
 

 

 

Skin Cancer segmentation and 
Detection Using Total Variation 

and Multiresolution Analysis  
 
 

Thèse de doctorat de Universiti Teknologi PETRONAS et  l'Université 
Paris-Saclay préparée à l’universiti Teknologi PETRONAS et 

l’université d’Evry Val d’Essonne 
 
 

École doctorale n°580 Sciences et Technologies de l’Information et de 
la Communication (STIC) 

Spécialité de doctorat: Traitement du signal et des Images 

 
 

Thèse présentée et soutenue à Seri Iskandar, Perak, Malaisie, le 18 décembre 2017, par 

 

Faouzi Adjed 
 
Composition du Jury : 
 
Rachid Jennane 
Professeur des universités, Université d’Orléans   Président, Rapporteur 

Nur Ashidi Bin Mat Isa 
Full Professor, Universiti Sains Malaysia    Rapporteur 

Vincent Vigneron 
Maître de conférences - HDR, Université d’Evry Val d’Essonne  Examinateur 

Mahmod Bin Othman 
Associate Professor, Universiti Teknologi PETRONAS   Examinateur 

Fakhreddine Ababsa 
Professeur des universités, Arts et Métiers ParisTech   Directeur de thèse 

Ibrahima Faye 
Associate Professor, Universiti Teknologi PETRONAS  Co-Directeur de thèse 

NNT: 2017SACLE042 



Université Paris-Saclay  
Espace Technologique / Immeuble Discovery 
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France  

 

Titre : Segmentation et Détection du Cancer de la Peau en Utilisant la Variation Totale et l’Analyse 

Multi-résolution 

Mots clés : Segmentation, Détection, Variation Totale, Analyse Multi-résolution, Imagerie médicale 

Résumé : Les  décès du cancer de la peau sont 

majoritairement des mélanomes malins. Il est 

considéré comme l’un des plus dangereux 

cancer. A ses débuts, les mélanomes malins sont 

traités avec des simples biopsies et sont 

complètement curable. Pour cela, une détection 

précoce est la meilleure solution pour réduire 

ses conséquences désastreuses. Imagerie 

médicale telle que la dermoscopie et les 

caméras à images standard sont les outils 

disponibles les plus adaptées pour diagnostiquer 

précocement les mélanomes. Le diagnostic 

assisté par ordinateur (CAD) est développé dans 

le but d’accompagner les radiologistes dans la 

détection et le diagnostic.  

Cependant, il y a un besoin d’améliorer la 

précision de la segmentation et de détection des 

lésions. Dans ce travail, le modèle de Chan et 

Vese a été adapté pour segmenter davantage les 

variations à l’intérieur des lésions avec un 

résultat très encouragent. La deuxième tâche 

consiste à extraire des caractéristiques afin de 

discriminer les mélanomes. Deux méthodes ont 

été développée, une se basant sur l’irrégularité 

des bords des lésions et l’autre par la fusion des 

caractéristiques  texturales et structurelles. Les 

résultats ont montrés de bonnes performances 

avec une précision de 86.54% et de 86.07%, 

respectivement.    
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Abstract : The vast majority of skin cancer 

deaths are due to malignant melanoma. It is 

considered as one of the most dangerous 

cancers. In its early stages, malignant 

melanoma is completely curable with a simple 

biopsy. Therefore, an early detection is the best 

solution to improve skin cancer prognostic. 

Medical imaging such as dermoscopy and 

standard camera images are the most suitable 

tools available to diagnose melanoma at early 

stages. To help radiologists in the diagnosis of 

melanoma cases, there is a strong need to 

develop computer aided diagnosis (CAD) 

systems. The accurate segmentation and 

classification of pigment skin lesions still 

remains a challenging task due to the various 

colors and structures developed randomly 

inside the lesions. The current work focused on 

two main tasks. In the first task, a new 

approach of the segmentation of skin lesions 

based on Chan and Vese model is developed. 

The model is adapted to segment the variations 

of the pigment inside the lesion and not only 

the main border. The subjective evaluation, 

applied on a database of standard camera 

images,  obtained  a  very  encouraging   results  

with 97.62% of true detection rate. In the 

second main task, two feature extraction 

methods were developed for the analysis of 

standard camera and dermoscopy images. The 

method developed for the standard camera skin 

cancer images is based on border irregularities, 

introducing two new concepts, which are 

valleys and crevasses as first and second level 

of the border irregularity. The method has been 

implemented on DermIs and DermQues, two 

databases of standard camera images, and 

achieved an accuracy of 86.54% with a 

sensitivity of 80% and a specificity of 95.45%. 

The second method consisted of a fusion of 

structural and textural features. The structural 

features were extracted from wavelet and 

curvelet coefficients, while the textural features 

were obtained from the local binary pattern 

operator. The method has been implemented on 

the PH2 database for dermoscopy images with 

1000-random sampling cross validation. The 

obtained results achieved an accuracy, a 

sensitivity and a specificity of 86:07%, 78.93% 

and 93.25%. Compared to the existing 

methods, the proposed methods in this work 

show very good performances. 
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CHAPTER 1

INTRODUCTION

1.1 Overview

Melanoma is the most dangerous abnormal skin tissue. Its treatment requires chemother-

apy and radiotherapy and it becomes more difficult to treat when it is in advanced stages

such as metastasis step [6], where one person die each 54 minutes [2]. The statistics

show that approximately 132, 000 melanoma cases and 2 to 3 millions of non-melanoma

cases [6,7] are reported annually in the world. In total, it accumulates to 1.6% of cancer

cases worldwide [8]. Despite the rarity of this diseases, the vast majority of persons

affected by malignant skin cancer deaths within two years [2]. As ozone levels are de-

pleted, the World Health Organization (WHO) [6] estimates that 10% of decrease in

ozone level will result in an additional of 300, 000 non melanoma and 4500 melanoma

cases. According to WHO and Lee et al. [9], Caucasian populations generally have a

much higher risk of getting skin cancer disease than dark-skinned populations. Natu-

rally, brown and black people can usually safely tolerate relatively high levels of sun

exposure without getting sunburns or greatly increasing their skin cancer risk. In con-

trast, people with pale or freckled skin, fair or red hair and blue eyes belong to the

highest risk group. Followed by people with dark hair and eyes who do not normally

get sunburns are at medium risk of skin cancer developing [6]. According to the World

Health Organization, the following items present a set of risk factors of skin cancer: fair

skin; blue, green or hazel eyes; light-coloured hair; tendency to burn rather than suntan;

history of severe sunburns; many moles and/or freckles; a family history of skin cancer.

In the United States and worldwide, skin cancer incidence is reported as one of the most
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increasing tumor. The risk of developing invasive melanoma was estimated to 1 in 39

of Caucasian men and 1 in 58 for Caucasian women in American society in 2010 [10].

1.1.1 Causes of Skin Cancer

Cancer starts when cells in the body begin to grow out of control. Cells in nearly any

part of the body can become cancer, and can then spread to other areas of the body [11].

Similarly, skin cancer is the uncontrolled growth of abnormal skin cells. It occurs when

unrepaired DNA damage to skin cells, most often caused by ultraviolet radiation from

sunshine or tanning beds, triggers mutations, or genetic defects, that lead the skin cells

to multiply rapidly and form malignant tumors [2].

1.1.2 Types of Skin Cancer

The multitude of benign and malignant melanoma complicates the recognition of skin

lesion cases. In the clinical practice, three main types of abnormal skin cells are noticed

i.e. Basic cell carcinoma, Squamous cell carcinoma and Melanoma [11, 12]. The Skin

Cancer Foundation (SCF) [2], further into these, characterizes three more kinds of ab-

normal cells, i.e., Actinic keratosis, Merkel cell carcinoma and Atypical moles, which

are less common. Figure 1.1 illustrates the six types of skin lesions. It notices also that

the atypical moles are the second most dangerous cells after melanoma cases.

Figure 1.1: Different kinds of skin cancer classified by the Skin Cancer Foundation [2]
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According to Skin Cancer Foundation [2], the difference between these abnormality

tissues are:

• Actinic Keratosis, also known as a solar keratosis, is a crusty and scaly growth.

It is considered as pre-cancer because if left alone, it could develop into a skin

cancer.

• Merkel cell carcinoma is a rare and aggressive skin cancer that is at high risk of

recurring and spreading (metastasizing) throughout the body. But, it is 40 times

rarer than melanoma.

• Basic cell carcinoma is the most occurring form of skin cancer. It often looks like

open sores, red patches, pink growths, shiny bumps or scares. This skin cancer

very rarely spreads.

• Squamous cell carcinoma is the second most common form of skin cancer. It

often looks like scaly red patches, open sores, elevated growths with a central

depression, or warts.

• Atypical moles are unusual-looking benign moles, also known as dysplastic nevi.

They may resemble melanoma, and people who have them are at increased risk

of developing melanoma in a mole or elsewhere on the body. They have 10 times

or more the risk of developing melanoma.

• Melanoma is the most dangerous form of skin cancer, these cancerous growths

develop when unrepaired DNA damage to skin cells, mostly caused by ultraviolet

radiation from sunshine or tanning beds, triggers mutations (genetic defects) that

lead the skin cells to multiply rapidly and form malignant tumors. The majority

of melanomas are black or brown, but they can also be skin-colored, pink, red,

purple, blue or white. If melanoma is recognized and treated early, it is almost

always curable, but if it is not, the cancer can advance and spread to other parts

of the body, where it becomes hard to treat and can be fatal.

It is noticed that the first cause of these skin cancer types are the damage of skin tissue
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from exposure to ultraviolet radiations [2, 6, 7, 11].

1.2 Medical Diagnosis

To recognize melanoma cases, dermatologists compare and analyze a multiple signs of

each tumor. Mostly, they use two scoring systems based on visual characteristics to

recognize the melanoma tissue, which are ABCDE rule [2,12–15] and Glascow 7-point

checklist / 7-point checklist [12, 16–18].

These two scoring systems are well known by medical experts and they constitute

the basic methods of comparison for image processing experts. Most of the developed

and explored methods are based on these systems, such as Bareiro et al. [19] and She et

al. [20] for ABCD rule, and Argenziano et al. [21] for 7-point checklist. The features

used in these systems are also explored separately in the goal of melanoma recognition,

for example, pigment network [8, 22] and vascular structure [23]. These systems are

summarized in the current chapter and detailed in the literature review chapter.

1.2.1 ABCD Rule

The skin cancer foundation explained the ABCD rule, called also ABCDE rule when

the evolving feature is available. The meaning used for each case is explained and

illustrated below:

• Asymmetry (A): The pigment is considered asymmetric if by drawing one vertical

or horizontal line, the two parts of the mole will not be similar.

Figure 1.2: Asymmetry of melanoma compared with benign lesion [2].
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• Border (B): More the pigment border is not smooth, more it can be considered as

malignant case.

Figure 1.3: Border irregularity between malignant and benign lesions [2].

• Color (C): Most benign pigments have one color (often brown color). Melanoma

has a variety of colors (black, red, blue and/or wight).

Figure 1.4: Color variation between melanoma and benign lesion [2].

• Diameter (D): Benign pigments have usually smaller diameter than malignant

ones. Melanoma is often greater than 6 mm, but it can be smaller.

Figure 1.5: Diameter in melanoma and benign lesion [2].

• Evolving (E): Over time, benign pigment looks the same. However, malignant

melanoma evolves or changes in size, shape, color and/or elevation.

Figure 1.6: Evolving of melanoma over time [2].
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Table 1.1: ABCD rule with the interval values of pi and the weight factor wi of each
component [1].

Feature Description Points pi
Weight
factor wi

sub-score
range

Asymmetry One value of 0.5 for each axis. 0− 2 1.3 0− 2.6

Border
Eight segment, one value of 1 for
each abrupt pigment cutoff.

0− 8 0.1 0− 0.8

Color
One value of 1 for each color:
white, red, light brown, dark brown,
blue-gray.

1− 6 0.5 0.5− 3

Dermoscopic
structures

One value for each structure: pig-
ment network, structureless area,
dots, globules, branched streaks.

1− 5 0.5 0.5− 2.5

Figures from 1.2 to 1.6 illustrate the five rules of ABCD/ABCDE rules showing

the difference between malignant and benign lesion. The real computation of ABCD

system is done only for the first four components using the following formula:

Sabcd =
4∑
i=1

wipi (1.1)

where wi and pi are the weight and the value attributed to each point. They are summa-

rized in table 1.1 as explained by Capdehourat et al. [1], according to Stolz et al. [14].

Knowing that the evolution of the lesion over time is the most missed data, then the

feature given by the item E is used only for visual comparison by dermatologists when

it is available.

The evaluation of ABCD rule is performed following equation (1.1) using the scores

given in the table 1.1 to classify the pigment into three cases, benign, clinically doubtful

and malignant [1]:
Sabcd < 4.75 then the pigment is benign

4.75 ≤ Sabcd ≤ 5.45 then the pigment is clinically doubful

Sabcd > 5.45 the pigment is malignant
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Table 1.1 expresses the description of each feature of the system and gives their

different point values and weight factors.

1.2.2 7-point Checklist

The 7-point checklist [17] and Glascow 7-point checklist system [18], summarized by

Capdehourat et al. [1] (see Figure 1.7) and Korotkov et al. [12], is another scoring

system based on seven criteria divided into two sets. For Glascow 7-point checklist, the

major criteria are changes in shape, size and color, and the minor criteria are diameter,

inflammation, crusting and sensory changes. The 7-point checklist criteria works in the

same way, with some differences and more details, as presented below:

• Atypical pigment network: Black, brown, or gray thickened and irregular lines

segments in the lesion.

• Blue-whitish veil: Irregular, confluent, gray-blue to whitish-blue diffuse pigmen-

tation that can be associated with pigment network alteration, dots/globules, or

streaks.

• Atypical vascular pattern: Linear-irregular and/or dotted red vessels not seen in

regression area.

• Irregular streaks: Pseudo pods or radial streaming irregularities arranged at the

periphery of lesion.

• Irregular pigmentation: Black, brown or gray featureless areas with irregular

shape and/or distribution.

• Irregular dots/Globules: Black brown, or gray rounded to oval, and variously

sized irregularity structures distributed in the lesion.

• Regression structures: White scar-like areas and/or blue pepper-like areas (gray-

blue areas and/or multiple blue-gray dots).
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Table 1.2: The major and minor criteria of 7-point checklist and the different weights
for each criterion [1].

Major criteria Score Minor criteria Score

Atypical pigment network 2 Irregular streaks 1
Blue-whitish veil 2 Irregular pigmentation 1
Atypical vascular pattern 2 Irregular dots/globules 1

Regression structures 1

Figure 1.7: 7-point checklist illustration [1].

