefficient on the NACA 0012 airfoil for the simulation parameters of Ta-ble 4.1.

where p is the pressure, p∞ is the upstream pressure, ρ is the density, and −→u∞ is the upstream
flow velocity, are compared. For a Reynolds number of Re = 3 × 106, the experimental data
set of Gregory and O’Reilly [GO70] seems to be the most appropriate for CFD validation
[Rum21]. These experimental data used as reference points for the surface pressure coefficients
are plotted with black dots (). The pressure coefficient plotted with red dots () results from
the simulation of this configuration performed with SU2 on the mesh generated by our algorithm.
The two red curves result from the simulation plotted on both sides of the airfoil. However, the
experimental data set provides information only on one side of the airfoil. The results obtained
with this configuration on our mesh are in good agreement with the experimental results.

We also give interest here in the y+ value, which is defined in the reference book [Cou89]
as

y+ =
yUτ

µ
, (4.2)

with Uτ the friction velocity. The y+ value represents the undimensionalized mesh size. In this
case, the y+1 < 1, which is the undimensionalized wall orthogonal first cell size. This means
the mesh resolution in the boundary layer is sufficient to capture the expected phenomena1.

4.2.2 Supersonic 2D Diamond Shaped Airfoil

This part simulates a two-dimensional supersonic flow around a diamond-shaped airfoil inspired
by [FCK16]. This simulation uses the Reynolds Averaged Navier-Stokes (RANS) solver of SU2
and the k-ω SST turbulence model [Men92, Men94]. Figure 4.15 represents the geometry of
the airfoil and the different areas and angles of the supersonic flow.

Here, the viscosity effects are taken into account. As a consequence, the value of velocity
on the wall is zero. For the case of the supersonic diamond airfoil, the analytical angles of the

1Let us note that in case this resolution is not sufficient, we can easily re-generate the meshby only changing the input parameter corresponding to the wall orthogonal first mesh cell size,or the number of mesh cells in the boundary layer blocks.

4.2. APPLICATION TO COMPUTATIONAL FLUID DYNAMICS SIMULATIONS 149

βu

u1 u2

βb

b1 b2

2θ Airfoil

Flow −→u∞

AoA
α

Figure 4.15: Scheme of the various zones and angles around the diamond airfoil [FCK16].
M∞ AoA α Re T∞
1.5 3◦ 3× 106 293K

Table 4.2: Simulation parameters for the supersonic diamond airfoil.

oblique shocks represented in red () are given by Liepmann et al. [LR01]. The shock
direction depends on the Mach M∞, the angle θ of the geometry, and the angle of attack α.
In this study, θ = 5◦ and the airfoil chord is 1m. Table 4.2 are set for this simulation.

Figure 4.16: Mach-number distribution around a diamond-shaped airfoil immersed in a super-sonic flow field atM∞ = 1.5, Re = 3× 106 and α = 3◦.
In Figure 4.16, the Mach number distribution is plotted and compared to the analytical

positions of the shocks. The value of the computed angle after the simulation is βu = 43.1◦,
and the value of the angle βb is 45.7◦ which represents an error of 1◦ compared to analytical
values. For this configuration, mach numbers are constant in the area u1, b1, u2, and b2. In the
zone u1, we reach a constant mach number of Mu1 = 1.42 in Figure 4.16, and Mb1 = 1.19 for
the area b1. These results are consistent with those given by the tables [rs53] (see Appx. H).
Regarding these results, the mesh generated by our algorithm captures the expected physics.

4.2.3 Hypersonic Stardust 2D

In this subsection, we present a numerical simulation result on a block-structured mesh gen-
erated with our 2D algorithm (see Fig. 4.17.a) and compare it to a simulation run on a
block-structured mesh generated by hand using the dedicated software ICEM-CFD [ICE] (see
Fig. 4.17.b). For both meshes, the first wall-normal cell size is set to 1.10−6m. We use here

150 CHAPTER 4. BLOCK-STRUCTURED MESHES QUALITY ANALYSIS

M∞ AoA α Re T∞
10.0 0◦ 106 270K

Table 4.3: Simulation parameters for the hypersonic Stardust.

the CEA legacy code to simulate a hypersonic flow around Stardust (see Appx. B). We solve
the Navier-Stokes equations using the physical parameters of Table 4.3 and expect to capture
the shock position.

(a) GMDS block structure (automatic) (b) ICEM-CFD block structure (hand-made)
Figure 4.17: Two different block structures generated around the axisymmetric Stardust geometry(see Appx. B). Each color stands for a different block.

Figure 4.18 illustrates the simulation result on both meshes. In Figure 4.18.a and b, the
pressure fields are plotted. The shock position computed on the two meshes is at the same
position. In Figure 4.18.c and d, the velocity magnitude field is presented with the stream-
lines (). The phenomena captured on our mesh are the same as the ones on the mesh
generated by hand using ICEM-CFD [ICE].

4.2.4 Supersonic RAM-C II 3D

M∞ AoA α p∞ T∞
1.5 0◦ 101, 325Pa 288.15K

Table 4.4: Simulation parameters for the supersonic RAM-C II 3D.
This last simulation is performed using SU2 around the 3D RAM-C II geometry (see

Appx. B). The simulation parameters are presented in Table 4.4. The Euler equations are
solved (i.e., the viscosity effects are not considered).

Figure 4.19.b presents the Mach field computed around RAM-C II nose. On the left side
of the geometry, around the vehicle nose, we see a curve detached shock wave. This shock is
normal on the vehicle symmetry axes at the stagnation point (vehicle surface point where the
velocity is null), for this reason, the flow is subsonic in the area between the shock wave and
the vehicle nose. Behind the more oblique portions of the shock wave, the flow is supersonic.
These observations are coherent with the explanations given in [And89] (see Fig. 4.19.a).

Figure 4.20 presents the undimensionalized pressure field around RAM-C II. Regarding the
wake (i.e., the flow behind the vehicle), the phenomena observed are similar to [MJK64]. In
this area, we can see the field recombination.

4.2. APPLICATION TO COMPUTATIONAL FLUID DYNAMICS SIMULATIONS 151

(a) Pressure field on GMDS mesh (b) Pressure field on ICEM-CFD mesh

(c) Velocity magnitude on GMDS mesh (d) Velocity magnitude ICEM-CFD mesh
Figure 4.18: Pressure fields and velocity magnitude after simulations around Stardust geometryon Figure 4.17 meshes using legacy code.

(a) Schematic of the flowfield over a bluntbody moving at supersonic or hypersonicspeeds [And89]
(b) Mach field around RAM-C II nose

Figure 4.19: Mach field around vehicle stagnation point in case of supersonic flow simulations.

152 CHAPTER 4. BLOCK-STRUCTURED MESHES QUALITY ANALYSIS

Figure 4.20: Undimensionalized pressure field around supersonic RAM-C II 3D vehicle using thesimulation parameters of Table 4.1.

This simulation aims to show that 3D meshes generated with our algorithm pass the validity
requirement for a CFD solver and are usable to capture some phenomena related to supersonic
flows, such as the shock position, and the global flow topology around the vehicle.

4.2. APPLICATION TO COMPUTATIONAL FLUID DYNAMICS SIMULATIONS 153
Summary

In this chapter, we studied the mesh quality of meshes generated with the method pre-
sented in precedent chapters from two angles: using geometrical analysis of meshes n-cells
and numerical simulation results performed on the meshes.

The first part was dedicated to purely geometrical quality criteria over the mesh cells.
We presented multiple vehicles, and for each, different block structure topologies and
corresponding final meshes were generated. This part illustrates the capabilities and flexi-
bilities of our approach to generate various block structures and meshes around the same
vehicle and analyses the impact on the mesh quality generated.

In the second part, we presented different results of numerical simulations using two
different Computational Fluid Dynamics software: SU2, which is open-source software,
and the Navier-Stokes solver from the French Alternative Energies and Atomic Energy
Commission. The various examples of 2D and 3D subsonic, supersonic, and hypersonic
flow simulations demonstrate the validity of our meshes as solvers can perform on them.
In addition, comparing results obtained on our meshes to experimental data, analytical
solutions, and reference solutions on other meshes illustrate that the meshes generated
with our algorithm are usable to capture phenomena of interest.

This chapter’s central perspective is to simulate hypersonic 3D flows around vehicles
using the CEA legacy Navier-Stokes code.

CONCLUSION

In this work, we proposed a full and complete pipeline to generate hexahedral block-structured
meshes for fluid domains around a single vehicle dedicated to Computational Fluid Dynamics
(CFD) atmospheric re-entry study. More specifically, we proposed a suitable 2D method that
is extensible to the 3D case and presented the general process in the nD case.

The first part of this work, presented in Chapter 2, focuses on generating a linear block
structure using an advancing front approach. As we expected a strong control of mesh size and
quality around the vehicle, we adopted an advancing front approach. We based our work on the
previous work of Ruiz-Girones et al. [RG11, RGRS12], where they introduce the receding
front method to generate a hexahedral mesh of the outer space around a vehicle, starting from a
pre-meshed vehicle boundary, and a non-pre-meshed outer boundary, which allows to relax some
constraints. We take an input first discretization of the domain into simplices as background
mesh to compute some quantities necessary for the extrusion algorithm and the first surface
block discretization of the vehicle boundary. Then, the algorithm extracts the block structure
by generating the blocks layer by layer, starting from the vehicle surface. In this work, we
introduce additional constraints due to our applications. This was performed to control the
extrusion direction through a specific vector field, to control the first block layer with particular
conditions, and to control the introduced blocks in the structure to improve the block’s quality.

Once the linear block structure generated, we focused in Chapter 3 on the block curving
stage. As we work with a block structure, we have a few hexahedral elements that do not
represent the vehicle’s geometric surface accurately. As we expect to generate a body-fitted
mesh, if we split the blocks and project the nodes onto the surface, a time-consuming step would
be mandatory on the internal nodes to improve the mesh quality. For this reason, we decided
first to curve the block structure. To do so, we studied two different approaches. The first
one is through rp-adaptivity, in the finite element framework MFEM [mfe, AAB+21, AAB+24].
Starting from a r-adaptivity pre-existing algorithm meant to do high-order mesh (with uniform
degree over the domain) interface alignment to an implicit representation of a surface, we took
it one step further to adapt the polynomial degree of elements around the interface in areas of
higher curvature. This method provides good results in 2D and 3D for different mesh topologies
and on problems of practical interest. However, in 3D, it remains slow for now. For this reason,
we worked on a second approach to curve the blocks: using a Bézier representation of our
blocks. After introducing the representation of the elements, we explained how we manage to
curve the blocks to represent the vehicle surface and how we propagate the information in the
volume to avoid overlapping cells. Considering we have a high-order Bézier block structure,
we explained how we generate the resulting mesh using an interval assignment algorithm with
specific constraints and using the parametrical space of the Bézier blocks.