For 7-point checklist, the scores given to each point, the same for Glascow 7-point

checklist, are 2 for major criteria and 1 for minor ones as summarized in table 1.2. The

evaluation of the score follows the following formula:

s7pc =
3∑
i=1

Mi +
4∑
j=1

mj (1.2)

where Mi and mj define the ith major and jth minor criteria respectively.

The classification following this system is also based on thresholding functions into

two different classes [1]:S7pc < 3 the pigment is benign

S7pc ≥ 3 the pigment is malignant

Table 1.2 details the major and minor criteria of 7-point checklist system.
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1.3 Computer Aided Diagnosis Systems

Computer Aided Diagnosis (CAD) systems have been developed in several contribu-

tions of medical imaging [24–26]. The objective of CAD systems is to provide a

computer output as a second opinion in order to assist radiologists on interpretation

to improve the accuracy of diagnosis and reduce the image reading time [27]. A CAD

system is generally identifying two types of systems depending upon its main func-

tion i.e. Computer Aided Detection (CADe) system and Computer Aided Diagnosis

(CADx) system. It is also explored for the early both detection and diagnosis [28]. A

CAD system is applied on different tumor images such as mammograms, dermoscopy,

MRI, radiography, etc. A CAD system was already known in the 1960s and became

more interesting topic in the 1980s, where many investigations and researches were ex-

plored in some laboratories and hospitals [12]. Since 2000s, the number of papers in

CAD system are mostly increased in the achievement of the detection and the diagnosis

of melanoma [24, 27].

The CAD system applied in medical imaging contains five main steps from the

image acquisition to the classification and diagnosis:

1. Image acquisition: In image processing, this step is considered as source or data

for the next steps. In addition to that, there are many important and consistent

informations from the acquisition to help the image processing experts to have a

baseline and an intuitive work direction to explore.

2. Image enhancement: The objective of this step is to reduce noises and all arti-

facts in the images. These artifacts in most cases depend on the kind of image

acquisition technique employed, and represent, for example, numbering in mam-

mogram images, hair and blood vessels in dermocopic images.

3. Segmentation: The segmentation of the Region Of Interest (ROI) is an important

step in CAD system. The multitude of skin cancer images makes the segmenta-

tion task more difficult. It becomes one of the hardest and most challenging task

in CAD system.
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4. Feature extraction: Once the ROI is isolated, the objective of this step is to

provide the best descriptor to extract features which discriminate the database

into two or more classes.

5. Classification and detection: The final step is classification and diagnosis where

the proposed system is observed and analyzed. Depending on the feature ex-

tracted and the number of classes desired, the choice of the classifier is primordial

to get better results on the detection. According to the classifier used, the classi-

fication rate is evaluated following some performance metrics, such as accuracy,

sensitivity, specificity and receiver operating characteristic (ROC).

CAD system is developed in melanoma recognition as well. Following the five steps

of the system, there are many methods adopted or developed specifically for melanoma

detection. The next chapter summarizes the literature review on skin cancer detection

according to these steps, it makes also in evidence the logic of these steps on CAD

system and the different contributions in each step.

1.4 Problem Statement

Melanoma treatment needs chemotherapy and radiotherapy, as breast cancer, blood

cancer, brain tumor, lung cancer, and other cancer types when they reach metastasis

state [2, 29]. To avoid these painful procedures and receive successful treatment, early

detection is one of the most reliable solutions.

The CAD systems explored for improving the accurate decision is still in develop-

ment. Nowadays, as reported by Korotkov et al. [28], many CAD systems are available

for pigment skin lesions detection such as Dell’Eva-Burroni Melanoma Image process-

ing Software which is the most cited in the literature and gives lower performances in

real applications. However, it is difficult to draw overall conclusions regarding the per-

formance of these systems. The different image acquisition (dermoscopic, clinical and

standard camera images) in structured studies complicates furthermore the classifica-

tion task in one global methodology. Thus, the current CAD systems are still far from
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perfection and need more developments to improve the detection and the diagnosis of

melanoma. Despite, the improvements of CAD systems over years, there are still some

challenges involved, such as accurate and adaptive segmentation. Moreover, to clas-

sify the skin pigment lesions into malignant and benign cancer, two major problems are

evoked.

• Firstly, the accurate segmentation is the first challenging task to improve in the

first plan the detection of suspicious lesions, and in the second plan the classifi-

cation of these lesions into malignant and benign.

• Secondly, the extraction of the most discriminative set of features describing the

relevant characteristics separating the pigment lesions into benign and malignant

skin cancer.

In addition to that, the key to improve the real output quality of CAD systems is

to apply the proposed methods on free public datasets for the comparison of all de-

veloped algorithms. To reduce also the human error of diagnosis, each pigment skin

lesion should be accompanied by the ground truth and diagnosis reported from several

dermatologists [12].

1.5 Research Objectives

The main objective of this thesis is to improve melanoma detection and recognition.

To accomplish this objective, the PhD work was oriented into the following specific

directions:

• To investigate a method of segmentation adapted for skin lesions characteristics,

that could segment even the small regions inside the skin pigment lesion.

• To develop a method of features extraction based on fusion of structural and tex-

tural features.

• To develop a method based on border irregularities of pigment lesions.
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1.6 Research Hypothesis

To achieve our research objectives, the following research hypothesis are made:

• A total variation method exploring an extension of Chan and Vese model would

be efficient for segmentation of regions of interest in skin lesion images.

• A fusion of structural and textural features exploring the Local Binary Pattern op-

erator and multiresolution analysis methods (curvelet and wavelet transform) on

dermoscopic image database would be efficient to discriminate further between

malignant and benign lesion.

• An investigation of geometrical characteristics based on the border irregularities

may provide a description of pigment skin lesions.

1.7 Scope of Research Work

The scope of the work is to aid and improve the Computer Aided Diagnosis based on

image processing methods. The work is concentrated on two main directions, segmen-

tation and features extraction. The first direction is based on Chan and Vese model.

The model was extended and adapted for skin cancer segmentation. In addition to the

whole region of interest, the algorithm segments the inter-regions of the lesions. The

second part of the work consists of extracting the most discriminant features, either for

dermoscopic and standard camera images. For dermoscopic images, multiresolution

analysis using wavelet and curvelet were combined with local binary pattern and used

for feature extraction to discriminate skin lesions. For standard camera images, bor-

der smoothness and irregularities are explored and developed, introducing valleys and

crevasses concepts as features to make border between malignant melanoma and benign

skin lesion (non-melanoma) images. All results of developed methods and comparisons

are highlighted and discussed.
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1.8 Thesis Organization

The work of this thesis is organized into the following six chapters:

Chapter 1 describes the skin cancer, computer-aided diagnosis tasks, objectives and

contributions of the current work.

Chapter 2 presents a literature review of CAD systems and different methods de-

veloped for skin cancer enhancement, segmentation, feature extraction and finally the

detection and recognition step.

Chapter 3 contains mathematical tools used in the current work. It is divided into

three sections which are Total Variation, Multiresolution Analysis (Fourier transform,

wavelet, ridgelet and curvelet) and finally the classifiers used (support vector machine

and artificial neural network).

Chapter 4 introduces the methodology of the proposed system. It provides all the

details of the techniques developed during this PhD work.

Chapter 5 reports the obtained results from the proposed methodology and its com-

parison to existing methods and algorithms. It also illustrates different intermediate

steps of the work.

Chapter 6 concludes the overall work of the thesis and gives recommendations for

the future work. It enumerates the scientific papers published in workshops, conferences

and journals.
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CHAPTER 2

LITERATURE REVIEW

2.1 Overview

Skin cancer recognition on CAD systems has been an active research area for more than

30 years back [28]. For instance, many methods have been developed and explored for

melanoma detection [30]. Korotkov and Garcia [12] presented an interesting overview

of used and explored methods on clinical and dermoscopic images from 1984 to 2012.

Their review is organized following ABCDE [31] criteria and other methods developed

in clinical and computer-aided diagnosis system (CAD) from the data acquisition step to

the classification and diagnosis. Maglogiannis and Doukas [16] have also presented in

2009 an overview on CAD system methods. A non exhaustive comparison of the most

important implementations is reported, specifically features selection such as color and

border, and wavelet coefficients. They also presented the classifiers often used in the

literature, such as Artificial Neural Network and Support Vector Machine. Masood

and Al-Jumaily [32] in 2013 presented a review of techniques and algorithms used in

skin cancer, and also a comparison of performances of these methods on skin lesion

recognition. Recently, in 2015, Celebi et al. [33] presented a state of the art survey

on the 50 published border detection methods. The authors evaluated the subjective

and objective evaluations and their impact on the quality of segmentation results of

skin border lesions. The conclusions of these review papers are detailed below in the

different steps of CAD system.

As mentioned in the Introduction chapter (Chapter 1), the two scoring systems,

ABCD rule and 7-point checklist, well known by the clinicians and dermatologist in
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clinical diagnosis and by non dermatologists in screening procedures are detailed in

this chapter. In this topic, the scoring system related to ABCD rule was proposed by

Friedman [13] in 1985 and developed by Stolz et al. [14] in 1994. This system is widely

used in clinical practice [12]. Following each feature, the system is divided into points

values and weight factors as detailed in Table 1.1 in the last chapter.

According to Capdehourat et al. [1], the scoring system for ABCD rule follows

equation (1.1) (page: 6). Where pi represents the number of points attributed to each

feature and wi is the weight factor as explained in table 1.1.

The classification of the ABCD system scoring is based on two thresholds following

the value of Sabcd given in equation (1.1). Therefore, if Sabcd < 4.75 the lesion is clas-

sified as benign, if 4.75 ≤ Sabcd ≤ 5.45 the lesion is considered as clinically doubtful

and if Sabcd > 5.45 then the lesion is classified as malignant. It can be seen from the

table 1.1 that border irregularity feature has less impact, with variation from 0 to 0.8,

comparing to other features with variation from 0 to more than 2.5.

The 7-point checklist was proposed by Argenziano et al. [17], which is another

variation of pattern analysis with fewer criteria for identification and analysis [1]. The

idea of 7-point checklist system is to attribute the score of 2 for major and 1 for minor

criteria as summarized in the table 1.2.

The classification is performed following a fixed threshold equal to 3 separating the

pigment lesions on two classes. Thus, the pigment is classified as benign if the total

value is lower than 3 (Total ≤ 3), on the other side it is classified as malignant if the

total is greater than 3 (Total > 3) as explained in the previous chapter. Argenziano

et al. [21] in 2011 and Walter et al. [34] in 2013 presented a new version of 7-point

checklist to improve the accuracy of diagnosis.

Dolianitis et al. [35] compared 4 dermoscopic algorithms, ABCD rule, pattern anal-

ysis, Menzies method and 7-point checklist. The study showed that the best results are

obtained by Menzies method with an accuracy of 81.1%, followed by ABCD rule with

an accuracy of 79%, 7-point checklist is in the third place with an accuracy of 77.2%
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and in the last position, the pattern analysis algorithm. They reached the same conclu-

sion that Carli et al. [36], where 7-point checklist is more sensitive than ABCD rule and

pattern analysis. However, in their study (Dolianitis et al.), the Menzies method showed

the highest sensitivity of 84.6%, followed by 7-point checklist with 81.4% and ABCD

rule with 77.5%, and finally, pattern analysis had the lowest sensitivity of 68.4%. On

the other hand, the highest value of specificity of 85.3% is reported by pattern analysis

followed by ABCD rule with 80.4% and Menzies method with 77.7% and in the last

position 7-point checklist with a specificity of 77.2%. This study was conducted by the

ground truth of sixty-one medical experts, but only on 40 melanocytic skin lesions.

In the literature, most CAD system papers contribute in one or more than one area

of image processing, which include image preprocessing, segmentation, feature extrac-

tion and finally the classification and diagnosis. The techniques developed in image

preprocessing are presented in section 2.2 where the main objective is to enhance the

image quality and remove noise. Then, it is followed by the segmentation techniques

treated in section 2.3 for the detection of the Regions of Interest. Methods explored

for feature extraction to discriminate the lesions are presented in section 2.4. Finally

the classification and diagnosis treated in section 2.5 describes the most cited classifiers

and methodologies used for melanoma recognition. The different obtained results are

described continuously following the main area of contribution.

2.2 Preprocessing: Image Enhancement

The main objective of image enhancement is to improve the quality and readability of

the images. In the literature, it is also known as the preprocessing image step. In skin

cancer images, the goal of this step is specially to remove the artifacts, such as hair and

human made artifacts. Image enhancement is also used to improve the contrast quality

for the exploration and visibility of details. Therefore, to compensate the imperfection

of image acquisition and eliminate different artifacts, many methods and algorithms

are developed and explored on various skin lesion databases. The dermoscopic images

artifacts can be obtained and observed as uneven illumination, dermoscopic gel, black
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frames, ink markings, rulers and air bubbles. In fact, the border detection can also be

affected by intrinsic cutaneous features such as blood vessels, hairs, and skin lines [16].

In the literature, according to Koroktov [28], artifacts are divided into two sets, artifacts

rejection and image enhancement. Artifacts rejection contains hair, air bubbles, spec-

ular reflections and ink marking. In the other part, image enhancement contains color

correction and calibration, illumination correction, contrast enhancement and edge en-

hancement. In 2009, Celebi et al. [37] focused on the importance of the current step in

border detection, mentioning the most important used methods such as Gaussian and

Median filters.

In dermoscopic images, the most common artifact, and necessary to remove, is the

hair. Many methods and algorithms are presented in the literature to remove the hair

when it is not shaved before the acquisition step. Therefore, the typical algorithm of

hair removal methods is based on two main steps:

1. The hair detection: it consists on detecting and removing the different hairs in the

image using algorithms of detection. Most developed methods in this step use

segmentation because the hair is an integral component compared to other noise

types.

2. The image restoration: the restoration or inpainting step consists on filling the

space occupied by the removed hair with proper intensity and color values. The

image quality can be affected when the density of hair is big in the lesion bor-

der. Also, the texture of the pigment can be affected in some cases. Therefore,

the shaving of the concerned area, when it is possible, is a good solution and

compromise to reduce diagnosis errors.

Many methods are explored in the hair removal task. In the literature, DullRazor

software [38], proposed in 1997, is the first widely adopted method for removal-of

hair [12]. DullRazor performs the identification of the dark hair location using mor-

phological closing operation, the verification of hair pixel shape and the replacement

using bilinear interpolation, and the smoothness of replaced pixels with median filter.

In 2008, Wighton et al. [39] proposed an alternative method for the inpainting step of
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DullRazor software. In addition to the interpolation used in DullRazor software, the

authors explored other information, like the direction of the border using Laplacian to

regulate and measure the smoothness.

In 2011, Kiani et al. [40] proposed an improvement of DullRazor method using

different approaches. The authors used Prewitt filter for edge detection and Radon

transform for predominant direction of the hair, they also used different masks to iso-

late the hair from other noises. Following the same idea, Toossi et al. [41] proposed a

morphological operator using adaptive canny edge detector for hair detection and multi-

resolution coherence transform inpainting technique to repair and replace smoothly the

emplacements of removed hair. On a database of 50 images, the method achieves 88.3%

of diagnostic accuracy and 9.9% of error segmentation. Nguyen et al. [42] used univer-

sal matched filtering kernel and local entropy thresholding to get raw binary hair mask.

Therefore, a combination of morphological thinning with Gaussian curve fitting is used

for refining and verification of hair masks. Xie et al. [43] focused their research on re-

pairing removed hair using PDE-based image inpainting. The method proposed by the

authors contains three main parts, morphological closing is used for enhancement in

the first step, followed by hair segmentation using statistical thresholding and extracted

by the elongate of connected regions, and at the end they used PDE-based image in-

painting for restoration. The authors applied their proposed method on 80 images (40

images without hair and 40 with hair). The obtained result showed 5% of errors for

the case without hair and 18% for the images containing hair. Following the same idea

Fierose et al. [44] proposed PDE-based image inpainting for restoration combined with

top-hat operator (morphological enhancement) for segmentation and Otzu threshold for

hair detection. Applying the current method on 20 images, the results showed an error

of 15.6%. Huang et al. [45] explored multi-scale curvilinear matched filtering for hair

detection and linear discriminant analysis for image restoration. Abbas et al. [46] pro-

posed a matched filtering with first derivative-of-Gaussian method for hair detection.

This approach showed accurate results, but the multitude of parameters complicates its

implementation. Applied on 100 dermoscopic images, the method showed a diagnostic

accuracy of 93.3%. The authors applied the same method in the next published pa-

per [47,48] when hair removal was needed. Barata et al. [49] used a bank of directional
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filters and PDE-based interpolation for hair detection and inpainting, respectively.

Gómez et al. [50] proposed an unsupervised algorithm based on Independent His-

togram Pursuit. This algorithm estimates a set of linear combinations of images bands to

enhance the different structures of the image. The results obtained showed an increment

of border quality detection. Following the similar objective of contrast enhancement,

Celebi et al. [51], proposed for a given RGB image input, they maximize the histogram

bi-modality measure to increase the contrast between the lesion and the background.

Madooei et al. [52] explored artifacts removal and image enhancement on 120 images

based on the effect of light-intensity on the edges. The experience was implemented on

border detection after enhancement with a sensitivity of 92% and a specificity of 88%.

Recently, in 2015, Koehoorn et al [53] proposed a new approach based on threshold-

ing set decomposition and morphological analysis using gap-detection by multi-scale

skeletons. Mizaarlian et al. [54] proposed an alternative approach to detect hair in

dermoscopic images using the measurement of turbulence quaternion [55] and dual

matched filters for hair suppression. For the restoration, the authors used the interpola-

tion used in DullRazor software developed in [38]. On a database of 40 dermoscopic

image and 94 synthetic images, the results obtained for hair segmentation are 86% and

85% of accuracy for dermoscopic and synthetic images respectively. The results of

enhancement gave 90% and 96% of sensitivity for dermoscopic and synthetic images

respectively.

To remove other artifacts such as capillary and blood vessels, many methods are

also developed and explored. Huang et al. [56] extracted capillaries from skin lesions,

they used a compact set of 1 curvilinear and 2 color parameter features and trained us-

ing SVM classifier to detect the different capillaries. Applying the proposed method on

a database of 49 images with 21 visible capillaries and 28 non visible capillaries. The

authors obtained 98.8% of accuracy, 90.5% of sensitivity and 89.3% of specificity. Ear-

lier, Argenziano et al. [23] described the different vascular structures and its association

with various melanocytic and nonmelanocytic tumors using statistical tests, such as χ2

and Fisher tests. On a database of 531, the dots vessels showed a positive prediction on

melanocytic lesions of 90%.
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Abbas et al. [47] also treated specular reflexion reduction using Fourier transform

and median filter for air bubbles or dermoscopic-gel reduction. Barata et al. [49] used in

their work a sub-band thresholding for the intensity to reduce the reflexion to enhance

the quality of images in pigment network detection.

Table 2.1 summarizes some methods used for hair detection and inpainting steps

with the results obtained for each one. Most of the presented methods in this table had

compared their result to DullRazor software.

Table 2.1: Comparison of different used methods on hair-removal task

Method Hair detection Restoration Database Results

DullRazor

[38].

(1997)

Generalized mor-

phological clos-

ing operator

Bilinear inter-

polation

5 images Visual presentation

of the segmenta-

tion

Kiani et

al. [40].

(2011)

Perwitt edge de-

tector

Color averag-

ing

5 images Visual presentation

and comparison

with DullRazor

Toossi et

al. [41].

(2013)

Adaptive canny

edge detector

Multi-

resolution

coherence

transform

inpainting

50 images 88.3% of diagnos-

tic accuracy and

9.9% of error seg-

mentation

Nguyen et

al. [42].

(2010)

Universal

matched fil-

tering kernel and

Gaussian fitting

Linear interpo-

lation

not avail-

able

visual illustration

on synthetic and

real images

Xie et

al. [43].

(2009)

Top-hat operator

+ elongate func-

tion for thresh-

olding

PDE-based im-

age inpainting

80 images:

40 with

hair, 40

without

hair)

5% of false hair

error and 18% of

misclassified
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Method Hair detection Restoration Database Results

Fiorese et

al. [44].

(2010)

Top-hat operator

+ Otzu Threshold

PDE-based im-

age inpainting

20 images 15.6% of misclas-

sified

Huang et

al. [45].

(2013)

Multiscale

matched filters

Median filter-

ing

20 images 81% of true hair

detection

Abbas et

al. [48].

(2011)

Derivative of

Gaussian

Coherence

transport

100 images Diagnostci accu-

racy of 93.3%

Mizaarlian

et al. [54].

(2014)

Quaternion color

curvature filter

Bilinear inter-

polation [38]

40 der-

moscopic

and 94

synthetic

images

≈ 85% of accu-

racy for hair detec-

tion and over then

90% of sensitivity

for both databases

Koehoorn

et al. [53].

(2015)

Gap- detection

by multi-scale

skeletons

Fast Marching

method [57]

300 images Visual comparison

with methods pre-

sented in [38, 40,

43–45, 47].

In hair segmentation and removing, there have been many contributions and less

for published papers analyzing on tubular structures and vessels. In the state-of-the-

art research, the results obtained of most papers are based more on visual analysis and

comparison. We notice that the majority of methods developed for skin image enhance-

ment are based on thresholding. Despite the multitude approaches, it is very difficult to

draw a clear conclusion due to the use of private databases and the application of these

methods on small datasets.
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2.3 Segmentation

The accurate detection of skin lesion border is the most important step and the crucial

stage for classification and diagnosis. In image processing, many methods and algo-

rithms were developed and applied in different databases. As mentioned in the previous

chapter, the border detection is not so trivial and it has some shortcomings and prob-

lems [28]. Two points are related, firstly, there are the ground truth problem done by

dermatologists which is difficult to discriminate by algorithms and reproduce by the

human observers, where the variation in contrast or blur [58] are not visible or well

explored by naked eyes. Secondly, the issue between the manual and the automated

segmentation is the morphological structure of the lesion as explained by Celebi et

al. [37], specially the low contrast between the lesion and the normal skin and the fuzzy

lesion borders in some cases.

The multitude of lesion development and its appearance in dermoscopic images

complicates and influences the choice of the best method to detect lesion border [12,28,

37]. Therefore, the current subsection is organized following three major methods sets

explored in image segmentation in generally, and skin lesion images particularly. In the

first step, the methods developed using total variation segmentation are presented, then

followed by multiresolution analysis and finally, those using thresholding approaches.

Other various methods, that do not belong to these sets are also studied and explored.

Recently, Celebi et al. [33] reviewed the border lesions detection and classified them

into twelve categories, such as Histogram thresholding, clustering and active contours,

etc.

2.3.1 Total Variation Segmentation

In the literature, as in general image processing, many methods are developed and/or

implemented for skin lesion segmentation. Using total variation regularization, Ab-

bas et al. [47] for the segmentation part, used a modified region-based active contours

(RACs) developed by Lankton et al. in [59]. The current method explored the same
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concept of Chan and Vese model [60], and its generalization [61] proposed for the reso-

lution of Mumford-Shah function [62] (see chapter 3). On a database of 320 images, the

results present over than 90% true detection rate (TDR) and less than 10% of false pos-

itive rate (FPR). For the same objective, Safi et al. [63] applied another generalization

of Chan and Vese Model developed by Li et al. [64] (see chapter 4). Using ABCD rule

for feature extraction and SVM classifier on a database of 4240 benign and 232 malig-

nant moles, the performance evaluation was conducted using a 10-fold cross-validation

and it performed a true detection rate over than 98% for all 10 tested cases. Another

extension of the model is presented recently by Kang et al. [65].

In 2009, Silviera et al. [66] compared 6 methods of segmentation, adaptive thresh-

olding (AT), gradient vector flow, adaptive snake (AS), level set of Chan and Vese model

(C-LS), expectation-minimization level set (EM-LS) and fuzzy-based split-and merge

(FBSM) algorithm. The comparison shows that the best result of false positive rate

(FPR) of 2.55% is given by C-LS method, but the results are lower for true detection

rate (TDR) of 83.39% comparing to Adaptive snake with a TDR of 95.47%. In 2015, an

extension of Chan and Vese model applied on dermoscopic images is developed [67],

the proposed extension is detailed in Chapter 4.

2.3.2 Multiresolution Analysis

Multiresolution analysis is also used for segmentation of pigment skin lesions. There-

fore, Castillejos et al. [68], in 2012, mixed wavelet transform [69] with Fuzzy K-Means

Clustering algorithm, Fuzzy C-means algorithm and Cluster Preselection Fuzzy C-

Means algorithm using all color channel for segmentation. On a database of 50 im-

ages, the diagnostic performance was quantified by the AUC measure, the best result

was performed using Daubechies wavelet with an AUC value over than 0.96 for the

three combinations. In another way, Ma et al. [70, 71] used wavelet decomposition

banks [72] to discriminate melanoma and non-melanoma cases, the artificial neural net-

work (ANN) classifier is used for classification. The authors applied the approach on

a database of 134 skin lesion images with 72 melanoma and 62 benign lesions. The
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obtained results achieved a sensitivity of 90% and a specificity of 83%.

A comparison between wavelet [73] and curvelet transforms [74] for segmentation

and identification of melanoma was implemented by Abu Mahmoud et al. [75]. Us-

ing the two layers back-propagation neural network classifier on 448 digital skin lesion

images, the result showed a better performance for curvelet compared to wavelet trans-

form. The accuracy obtained using curvelet transform is 86.57%, which is much higher

than the result obtained by wavelet transform with 58.44% of accuracy. Erkol et al. [76]

proposed the gradient vector flow to find the border of skin lesions under 20 iterations.

On a database of 100 dermoscopic images (30 malignant melanoma and 70 benign le-

sions), 13.77% of error detection is obtained.

2.3.3 Thresholding Approaches

The idea of thresholding method is one of the simplest approaches of segmentation. The

structure of these kind of methods is mostly to separate the image following some limits

applied on gray-scale into binary image. Mostly, these methods are complemented by

other approaches as morphological operators.

The thresholding approaches by morphological operators segmentation is one of

the most known method and used in border detection in different imaging databases

[77–82]. In skin cancer images, the morphological segmentation was used by Ganster et

al. [83]. The authors explored a gray-scale morphology for segmentation. The method

based on three algorithms of thresholding, global thresholding, dynamic thresholding

and they also explore the blue color channel of RGB and CIE-Lab color space on 4000

lesion images, and after rejection of 159 images considered as rejected due to segmen-

tation failures, they obtained around 96% of correctly segmented skin lesion images.

Earlier, Shmid [84] used anisotropic diffusion and morphological flooding on dermo-

scopic lesion detection. In [66], the adaptive thresholding showed a potential result

compared to other used methods in terms of TDR and FPR performances. It performed

a better result of true detection rate and false detection rate in benign and malignant
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melanoma than gradient vector flow method, and it showed an equivalent result com-

paring to other methods. In 2013, Celebi et al. [82] proposed an automated fusion of

thresholding method with a Markov random field, applied on 90 dermoscopic images

(23 malignant melanoma and 67 benign lesions), and compared to the state of the art

methods expressing the result using exlusive-OR errors of 9.16± 5.21%.

Otsu thresholding segmentation [85] is developed and applied for automatic bor-

der detection in dermoscopic images [75, 86–89]. This method is always combined

with other methods to perform the segmentation. In Abbas et al. [88], the authors

proposed a combined algorithm of Otsu thresholding algorithm and a morphological

reconstruction-based algorithm. The authors presented a result of 92.10% of TDR and

6.41% of FPR on a database of 100 dermoscopic images.

2.3.4 Other Segmentation Methods

Genetic algorithms [90] were used by Xie et al. [91], where a self-generating neural

network and the genetic algorithm were combined for the segmentation of dermoscopic

images. Watershed technique [79, 92] was also used for lesion segmentation by Wang

et al. [93]. It was applied on 100 skin lesions and had a percentage error of 15.98%.

An anisotropic mean shift based on Fuzzy C-Mean (FCM) algorithm variant is used by

Zhou et al. [94], where the authors utilized an anisotropic mean shift algorithm cou-

pled with fuzzy c-means for the segmentation. Sobiecki et al. [95] used Gap-sensitive

segmentation on digital images. The authors also applied their method on skin cancer

images. Glaister et al. [96] used TDLS algorithm for textural feature extraction joined

with TD metric to calculate the dissimilarity of the texture. Applied to 126 standard

camera images, the segmentation results achieved an accuracy of detection of 98.3%,

a sensitivity of 91.2% and a specificity of 99%. An unsupervised segmentation algo-

rithm using k means clustering under spatial constraints was also proposed by Zhou et

al. [97]. Qi et al. [98] applied a fully deep constitutional neural network to automati-

cally segment melanoma. the authors learned their model on 2000 training images and

tested on 600 images, then validated on 150 images. However, the authors illustrate
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visually their results and they did not present any performance due to the small dataset

used for learning step.

Table 2.2 summarizes the different methods of segmentation explored for skin lesion

images. For each paper, the method used, the result obtained and the size of the dataset

(number of images) are mentioned.

Table 2.2: Comparison and summary of some different methods used for segmentation

Authors Segmentation

method

Database Results

Abbas et al.