154

1. PERSPECTIVES 155
Finally, in Chapter 4, we analyzed meshes generated with our method through two main

axes: purely geometric criteria and numerical simulation results. For the first part, we presented
a set of vehicles of interest, different block structure topologies obtained using our method, and
the final mesh quality. Through this analysis, we show the impact of the method parameters
on the final geometric mesh quality. However, we keep in mind that the main quality criterion
is the numerical simulation result. The second part of this chapter was dedicated to the results
of numerical simulations of flows around vehicles performed on meshes generated with our
method. This section illustrated 2D and 3D simulation results using two different CFD codes.
There are simulations of subsonic, supersonic, and hypersonic flows around vehicles. Results
are compared to experimental data sets, analytical results, and reference results obtained on
reference meshes. Through those numerical simulations, we illustrated that our meshes pass
the validity solvers check (i.e., they can compute on the given meshes) and the results are
coherent with the physical phenomena of interest.

1 Perspectives

We previously listed perspectives related to each chapter. In Chapter 2, we gave details about
how we expect to:

• Handle multi-vehicle and more non-convex geometries through a specific pre-treatment
process;

• Improve distance fields computation, for numerical accuracy and time-consumption pur-
pose;

• Propose a way to generate the vehicle surface discretization automatically (i.e., the first
front taken as an input in the 3D pipeline).

In Chapter 3, we proposed leads to:

• Improve the block edge curving to represent the vehicle surface, to not only focus on the
approximation error, but also on the block edges direction;

• Extend the algorithm of Chapter 2 to generate directly a curved block structure using
the advancing front process;

• Improve the edge size transition between two adjacent blocks of the block structure;

• Smooth the curved block structure to improve the block and resulting mesh quality, and
to improve the continuity between cells of adjacent blocks.

The main perspective of Chapter 4 is to use one 3D block-structured mesh generated with
our method for a numerical simulation using the French Alternative Energies and Atomic Energy
Commission CFD code. In addition to the perspectives listed in each corresponding chapter,
we introduce here one major perspective to this work. This work aims to generate a block-
structured mesh before any simulation. The next step is to get the result of a first simulation,
and to inject it in our generation process. Such a process may be qualified of "weak adaptation"

156 CONCLUSION

procedure: we iteratively mesh the whole domain and run the simulation code until getting the
"most code-adapted" mesh. Among the information we could get back from a simulation code,
we are particularly interested in:

1. the boundary layer thickness, to know if the first block layer thickness is sufficient to
capture the phenomena, and to know if we need to add more mesh cells.

2. The shock position, to align blocks and mesh cells to the shock position, and refine if
needed.

A similar attempt was recently done in 2D in [DWQ24].

A remaining question is also to define what means to have the "most code-adapted" mesh.
We think that there is not a unique answer; and specific criteria should be defined for every
simulation code. Studying works done on triangular and tetrahedral mesh adaptation techniques
seems mandatory [FA05, LAA10, AL16].

APPENDIX

Contents
A Transfinite Interpolation . 158
B Geometries Guide . 160

B.1 Apollo Experimental Model 160
B.2 Caretwing . 160
B.3 Double Ellipsoid . 161
B.4 HIFiRE-5 . 162
B.5 Hypersonic Transition Research Vehicle (HyTRV) 162
B.6 Mars Entry Spacecraft Experimental Model 163
B.7 NACA 0012 Airfoil . 163
B.8 RAM-C II Spacecraft . 164
B.9 Sphere Cone Cylinder Flare (CCF) 164

C Vector Field Impact Analysis . 166
D Axisymmetry Block-Structured Mesh Generation 170
E Block Structure Smoothing . 172
F Bézier Block Edge Curving Analysis 175

F.1 Methods to Curve Bézier Block Edges 176
F.2 Methods Comparison on Curve Examples 177

G Line-Sweeping Smoothing . 182
H Shock Abacus . 184

157

158 APPENDIX

A Transfinite Interpolation

Algorithm 12 Linear Transfinite Interpolation 2D
Require: G[0 : m − 1, 0 : n − 1] a 2D grid of m × n points, with the positions of

the points initialized on the four boundaries of the grid
Ensure: G with inner positions of points set
1: di←− 1/(m− 1)

2: dj ←− 1/(n− 1)

3: for all i ∈ 1, ...,m− 2 do
4: ci←− i× di

5: for all j ∈ 1, ..., n− 2 do
6: cj ←− j × dj

7: G[i, j]←− (1− ci)G[0, j] + ciG[m− 1, j] + (1− cj)G[i, 0] + cjG[i, n− 1]

−(1− ci)(1− cj)G[0, 0]− (1− ci)cjG[0, n− 1]

−ci(1− cj)G[m− 1, 0]− cicjG[m− 1, n− 1]

8: end for
9: end for

A. TRANSFINITE INTERPOLATION 159

Algorithm 13 Linear Transfinite Interpolation 3D
Require: G[0 : m − 1, 0 : n − 1, 0 : p − 1] a 3D grid of m × n × p points, with the

positions of the points initialized on the six boundaries of the grid
Ensure: G with inner positions of points set
1: di←− 1/(m− 1)

2: dj ←− 1/(n− 1)

3: dk ←− 1/(p− 1)

4: for all i ∈ 1, ...,m− 2 do
5: ci←− i× di

6: for all j ∈ 1, ..., n− 2 do
7: cj ←− j × dj

8: for all k ∈ 1, ..., p− 2 do
9: ck ←− k × dk

10: U ←− (1− ci)G[0, j, k] + ciG[m− 1, j, k]

11: V ←− (1− cj)G[i, 0, k] + cjG[i, n− 1, k]

12: W ←− (1− ck)G[i, j, 0] + ckG[i, j, p− 1]

13: UW ←− (1− ci)(1− ck)G[0, j, 0] + (1− ci)ckG[0, j, p− 1]

+ci(1− ck)G[m− 1, j, 0] + cickG[m− 1, j, p− 1]

14: UV ←− (1− ci)(1− cj)G[0, 0, k] + cicjG[m− 1, n− 1, k]

+ci(1− cj)G[m− 1, 0, k] + (1− ci)cjG[1, n− 1, k]

15: VW ←− (1− cj)(1− ck)G[i, 0, 0] + (1− cj)ckG[i, 0, p− 1]

+cj(1− ck)G[i, n− 1, 0] + cjckG[i, n− 1, p− 1]

16: UVW←− (1− ci)(1− cj)(1− ck)G[0, 0, 0] + (1− ci)(1− cj)ckG[0, 0, p− 1]

+(1− ci)cj(1− ck)G[0,m− 1, 0] + ci(1− cj)ckG[m− 1, 0, p− 1]

+cicj(1− ck)G[m− 1, n− 1, 0] + cicjckG[m− 1, n− 1, p− 1]

+(1− ci)cjckG[0, n− 1, p− 1] + ci(1− cj)(1− ck)G[m− 1, 0, 0]

17: G[i, j, k]←− U + V +W − UW − UV − VW + UVW
18: end for
19: end for
20: end for

160 APPENDIX

B Geometries Guide

In this Appendix, we present geometries studied in different works linked to hypersonic Com-
putational Fluid Dynamics, used here to experiment with our meshing algorithm. More details
are available about the origins of the geometries and numerical and physical results but we
only provide here the geometries description to allow reproducibility and comparison with our
meshing method2.

B.1 Apollo Experimental Model

According to Scalabrin [Sca07], this geometry comes from an experimental study of hy-
personic flows during the 1960s to validate models used in the design of the Apollo space-
craft [GB68]. This geometry is included in our geometry database of interest. This geome-
try is reproducible using Figure B.1 with the nose radius Rn = 168.86mm, the base radius
Rb = 70.36mm, the cap radius Rc = 8.37mm, the shoulder radius Rs = 7.04mm, the length of
the capsule L = 123.28mm, and the cone angle αc = 33°. The 3D geometry may be obtained
by a complete revolution of this 2D geometry around the axis.

Figure B.1: Apollo experimental model [Sca07].

B.2 Caretwing

The Caretwing geometry (see Fig. B.2) is given in [Küc65]. Here, it is reproduce using δ =

arctan(0.1), τ = 0.06, l = 1.0, S = 1.0
(30.0τ)2

, and σ = 10.162570π
180.0 .

2Some geometries are available on https://github.com/claireroche/Geometries, withdifferent file formats.

https://github.com/claireroche/Geometries

B. GEOMETRIES GUIDE 161

Figure B.2: Caretwing [Küc65].

B.3 Double Ellipsoid

The analytical description of the geometry of Figure B.3 is provided in [DGP12] and given here
as a reminder:

(
x

0.06

)2
+
(y
0.025

)2
+
(

z
0.015

)2
= 1 if x ≤ 0,(

x
0.035

)2
+
(y
0.0175

)2
+
(

z
0.025

)2
= 1 if x ≤ 0, and 0 ≤ z,(y

0.025

)2
+
(

z
0.015

)2
= 1 if 0 ≤ x ≤ 0.016,(y

0.025

)2
+
(

z
0.015

)2
= 1 if 0 ≤ x ≤ 0.016,(y

0.0175

)2
+
(

z
0.025

)2
= 1 if 0 ≤ z.

(4.3)

Figure B.3: Double ellipsoid [DGP12].

162 APPENDIX

B.4 HIFiRE-5

According to [JAK15], HIFiRE-5 (see Fig. B.4) is a dedicated geometry for aerothermodynamic
experiments. It is an elliptic cone with a 2 :1 aspect ratio. It has a 7° half-angle on the minor
axis and a 2.5mm radius nosetip. The payload instrumented elliptic cone section length is
0.86m.