[47] (2011)

Region-based Active

Contours [59]

320 images TDR of 92.17% and FPR of

5.62%

Safi et

al. [63]

(2011)

Multipahse seg-

mentation with TV

and H1 regulariza-

tion [64]

4472

images

Accuracy of 98.57% with a

TDR of 99.1%

Casttilejos

et al. [68]

(2012)

Wavelet Transform

mixed with three

variants of FCM

algorithm

50 images AUC value over then 0.96

Clawson

et al. [99]

(2009)

Harmonic wavelet

transform [100]

30 images With ground truth of two ex-

perts: 1St- Acc: 93.3%, Sen:

50%, Spe: 100%. 2nd-Acc:

93.3%, Sen: 95.2%, Spe:

88.9%

Ma et

al. [71]

(2013)

Wavelet decomposi-

tion bank [72]

134 images Spe: 90.32%, Sen: 83.33%

and Area of ROC: 89.07%.

Ganster et al.

[83] (2001)

Gray-scale morpho-

logical segmentation

4000

images

Around 96% of correct seg-

mentation.
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Authors Segmentation

method

Database Results

Abu Mah-

moud [75]

(2013)

Wavelet and curvelet

transforms

448 images Using ANN, 58.44% and

86.57% of accuracy for

wavelet and curvelet trans-

forms resp.

Glaister

et al. [96]

(2014)

Texture Distinctive-

ness Lesion Seg-

mentation (TDLS)

algorithm

126 images Accuracy detection of 98.3%,

a sensitivity of 91.2% and a

specificity of 99%.

The majority of developed methods for segmentation step are based on usual method-

ologies developed in image processing segmentation. we can notice that Safi et al. [63]

claimed an accuracy of 98.57% on a database 4472 images, however the authors did not

highlight the parameters used in the model knowing that the model is an extension of

Chan and Vese model which is dependent on parameters chosen. It can be seen also

that Clawson et al. [99], on a database of only 30 images, the results obtained by their

model shows a big difference sensitivity performance between the ground truth of two

experts (50% and 95.2%). We noted also that the accuracy is affected by the difference

between malignant and benign lesions. Therefore, there is a need to develop an adapted

and specified method for skin lesions. From the literature, it can be seen that majority

of contributions used a private databases which is very hard to re-implement the dif-

ferent methods. It can be seen also that the segmentation step development for skin

cancer is not highlighted since few years. In the current work, an adequate and accurate

segmentation for skin cancer using an extension of Chan and Vese model is developed.

2.4 Feature Extraction

Feature extraction of melanoma is the most important stage for the classification and

diagnosis step (next stage). The main task of this step is to extract the discriminant fea-

tures to aid the separation of malignant and benign skin lesions. To correctly diagnose
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and classify the lesion, the features extracted have to represent in the best way the char-

acteristics of the tumor that can be used and understood by the computer. In hospitals as

mentioned before, medical doctors use two famous scoring systems as features, ABCD

criteria (or rule) [2, 13] and 7-point checklist [31]. The ABCD rule (Asymmetry, Bor-

der irregularities, Color variation and Diameter) is more used and explored than 7-point

checklist.

In the literature, most of the papers develop their methods according to one or more

points of ABCD rule, specially Asymmetry [20,89,101–105], Border irregularities [20,

63,70,82,88,105–111] and Color variation [20,63,88,104,112–120]. The non common

utilization of the Diameter does not mean that it is useless comparing to the other ABCD

rule points, but in most of the cases the diameter is missed data. Nevertheless, it was

used by Shen et al. [20].

Many other methods of image processing are also used, specially textural and struc-

tural features. In Abbas et al. [121], in addition to color-related features, the authors

combined them with textural ones extracted from Steerable Pyramids Transformation

(SPT) algorithm, and performed a sensitivity of 89.28%, a specificity of 93.75% and

an area under AUC of 0.986. Abu Mahmoud et al. [75] explored discrete wavelet and

discrete curvelet transforms as features for melanoma recognition. For smart-phone-

based real-time system, Abuzaghleh et al. [118] proposed fast Fourier transform (FFT)

mixed with discrete cosine transform applied on color and shape for feature extraction.

Earlier in 2009, Clawson et al. [99] used Harmonic Wavelet Transform [100] for border

smoothness features on 30 dermoscopic images. Using the ground truth of two experts

and C5 algorithm with 10-fold cross-validation, the results show an accuracy of 93.3%

for both experts, and a sensitivity of 50% and 95.2% and a specificity of 100% and

88.9% for the ground truth of expert 1 and expert 2, respectively. Codella et al. [122]

used Sequential Pattern Mining (SPAM) algorithm to learn dictionaries constructed on

color (RGB) and gray level spaces of the dataset. The authors applied the approach on

ISIC database of 4624 images with 334 melanoma, 144 atypical nevi and 2146 benign
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lesions. Using SVM classifier, the results obtained showed an accuracy of 93.1%, a sen-

sitivity of 94.9% and a specificity of 92.8%. Local Binary Pattern (LBP) [123,124] op-

erator is also used for feature extraction on dermoscopic images by Gonzáles et al. [125]

and Adjed et al [126].

Sadghi et al. [127], to classify absent, regular and irregular streaks, which are impor-

tant for melanoma detection inspired from 7-point checklist system, used the orientation

and spatial arrangement of streak lines. Takruri et al. [128] proposed the extraction of

features on wavelet or curvelet coefficients applied on gray scale lesions with color

features obtained from original images. Using SVM classifier, the results performed

an accuracy of 87.1%, a sensitivity of 86.4% and a specificity of 88.1% for the sys-

tem based on wavelet features and an accuracy of 83.6%, a sensitivity of 76.9% and a

specificity of 85.4% for the system based on curvelet features.

Cavalcanti et al. [129] is a typical work following all the steps of ABCD rule on stan-

dard images database. Therefore, for asymmetry they used two axis passing through the

center of the pigment, and magnitude of gradient using Sobel operator. They explored

the values of pixel intensities in color variation channel for color features. However,

on standard camera images, the morphological and vascular structures are not visible.

On a database of 220 images (138 melanoma and 82 benign lesions), they performed

an accuracy of 93.63%, a sensitivity of 94.92% and a specificity of 91.46% using kNN

classifier. Exploring the same method, Amelard et al. [105] extracted features using

multi-stage illumination algorithm and defined a set of high level intuitive features to

quantify the asymmetry and border irregularities as [129]. They applied their algorithm

on a database of 206 standard digital camera images. Using SVM classifier, the results

obtained performed an accuracy of 81.26%, a sensitivity of 84.04% and a specificity of

79.91%. Sabbaghi et al. [130] explored the Bag-Of-Feature using SIFT (Scale Invariant

Feature Transform) descriptor mixed color identification [131] to extract the features.

Two classifiers are used to evaluate the proposed method. Firstly, they employed linear

SVM for the classification step, and secondly, they used Stacked Sparse Auto-Encoder

(SSA) neural network variant. The results achieved by these methods on a database

of 814 images are 85% and 95% of accuracy for SVM and SSA, respectively. Bi et
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al. [132] proposed a multi-scale lesion-biased representation (MLR) and performed the

classification under joint reverse classification (JRC) model. The results obtained on

a database of 200 dermoscopic images are 87.50 of sensitivity, 93.13% of specificity

and 90.31 of accuracy. However, the authors did not cross validate the obtained re-

sults of the proposed method. Recently, Li and Shen [133] used deep learning network

to detect melanoma. Applying straight-forward CNN algorithm for segmentation and

lesion index calculation unit for classification. On ISIC database containing 2750 im-

ages, the method showed an accuracy of 92.2%, a sensitivity of 78.9% and a specificity

of 97.5%. On the same database, Gal et al. [134] and Lopez et al. [135] proposed a

bayesian convolutional neural network and convolutional neural network, respectively,

Gal et al. obtained an AUC of 0.75 and Lopez et al. obtained an accuracy of 81%.

In the same idea, Esteva et al. [136] applied a deep convolutional neural network on

a database of 129450 clinical images into 2, 032 different diseases. Their results were

compared to 21 board-certified dermatologists.

Table 2.3: Comparison and summary of some different methods used for feature extrac-
tion and their obtained results

Authors feature extraction

method

Database Obtained results

Codella et al.

[122] (2015)

Sequential Pattern

Mining

2624

images

Accuracy of 93.1%, Sensitiv-

ity of 94.9% and specificity of

92.8%

Abuzaghleh

[118] (2014)

Fast Fourier trans-

form mixed with

discrete cosine

transform

200 images 90.6%, 91.3% and 97.7 of ac-

curacy of common, atypical

and melanoma resp.

Abbas et al.

[121] (2013)

Combination of

color-related feature

and Treeble Pyramid

transformation

1039

images

Sensitivity of 89.28%, speci-

ficity of 93.75% and area un-

der AUC of 0.986.
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Authors feature extraction

method

Database obtained results

Sadghi et al.

[127] (2013)

Spatial arrangement

and orientation of

streak lines to detect

regular and irregular

streaks

945 images Accuracy of 78.3% with AUC

od 83.2% for absent/present

and an accuracy of 83.6%

with AUC of 88.9% for regu-

lar/irregular.

Takruri et al.

[128] (2014)

Wavelet and curvelet

features

448 images Wavelet: Acc: 87.1%, Sen:

86.4% and Spe: 88.1%.

Curvelet: Acc: 83.6%, Sen:

76.9% and Spe: 85.4%

Cavalvanti

et al. [129]

(2011)

Computerization of

ABCD rule

220 images An accuracy of 93.63%, a sen-

sitivity of 94.92% and a speci-

ficity of 91.46%

Amelard

et al. [105]

(2014)

Multi-stage illumina-

tion algorithm

206 images An accuracy of 81.26%, a sen-

sitivity of 84.04% and a speci-

ficity of 79.91%.

Sabbaghi

et al. [130]

(2016)

SIFT mixed with

color identification

algorithm under

SVM and SSA

classifiers.

814 images With SVM An accuracy of

85%, and with SSA an ac-

curacy of 95% a sensitivity

of 94.9% and a specificity of

95.4%.

Bi et

al. [132]

(2016)

MLR method under

JRC model for classi-

fication.

200 images An accuracy of 90.31%, a sen-

sitivity of 87.50% and a speci-

ficity of 93.13%.

Li et

al. [133]

(2017)

CNN algorithm for

segmentation and le-

sion index calculation

unit for classification.

2750

images

An accuracy of 92.2%, a sen-

sitivity of 78.9% and a speci-

ficity of 97.5%.
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Authors feature extraction

method

Database obtained results

Codella et al.

[137] (2017)

combination of

hand-coded feature

extractors, sparse-

coding methods,

SVMs, with fully

CNN

1279

images

An accuracy of 76%, a sensi-

tivity of 82% and a specificity

of 62%.

It can be seen that the most of recent contributions of skin cancer recognition are

developed in feature extraction area such as presented in table 2.3. However, the results

are still should improved specifically the decrease of false negative cases such as the

results obtained by Li et al. [133] using CNN method. Another problematic can be seen

in the literature is that most of contributions are not validating their obtained results

such as Cavalvanti et al. [129] and Bi et al. [132]. Therefore, there is a need to develop

and adapt a new approach of feature extraction following a rigorous methodology of

work by validation and parameters highlighting.

2.5 Classification

The classification and diagnosis is the last step of the CAD system on melanoma recog-

nition. The classification stage uses the selected features in the previous section to

separate the database into different groups. The result can be binary as malignant /

benign or typical / atypical, ternary as common nevus / atypical nevus / melanoma, or

more than three groups.

To accomplish the classification task, many classifier methods are explored and used

depending on the descriptor used for feature selection. The performance of the whole

proposed method depends extremely on the couple descriptor / classifier. The review

of Korotkov et al [12] enumerated several methods of classification used in the litera-

ture. According to the classifier used, many different performance metrics are used as

33



accuracy, TDR, FPR or AUC. These performance metrics are explained and detailed in

subsection 3.5.4.

Support Vector Machine (SVM) classifier [138] and Artificial Neural Network meth-

ods (ANN) [139] are the most used for classification of skin cancer images. The mathe-

matical theory of these two classifiers are explained in the next chapter. Thus, the SVM

and the ANN classifiers divide the dataset into two sets, one for training and the other for

tests. In most of cases, 70% of the data is used for training and 30% is used for tests. The

SVM classifier was used in [19, 56, 63, 104–106, 111, 118, 119, 122, 126, 130, 140–146]

and ANN was used in [71, 75, 111, 112, 122, 125, 130, 143, 144, 146–148]. In addition

to these two classifiers, there are also many other classifiers used in melanoma recog-

nition such as the k-Nearest Neighbor (kNN) classifier [83, 129, 140], Discriminant

Analysis [45, 58, 144], Decision trees [1, 8, 129], Regression Analysis [111, 147, 148]

and AdaBoost [1, 8, 140]. The review of the comparative studies achieved by Masood

et al. [32] concluded that SVM classifier outperforms decisions trees, and many other

statistical classifiers.

Abuzaghlegh et al. [118], proposed to classify the PH2 Database [149] into binary

and ternary results. The ternary results used to classify between typical, atypical or

melanoma and the binary is to classify only between normal and abnormal lesions. The

authors used SVM classifier using 75% for training and 25% for tests. On the same

database (PH2), Barata et al. [141] used SVM classifier with the χ2 kernel, the perfor-

mance of the contribution is computed by the adjusted accuracy calculated with some

interval of accuracy metric. In the same work, the authors are applied also their method

on bigger database from the ERDA database [150]. AdaBoost with C4.5 decision trees

was used by Capdehourat et al. [1] and performed their results by specificity and sensi-

tivity metrics.

Table 2.4 summarizes the different classifier utilized in the literature for classifica-

tion and recognition of melanoma. As already mentioned above, it can be seen easily

from the table that the most used classifiers are SVM and ANN.
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Table 2.4: Summary of the most used classifiers in skin cancer recognition

Classifier Author references

Support Vector Machine [19,56,63,104–106,111,118,119,122,126,128,

140–146]

Artificial Neural Network [71,75,91,106,111,112,122,125,143,144,146–

148, 151]

k-Nearest Neighbor [83, 129, 140, 146]

Decision Trees [1, 8, 99, 129]

Discriminant Analysis [45, 58, 144]

Regression Analysis [111, 147, 148]

AdaBoost [1, 8, 121, 140].

2.6 Summary

In the literature, skin cancer detection and classification is developed and explored by

many researchers. There are two major topics where the contributions are focused.

These two topics are the lesion segmentation and the descriptors for feature extraction.

The multitude of artifacts in skin lesion images increases the contributions in image

enhancement, specially for hair removing and blood vessels. Computer Aided Diag-

nosis systems for pigmented skin lesions have achieved good performances. However,

the results obtained and methods proposed cannot provide the best diagnostic results as

clinicians, they are only used as second opinions during screening procedure [28].

The segmentation was studied in different views. Many approaches and methods

were adapted and/or developed. Therefore, as it is detailed in section 2.3, the segmen-

tation methods used the total variation methods following Mumford and Shah theory,

specially Chan and Vese model and its extensions. The multiresolution analysis was

also used for pigment lesion segmentation as wavelet and curvelet transforms. The

thresholding methods were also mostly used for segmentation.

The choice of the descriptor to use and/or to develop for feature extraction is more
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difficult and more complicate than other steps. Unlike segmentation, where the ob-

jective is to find the border lesion, the descriptor’s objective is to develop an adaptive

method to discriminate widely the lesions. It can be textural, statistical, structural or

geometrical features. In skin cancer images, many feature extraction methods are for-

mulated and developed from the two scoring systems used by clinicians in the hospitals,

ABCD rule and 7-point checklist. Other methods also used different mathematical tools

and descriptors such as Fourier, wavelet and curvelet coefficients. The major limitation

of ABCD rule and 7-point checklist is that the two systems are based on visual inter-

pretation, which is subjective between dermatologists. The cancerous lesions are ran-

dom biological phenomena manifesting various structures in sizes, shapes and densities.

Therefore, there is a need to perform and develop an accurate descriptor. Two research

directions should be further investigated which are structural and textural features. The

structure of lesion boundaries and the texture inside the lesions have an important in-

formation for discrimination and characterization of melanoma. Wavelet coefficients

are ideal for single point discrimination but not for edges which characterize the lesion

boundaries. Thus, curvelet coefficients can achieve better characterization. In addition

to curvelet, a fusion of these coefficients with textural information of the lesion need

to be investigated. On the other side, the investigation of the geometrical information

from the borders with a new approach challenging irregular versus smooth border is

also another direction for the discrimination of melanoma.

Various classifiers are used in CAD systems for skin cancer recognition. Artificial

Neural Network and Support Vector Machine are the most common used. Commonly,

skin cancer lesions are classified following two or three classes which are benign /

malignant and nevus / atypical / melanoma.

The different metric performances used for each classifier makes harder the com-

parison between the results of the different proposed methods. In addition to that, the

absence of a large public available benchmark dataset accompanied by the ground truth

and the diagnosis from several dermatologists makes really hard, even impossible to

compare objectively the approaches developed in the literature.
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CHAPTER 3

MATHEMATICAL TOOLS

3.1 Overview

This chapter presents the theoretical background of the explored methods in the cur-

rent work which is divided into three main parts. Section 3.2 provides total variation

theory of Mumford and Shah and Chan and Vese model well, used for segmentation in

image processing [152, 153]. The multiresolution analysis is presented in section 3.3.

It provides an overview of the history of multiresolution analysis and the need of the

development of new applications. It starts by introducing Fourier transform, followed

by wavelet and ridgelet and finally by curvelet transforms. Section 3.5 gives an intro-

duction of the mathematical background of the two used classifiers, Artificial Neural

network and Support Vector Machine. Finally, this chapter ends by a short summary

given in section 3.6.

3.2 Total Variation

In classical analysis, the total variation for function f for one variable defined on the

interval [a, b] ⊂ R, is given by the following formula:

TV (f) = sup
I

I∑
i=0

|f(xi+1)− f(xi)| (3.1)

where I = {I1, I2, ..., Ip} is a partition of [a, b] for i ∈ {1, ..., p}, xi ∈ Ii.
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The total variation of function f ∈ Rn where n > 1 used in the current work is

defined as follow:

Let Ω be an open subset of Rn and f ∈ L1(Ω), then the total variation is:

TV n(f) = sup
{∫

Ω

f(x) divφ(x)dx; φ ∈ C1
c , ‖φ‖L∞(Ω) ≤ 1

}
(3.2)

where C1
c is the set of continuously differentiable functions of compact of Ω and ‖φ‖L∞(Ω)

is the essential infimum norm.

3.2.1 Mumford Shah Function

Mumford and Shah applied the total variation for image segmentation in 1989 [62].

Let R ∈ R2 the domain divided in n disjoint subsets Ri where a smooth function fi is

defined and Γ will be the union of boundaries parts of the Ri inside R . Let I be the

given image and f a differentiable function on R, then the energy to minimize is :

E(f,Γ) = µ2

∫ ∫
R
(f − I)2dxdy +

∫ ∫
R−Γ

‖∇f‖dxdy + ν|Γ| (3.3)

where |Γ| represents the total length of the curve Γ, µ and ν are the regulation parame-

ters.

3.2.2 Chan and Vese Model

To minimize the given energy in equation (3.3), Chan and Vese [60] proposed to mini-

mize first, the following energy function:

FC(C) = λ1

∫
inside(C)

|I(x, y)− c1|2dxdy + λ2

∫
outside(C)

|I(x, y)− c2|2dxdy (3.4)

where C is a given curve in the domain R and c1, c2 are the averages of I inside and

outside C. Using this formulation, the function FC(C) is minimized on the boundary

of the object.
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Therefore, the energy functional is defined by F (c1, c2, C) given below:

F (c1, c2, C) = µ Length(C) + ν Area(inside(C)) + FC(C) (3.5)

Using a zero level set of Lipschitz function φ : Ω→ R, then :
C = ∂ω = {(x, y) ∈ Ω; φ(x, y) = 0}

inside(C) = ω = {(x, y) ∈ Ω; φ(x, y) > 0}

outside(C) = Ω\ω = {(x, y) ∈ Ω; φ(x, y) < 0}

(3.6)

Where ω ∈ Ω and C = ∂ω.

Using the heaviside function H and the dirac function δ0 given in equation (3.7),

the curve C and the areas inside and outside the level set function φ given in equation

(3.6) are expressed by equation (3.8)

H(z) =

1 if z ≥ 0

0 if z < 0

δ0 =
d

dz
H(z) (3.7)


C = Length(φ = 0) =

∫
δ0(x, y)|φ(x, y)|dxdy

Inside(C) = Area(φ(x, y) > 0) =
∫

Ω
H
(
φ(x, y)

)
dxdy

Outside(C) = Area(φ(x, y) < 0) =
∫

Ω

(
1−H

(
φ(x, y)

))
dxdy

(3.8)

Then, equation (3.4) is also expressed by the heaviside function H:

FC(c) = λ1

∫
Ω

|I(x, y)−c1|2H
(
φ(x, y)

)
dxdy+λ2

∫
Ω

|I(x, y)−c2|2
(
1−H(φ(x, y))

)
dxdy

(3.9)
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Therefore, the energy given in equation (3.5) becomes:

F (c1, c2, φ) = µ

∫
δ0(x, y)|φ(x, y)|dxdy + ν

∫
Ω

H
(
φ(x, y)

)
dxdy

+λ1

∫
Ω

|I(x, y)− c1|2H
(
φ(x, y)

)
dxdy (3.10)

+λ2

∫
Ω

|I(x, y)− c2|2
(
1−H(φ(x, y))

)
dxdy

where,

c1 =

∫
Ω
I(x, y)H(φ(x, y))∫

Ω
H(φ(x, y))

(3.11)

c2 =

∫
Ω
I(x, y)

(
1−H(φ(x, y))

)∫
Ω

(
1−H(φ(x, y))

) (3.12)

The energy to minimize for the segmentation of Chan and Vese model is given by

equation (3.10).

3.3 Multiresolution Analysis

In this section, the multiresolution analysis is introduced. Mathematical theories of

Fourier, wavelet, ridgelet and curvelet transforms are presented.

The Fourier transform has the ability to represent any integrable function in the fre-

quency domain with a limitation of stationarity in time [154]. With wavelet transform,

the time representation is resolved, however the line singularity of edges in wavelet

transforms need many coefficients. An extension was presented which is ridgelet trans-

form for detection of edges with less coefficients. The incapability to detect the angle

of edges using ridgelet transform, curvelet transform was introduced to fit better the

curves and edges. Curvelet and wavelet transforms are used in the proposed work, they

are introduced in next sections and used in the next chapter.
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3.3.1 Fourier Transform

Let f : R → C an integrable function, the Fourier transform of f is conventionally

noted f̂ decomposes into frequencies. Therefore, the function f is the continuous-time

function defined in spatial domain, and f̂ is its Fourier transform defined in frequency

domain given by the following equation:

f̂(ξ) =

∫ ∞
−∞

f(x) e−2πxiξdx (3.13)

The inverse Fourier transform of f̂ , under suitable conditions is given by:

f(x) =

∫ ∞
−∞

f(ξ) e2πixξdξ (3.14)

This transform is an extension of Fourier series applied on periodic functions using the

properties of sine and cosine. Therefore, suppose that T is large enough that the interval

[−T/2, T/2] contains F non identically zero. Then, the nth Fourier coefficients cn is

given by the following equation:

cn =
1

T

∫ T/2

−T/2
f(x) e−2πi(n/T )xdx (3.15)

Equation (3.14) can be written using Fourier coefficients. Then, lets ξn = n/T and

∆ξ = 1/T :

f(x) =
∞∑

n=−∞

f̂(ξn) e2πiξnx∆x =
∞∑

n=−∞

cn e
2πi(n/T )x (3.16)

In signal and image processing, the discrete Fourier transform (DFT) is applied.

In the one-dimensional case (signals), the Fourier transform is given by the function f

above. This signal is divided into N sequences denoted f0, f1, ..., fN−1. Then the DFT

of f is:

f̂k =
N−1∑
n=0

fn e
−2πikn/N , k ∈ Z (3.17)
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The inverse DFT is as continuous case given by the following equation:

fn =
1

N

N−1∑
k=0

f̂k e
2πikn/N (3.18)

For image which is 2 dimension matrix M ×N , the DFT of the function f(x, y) is

denoted by F(m,n) given by:

F (m,n) =
M−1∑
x=0

N−1∑
y=0

f(x, y) e−2πi(xm/M+yn/n) (3.19)

where m = 0, 1, ...,M − 1 and n = 0, 1, ..., N − 1.

By the same, the inverse DFT in 2 dimensions is given by the function f below:

f(x, y) =
1

MN

M−1∑
m=0

N−1∑
n=0

F (m,n) e2πi(xm/M+yn/n) (3.20)

Different algorithms of fast Fourier transforms were implemented and combined

with band filtering and convolutions. However, the Fourier transform indicates the

spectral information without the instant when it happens [155]. In image implemen-

tation, Mallat [73] noticed that an apple in the corner of a given image required many

Fourier coefficients to represent a localized event. Indeed, the Fourier transform f̂(ξ)

depends on the values f(t) for all times t ∈ R. Therefore, to analyze or represent any

local property of f(t) from f̂(ξ) is difficult.

3.3.2 Wavelet Transform

Wavelet transform was introduced by Grosmann and Morlet [156] using translation and

dilations on a 1square integrable function ψ ∈ L2(R). The wavelet transform is defined

by the following formula:

ψa,b(x) =
1√
a
ψ
(t− b

a

)
(3.21)

where a > 0 defines the scale and b the shift.
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A multiresolution approximation of L2(R) is a sequence (Vj)j∈Z of closed sub-

spaces of L2(R), such that:

{0} ⊂ · · · ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ · · · ⊂ L2(R) (3.22)

Let φ(x) be a real square integrable function defined by:

φj,k(x) =
√

2jφ(2jx− k), k ∈ Z (3.23)

Then, {φj,k}j,k∈Z is the orthonormal basis of Vj [69].

All the functions expressible with this basis are referred to the closed span of the

expansion set:

Vj = Span{(φj.k, k ∈ Z)} (3.24)

where if f(x) ∈ Vj , then f(x) ∈ Span{(φj.k, k ∈ Z)}, and f(x) =
∑

k αkφj,k(x).

The subspace of L2(R), Wj designs the orthogonal complements of the subspaces

Vj defined above, such that:

Vj ⊕Wj = Vj−1 (3.25)

In multiresolution analysis, the subspaces Vj are generated by the function (φj,k)k∈Z

and The subspace Wj is generated by a scaling function (ψj,k)k∈Z as given below:

Wj = Span{(ψj.k, k ∈ Z)} (3.26)

then, the subspace Vj represents the large scale and Wj represents the small scale (de-

tails).

Let f(x) be a one-dimensional discrete function as sequence of numbers, the dis-

crete wavelet transform coefficients are defined as:
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Cφ(j0, k) =
1√
M

M−1∑
x=0

f(x)φj0,k(x) (3.27)

Dψ(j, k) =
1√
M

M−1∑
x=0

f(x)ψj,k(x) (3.28)

where j > j0, M is power of 2 which ranges from 2 to j − 1 and Cφ(j0, k), Dψ(j, k)

are the approximation and details coefficients respectively. Using these coefficients, the

signal function f(x) can be reconstructed as:

f(x) =
1√
M

∑
k

Cφ(j0, k)φj0,k(x) +
1√
M

∞∑
j=j0

∑
k

Dψ(j, k)ψj,k(x) (3.29)

The implementation of wavelet transform was presented by Mallat [69] introducing

a set of filters (hl)l∈Z and (gl)l∈Z where:

φj,k =
∑
l

hlφj+1,2k+l (3.30)

ψj,k =
∑
l

hlψj+1,2k+l (3.31)

and

hl = (−1)ng1−l (3.32)

Therefore, the approximation and details coefficients are computed.

In two dimensions case, there are one scaling function φ(x, y) and three directional
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Figure 3.1: Wavelet representation scale j=0

Figure 3.2: Wavelet representation scale j=0 and j=1

wavelets as defined below: 

φ(x, y) = φ(x)φ(y)

ψH(x, y) = ψ(x)φ(y)

ψV (x, y) = φ(x)ψ(y)

ψD(x, y) = ψ(x)ψ(y)

(3.33)

where ψH , ψV and ψD measure the horizontal, vertical and diagonal variation respec-

tively as represented in figures 3.1 and 3.2.

Finally, the wavelet coefficients of a given image I (M × N) are computed using

the following formulas:
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Wφ(j, k) =
1√
MN

M−1∑
x=0

N−1∑
y=0

I(x, y)φj,k(x, y) (3.34)

WH
ψ (j, k) =

1√
MN

M−1∑
x=0

N−1∑
y=0

I(x, y)ψHjk(x, y) (3.35)

W V
ψ (j, k) =

1√
MN

M−1∑
x=0

N−1∑
y=0

I(x, y)ψVjk(x, y) (3.36)

WD
ψ (j, k) =

1√
MN

M−1∑
x=0

N−1∑
y=0

I(x, y)ψDjk(x, y) (3.37)

The potential of wavelet representation had a wide impact in theory and in practice.