Figure B.4: HIFiRE-5 vehicle with dimensions in mm [JAK15].

B.5 Hypersonic Transition Research Vehicle (HyTRV)

The Hypersonic Transition Research Vehicle (HyTRV) is a 3D geometry described in [QLYT21].
The vehicle’s shape is illustrated in Figure B.5. The length of the body is 1, 600mm, its head
is a 1 : 2 : 1 ellipsoid, with its major and minor axis respectively 80mm and 40mm. The
bottom half section of the body is a 1 : 4 ellipse and the major and minor axis are 60mm and
150mm, respectively. The upper part of the lifting body is given by a Class/Shape Function
Transformation (CST) curve and elliptic curve. The upper part curve function is:

z = α · zC + (1− α) · zE , (4.4)
where z is the vertical coordinate, α = 0.72, zE is the coordinate given by the 1 :4 ellipse, zC
is the coordinate given by the CST function, and the analytical formula of the CST is:

zC = ζ · Zx

ζ = 28 · η4 · (1− η)4, η ∈ [0, 1]
y = (η − 1

2) · Yx
(4.5)

Zx = 270mm is the upper surface curve height, and Yx = 600mm is the bottom surface width.

B. GEOMETRIES GUIDE 163

Figure B.5: Hypersonic Transition Research Vehicle (HyTRV) [QLYT21].

B.6 Mars Entry Spacecraft Experimental Model

According to Scalabrin [Sca07], this geometry is an experimental model used in a wind tunnel.
This geometry is reproducible using Figure B.6 where the nose radius Rn = 12.7mm, the base
radius Rb = 25.4mm, the corner radius Rc = 1.27mm, the frustum radius Rf = 15.24mm, the
sting radius Rs = 10.32mm, the sting length Ls = 116.86mm, the nose cone αn = 70°, and
the frustum cone angle αf = 40°. The 3D geometry may be obtained by a full revolution of
this 2D geometry around the symmetry axis.

Figure B.6: Mars entry spacecraft model [Sca07].

B.7 NACA 0012 Airfoil

The NACA 0012 airfoil is a well-known and studied geometry [Rum21]. The exact NACA 0012
airfoil formula is given by

y = ±0.6(0.2969√x− 0.1260x− 0.3516x2 + 0.2843x3 − 0.1015x4). (4.6)

164 APPENDIX

Figure B.7: NACA 0012 airfoil [Rum21].

B.8 RAM-C II Spacecraft

According to Scalabrin [Sca07], this geometry comes from 1960’s communications blackout
studies. To reproduce the geometry, we can use Figure B.8 where the nose radius Rn =

0.1524m, the cone angle αc = 9°, and the vehicle length is L = 1.3m.

Figure B.8: RAM-C II spacecraft [Sca07].

B.9 Sphere Cone Cylinder Flare (CCF)

(a) CCF nose (b) CCF vehicle
Figure B.9: Sphere-Cone-Cylinder-Flare (CCF) vehicle.

The Sphere-Cone-Cylinder-Flare (CCF) vehicle of Figure B.9 presented in [EBSB19] is an
axisymmetric geometry (i.e., the 3D model is obtained by a rotation around the symmetry
axis). In addition to the main characteristics given in Table 4.5, they define the small nose
radius Rn = 0.1mm (see Fig. B.9.a), the half-cone angle is 5°, and the flare angle is equal to
3.5°.

B. GEOMETRIES GUIDE 165

x (m) y (m)Nose-Cone junction 0.0920× 10−3 0.0997× 10−3

Cone-Cylinder junction 0.398147 0.034925Cylinder-Flare junction 0.525670 0.034925End of flare 0.764456 0.049530

Table 4.5: Sphere-Cone-Cylinder-Flare model coordinates [EBSB19].

166 APPENDIX

C Vector Field Impact Analysis

This Appendix gives examples of the different vector fields −→v choice of computation in 2D
and the impact on the resulting block structure. We focus here on the linear block structure
generation around the Apollo vehicle [Sca07] (see Appx B). The physical domain to mesh is
represented in gray () in Figure C.10.a, where the far-field is a circle. We do not vary the
domain in this part, and the vehicle wall discretization used is always the same (see Fig. C.10.b).
Each time, the block structure is extruded on 6 different layers, using the same parameters,
except for the vector field computation. For the next figures, the vector field −→v is represented
using dark blue vectors (). For visibility purposes, the vectors are not plotted at eachMT

node but only on 1, 500 selected nodes.

(a) Physical domain to mesh (b) Vehicle wall discretization
Figure C.10: Physical 2D domain to mesh around Apollo vehicle (a), starting from the block dis-cretization (b).

(a) Distance field dV and vector field∇dV on
MT

(b) Final blocks
Figure C.11: Block structure generation around Apollo geometry using vector field −→v = ∇dV .

The first naive example is the generation of the block structure using the gradient of the

C. VECTOR FIELD IMPACT ANALYSIS 167
scalar distance field from the vehicle ∇dV as the vector field to lead the extrusion over all the
domain (see Fig. C.11.a). This field is orthogonal to the vehicle wall by construction, so it
ensures the block edges orthogonality to the wall on the first layer of blocks (). Figure C.12
represents a second example of block structure generation, where this time the vector field −→v
is chosen equal to the combined distance field gradient ∇d. The resulting block structure (see
Fig. C.12.b) has an elliptic shape while the precedent one (see Fig. C.11.b) can be considered
more straight.

(a) Distance field d and vector field∇d onMT (b) Final blocks
Figure C.12: Block structure generation around Apollo geometry using vector field −→v = ∇d.
We also decided to exhibit three examples of vector field combinations here. The first one

plotted in Figure C.13.a is a combination of the two precedent vector fields ∇dV and ∇d (see
Fig. C.13.a). The damping area considered is between xf =0.0 and xb=50.0 (see Fig. C.10.a).
As expected, we observe the straight behavior of the first test case Figure C.11.b on the front
part of the domain (see Fig. C.13.b), while we observe the more elliptic block structure on
the back part of the domain (see Fig. C.13.b). We can easily imagine the result by inverting
the two different fields to obtain an elliptic-like block structure on the front part, using ∇d,
while having straight blocks on the back part using ∇dV , and adjusting the transition limits
as wanted. This generates many possibilities, but we do not use this combination of fields in
practice.

In fact, we are more interested in aligning the back part of the block structure to the flow
direction. To do so, we usually combine ∇d or ∇dV as the front vector field −→vf , with the
constant vector field −→u∞ as the back vector field −→vb . Figure C.14 represents the combination of
−→vf =∇d with −→vb =−→u∞. In this case, the Angle of Attack (AoA) used to compute −→u∞ is α = 0°.
The transition area is between xf =50.0, and xb=200.0 If we compare this result to the one
of Figure C.12.b where the block structure was generated using ∇dV over all the domain, we
may see the blocks on the back part trying to align.

The last result presented in this part is Figure C.15. As for the one before, we combine here
the gradient of a distance field, which is ∇dV this time, to the flow direction −→u∞. This time,
the damping zone is between xf =80.0, and xb=200.0. Here, the AoA is set to α=30°. As
expected, it impacts the back block structure, with blocks trying to align with this deviation.

This short study shows multiple possibilities for computing the vector field easily, and we

168 APPENDIX

(a) Distance field d and vector field −→v onMT (b) Final blocks
Figure C.13: Block structure generation around Apollo geometry using combined vector field −→vwhere −→vf = ∇dV and −→vb = ∇d, with xf = 0.0 and xb = 50.0.

(a) Distance d and vector fields −→v onMT (b) Final blocks
Figure C.14: Block structure generation around Apollo geometry using combined vector field −→vwhere−→vf = ∇d and−→vb = −→u∞, with xf = 50.0 and xb = 200.0. With an Angle of Attack (AoA) α = 0°.

C. VECTOR FIELD IMPACT ANALYSIS 169

(a) Distance dV and vector fields −→v onMT (b) Final blocks
Figure C.15: Block structure generation around Apollo geometry using combined vector field −→vwhere−→vf =∇dV and−→vb =−→u∞, with xf = 80.0 and xb = 200.0. With an Angle of Attack (AoA) α=30°.

may imagine other combinations. Here, we presented the main combinations used in the
manuscript. If we don’t encode one version of the vector field computation, it is because,
in some cases, we prefer one version to another. For instance, in the case of an anisotropic
domain behind the vehicle, some vector fields help to propagate the block structure in the
domain, while others fail.It is essential to understand that if the vector field computation gives
flexibility in the method, it is a sensitive step. As the blocks follow the vector field to generate,
a vector field such as constant −→u∞ over the domain would lead to self-intersecting blocks and
non-meshed parts of the domain. We can note that for this 2D case, the execution time of the
whole algorithm (including the discretization of the wall surface, the computation of distance
and vector fields, the block structure generation, the block structure curving, and the mesh
generation) does not exceed 8 seconds. So, if the vector field is not well conditioned, changing
the parameters and re-running the generation remains reasonable.

170 APPENDIX

D Axisymmetry Block-Structured Mesh Generation

Using a user parameter, it is possible to try to generate the equivalent of an axisymmetric block
structure and resulting mesh in 2D. This relies on a pre-process and a post-process procedure.
As a pre-process, we first check on the discretization of the vehicle surface if there are block
corners on the symmetric axis. If not, the block corners are created. We still generate the
block structure all over the vehicle with the condition to remain on the axis for block corners of
a front generated on previous block corners corresponding to the axisymmetric constraint (as
there is no reason the block corners stay on the axis, depending on the input vector field).

(a) Regular block structure

(b) Axisymmetric block structure
Figure D.16: Axisymmetric block structure generation around RAM-C II (see Appx. B).

We add a post-process step to cut half of the resulting block structure to provide the
axisymmetric mesh. We note here that it can fail because the method was not meant to handle
those cases. For instance, the structure cannot be cut if there is an insertion or a fusion of
blocks on the block corner on the axis.

Figure D.16 exhibits an example of a block structure generation around RAM-C II vehicle
(see Fig. D.16.a). Using the exact same parameters but by choosing the axisymmetric option,
the resulting block structure is given in Figure D.16.b. Looking at the wall surface discretization,
we can see the two additional block corners added on each vehicle side on the axis. The resulting
mesh generated on the linear block structure Figure D.16.b is plotted on Figure D.17. The
block structure degree is elevated to p=2.

D. AXISYMMETRY BLOCK-STRUCTURED MESH GENERATION 171

Figure D.17: Axisymmetric mesh generated around RAM-C II (see Appx. B) on Figure D.16.b blockstructure topology.

172 APPENDIX

E Block Structure Smoothing

As every block corner of the same front is located on the same isoline in the distance field (see
Fig. E.18.a), it may result in flattened blocks when patterns are used on a layer (see Fig. E.18.b,
with flattened orange blocks () inserted on the second block layer). This phenomenon does
not appear on the first block layer, corresponding to the boundary block layer, because the
selected distance field is set to dV (i.e., the Euclidean distance to the vehicle). Also, the block
quality may be increasingly poor during the process over the layers. This is mainly due to
approximation during the trajectory computation due to a coarse background mesh and a naive
interpolation formula over the tetrahedral cells.

(a) Combined distance field (b) Without smoothing (c) 10 smoothing iterations
Figure E.18: Non-smoothed block structure (b) around HIFiRE-5 (see Appx. B) and smoothed blockstructure (c). Block corners of (b) inserted orange blocks () are located on the same isoline (a).

For these two reasons, we add a geometric local iterative smoothing step on the linear block
structure. This iterative process is weighted according to the block corner front value. This
way, the positions of the block corners on the first layers, around the vehicle surface, are barely
moved, while block corners on the outer boundary benefit from much freedom.

At each iteration i, for each block corner nc at position pc in the block structure B, we
compute the new position of the block corner according to:

pi+1
c = (1− θ)pic + θ

1

Nc

∑
nk∈Sc

pik, (4.7)

where pic is the position of nc at iteration i, Sc is the set of adjacent block corners to nc
3, Nc

is the size of Sc, and θ is a damping parameter computed according to the front index of nc in
the block structure. Here,

θ = 0.3
fc
NL

, (4.8)
where NL is the total layers number, and fc is the index of the front to which the block corner
nc belongs. This smoothing only applies for block corners with a front index fc > 1. The block
corners located on the vehicle surface (at fc = 0) and on the first block layer corresponding
to the boundary layer (at fc = 1) remain at the exact same location during the whole process.
For the block corner located on the last front, the damping parameter is equal to 0.3. The

3Two block corners are adjacent if they share one block edge

E. BLOCK STRUCTURE SMOOTHING 173
adjacent block corners selected to smooth the block corners of this specific front are not the
same (see Alg. 14).

In practice, 4 iterations of the Algorithm 14 are sufficient to smooth the block structure.
However, more iterations may be necessary on some specific block structures made of many
blocks. Figure E.18.c illustrates the result of Figure E.18.b block structure after 10 iterations
of the smoothing algorithm.

Algorithm 14 Linear Block Structure Smoothing
Require: Block structure B, number of iterations N
Ensure: Smoothed block structure B

1: NL ←− B.nbr_layers()
2: i←− 0

3: B0 ←− B

4: B1 ←− B

5: while i < N do
6: fc←− B.front_value(nc)
7: for all block corner nc in B do
8: p←− (0, 0, 0)

9: Nc ←− 0

10: θ←− 0.3 fc / NL

11: if fc < NL then
12: for all block corner nk adjacent to nc do
13: p←− p+B0.point(nk)

14: Nc ←− Nc + 1

15: end for
16: else if fc = NL then
17: for all block corner nk adjacent to nc and located on last front do
18: p←− p+B0.point(nk)

19: Nc ←− Nc + 1

20: end for
21: end if
22: B1.point(nc)←− (1− θ)B0.point(nc) + θp/Nc

23: end for
24: B0 ←− B1

25: i←− i+ 1

26: end while
27: B←− B1

Figure E.19.a and Figure E.19.b represent the same block structure than in Figure E.18.b
and Figure E.18.c respectively. Here, we see the impact on the last layer blocks’ shapes before
and after smoothing. The more smoothing steps are performed, the more we lose the alignment

174 APPENDIX

to the vector field in some parts of the physical domain. However, this does not affect the first
layer blocks.

(a) Without smoothing (b) With smoothing
Figure E.19: Non-smoothed block structure (a) around HIFiRE-5 (see Appx. B) and smoothed blockstructure (b).

F. BÉZIER BLOCK EDGE CURVING ANALYSIS 175
F Bézier Block Edge Curving Analysis

In this appendix, we compare different methods to compute the positions of control points of
a Bézier curve to approximate a geometric curve. We keep in mind that we study methods
in 2D, but we want them to be extendable to the 3D case, knowing we do not have access
to a parametric representation of the geometric surface to approximate. This analysis explores
different naive methods to compute control point positions of Bézier edges to approximate a
given geometric curve. It illustrates why the way we decide to compute these positions is not
sufficient and why the problem may not be easy.

Figure F.20: Geometric curve (), and curved Bézier block edge () defined by its white controlpoints ().
Knowing a geometric curve (), we want a strategic way to compute the positions of the

control points P0, ..., Pp () of a Bézier edge of degree p to minimize the error between the
Bézier edge () and the geometric curve.

Let us remind that a Bézier curve of degree p can be expressed in the parametric space
with its control points Pi by the relation

γ(u) =

p∑
i=0

Bp
i (u)Pi (4.9)

where u ∈ [0, 1], and Bp
i is the i− th Bernstein polynomial of degree p, defined by:

Bp
i (u) =

(
p

i

)
ui(1− u)p−1 (4.10)

where
(
p
i

)
= p!

i!(p−i)! is a binomial coefficient.

If we take a set of p+1 points {Ai}0≤i≤p to interpolate, we can solve a system to compute
the positions of the control points Pi needed to build the Bézier curve of degree p to interpolate
the points Ai. In the next section, given a Bézier curve of arbitrary degree p > 0, we propose
3 different methods to compute the set of control points Pi to interpolate a geometric curve.

176 APPENDIX

F.1 Methods to Curve Bézier Block Edges

Here, we present three different naive methods to compute the positions of the control points
of a Bézier curve of arbitrary degree p to approximate a geometric curve. We are aware that
different ways exist to process, and probably more accurately. However, we expect to show the
impact of the way the control points are computed on the resulting block edge.

Method 1

The first method is, knowing we want to build a Bézier edge of degree p, we initialize the
p+1 control points P0, ..., Pp in a uniform way on the linear edge (see black edge () of
Fig. F.21.a). For each control point Pi, we compute its projected position Ai () onto the
geometric curve () we want to approximate (see Fig. F.21.b). From this set of points
A0, ..., Ap, we solve a system to compute the positions of the control points P0, ..., Pp to
interpolate the positions A0, ..., Ap. To do so, we consider the control points {Pi}i∈J0,pK set
uniformly in the parametric space of the curve [0, 1]. To compute the positions of the final
control points (see Fig. F.21.c), we simply invert the following system of p+1 equations:

Ai = γ

(
u =

i

p

)
, i ∈ J0, pK. (4.11)

(a) Control point initialization (b) Projected positions ontothe curve (c) Final control point positions
Figure F.21: Naive approach to compute the positions of the control points () of a Béziercurve () of order p = 3 in order to interpolate a geometric curve (). The control pointsof the Bézier curve are set uniformly on the linear edge () (a). We compute the projected po-sitions of the control points onto the geometrical curve () (b). Finally, we compute the controlpoints (c) to interpolate the positions projected onto the curve ().

Method 2

The second method consists in an iterative process to compute the positions of the control
points of the Bézier edge. Knowing we want to build a Bézier edge of degree p, we first
compute successively a Bézier edge of degree p = 2, p = 3, etc. Until the Bézier edge of
degree p.

In order to build the Bézier curve of degree p=pj , we use the parametric space of the Bézier
curve of degree pj − 1 to initialize the control points P0, ..., Ppj . The control points are set
uniformly in the parametric space of the curve (e.g., for a curve of degree p, the control points
will be initialized on the Bézier curve of degree p− 1, at u = i

p , with i ∈ J0, pK). Then, as for
the precedent method, we compute a set of points A0, ..., Apj , corresponding to the projected

F. BÉZIER BLOCK EDGE CURVING ANALYSIS 177
positions of P0, ..., Ppj on the geometric curve (). Then, we solve the system as before to
compute the final positions of the control points to interpolate the positions {Ai}i∈J0,pjK.

Due to the way the control points are computed with this method, building a Bézier Edge
of degree p=2 should give the same result as with method 1.

Method 3

The third method presented here is almost exactly the same process as Method 2. The difference
is when the Bézier edge of degree p=2 (see Fig. F.22) is built. We use the properties of the
Bézier curves in order to compute the positions of the three control points P0, P1, P2 to build
the Bézier edge of degree p=2. As before, the control points P0 and P2 are taken as the two
end points of the linear edge p=1. The third point, P1, is set at the intersection of the two
straight lines given by the two tangent to the geometric curve () at the positions P0 and
P2 (see Fig. F.22.b).

(a) (b)
Figure F.22: Naive approach to compute the control points of an arbitrary Bézier curve of degree
p to interpolate a geometrical curve.

From this point, building a Bézier edge of arbitrary degree p is the same iterative process
as in method 2. However, due to the way the Bézier edge of degree p= 2 is computed, the
results will differ from the ones from method 2 for the other orders.

There is no reason in 3D that the tangent will intersect, but we can figure out the closest
point to a line L1 belonging to a second line L2.

F.2 Methods Comparison on Curve Examples

Here, we take three different geometric curves built using analytical formulations as an example.
The geometric curves represent a part of a 2D vehicle surface, while the Bézier curve is a block
edge we want to align to this vehicle surface.

178 APPENDIX

Curve 1

y = 0.4 sin
(
x
π

2

)
, (4.12)

with x ∈ [0, 1].

If we take a look at the result of the first two methods on this geometric curve (see
Fig. F.23), we can see that the results are quite similar, and the methods seem sufficient to
capture the geometric curve.

Method 1 Method 2

(a) p = 1 (f) p = 1

(b) p = 2 (g) p = 2

(c) p = 3 (h) p = 3

(d) p = 4 (i) p = 4

(e) p = 5 (j) p = 5

Figure F.23: Results of precedent methods to approximate the red geometric curve () with theblack curved Bézier block edge () on first analytical curve.