It’s used for non-linear approximation, compression and image denoising on different

databases. But wavelet is less efficient in some cases for line singularities [157].

3.3.3 Ridgelet Transform

The Ridgelet transform was introduced by Candés and Donoho [158] and Finite ridgelet

transform for image representation [157] by Do and Vetterli. Ridgelet transform has the

ability to detect line singularities.

The continuous ridgelet transform is defined for each a > 0, b ∈ R and θ ∈ [0, π/2]

by the bivariate function ψa,b,θ : R2 → R2:

ψa,b,θ(x) = a−1/2ψ
((
x1 cos(θ) + x2 sin(θ)

)
/a
)

(3.38)

This function is an extension of wavelet transform, where when (x1 cos(θ) + x2 sin(θ)

is constant the two functions are equal. In addition to that the ridgelet transform has the

ability to fit easily the lines compared to wavelet transform [158].

Let f(x) be an integrable bivariate function, the ridgelet transform of f is Rf given

below:

Rf (a, b, θ) =

∫
ψa,b,θ(x)f(x)dx (3.39)
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Do and Vetterli [157] proposed the finite ridgelet transform for image representa-

tion, they used the inner product of finite radon transform and wavelet transform.

The Ridgelet transform is efficient for the detection of straight lines, unless it is

inefficient for curves fitting.

3.3.4 Curvelet Transform

The Curvelet transform was designed to represent edge and curve singularities more

efficiently than previous transforms presented in this chapter. It needs fewer coefficients

to describe edges and curves through the directional parameter added.

Curvelet Transform was introduced in 2000 by Candes and Donoho [159], they

presented the second generation of curvelet [160] known as the fast digital curvelet

transform (FDCT) in 2006, which is less redundant and it has better performances than

its predecessors. Curvelets have the capability to detect finest edges, those can present

more details in curvelet coefficients [161].

Curvelet transforms are defined in two dimensions, with spatial variable x and

frequency-domain variable w. The polar coordinates of the frequency-domain are r

and θ. Two windows W (r) and V (t) called radial window and angular window re-

spectively [160]. These windows will always obeying the following admissibility con-

ditions:

∞∑
j=−∞

W 2(2jr) = 1, r ∈ (3/4, 3/2) (3.40)

∞∑
l=∞

V 2(t− l) = 1, t ∈ (−1/2, 1/2) (3.41)

The frequency window Uj , in Fourier domain given by equation (3.42), represents
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a polar wedge, which is supported by W (t) and V (t).

Uj(r, θ) = 2−3j/4
(
2−jr

)
V
(2bj/2c

2π

)
(3.42)

At scale 2−j , orientation θl and position xk(j, l), the curvelet transform function of

{x = (x1, x2)} is given by equation (3.43).

ϕj,l,k(x) = ϕj

(
Rθl

(
x− x(j,l)

k

))
(3.43)

Where Rθ is the rotation in radians and ϕj is the waveform and its Fourier transform

ϕ̂(w) = Uj(w) given in equation (3.42). It is considered as mother curvelet in the sens

that all Curvelets are calculated by rotations and translations of ϕj [160].

The curvelet coefficient, c given in equation (3.44), it is obtained by the inner prod-

uct between the element f ∈ L2(R2) and the curvelet transform ϕj,k,l.

c(j, k, l) =

∫
R2

f(x)ϕj,k,l(x)dx. (3.44)

Fast Discrete Curvelet Transform (FDCT) via wrapping was introduced by Candes

et al. in their second generation of curvlet [160]. This implementation is based on

wrapping of Fourier samples with a 2D image as input in a Cartesian array form f [m,n]

where 0 ≤ m ≤ M , 0 ≤ n ≤ N , M and N are the dimension of the array (image).

Then, the discrete coefficients of FDCT are given below:

cD(j, l, k1, k2) =
∑

0≤m≤M, 0≤n≤N

f [m,n]ϕDj,l,k1,k2 [m,n] (3.45)

Equation (3.45) defines the Digital curvelet coefficients. cD(j, l, k1, k2) is indexed

by a scale j, an orientation l and the spatial location parameters k1 and k2. Where

ϕDj,l,k1,k2 is the digital waveform. These coefficients are used as features in the current
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Figure 3.3: A comparison between wavelet (a) and curvelet (b) [3]

work.

Figure 3.3 illustrates the advantages of curvelet transform in curve detection com-

pared to wavelet transform [3]. It can be seen easily that for the same curve curvelet

transform is more accurate and needs fewer coefficients than wavelet transform.

3.4 Local Binary Pattern

The Local Binary Patterns (LBP) operator is used for texture description. It is one of the

best performing texture descriptors and it has been widely used in multiple applications

[162, 163]. This operator was developed by Ojala et al. [123, 124]. Many variants

of LBP were developed, for example Heikkila et al. [164] proposed center-symmetric

local binary pattern, then, Zhang et al. [165] developed a new approach replacing the

neighbor pixels by the mean of the neighbors’ blocks, and Wolf et al. [166] proposed

novel patches based LBP where they explored the similarities between neighboring

patches of pixels. The majority of these developments are applied in face detection and

recognition.

The LBP operator attributes for each pixel of the image a new value from 0 to 255

depending on its neighborhood as explained below:

Let the image I(x, y) and gc denote the gray level of an arbitrary pixel (x, y), i.e

gc = I(x, y). And let gp denote the gray value of the local neighborhood, where P
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defines the number of pixels around the point (x, y) with radius R, then :

gp = I(xp, yp), p = 0, ..., P − 1

xp = x+R cos(2πp/P )

yp = y −R sin(2πp/P )

Assuming that the local texture of the image I(x, y) is characterized by the joint

distribution t(.) of gray values of P + 1 (P > 0) pixels:

T = t(gc, g0, g1, ..., gP−1). (3.46)

Without loss of information, the center pixel value can be subtracted from the neigh-

borhood pixel values and equation (3.46) can be written as the following formula:

T = t(gc, g0 − gc, g1 − gc, ..., gP−1 − gc). (3.47)

Assuming that the center pixel is statistically independent to the differences, equa-

tion (3.47) is approximated by:

T ≈ t(gc)t(g0 − gc, g1 − gc, ..., gP−1 − gc). (3.48)

The important information is given by the differences distribution part i.e t(g0 −

gc, g1 − gc, ..., gP−1 − gc). However, the estimation of this distribution from image

data is difficult. Ojala et al. [123] proposed to apply vector quantization given by the

following formula:

t(s(g0 − gc), s(, g1 − gc), ..., s(gP−1 − gc). (3.49)
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where s(z),

s(z) =

1, z ≥ 0

0, z < 0.

(3.50)

Then, the generic local binary patterns operator is defined by: [167]:

LBPP,R(xc, yc) =
P−1∑
p=0

s(gp − gc)2p (3.51)

According to our previous work [126], the choice of P = 8 and R = 1 is the best case

for melanoma description.

Ojala et al. [124] introduced uniform pattern and invariant rotation local binary

pattern. The uniform pattern variant indexed by LBPu2 keeps only the pattern contains

in maximum 2 transition 0/1 and/or 1/0, this variant contains 59 combinations. The

invariant rotation variant pattern indexed by LBPri has the same configuration for all

rotations, it contains 36 combinations. The invariant rotation uniform pattern variant is

an intersection of the uniform patterns LBPu2 and the invariant rotation variant LBPri>

It represents only the uniform patterns which has the same configuration in all rotations,

then it contains 9 combinations.

3.5 Statistical Classification and Pattern Recognition

The classification is the method which cat attribute from a set of features observed or

learned a new class to the studied object not belonging to the learned set. It can be

achieved using supervised learning such as Support Vector Machine and Artificial Neu-

ral Network or unsupervised learning as K-means clustering and k-Nearest Neighbors.

In this section, the representation of basic ideas of support vector machine and artificial

neural network are explained.

The pattern recognition is a branch of machine learning focused on description of
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patterns. It may use the supervised or unsupervised recognition [168]. The supervised

learning utilizes a set of training data which is properly labeled with the correct output.

In the other hand, the unsupervised learning assumes training data has not been well-

labeled and try to find the best pattern which can make a correct output value for the

data.

Depending on the classifier used, many performance metrics can be explored to

compare and analyze the obtained results such as accuracy, sensitivity, specificity. The

mathematical equations of some of these metrics are given in the current chapter (see

section 3.5.4).

3.5.1 Support Vector Machine

Support Vector Machine (SVM) was introduced by Vapnik and Lerner 1963, Vapnik and

Chervonenskis 1964, an overview of the basic ideas of SVM and its advanced methods

for large datasets are explained and detailed by Smola et all. [169]. The basic idea of

SVM is introduced and developed in the current subsection.

Let {(x1, y1), ..., (xm, ym)} ⊂ X × {±1} a set of empirical data, where X is some

nonempty set that the patterns xi belongs. Let the function f : X → {±1}. In this

current study only the hyperplane classifier is presented. Therefore, considering the

class of hyperplanes

(w·x) + b = 0 (3.52)

where w ∈ RN , b ∈ R (in the current work, the choice of these parameters are done

using Statistic and machine learning toolbox of Matlab 2015).

The decision of SVM corresponds to the results of the following formula:

f(x) = sign((w · x) + b) (3.53)
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To construct an optimal hyperplane, it is needed to resolve the following optimiza-

tion problem:

Minimize ‖w‖2, (3.54)

subject to:

(x · xi + b) > 1, if yi = 1

(x · xi + b) ≤ −1, if yi = −1

(3.55)

The two contrast given in the formula (3.55) can be expressed by:

yi(w · xi + b) ≥ 1 (3.56)

The current formulation is used well in perfect separability of the data.

In the case of no-separability, the function to minimize is |w|2 +C
∑m

i=1 ξi where C

is constant and ξ a real small positive (ξi > 0). The constraint is to verify the following

formula:

yi(w · xi + b) ≥ 1− ξi (3.57)

To classify the more complex cases, the linear SVM classifier cannot be accurate by

constructing only a hyperplane between classes. Therefore, a non-linear SVM classifier

was proposed using the following mapping function φ:

x 7→ φ(x) (3.58)

Then, equation decision rule, such as given by (3.53) for linear case, is formulated by

the following equation:

f(x) = w · φ(x) + b (3.59)

Depending on the choice of the mapping function φ, different variants of the non-linear

SVM classifier could be built, such as the polynomial mapping and the kernel trick.

53



3.5.2 Artificial Neural Network

Artificial neural network (ANN) commonly referred to neural network has its inception

for recognition as the human brain computes using different way in separate or parallel,

linear and/or non-linear approaches [170]. The first interest given in ANN emerged

after the introduction of simplified neurons by McCulloch and Pitts in 1943 [171].

In the literature [172], there are many different ANN models developed and imple-

mented. In the current work, the basic idea on ANN model and the most used method

variants are presented.

Let xi = (xi1, xi2, . . . , xin) be the input vector considered as one neuron i and yi

the output where n represents the number of layers, then the result of yi is given by the

following formula [173]:

yi = f(net(xi)) (3.60)

where f is the activation function and net is called Network input. It is very popular

such as the sum function given below [172]:

net(xi) =
n∑
j=1

wijxij (3.61)

where wi = (wi1, . . . win) is the wight vector.

For the output value yi, the simplest way to compute the activation function is fol-

lowing threshold level system given below:

y = fθ(x) =

1 if x > θ

0 otherwise
(3.62)

where θ is the threshold. The formula given in equation (3.62) is the basic idea explored

by McCulloch and Pitts in 1943. Many other variants and extensions were explored

such as Hebb’s method [173] and Auto Regressive (AR) model [170].

The introduction of hidden layers was introduced with the iteration concept between
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two instants following some conditions. Let g called the propagation function, then:

netj = g(oj, wj) (3.63)

where oj defines the output of the neuron calculated using equation (3.60).

The propagation function g depends on the acceptance condition of the output oj and

controls the evolution of the weight vector wj . There exist different models developed

in the literature. The three models are detailed below:

• Hebbian learning: The basic idea of interconnection of two neurons simultane-

ously.

wj(t+ 1) = wj(t) + xjoj(t) (3.64)

• Perceptron learning rule: It was introduced for single layer for linearly indepen-

dent problems.

wj(t+ 1) = wj(t) + δwj with δwj = η(oj(t)− yj(t))xj (3.65)

where η is the learning rate.

• Back propagation learning: it defines the multiple layer and it can approximate

the nonlinear functions to arbitrary accuracy.

∆wij(t+ 1) = η
δE

δwi,j
+ α∆(t) (3.66)

where E designs the average square error, η and α are the learning rate and the

momentum respectively.

The last step is the activation function as given by f in equation (3.60) is also ex-

plored to make border between classes. Two common activation functions are used

[172], threshold function following some threshold θ given by fθ(x) in equation (3.62).

The second common function is the logistic which is differentiable and used in the
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continuous models, as given by the following equation:

f(x) =
1

1 + e−x
(3.67)

Thus, f is a continuous function belonging to the interval [0, 1].

3.5.3 Validation of the Results

The validation of the results step is a statistical method to prove that there is an indepen-

dence in the choice of training and test sets. The cross validation method [174, 175] is

the most used in skin cancer recognition. As reported by Massod et al. [32], some arti-

cles do not report comparison and cross-validation for their results. They suggested that

it is imperative to present in papers these details for the validity of the used methods.

Therefore, to validate the obtained results, the random cross-validation and n-fold

cross validation methods [174,175] are applied in the literature. 10-fold cross validation

method is the most used in skin cancer. It was used by Barata et al. [49] for the region

segmentation and lesion classification. Clawson et al. [99] and Abbas et al. [121] also

applied 10-fold cross validation to validate their results. Two-cross validation is also

used By Codella et al. [122]. Recently Barreiro et al. [19] used K-fold cross validation

to present their result under ABCD rule for feature extraction and sensitivity, speci-

ficity and accuracy metrics to assess the result. The value of K began from 3 to 15.

D’Alesandro et al. [119], randomly repeated their proposed procedure 10 times to per-

form the average result, which is called random cross validation.

3.5.4 Performance Metrics

To measure how is close the prediction to the truth, the results of classifiers are eval-

uated following some performance metrics. Therefore, once the results attribution are

computed, four sets are directly obtained:

• True Positives set contains all the malignant melanoma classified as malignant by
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the classifier used, and they are noted by TP.

• False positives set contains all the benign lesions incorrectly identified by the

classifier used, and they noted FP.

• True Negatives set contains all the benign lesions classified as benign by the clas-

sifier used, and they are noted by TN.

• False negatives set contains all the malignant melanoma incorrectly identified by

the classifier used, and they are noted FN.

The objective is to reduce the FP and FN to zeros. The false positives entrains more

biopsies for medical doctors and analysts. In the other hand, the false negatives is more

dangerous due to the non application of any medical treatment for these false negatives

(unhealthy people) cases.