F. BÉZIER BLOCK EDGE CURVING ANALYSIS 179
Curve 2

{
y = r(1− cos(θ)), x = r sin(θ), θ = xπ

2 if − 0.1 ≤ x ≤ r
y = r if r < x < 1

(4.13)

The result obtained using the first approach illustrates that this naive method is not suffi-
cient to capture the geometric curvature using a simple interpolated positions set. Even when
increasing the degree, the curve is never captured. The second method proposed rectify the
phenomena. However, still many control points are needed in order to capture the left part of
the curve. The last method allows to capture the high curvature of the geometric curve with
fewer control points. However, the Bézier curve oscillations (see Fig. F.24.q, and r) show the
importance to keep control over the tangent at the extrimities (which is not the case here).

Method 1 Method 2 Method 3

(a) p = 1 (g) p = 1 (m) p = 1

(b) p = 2 (h) p = 2 (n) p = 2

(c) p = 3 (i) p = 3 (o) p = 3

(d) p = 4 (j) p = 4 (p) p = 4

(e) p = 5 (k) p = 5 (q) p = 5

(f) p = 6 (l) p = 6 (r) p = 6

Figure F.24: Results of precedent methods to approximate the red geometric curve () with theblack curved Bézier block edge () on second analytical curve.

180 APPENDIX

Curve 3

The equation of the last curve we present here is given by

y = 0.4 sin(xπ), (4.14)
with x ∈ [0, 1]. The results on this curve (see Fig. F.25) illustrate well the problem of the naive
projection method. If we take a look at the first method, for order p=2 (see Fig. F.25.b), we
clearly see that the projected position of the middle control point on the geometric curve ()
is not where expected at the top of the bump, but rather on the left part of the curve. This is
because we project the control point on the closest point of the geometric curve.

This is not enough if we expect to correct this behavior using the second approach. Using
the second method, for a degree p=2, the computation is the same as with the first method.
The result of the Bézier curve () of Figure F.25.b and F.25g are the same. In the case
of the second method, we build the higher-order Bézier curve on the precedent ones. So the
p= 3 Bézier curve of Figure F.25.h is built starting from the one of Figure F.25.g. The two
middle control points of the p=3 are placed on the p=2 one. They are placed uniformly in the
parametrical space. Naturally, due to the shape of the p=2 Bézier curve () of Figure F.25.g
pulled on the left side, the density of the following control points will focus in this area. Even
if we successfully capture the geometric curve shape (see Fig. F.25.j), all the control points
are concentrated on the left part of the curve. Consequently, if we subdivide this Bézier curve,
most of the final nodes will focus on the left part of the curve.

We correct this behavior using the last method presented in this part (see Fig. F.25.p).
However, except in case p = 2, we do not control the tangent normal to the curve (see
Fig. F.25.m,n,o). We probably want to keep control over that tangent; the question is how do
we manage to choose the magnitude of the tangent vector in case p > 2 to approximate the
curve most accurately.

F. BÉZIER BLOCK EDGE CURVING ANALYSIS 181

Method 1 Method 2 Method 3

(a) p = 1 (f) p = 1 (k) p = 1

(b) p = 2 (g) p = 2 (l) p = 2

(c) p = 3 (h) p = 3 (m) p = 3

(d) p = 4 (i) p = 4 (n) p = 4

(e) p = 5 (j) p = 5 (o) p = 5

Figure F.25: Results of precedent methods to approximate red geometric curve () with blackcurved Bézier block edge () on third analytical curve.

182 APPENDIX

G Line-Sweeping Smoothing

(a) Without boundary layer smoothing (b) With boundary layer smoothing
Figure G.26: Comparison of the near wall mesh before and after smoothing.

Even if the block edges were placed in an orthogonal way, the computation remains local
for each block corner. Consequently, there is no reason for the resulting mesh to be orthogonal
to the wall (see Fig. G.26.a). At this stage, we perform a smoothing algorithm on the boundary
layer blocks with an edge on ∂ΩV . This smoothing aims to enhance the orthogonality of the
first cells in the block and is only available in this work in 2D. The smoothing algorithm [RBO22]
is performed on each block. It is a modification of the Line-Sweeping method introduced by J.
YAO [Yao13, YS16], specifically developed for structured meshes.

ni−1,j−1

ni−1,j

ni−1,j+1

ni,j+1 ni+1,j+1

ni+1,j

ni+1,j−1ni,j−1

nt
i,j

Vj+1

Vj

Vj−1

Hi+1Hi

Hi−1

X2

−→n1

−→n2

−→n

X1

nt+1
i,j

Figure G.27: Modified Line-Sweeping method on an internal node in a block.
The Line-Sweeping method is a geometric, local, iterative, and fully explicit method that

aims to uniformize the cell sizes of a block. Let B be a block of size Nx ×Ny, and ni,j be a
mesh node in B with 0 < i < Nx − 1 and 0 < j < Ny − 14. To compute the new position at
the iteration t + 1 by the Line-Sweeping, we consider the stencil made of the six black nodes

4which means ni,j is not a block boundary mesh node.

G. LINE-SWEEPING SMOOTHING 183
on Figure G.27. From this stencil, six points are computed, the three plotted in red () (Vj−1,
Vj , Vj+1) and the three in green () (Hi−1, Hi, Hi+1). Red points are placed in the middle
of each vertical branch. For instance, Vj+1 is in the middle of the branch made up of the three
nodes ni−1,j+1, ni,j+1, ni+1,j+1. In the same way, the three green points are placed in the
middle of each horizontal branch. For instance, Hi−1 is at the middle of the branch ni−1,j−1,
ni−1,j , ni−1,j+1. From these six points, two branches of two segments each are built, the red
one (Vj−1, Vj , Vj+1) and the green one (Hi−1, Hi, Hi+1). The Line-Sweeping places the new
position of the node ni,j at the iteration t+ 1 as being the intersection of these two branches,
represented by the orange point () X2. A damping coefficient θd ∈ [0, 1] chosen by the user
can be added to enhance the convergence.

As the Line-Sweeping does not provide the near-wall orthogonality needed for this work,
a modification was introduced in [RBO22]. Assuming the block edge on the wall is at the
index j = 0. For each node ni,j as the one in Figure G.27, we compute the position X2

with the Line-Sweeping method, and another orange point () X1 is placed. Two vectors
−→n1 and −→n2 () are computed, normal to the respective segments [ni−1,j−1, ni,j−1], and
[ni,j−1, ni−1,j−1]. Then, the sum −→n = −→n1 +

−→n2 is considered to place the point X1. This new
point is at the intersection of the dashed orange line () passing through the point ni,j−1

and carried by the vector and the green branch. A new orange branch X1, n
t
i,j , X2 ()

is considered. According to the index j of the node considered in the block, the new point
nt+1
i,j is placed on the orange branch at the position pt+1

i,j = αγX1 + (1− γ)X2. In this work,
γ = (j−1

6(Ny−1))
0.01. This way, the closer the node is to the wall, the stronger the orthogonality

is. Figure G.26 illustrates how this smoothing stage improves the wall orthogonality.

184 APPENDIX

H Shock Abacus

Shock

Vehicleθ
β

Flow −→u∞

Figure H.28: Deflection angle θ and oblique shock ().
Figure H.28 represents an oblique shock () that develops in front of the wedge ob-

ject (). In this specific case, well-known tables [rs53] give the analytical solution of the shock
angle β (see Fig. H.29), and the constant Mach number in areas upstream and downstream
the shock wave (see Fig. H.30). The deflection angle θ is obtained through a combination of
the flow Angle of Attack (equal to 0° in this case) and the wedge geometric feature.

In Figure H.29, we can find the shock position β value at the intersection between the
abscissa deflection angle θ, and the isoline corresponding to the upsteam flow −→u∞ Mach number.
The β value is read on the ordinate axis. Figure H.30 gives the shock wave downstream Mach
number in the specific case of a perfect gas. To know the expected downstream Mach number
value, we look for the intersection between the abscissa deflection angle value θ and the isoline
corresponding to our upstream Mach number.

H. SHOCK ABACUS 185

Figure H.29: Shock abacus [rs53].

186 APPENDIX

Figure H.30: Mach number abacus [rs53].

Bibliography

[AAB+21] Robert Anderson, Julian Andrej, Andrew Barker, Jamie Bramwell, Jean-Sylvain
Camier, Jakub Cerveny, Veselin Dobrev, Yohann Dudouit, Aaron Fisher, Tzanio
Kolev, et al. Mfem: A modular finite element methods library. Computers &
Mathematics with Applications, 81:42–74, 2021.

[AAB+24] Julian Andrej, Nabil Atallah, Jan-Phillip Bäcker, Jean-Sylvain Camier, Dylan
Copeland, Veselin Dobrev, Yohann Dudouit, Tobias Duswald, Brendan Keith, Do-
hyun Kim, et al. High-performance finite elements with mfem. The International
Journal of High Performance Computing Applications, page 10943420241261981,
2024.

[AADLC91] D Aymer, T Alziary, Luigi De Luca, and G Carlomagno. Experimental study of
the flow around a double ellipsoid configuration. In Hypersonic Flows for Reentry
Problems: Volume II: Test Cases—Experiments and Computations Proceedings of
a Workshop Held in Antibes, France, 22–25 January 1990, pages 335–357, 1991.

[AL16] Frédéric Alauzet and Adrien Loseille. A decade of progress on anisotropic mesh
adaptation for computational fluid dynamics. Computer-Aided Design, 72:13–39,
2016.

[Alt04] Stephen Alter. A structured grid quality measure for simulated hypersonic flows.
In 42nd AIAA aerospace sciences meeting and exhibit, page 612, 2004.

[And89] John David Anderson. Hypersonic and high temperature gas dynamics. Aiaa,
1989.

[ATS17] Zaib Ali, Paul G Tucker, and Shahrokh Shahpar. Optimal mesh topology generation
for cfd. Computer Methods in Applied Mechanics and Engineering, 317:431–457,
2017.

[Bez86] Pierre Bezier. Courbes et surfaces, mathématiques et cao, 4. Hermès, Paris, 1986.

[BKMT23] Jorge-Luis Barrera, Tzanio Kolev, Ketan Mittal, and Vladimir Tomov. High-
order mesh morphing for boundary and interface fitting to implicit geometries.
Computer-Aided Design, 158:103499, 2023.