Several databases are used in different articles, therefore, for comparison, it is

preferable to compute a percentage of detection or precision. For that, many perfor-

mance equations are suggested and applied on skin cancer classification [32]. The most

used performance metrics in melanoma recognition are detailed below:

• Accuracy (Acc):

Acc =
TP + TN

TP + TN + FP + FN
× 100% (3.68)

• Sensitivity (Sen):

Sen =
TP

TP + FN
× 100% (3.69)

• Specificity (Spe):

Spe =
TN

TN + FP
× 100% (3.70)

• Positive predictive value (PPR):

PPR =
TP

TP + FP
× 100% (3.71)
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• Negative predictive value (NPR):

NPR =
TN

TN + FN
× 100% (3.72)

• Error probability (Ep):

Ep =
FP + FN

TP + TN + FP + FN
× 100% (3.73)

• ROC curve : a plot of the true positives TP-rate versus false positives FP-rate.

These metrics are evaluated for classification and recognition step. But, they can be

adapted for segmentation results, for example, attributing the variables FP, TP, FN and

TN to pixels belonging into regions of interest or background.

3.6 Summary

This chapter introduced a mathematical background of the different methods used in

next chapter. It provides as well a deep theoretical understanding of these methods.

The chapter is divided into four parts:

1. It started by the Total Variation theory, explaining the Mumford and Shah function

and the minimization developed by Chan and Vese. This theory is primordial to

explain the extension of Chan and Vese model proposed in the next chapter for

skin lesion segmentation.

2. Then, it is followed by the multiresolution analysis theory, where wavelet and

curvelet transforms are introduced to be used in the next chapter. It provides

also the the multiresolution analysis development starting by Fourier transform

into curvelet transform explaining more the main task and limitations of each

transform.

3. The third part provides the Local Binary pattern theory. This method is mixed

58



with multiresolution analysis and used for feature extraction to discriminate melanoma.

4. The fourth (i.e. last part) provides the statistical classification methods to separate

the skin cancer into two or more different sets, explaining more the theory of

SVM and ANN classifiers. Then, it provides the statistical validation methods

referring some methods used in skin cancer area, and finally, it provides the most

used performance metrics in skin cancer.
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CHAPTER 4

METHODOLOGY

4.1 Overview

In this chapter, the methods developed on skin cancer detection and recognition that can

be used in CAD system are presented. Two domains are mainly developed, which are:

1. Segmentation of skin lesion using the adaption of Chan and Vese model for skin

cancer images. This adaption can be seen as an extension of the model for other

kind of images.

2. Classification of malignant and benign skin lesion using a new method based on

border irregularities.

3. Classification of into malignant and benign lesions using a fusion of structural

and textural features.

In this chapter, two domains are developed, the first domain is highlighted and dis-

cussed in section 4.2. This method is an adapted segmentation for skin cancer images.

It is focused to detect the border between the lesion and the background, and the main

variation inside the lesion. The second domain is focused on features extraction pre-

sented in section 4.3, where two methods are developed. Firstly, border irregularities

information is extracted for each lesion to build a descriptor separating the lesions into

malignant and benign cases. Secondly, a fusion of structural and textural features using

multiresolution analysis (wavelet and curvelet transforms) and local binary pattern is

developed.
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4.2 Segmentation

In this section, the proposed extension of Chan and Vese model is introduced as follow:

• Firstly, the work developed by Chan and Vese in 2001 [60] is summarized.

• Secondly, the generalization developed by Vese and Chan in 2002 [61],

• Thirdly, the generalization proposed by Li et al. [64] in 2010.

• Finally, the proposed extension and adaption of Chand and Vese model

The basic idea of total variation segmentation and a brief theory of Chan and Vese

model was introduced in the last chapter (section 3.2).

4.2.1 Chan and Vese Model

Chan and Vese model is introduced in [60] and its generalization in [61]. The following

definition is the one adapted for image segmentation. This method is used to minimize

Mumford and Shah equation [62]

Let Ω be open and bounded set and C an evolving curve in Ω. We consider C

as a boundary of an open subset ω of Ω (i.e ω ⊂ Ω and C = ∂ω), in what follows,

inside(C) denotes ω and outside(C) denotes the region Ω\ω̄. The segmentation prob-

lem presented in [61] is to solve the following minimization problem:

inf
u,C

{∫
Ω

(u− u0)2dxdy + µ

∫
Ω\C
|∇u|2dxdy + ν|C|

}
(4.1)

where µ, ν are fixed parameters to weight the different terms in the energy given by

equation (4.1), u0 : Ω→ R is a given bounded image-function, u is an optimal approx-

imation of u0 and |C| is the length of curves making C.

A given C = ∂ω (the boudary of open set ω ∈ Ω) is presented implicitly as the zero

Lipscitz continuous function φ : Ω → R such that φ(x, y) < 0 in ω, φ(x, y) > 0 in
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Ω \ ω and φ(x, y) = 0 on ∂ω. Using the following Heaviside function H(z).

H(z) =

1 if z ≥ 0

0 if z < 0

The length of C and the area of ω can be expressed respectively by [61]:

|C| =
∫

Ω

|∇H(φ)|, |ω| =
∫

Ω

H(φ)dxdy (4.2)

Thus, Chan and Vese model is expressed by the following formula [60]:

F (c1, c2) =

∫
Ω

(u0 − c1)2H(φ)dxdy

+

∫
Ω

(u0 − c2)2(1−H(φ))dxdy (4.3)

+

∫
Ω

|∇H(φ)|

Where c1 and c2 are the averages of u0 inside the curve C (area of ω) and respectively

outside (area of Ω \ ω). These constants (c1 and c2) are given by the formula (4.4) and

(4.5) after approximation and regularization.

Considering Hε and δε any C1 approximation and regularization of H and δ0 func-

tion, as ε → 0 and with H ′ε = δε. The constants c1 and c2 are given by the following

formula:

c1(φ) =

∫
Ω
u0(x, y)Hε(φ(t, x, y))dxdy∫

Ω
Hε(φ(t, x, y))dxdy

, (4.4)

c2(φ) =

∫
Ω
u0(x, y)Hε(1− φ(t, x, y))dxdy∫

Ω
Hε(1− φ(t, x, y))dxdy

, (4.5)
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Figure 4.1: The zero level set function. The boundary C is illustrated by the ellipse
which is equivalent to φ(x, y) = 0 and it separates the domain Ω into 2 regions
φ(x, y) > 0 and φ(x, y) < 0.

In figure (Fig.4.1), Ω is represented by the square and the curve C by the ellipse

where φ(x, y) is positive inside and negative outside the elliptic curve.

4.2.2 Generalization of Chan and Vese model

The first generalization of this method was proposed by the same authors [61]. Using a

union of zero level set functions φi, equation (4.3) becomes:

Fn(c,Φ) =
∑

1≤I≤2m

∫
Ω

(u0 − cI)2χIdxdy

+
∑

1≤i≤m

ν

∫
Ω

|∇H(φi)|. (4.6)

Where c = (c1, c2, ..., cn), Φ = (φ1, φ2, ..., φn) and ξI is the characteristic function for

each class I .

Figures (Fig. 4.2) and (Fig. 4.3) illustrate the cases 2 and 3 zero level sets function

respectively. Ellipses and circles represent the curve C and the different classes of φi.

As noted in [64], the generalization developed by Vese and Chan considers only the

cases 2m, with m ∈ {0, 1, 2, ...}. Therefore, for any m > 2, at least, one situation N

with N ∈]2m−1, 2m[ is ignored.

Li et al. [64] proposed in 2010 a new generalization of Chan and Vese model. Their
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Figure 4.2: C is represented by the 2 curves {φ1 = 0}∪{φ2 = 0} which gives 4 distinct
regions illustrated in this figure, 3 in the foreground and the background.

Figure 4.3: C is represented by the 3 curves {φ1 = 0} ∪ {φ2 = 0} ∪ {φ3 = 0} dived it
to 8 regions with the background.

main work is to find a global formula for each N between 2m−1 and 2m, with m ∈

{0, 1, 2, ...}, using smooth membership function ui ∈ [0, 1]. Therefore, the energy

given in equation (4.1) is reformulated as the following formula:

F ({ui}mi=1, {ck}Nk=1) =
m∑
i=1

∫
Ω

|∇ui|dx

+ λ

N∑
k=1

∫
Ω

|u0 − ck|MN
k dx (4.7)

where for k0 = N − 2m−1, k1 = k − k0 and bm,k−1
i = 0 ∨ 1 with Smk =

∑m
i=1 b

m,k1
i ,

then:
M2m

k = (−1)s
m
k Πm

i=1(ui − bm,k−1
i ) if N = 2m

MN
k = (−1)s

m
k Πm

i=1(ui − bm,k−1
i ) if 2m−1 < N < 2m and k = 1, · · · , k0

MN
k = (−1)s

m−1
k1 Πm

i=1(ui − bm−1,k−1
i ) if 2m−1 < N < 2m and k = 2k0 + 1, · · · , N

(4.8)
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For N = 3, the following formula of Mk
n is obtained:

M3
1 = u1u2, M3

2 = u1(1− u2), M3
3 = 1− u1. (4.9)

Equation (4.9) can be written by zero level set function φ and the Heaviside function H

used in Chan and Vese model:
u1u2 ∝ H(φ1)H(φ2)

u1(1− u2) ∝ H(φ1)(1−H(φ2))

1− u1 ∝ 1−H(φ1)

(4.10)

The existence of soft segmentation developed in equation (4.8) requires to satisfy

two constraints. The first one requires that each membership function ui belongs to the

interval [0, 1]. Then, the second is the constraint of summation of all the soft member-

ship functions to be one [176] as given by equation (4.11) below:

N∑
k=1

MN
k = 1 (4.11)

In the formula (4.9), we notice M3
3 depends only on the membership function u1.

The interrogations of how and why M3 can be independent of u2 using zero level set

functions are explained in the next section. The development and the illustration of all

possible configurations for the detection of 3 regions is also done.

4.2.3 Proposed Extension of Chan and Vese model

Unlike the generalizations of Chan and Vese model developed only for one configura-

tion, in this current work, the objective is to find for each N , with 2m−1 ≤ N < 2m

(⇒ N ∈ N), all the possible configurations. This objective will help to segment further

the details of skin cancer images.

The idea of this work is to complete the segmentation with unfixed number of zero
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Figure 4.4: C is represented by the 2 curves without intersection between φ1 and φ2. It
illustrates one possible case of N = 3.

level set function φi. Therefore, for each number of zero set level functions φi, all

possible configurations are studied. Furthermore, the challenge is to choose the best

configuration for the segmentation of a given image without fixing the number of φi

beforehand. In this work, the detection of three regions (N = 3) are developed using 2

zero level set functions. An overview for four and five regions is also discussed.

In the general case, the energy of minimization given in equation (4.3) becomes

another minimization which takes all the possible combinations for each number of

zero level sets:

FN = inf
N,j

{
inf
c,Φ
FNj

}
(4.12)

where j designates the j th combination.

4.2.3.1 Detection of three regions

To detect three regions, exactly two zero level set functions φ1 and φ2 are needed. Thus,

to study the case N = 3, figures Fig. 4.4 and Fig. 4.5 represent the two possible config-

urations. the first one considers the null intersection (total separation), and the second

one is for the total inclusion. For the inclusion, by symmetry φ1 ⊂ φ2 is equivalent to

φ2 ⊂ φ1.

The energy represented in Fig. 4.4 and Fig. 4.5 are given respectively by F31 and
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Figure 4.5: C is represented by the overlapping curves. It is illustrated by φ2 ⊂ φ1

which is symetric to φ1 ⊂ φ2.

F32. Then F31 is:

F31(c, φ) =

∫
Ω

(u0 − c01)2(1−H(φ1))H(φ2)dxdy

+

∫
Ω

(u0 − c10)2H(φ1)(1−H(φ2))dxdy

+

∫
Ω

(u0 − c00)2(1−H(φ1))(1−H(φ2))dxdy

+ ν

∫
Ω

|∇H(φ1)|+ ν

∫
Ω

|∇H(φ2)| (4.13)

and

F32(c, φ) =

∫
Ω

(u0 − c11)2H(φ1)H(φ2)dxdy

+

∫
Ω

(u0 − c10)2H(φ1)(1−H(φ2))dxdy

+

∫
Ω

(u0 − c00)2(1−H(φ1))(1−H(φ2))dxdy

+ ν

∫
Ω

|∇H(φ1)|+ ν

∫
Ω

|∇H(φ2)| (4.14)
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where c = (c00, c01, c10, c11), with:

c11 =

∫
Ω
u0H(φ1)H(φ2)dxdy∫

Ω
H(φ1)H(φ2)dxdy

(4.15)

c10 =

∫
Ω
u0H(φ1)(1−H(φ2))dxdy∫

Ω
H(φ1)(1−H(φ2))dxdy

(4.16)

c01 =

∫
Ω
u0(1−H(φ1))H(φ2)dxdy∫
Ω

(1−H(φ1))H(φ2)dxdy
(4.17)

c00 =

∫
Ω
u0(1−H(φ1))(1−H(φ2))dxdy∫
Ω

(1−H(φ1))(1−H(φ2))dxdy
(4.18)

In this special case, equation (4.12) treats only two configurations expressed by

equations (4.13) and (4.14) illustrated by figures 4.4 and 4.5. Thus the energy of the

image given is expressed by the following formula:

F3 = inf (inf
c,Φ
F31, inf

c,Φ
F32) (4.19)

Using equation (4.13) and (4.14), the comparison will be only between the third

component of each equation, then equation (4.19) becomes:

F3 =

∫
Ω

(u0 − c10)2H(φ1)(1−H(φ2))dxdy

+

∫
Ω

(u0 − c00)2(1−H(φ1))(1−H(φ2))dxdy

+ ν

∫
Ω

|∇H(φ1)|+ ν

∫
Ω

|∇H(φ2)|

+ inf
(
α1, α2

)
(4.20)

where

α1 =

∫
Ω

(u0 − c11)2H(φ1)(H(φ2))dxdy (4.21)

α2 =

∫
Ω

(u0 − c01)2(1−H(φ1))H(φ2)dxdy (4.22)

The algorithm will not be more complex in computing, because the comparison is con-

ducted only between the different parts (α1 and α2). For example, the background of
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the image will be computed once.