[Bla96] Ted Blacker. The cooper tool. 5th INTERNATIONAL MESHING ROUDTABLE,
1996, 1996.

[BLP+13] David Bommes, Bruno Lévy, Nico Pietroni, Enrico Puppo, Claudio Silva, Marco

187

188 BIBLIOGRAPHY

Tarini, and Denis Zorin. Quad-mesh generation and processing: A survey. Com-
puter Graphics Forum, 32(6):51–76, 2013.

[BM93] Ted D Blacker and Ray J Meyers. Seams and wedges in plastering: a 3-d hexahedral
mesh generation algorithm. Engineering with computers, 9:83–93, 1993.

[BM10] K. Beatty and N. Mukherjee. A transfinite meshing approach for body-in-white
analyses. In Proceedings of the 19th International Meshing Roundtable. Interna-
tional Meshing Roundtable, 2010.

[BS91] Ted D Blacker and Michael B Stephenson. Paving: A new approach to auto-
mated quadrilateral mesh generation. International journal for numerical methods
in engineering, 32(4):811–847, 1991.

[BSK21] Janis Born, Patrick Schmidt, and Leif Kobbelt. Layout embedding via combinato-
rial optimization. In Computer graphics forum, volume 40, pages 277–290. Wiley
Online Library, 2021.

[cad] Cadence [Software]. https://www.pointwise.com/. Accessed: 2023-04-08.

[Cal22] Simon Calderan. Génération interactive de maillages hexaédriques structurés par
blocs. PhD thesis, Université Paris-Saclay, 2022.

[Cam17] Marcel Campen. Partitioning surfaces into quadrilateral patches: A survey. In
Computer graphics forum, volume 36, pages 567–588. Wiley Online Library, 2017.

[Can92] Scott Canann. Plastering-a new approach to automated, 3-d hexahedral mesh
generation. In 33rd Structures, structural dynamics and materials conference,
page 2416, 1992.

[CDT16] John R Chawner, John Dannenhoffer, and Nigel J Taylor. Geometry, mesh gen-
eration, and the cfd 2030 vision. In 46th AIAA Fluid Dynamics Conference, page
3485, 2016.

[Cha09] William M Chan. Overset grid technology development at nasa ames research
center. Computers & Fluids, 38(3):496–503, 2009.

[Cou89] Jean Cousteix. Turbulence et couche limite. Editions Cépaduès, 1989.

[CWW17] Keenan Crane, Clarisse Weischedel, and Max Wardetzky. The heat method for
distance computation. Communications of the ACM, 60(11):90–99, 2017.

[DC59] Paul De Casteljau. Outillages méthodes calcul. Andr e Citro en Automobiles SA,
Paris, 4:25, 1959.

[DGP12] Jean-Antoine Désidéri, Roland Glowinski, and Jacques Périaux. Hypersonic Flows
for Reentry Problems: Volume II: Test Cases—Experiments and Computations
Proceedings of a Workshop Held in Antibes, France, 22–25 January 1990. Springer
Science & Business Media, 2012.

[DKK+19] Veselin Dobrev, Patrick Knupp, Tzanio Kolev, Ketan Mittal, and Vladimir Tomov.
The target-matrix optimization paradigm for high-order meshes. SIAM Journal on
Scientific Computing, 41(1):B50–B68, 2019.

https://www.pointwise.com/

BIBLIOGRAPHY 189
[DWQ24] Siqiang Deng, Yibin Wang, and Ning Qin. Cross-field structured adaptive mesh

using medial axis flow feature extraction. AIAA Journal, 62(1):247–262, 2024.

[EBSB19] Sébastien Esquieu, Elizabeth Benitez, Steven P Schneider, and Jean-Philippe Bra-
zier. Flow and stability analysis of a hypersonic boundary layer over an axisymmetric
cone cylinder flare configuration. In AIAA Scitech 2019 Forum, page 2115, 2019.

[EPC+16] Thomas D Economon, Francisco Palacios, Sean R Copeland, Trent W Lukaczyk,
and Juan J Alonso. Su2: An open-source suite for multiphysics simulation and
design. AIAA Journal, 54(3):828–846, 2016.

[esa] Europe space agency. https://www.esa.int/. Accessed: 2024-05-31.

[FA05] Pascal-Jean Frey and Frédéric Alauzet. Anisotropic mesh adaptation for cfd com-
putations. Computer methods in applied mechanics and engineering, 194(48-
49):5068–5082, 2005.

[FBL16] Xiao-Ming Fu, Chong-Yang Bai, and Yang Liu. Efficient volumetric polycube-map
construction. Computer Graphics Forum, 35(7):97–106, 2016.

[FCK16] Nicolò Frapolli, Shyam S Chikatamarla, and Ilya V Karlin. Entropic lattice boltz-
mann model for gas dynamics: Theory, boundary conditions, and implementation.
Physical Review E, 93(6):063302, 2016.

[Feu19] Rémi Feuillet. Embedded and high-order meshes: two alternatives to linear body-
fitted meshes. PhD thesis, Université Paris-Saclay, 2019.

[FG99] Pascal Jean Frey and Paul-Louis George. Maillages: applications aux éléments
finis. Hermès Science Publications Paris, France, 1999.

[FP16] Meire Fortunato and Per-Olof Persson. High-order unstructured curved mesh gen-
eration using the winslow equations. Journal of Computational Physics, 307:1–14,
2016.

[FXBH16] Xianzhong Fang, Weiwei Xu, Hujun Bao, and Jin Huang. All-hex meshing using
closed-form induced polycube. ACM Trans. Graph., 35(4):124:1–124:9, 2016.

[Gar02] Rao V Garimella. Mesh data structure selection for mesh generation and fea appli-
cations. International journal for numerical methods in engineering, 55(4):451–478,
2002.

[GB68] BJ Griffith and DE Boylan. Reynolds and mach number simulation of apollo and
gemini re-entry and comparison with flight. AGARD HYPERSONIC BOUNDARY
LAYERS AND FLOW FIELDS MAY 1968 (SEE N69-10186 01-01), 1968.

[GB12] Paul-Louis George and Houman Borouchaki. Sur les éléments finis quadrilatéraux
de degré 1 et 2. PhD thesis, INRIA, 2012.

[GJTP17] Xifeng Gao, Wenzel Jakob, Marco Tarini, and Daniele Panozzo. Robust hex-
dominant mesh generation using field-guided polyhedral agglomeration. ACM
Transactions on Graphics (TOG), 36(4):1–13, 2017.

https://www.esa.int/

190 BIBLIOGRAPHY

[gmd] GMDS: a c++ library for writing meshing algorithms [Software]. https://
github.com/LIHPC-Computational-Geometry/gmds.

[GMF11] J. Gould, D. Martineau, and R Fairey. Automated two-dimensional multiblock
meshing using the medial object. In Proceedings of the 20th International Meshing
Roundtable. Springer, 2011.

[gms] Gmsh[Software]. https://gmsh.info/.

[GO70] Nigel Gregory and CL O’reilly. Low-speed aerodynamic characteristics of naca
0012 aerofoil section, including the effects of upper-surface roughness simulating
hoar frost. ARC R & M, 1970.

[GPRPS16] Abel Gargallo-Peiró, Xevi Roca, Jaume Peraire, and Josep Sarrate. A distortion
measure to validate and generate curved high-order meshes on cad surfaces with
independence of parameterization. International Journal for Numerical Methods
in Engineering, 106(13):1100–1130, 2016.

[GR09] Christophe Geuzaine and Jean-François Remacle. Gmsh: A 3-d finite element mesh
generator with built-in pre-and post-processing facilities. International journal for
numerical methods in engineering, 79(11):1309–1331, 2009.

[GR24] Christophe Geuzaine and Jean-François Remacle. Geodesic meshing of closed
surfaces. In SIAM IMR24-SIAM International Meshing Roundtable Workshop 2024,
2024.

[GSP19] Xifeng Gao, Hanxiao Shen, and Daniele Panozzo. Feature preserving octree-based
hexahedral meshing. In Computer graphics forum, volume 38, pages 135–149.
Wiley Online Library, 2019.

[GSZ11] James Gregson, Alla Sheffer, and Eugene Zhang. All-hex mesh generation via
volumetric polycube deformation. Computer Graphics Forum, 30(5):1407–1416,
2011.

[HJS+14] Jin Huang, Tengfei Jiang, Zeyun Shi, Yiying Tong, Hujun Bao, and Mathieu
Desbrun. ℓ1-based construction of polycube maps from complex shapes. ACM
Trans. Graph., 33(3):25:1–25:11, 2014.

[HQZ13] Kangkang Hu, Jin Qian, and Yongjie Zhang. Adaptive all-hexahedral mesh gener-
ation based on a hybrid octree and bubble packing. In Proceedings of International
Meshing Roundtable, 2013.

[HZ16] Kangkang Hu and Yongjie Jessica Zhang. Centroidal voronoi tessellation based
polycube construction for adaptive all-hexahedral mesh generation. Computer
Methods in Applied Mechanics and Engineering, 305:405 – 421, 2016.

[ICE] ICEM CFD [Software]. https://dl.cfdexperts.net/cfd_resources/Ansys_
Documentation/ICEM%20CFD/Ansys_ICEM_CFD_Users_Manual.pdf. Accessed:
2024-06-17.

[ISS09] Yasushi Ito, Alan M Shih, and Bharat K Soni. Octree-based reasonable-quality

https://github.com/LIHPC-Computational-Geometry/gmds
https://github.com/LIHPC-Computational-Geometry/gmds
https://gmsh.info/
https://dl.cfdexperts.net/cfd_resources/Ansys_Documentation/ICEM%20CFD/Ansys_ICEM_CFD_Users_Manual.pdf
https://dl.cfdexperts.net/cfd_resources/Ansys_Documentation/ICEM%20CFD/Ansys_ICEM_CFD_Users_Manual.pdf

BIBLIOGRAPHY 191
hexahedral mesh generation using a new set of refinement templates. International
Journal for Numerical Methods in Engineering, 77(13):1809–1833, 2009.

[JAK15] Thomas J Juliano, David Adamczak, and Roger L Kimmel. Hifire-5 flight test
results. Journal of Spacecraft and Rockets, 52(3):650–663, 2015.

[KET+06] Patrick Michael Knupp, CD Ernst, David C Thompson, CJ Stimpson, and
Philippe Pierre Pebay. The verdict geometric quality library. Technical report,
Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA, 2006.

[KKSW22] Steve L Karman, Kristen Karman-Shoemake, and Carolyn D Woeber. Mixed order
mesh curving. In Mesh Generation and Adaptation: Cutting-Edge Techniques,
pages 1–21. Springer, 2022.

[KLF16] Nicolas Kowalski, Franck Ledoux, and Pascal Frey. Smoothness driven frame field
generation for hexahedral meshing. Computer-Aided Design, 72:65–77, 2016.

[Knu00] Patrick M Knupp. Achieving finite element mesh quality via optimization of the
jacobian matrix norm and associated quantities. part ii—a framework for volume
mesh optimization and the condition number of the jacobian matrix. International
Journal for numerical methods in engineering, 48(8):1165–1185, 2000.

[Knu01] Patrick M Knupp. Algebraic mesh quality metrics. SIAM journal on scientific
computing, 23(1):193–218, 2001.

[Knu07] Patrick Knupp. Remarks on mesh quality. Technical report, Sandia National
Lab.(SNL-NM), Albuquerque, NM (United States), 2007.

[Knu20] Patrick Knupp. Metric type in the target-matrix mesh optimization paradigm.
Technical report, Lawrence Livermore National Lab.(LLNL), Livermore, CA
(United States), 2020.

[Knu22] Patrick Knupp. Geometric parameters in the target matrix mesh optimization
paradigm. Partial Differential Equations in Applied Mathematics, 5:100390, 2022.

[Kow13] Nicolas Kowalski. Domain partitioning using frame fields: applications to quadri-
lateral and hexahedral meshing. PhD thesis, Paris 6, 2013.

[Küc65] Dietrich Küchemann. Hypersonic aircraft and their aerodynamic problems.
Progress in Aerospace Sciences, 6:271–353, 1965.

[LAA10] Adrien Loseille, Dervieux Alain, and Frédéric Alauzet. Fully anisotropic goal-
oriented mesh adaptation for 3d steady euler equations. Journal of computational
physics, 229(8):2866–2897, 2010.

[LBK16] Max Lyon, David Bommes, and Leif Kobbelt. Hexex: robust hexahedral mesh
extraction. ACM Trans. Graph., 35(4):123, 2016.

[LG97] Shang-Sheng Liu and Rajit Gadh. Automatic hexahedral mesh generation by re-
cursive convex and swept volume decomposition. In 6th international meshing
roundtable, Sandia National Laboratories, pages 217–231. Citeseer, 1997.

192 BIBLIOGRAPHY

[LGT01] Yong Lu, Rajit Gadh, and Timothy J Tautges. Feature based hex meshing method-
ology: feature recognition and volume decomposition. Computer-Aided Design,
33(3):221–232, 2001.

[LPC21] Marco Livesu, Luca Pitzalis, and Gianmarco Cherchi. Optimal dual schemes for
adaptive grid based hexmeshing. ACM Transactions on Graphics (TOG), 41(2):1–
14, 2021.

[LR01] Hans Wolfgang Liepmann and Anatol Roshko. Elements of gasdynamics. Courier
Corporation, 2001.

[LVS+13] Marco Livesu, Nicholas Vining, Alla Sheffer, James Gregson, and Riccardo Scateni.
Polycut: Monotone graph-cuts for polycube base-complex construction. ACM
Trans. Graph., 32(6):171:1–171:12, 2013.

[LWB08] Franck Ledoux, Jean-Claude Weill, and Yves Bertrand. Gmds: A generic mesh
data structure. 17th International Meshing Roundtable, 2008.

[LZC+18] Heng Liu, Paul Zhang, Edward Chien, Justin Solomon, and David Bommes.
Singularity-constrained octahedral fields for hexahedral meshing. ACM Trans.
Graph., 37(4):93, 2018.

[Mar09] Loïc Maréchal. Advances in octree-based all-hexahedral mesh generation: handling
sharp features. In Proceedings of the 18th international meshing roundtable, pages
65–84. Springer, 2009.

[MBST96] Lai Mingwu, Steven E Benzley, Greg Sjaardema, and Tim Tautges. A multiple
source and target sweeping method for generating all-hexahedral finite element
meshes. In Proceedings, 5th International Meshing Roundtable, volume 96, pages
217–225. Citeseer, 1996.

[MCM+20] Julian Marcon, Giacomo Castiglioni, David Moxey, Spencer J Sherwin, and
Joaquim Peiró. rp-adaptation for compressible flows. International Journal for
Numerical Methods in Engineering, 121(23):5405–5425, 2020.

[MDK+24] Ketan Mittal, Veselin A Dobrev, Patrick Knupp, Tzanio Kolev, Franck Ledoux,
Claire Roche, and Vladimir Z Tomov. Mixed-order meshes through rp-adaptivity
for surface fitting to implicit geometries. In Proceedings of the 2024 International
Meshing Roundtable (IMR), pages 118–131. SIAM, 2024.

[Men92] Florian R Menter. Improved two-equation k-omega turbulence models for aerody-
namic flows. Technical report, 1992.

[Men94] Florian R Menter. Two-equation eddy-viscosity turbulence models for engineering
applications. AIAA journal, 32(8):1598–1605, 1994.

[mfe] MFEM: Modular finite element methods [Software]. https://mfem.org.

[MGSP15] D Moxey, MD Green, SJ Sherwin, and J Peiró. An isoparametric approach to high-
order curvilinear boundary-layer meshing. Computer Methods in Applied Mechanics
and Engineering, 283:636–650, 2015.

https://mfem.org

BIBLIOGRAPHY 193
[Mit96] Scott A Mitchell. A characterization of the quadrilateral meshes of a surface which

admit a compatible hexahedral mesh of the enclosed volume. In STACS 96: 13th
Annual Symposium on Theoretical Aspects of Computer Science Grenoble, France,
February 22–24, 1996 Proceedings 13, pages 465–476. Springer, 1996.

[Mit21] S Mitchell. Incremental Interval Assignment by Integer Linear Algebra. proc. of
the International Meshing Roundtable, October 2021.

[MJK64] John F McCarthy Jr and Toshi Kubota. A study of wakes behind a circular cylinder
at m equal 5.7. AIAA journal, 2(4):629–636, 1964.

[MLP19] Claudio Mancinelli, Marco Livesu, and Enrico Puppo. A comparison of methods for
gradient field estimation on simplicial meshes. Computers & Graphics, 80:37–50,
2019.

[NRP11a] M. Nieser, U. Reitebuch, and K. Polthier. Cubecover–parameterization of 3d
volumes. Computer Graphics Forum, 30(5):1397–1406, 2011.

[NRP11b] Matthias Nieser, Ulrich Reitebuch, and Konrad Polthier. Cubecover–
parameterization of 3d volumes. In Computer graphics forum, volume 30, pages
1397–1406. Wiley Online Library, 2011.

[OS00] Steven J Owen and Sunil Saigal. H-morph: an indirect approach to advancing
front hex meshing. International Journal for Numerical Methods in Engineering,
49(1-2):289–312, 2000.

[OSCS99] Steven J Owen, Matthew L Staten, Scott A Canann, and Sunil Saigal. Q-morph:
an indirect approach to advancing front quad meshing. International journal for
numerical methods in engineering, 44(9):1317–1340, 1999.

[Owe98] Steven J Owen. A survey of unstructured mesh generation technology. IMR,
239(267):15, 1998.

[PA97] Mark A Price and Cecil G Armstrong. Hexahedral mesh generation by medial
surface subdivision: Part ii. solids with flat and concave edges. International
Journal for Numerical Methods in Engineering, 40(1):111–136, 1997.

[PAS95] Mark A Price, Cecil G Armstrong, and MA Sabin. Hexahedral mesh generation by
medial surface subdivision: Part i. solids with convex edges. International Journal
for Numerical Methods in Engineering, 38(19):3335–3359, 1995.

[PBS20] David Palmer, David Bommes, and Justin Solomon. Algebraic representations for
volumetric frame fields. ACM Transactions on Graphics (TOG), 39(2):1–17, 2020.

[PCS+22] Nico Pietroni, Marcel Campen, Alla Sheffer, Gianmarco Cherchi, David Bommes,
Xifeng Gao, Riccardo Scateni, Franck Ledoux, Jean-François Remacle, and Marco
Livesu. Hex-mesh generation and processing: A survey. ACM Trans. Graph., jul
2022. Just Accepted.

[PLC+21] Luca Pitzalis, Marco Livesu, Gianmarco Cherchi, Enrico Gobbetti, and Riccardo
Scateni. Generalized adaptive refinement for grid-based hexahedral meshing. ACM
Transactions on Graphics (TOG), 40(6):1–13, 2021.

194 BIBLIOGRAPHY

[Pro22] François Protais. Maillage à dominante Polycube. PhD thesis, Université de
Lorraine, 2022.

[PSG16] Roman Poya, Ruben Sevilla, and Antonio J Gil. A unified approach for a pos-
teriori high-order curved mesh generation using solid mechanics. Computational
Mechanics, 58:457–490, 2016.

[QLYT21] Han Qi, Xinliang Li, Changping Yu, and Fulin Tong. Direct numerical simulation
of hypersonic boundary layer transition over a lifting-body model hytrv. Advances
in Aerodynamics, 3:1–21, 2021.

[Qua16] William Roshan Quadros. Laytracks3d: A new approach for meshing general solids
using medial axis transform. Computer-Aided Design, 72:102–117, 2016.

[RBHL23] Claire Roche, Jérôme Breil, Thierry Hocquellet, and Franck Ledoux. Block-
structured quad meshing for supersonic flow simulations. In SIAM International
Meshing Roundtable Workshop 2023 (SIAM IMR23), Amsterdam, The Nether-
lands, March 2023.

[RBO22] Claire Roche, Jerome Breil, and Marina Olazabal. Mesh regularization of ablating
hypersonic vehicles. In 8th European Congress on Computational Methods in
Applied Sciences and Engineering (ECCOMAS 2022), Oslo, Norway, June 2022.

[RG11] Eloi Ruiz-Gironés. Automatic hexahedral meshing algorithms: from structured to
unstructured meshes. PhD thesis, Universitat Politècnica de Catalunya (UPC),
2011.

[RGR22] Eloi Ruiz-Gironés and Xevi Roca. Automatic penalty and degree continuation
for parallel pre-conditioned mesh curving on virtual geometry. Computer-Aided
Design, 146:103208, 2022.

[RGRS12] Eloi Ruiz-Gironés, Xevi Roca, and Josep Sarrate. The receding front method
applied to hexahedral mesh generation of exterior domains. Engineering with com-
puters, 28(4):391–408, 2012.

[Rob87] John Robinson. Cre method of element testing and the jacobian shape parameters.
Engineering Computations, 4(2):113–118, 1987.

[rs53] Ames research staff. Raport 1135: Equations, tables, and charts for compressible
flow. Technical report, Ames Aeronautical Laboratory, 1953.

[RSL16] Nicolas Ray, Dmitry Sokolov, and Bruno Lévy. Practical 3d frame field generation.
ACM Transactions on Graphics (TOG), 35(6):1–9, 2016.

[Rum21] Christopher Rumsey. 2DN00: 2D NACA 0012 Airfoil Validation Case. https:
//turbmodels.larc.nasa.gov/naca0012_val.html, 2021. [Online; accessed
29-January-2024].

[SBM21] Benjamin M Simmons, Pieter G Buning, and Patrick C Murphy. Full-envelope
aero-propulsive model identification for lift+ cruise aircraft using computational
experiments. In AIAA Aviation 2021 Forum, page 3170, 2021.

https://turbmodels.larc.nasa.gov/naca0012_val.html
https://turbmodels.larc.nasa.gov/naca0012_val.html

BIBLIOGRAPHY 195
[Sca07] Leonardo C Scalabrin. Numerical simulation of weakly ionized hypersonic flow over

reentry capsules. PhD thesis, Citeseer, 2007.

[SCB92] Micheal B Stephenson, Scott A Canann, and Ted D Blacker. Plastering: a new
approach to automated, 3d hexahedral mesh generation. Technical report, Sandia
National Labs., Albuquerque, NM (United States), 1992.

[Sch96] Robert Schneiders. A grid-based algorithm for the generation of hexahedral element
meshes. Engineering with computers, 12:168–177, 1996.

[Sch97] Robert Schneiders. An algorithm for the generation of hexahedral element meshes
based on an octree technique. In 6th International Meshing Roundtable, pages
195–196. Citeseer, 1997.

[SCO99] Matthew L Staten, Scott A Canann, and Steven J Owen. Bmsweep: locating
interior nodes during sweeping. Engineering with Computers, 15:212–218, 1999.

[SD13] A Sobachkin and G Dumnov. Numerical basis of cad-embedded cfd. In NAFEMS
World Congress, volume 19, 2013.

[Set99] James A Sethian. Fast marching methods. SIAM review, 41(2):199–235, 1999.

[She09] Jason F Shepherd. Conforming hexahedral mesh generation via geometric capture
methods. In Proceedings of the 18th international meshing roundtable, pages
85–102. Springer, 2009.

[SKH+21] Ney R Secco, Gaetan KW Kenway, Ping He, Charles Mader, and Joaquim RRA
Martins. Efficient mesh generation and deformation for aerodynamic shape opti-
mization. AIAA Journal, 59(4):1151–1168, 2021.

[SKO+10] Matthew L Staten, Robert A Kerr, Steven J Owen, Ted D Blacker, Marco Stupazz-
ini, and Kenji Shimada. Unconstrained plastering—hexahedral mesh generation
via advancing-front geometry decomposition. International journal for numerical
methods in engineering, 81(2):135–171, 2010.

[SKOB06] Matthew L Staten, Robert A Kerr, Steven J Owen, and Ted D Blacker. Un-
constrained paving and plastering: Progress update. In proceedings of the 15th
International Meshing Roundtable, pages 469–486. Springer, 2006.

[SLK04] Yi Su, KH Lee, and A Senthil Kumar. Automatic hexahedral mesh generation
for multi-domain composite models using a hybrid projective grid-based method.
Computer-Aided Design, 36(3):203–215, 2004.

[Smi99] Robert E Smith. Transfinite interpolation (tfi) generation systems. Handbook of
grid generation, pages 3–1, 1999.

[SOB05] Matthew L Staten, Steven J Owen, and Ted D Blacker. Unconstrained paving &
plastering: A new idea for all hexahedral mesh generation. In proceedings of the
14th International Meshing Roundtable, pages 399–416. Springer, 2005.

[SS96] Bih-Yaw Shih and Hiroshi Sakurai. Automated hexahedral mesh generation by
swept volume decomposition and recomposition. In 5th International meshing
roundtable, volume 280. Citeseer, 1996.

196 BIBLIOGRAPHY

[SSS08] Matthew L Staten, Jason F Shepherd, and Kenji Shimada. Mesh matching–
creating conforming interfaces between hexahedral meshes. In Proceedings of
the 17th International Meshing Roundtable, pages 467–484. Springer, 2008.

[SU2] SU2 [Software]. https://su2code.github.io/.

[TF89] LM Taylor and DP Flanagan. Pronto 3d: A three-dimensional transient solid dy-
namics program. Technical report, Sandia National Lab.(SNL-NM), Albuquerque,
NM (United States), 1989.

[THCM04] Marco Tarini, Kai Hormann, Paolo Cignoni, and Claudio Montani. Polycube-maps.
ACM Trans. Graph., 23(3), 2004.

[Tho12] Hugh Thornburg. Overview of the pettt workshop on mesh quality/resolution,
practice, current research, and future directions. In 50th AIAA Aerospace Sciences
Meeting including the New Horizons Forum and Aerospace Exposition, page 606,
2012.

[TLR16] Thomas Toulorge, Jonathan Lambrechts, and Jean-François Remacle. Optimizing
the geometrical accuracy of curvilinear meshes. Journal of Computational Physics,
310:361–380, 2016.

[TSW98] Joe F Thompson, Bharat K Soni, and Nigel P Weatherill. Handbook of grid
generation. CRC press, 1998.

[WL16] Jean-Christophe Weill and Franck Ledoux. Towards an automatic and reliable
hexahedral meshing, July, 2016. Tetrahedron V, Liège.

[XSHM13] Zhong Q Xie, Ruben Sevilla, Oubay Hassan, and Kenneth Morgan. The generation
of arbitrary order curved meshes for 3d finite element analysis. Computational
Mechanics, 51:361–374, 2013.

[Yao13] Jin Yao. A mesh relaxation study and other topics. Technical report, Lawrence
Livermore National Lab.(LLNL), Livermore, CA (United States), 2013.

[YS16] Jin Yao and Douglas Stillman. An equal-space algorithm for block-mesh improve-
ment. Procedia engineering, 163:199–211, 2016.

[ZB05] Yongjie Zhang and Chandrajit Bajaj. Adaptive and quality quadrilateral/hexahedral
meshing from volumetric imaging data. In Proceedings, 13th international meshing
roundtable. Sandia National Laboratories, pages 365–376, 2005.

https://su2code.github.io/

	AKNOWLEGMENTS
	LIST OF TERMS AND ACRONYMS
	RÉSUMÉ EN FRANÇAIS
	Introduction
	Génération de Structure de Blocs par Avancées de Fronts
	Courbure d'une Structure de Blocs & Génération de Maillages
	Analyse de la Qualité des Maillages Générés
	Conclusion & Perspectives
	INTRODUCTION
	Numerical Simulation in a Nutshell
	Computational Fluid Dynamics for Atmospheric Re-Entry
	Principal Steps of our Approach

	DEFINITIONS & STATE OF THE ART
	Mesh Definitions & Terminology
	Mesh Generalities
	High-Order Meshes
	Meshing Tools
	Mesh Quality

	Mesh & Geometry Representation
	Cellular Mesh Representation
	Geometry Representation & Geometric Classification

	Computational Fluid Dynamics for Atmospheric Re-Entry
	Mathematical Modeling for Computational Fluid Dynamics
	Mesh for Computational Fluid Dynamics

	Hexahedral Mesh Generation: State of the Art

	ADVANCING FRONT FOR LINEAR BLOCK STRUCTURE GENERATION
	Fields Computation
	Distance Fields
	Vector Fields

	Block Layers Extrusion
	Surface Geometry Block Structure
	Generation of One Layer

	Conflict Management on a 2D Layer
	Conflict Management on a 3D Layer
	Front Edges Classification
	Patterns Considered to Solve Conflicts
	Paths of Feature Block Edges on a Front

	Results
	Perspectives

	BLOCK STRUCTURE CURVING
	Mixed-Order Mesh Adaptivity for Surface Alignment
	Target-Matrix Optimization Paradigm (TMOP)
	rp-Adaptivity for Interface Alignment
	Application to Block Structures

	Curving of the Structure Using Bézier Elements
	Bézier Elements
	Block Curving to Interpolate Boundaries

	Mesh Generation from the Curved Block Structure
	Interval Assignment

	Perspectives

	BLOCK-STRUCTURED MESHES QUALITY ANALYSIS
	Geometrical Mesh Quality
	HyTRV
	RAM-C II
	HIFiRE-5
	Vehicle with wings

	Application to Computational Fluid Dynamics Simulations
	Subsonic 2D NACA 0012 Airfoil
	Supersonic 2D Diamond Shaped Airfoil
	Hypersonic Stardust 2D
	Supersonic RAM-C II 3D
	CONCLUSION
	Perspectives
	APPENDIX
	Transfinite Interpolation
	Geometries Guide
	Apollo Experimental Model
	Caretwing
	Double Ellipsoid
	HIFiRE-5
	Hypersonic Transition Research Vehicle (HyTRV)
	Mars Entry Spacecraft Experimental Model
	NACA 0012 Airfoil
	RAM-C II Spacecraft
	Sphere Cone Cylinder Flare (CCF)
	Vector Field Impact Analysis
	Axisymmetry Block-Structured Mesh Generation
	Block Structure Smoothing
	Bézier Block Edge Curving Analysis
	Methods to Curve Bézier Block Edges
	Methods Comparison on Curve Examples

	Line-Sweeping Smoothing
	Shock Abacus