In the case where α2 given in equation (4.22) is minimum then φ2 ⊂ φ1 as illustrated

by figure 4.5. In this case, if φ1 < 0, it means automatically φ2 < 0 i.e (1−H(φ1))(1−

H(φ2)) is equivalent to (1−H(φ1)), then equation 4.20 is simplified as follow:

F3 =

∫
Ω

(u0 − c10)2H(φ1)(1−H(φ2))dxdy

+

∫
Ω

(u0 − c01)2(1−H(φ1))H(φ2)dxdy

+

∫
Ω

(u0 − c00)2(1−H(φ1))dxdy

+ ν

∫
Ω

|∇H(φ1)|+ ν

∫
Ω

|∇H(φ2)| (4.23)

This formulation joints M3 of equation (4.9) developed by Li et al. [64], where it

depends only on φ1.

Using a regularized version of H and the Dirac delta function δ0 by Hε and δε

respectively. Introducing an artificial time t > 0 in the Lipschitz function φ(t, x, y)

with φ(0, x, y) = φ0(x, y) as used by Chan and Vese [60,61]. Keeping c as fixed vector,

and minimizing F31 and F32. The initial contour is giving by the following formulas:

• For F31:

∂φ1

∂t
= δε(φ1)

{
ν div

( ∇φ1

|∇φ1|

)
−
[
− (u0 − c01)2H(φ2)

+
(
(u0 − c10)2 − (u0 − c00)

)
(1−H(φ2))

]}
(4.24)

∂φ2

∂t
= δε(φ2)

{
ν div

( ∇φ2

|∇φ2|

)
−
[
− (u0 − c10)2H(φ1)

+
(
(u0 − c01)2 − (u0 − c00)

)
(1−H(φ1))

]}
(4.25)
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• For F32:

∂φ1

∂t
= δε(φ1)

{
ν div

( ∇φ1

|∇φ1|

)
−
[
(u0 − c11)H(φ2)

((u0 − c10)2 − (u0 − c00)2)(1−H(φ2))
]}

(4.26)

∂φ2

∂t
= δε(φ2)

{
ν div

( ∇φ2

|∇φ2|

)
−
[(

(u0 − c11)2 − (u0 − c10)
)
H(φ1)

−(u0 − c00)2)(1−H(φ1))
]}

(4.27)

The soft smooth membership function ui ∈ [0, 1] introduced by Li et al. [64] for H1

regularization is used. Then, in the current studied case, H(φ1) and H(φ2) are replaced

by u1 and u2 respectively. These functions are introduced to verify the constraint of

summation of all membership functions as required by Shen et al. [176]. Therefore, our

system will be presented by the following functions:

• F31 will be defined by: (1− u1)u2, u1(1− u2) and (1− u1)(1− u2).

• F32 will be defined by: u1u2, u2(1− u1) and (1− u1)(1− u2).

For the energy F31 given in equation (4.13) and illustrated in figure 4.4, to put the

potential intersection in one of the sets and to respond to the constraint of summation,

the following combination: u1, u2(1−u1) and (1−u1)(1−u2) is proposed. Therefore,

u1 represents the first choice of the zero level set function, u2(1 − u1) represents the

second zero set level function excluding u1 (it pushes to the separability of the two

level set functions and reduces the intersection to an empty set), then (1− u1)(1− u2)

represents the image background. This combination is an extension of Chan and Vese

model for N = 3 not developed by Vese and Chan [61] and neither by Li et al. [64].

For the energy F32 given in equation (4.14) illustrated in figure 4.5, knowing that

φ1 ⊂ φ2 the background defined by (1− u1)(1− u2) can be defined only by (1− u2).

Therefore, the constraint of summation is satisfied and the current combination will be
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presented by: u1u1, u2(1−u1) and 1−u2. It corresponds to the combination developed

by Li et al [64]. By symmetry this combination can be expressed by: u1u2, u1(1− u2)

and 1− u1.

Then, all the possible configurations by the following system are encompassed as

follow: u1, u2(1− u1), (1− u1)(1− u2)

u1u2, u2(1− u1), 1− u1

(4.28)

The system given in equation (4.28) is applied on skin images database. The ob-

tained results and the implementation are illustrated in figures 4.12 and 4.13a in the next

sub-section (4.2.3.5).

4.2.3.2 Extension to detect four regions

This extension developed can be adapted for the detection of more than 3 regions. Thus,

to detect four regions, Li et al. [64] explored the one developed by Vese and Chan [61]

using only two sets with intersection as illustrated in figure 4.2.

To detect four regions, a minimum of two sets and a maximum of three sets is

needed. The possible configurations are illustrated below with the corresponding equa-

tion systems using soft membership function ui where numerically ui = H(φi). The

proposed systems satisfy the constraint of summation of all membership function to be

one given in equation (4.11). At all, 5 configurations are obtained, one configuration

using two sets and four configurations using three sets as detailed below:

1. Using two sets φ1 and φ2, there is only one possible configuration to get 4 differ-

ent regions. It is the alone case developed for total variation segmentation.
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Figure 4.6: Four regions using two level set functions
φ1 and φ2.



u1u2

u1(1− u2)

u2(1− u1)

(1− u1)(1− u2)

2. Using three sets, the first configuration is presented by total separability between

sets. It is equivalent to the first case developed in the current study for the detec-

tion of 3 regions illustrated by figure 4.4.

Figure 4.7: Four regions using three level set func-
tions φ1, φ2 and φ3 using the total separation method



u3

u2(1− u3)

u1(1− u2)(1− u3)

(1− u1)(1− u2)(1− u3)

3. The second configuration using three sets to detect four regions is characterized

by the mixture between inclusion and separability as illustrated below. It illus-

trates separability between φ2 and φ3 and inclusion of φ1 in φ2.

Figure 4.8: Four regions using two level set functions
φ1, φ2 and φ3 using separation-inclusion



u3

u1u2(1− u3)

u2(1− u1)(1− u3)

(1− u2)(1− u3)
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4. The third configuration using three sets to detect four regions is characterized by

the mixture between inclusion of the two sets and their separability as illustrated

below. It illustrates separability between φ1 and φ2 and inclusion of φ1 and φ2 in

φ3.

Figure 4.9: Four regions using two level set functions
φ1, φ2 and φ3 using inclusion-separation.



u1u3

u2u3(1− u1)

u3(1− u1)(1− u2)

(1− u3)

5. The last configuration using three sets is presented only by the inclusion of sets

as illustrated below. This configuration is equivalent to case developed to detect

3 regions illustrated in figure 4.5.

Figure 4.10: Four regions using two level set func-
tions φ1, φ2 and φ3 using total inclusion.



u1u2u3

u2(1− u1)

u3(1− u1)(1− u2)

(1− u2)(1− u3)

4.2.3.3 Extension for five regions

To detect 5 regions, 12 configurations are possible. Thus, the minimum of sets (φi)

required is three and the maximum is four. Therefore, 4 possible configurations in case

of three sets (φi) and 8 possible configurations in the case of four sets (φi) are obtained.
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4.2.3.4 comparison with Generalization of Chan and vese model

Figure 4.11 illustrates the generalization of the proposed method compared to the ones

developed in the literature. We can see that, in the proposed method, all possible situa-

tion are studied to segment efficiently the lesions.

Figure 4.11: Comparison with existing generalization of Chan and Vese model

4.2.3.5 Implementation and illustration

The implementation of the proposed method is applied on skin cancer images. The

illustration of some cases to present the method and its visual effect are shown.
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(a) (b) (c)

Figure 4.12: Implementation of the approach using equation (4.13). (a): Original RGB
image. (b): Segmentation of the two regions under separability model (equation (4.13)).
(c): Global region-based segmentation.

(a) (b) (c)

Figure 4.13: Implementation of the approach using equation (4.14). (a): Original RGB
image. (b): Segmentation of the two regions under inclusion model (equation (4.14)).
(c): Global region-based segmentation.

Figures 4.12 and 4.13 illustrate the typical results segmentation of the developed

approach applying the two versions of N = 3 described by equations (4.13) and (4.14)
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respectively. It can be seen easily from figures 4.12b and 4.13b the separability and

the inclusion of the sets φ1 and φ2 respectively. We notice that the minimization model

given in equation (4.19) is not implemented in the current work due to the manual

parameterization of Chan and Vese model (ν and dt).

The image used in these figures (4.12 and 4.13) is taken from DermIs (http:

//www.dermis.net) under the name SSM34.

In the next chapter (5), the application of this method is analyzed and discussed.

More examples are given and compared to the previous approaches on standard camera

skin cancer images. The result of the segmentation are also evaluated by three experts.

4.3 Feature Extraction

4.3.1 Overview

The random development of skin lesions, specially melanoma cases, complicate the

classification and the recognition of malignant skin lesions. Therefore, there is a need

to develop a discriminant set of features to well classify using CAD system.

In the current section, two distinct methods are developed to recognize benign and

malignant lesions. For dermoscopic images, the fusion of structural and textural fea-

tures is explored, as explained in subsection 4.3.2, and for standard camera images, the

border irregularity features is presented in section 4.3.3.

4.3.2 Structural and textural features

The multitude of skin cancer lesions, benign and malignant, complicates the recogni-

tion of skin cancer. In addition to that, melanoma is developing randomly in different

directions. However, finding the best descriptor to discriminate melanoma is one of the

hardest task in medical image processing. In the current study, a set of discriminating

features obtained from different descriptors to distinguish benign and malignant cases
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Figure 4.14: Flowchart of structural and textural features fusion proposed in this work.

is presented. Then, two kinds of features are selected and used in dermoscopic images

for melanoma recognition as illustrated by the diagram in Fig.4.14.

The fusion of two descriptors introduced in the last chapter (see section 3.3) are

explored. Therefore, a set of structural features from multi-resolution analysis methods

(wavelet and curvelet coefficients) are used. Further, local binary pattern (LBP) operator

is used to extract the textural features. The method is also presented in section 3.4. The

details and the implementation of the proposed approach are explained below.

1. First, the structural features are extracted using wavelet and curvelet coefficients.

Two level decompositions of Discrete Wavelet Transform (DWT) and Fast Digi-

tal Curvelet Transform (FDCT) via warping (see section 3.3) are applied on the

melanoma region of interest (ROIs). For each coefficient matrix seven statistical

features were computed namely: Energy,Entropy,Mean, Standard deviation,

Maximum, Moment and Homogeneity.
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2. Second, a set of textural features using different variants of local binary pattern

(LBP) i.e. rotationally invariant, uniform and non-uniform rotationally invariant

distinct textures features are extracted.

3. Then, a feature fusion is performed using the concatenation of structural and tex-

tural features of each image.

4. Lastly, SVM classifier is used for classification and diagnosis. Then, 1000−random

sampling cross validation is explored to validate the obtained results.

4.3.2.1 Structural features

The structural features are extracted as follow:

• For wavelet, we used Daubechies 4 waveform, then 8 coefficient matrices are

computed, 4 from the first level and 4 from the second level (one approximation

coefficient matrix and three details coefficient matrices) using equations (3.34) to

(3.37). In total, we extracted 64 features from wavelet transforms.

• For two level of curvelet decomposition 9 curvelet coefficient matrices were ob-

tained for each image i.e. 1 matrix from the first level and 8 matrices from the

second level. These matrices are built using equation (3.45) detailed in the next

section. Thus for each level, seven statistical features were computed. Thus a

total of 63 features from curvelet two level decompostion were obtained.

4.3.2.2 Textural features

For textural features, Local Binary Pattern (LBP) operator is used to extract local tex-

tural variations. Thus, depending on the variant of LBP operator as detailed in section

3.4, three LBP variants are explored in the current work. Therefore, we have:

• 59 textural features from LBPu2 (Uniform pattern).
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• 36 from LBPri (invariant rotation).

• 9 from LBPriu2 (Invariant rotation uniform pattern).

Indeed, only radius R = 1 and eight neighborhood pixels (P = 8) are used in the

experiments. Here it is worth mentioning that all the features were normalized to the

range [0 − 1] and their influence before and after fusion can be recorded in validation

performances.

4.3.2.3 Implementation

The proposed approach is implemented on the public database PH2 presented by Men-

docca et al. [149]. A descriptive and statistical analysis of the database is also achieved

and presented in next chapter. The result of this analysis is compared to the known

ABCD rule used in the hospitals.

Many implementations are computed separately and/or by combination between

structural and textural features selected. The obtained results of the three variants of

LBP methods (invariant rotation LBP, uniform Pattern LBP and invariant rotation uni-

form pattern LBP), wavelet and curvelet coefficients, and the different combination are

validated using random sampling cross validation under SVM classifier with linear ker-

nel. Then, a comparison with the exiting results in the literature using the same database

is also achieved. The results are presented and discussed in chapter 5.

4.3.3 Border Irregularity Features

The geometrical characteristics of borders are explored by the approach developed in

this section. Therefore, the proposed work is divided mainly into two main stages. First,

the standardization of image direction which is a kind of normalization of the database

to have the same view for all images. Second, the border feature are extracted using

two new concepts, valleys and crevasses, to explore the irregularities for diagnosis.
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4.3.3.1 Standard image orientation

Different illumination conditions, skin tones, hairs on the skin and varying the angle of

image acquisition, add noise to this images. These artifacts make the feature extraction

more challenging. Thus, a preprocessing is required to remove these additional noises.

Once the noise is removed, there is a need to present all the images in one standard

view. Hence, in the current study, a conversion of the images into one common view is

presented. Thus, the approach to normalize the images is presented.

The proposed method is applied when the region of interest (ROIs) are detected and

boxed using bounding box and coordinates of ROIs from the binary images of ground

truth given in the database. The dimensions of the bounding box depend on the size of

the abnormal region itself. The ROI used are extracted manually, and taken as ground

truth to show the contribution of the current approach.

To resolve this issue and standardize the size, the following strategy is adopted:

• Firstly, the minimization of the unwanted area using rotation of the ROIs from 0

to 180 degrees. Then, the box of ROI containing small area is selected.

• Secondly, horizontal (or vertical) orientation of boxes is chosen for standard

view. Figure 4.15 illustrates the reorientation and the choice of direction on our

database. It can be seen that ROI box is minimized to contain only the lesion.

The image provides from DermIs website (www.dermis.net) under the name

of SSM26a.

The algorithm 1 summarizes the different steps of the standard image orientation

method.
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Algorithm 1 Standard Image Orientation Algorithm
img: Image input
for α = 1 to 180 do

new_img = rotate(img, α)
box_img = detection of the box containing the ROI.
[a(α), b(α)] = size(box_img)

end for
[M, ind] = min(a)
std_img = rotate(img, ind)
std_box = detection of the box containing the ROI

(a) (b) (c) (d)

Figure 4.15: Illustration of the normalization of the images using standard view orienta-
tion approach. (a): Original RGB image. (b): The ROI of the lesion. (c): The isolation
of the ROI. (d): Reorientation of the ROI to horizontal view. The image is provided
from DermIs website (www.dermis.net) under the name of SSM26a.

4.3.3.2 Border feature extraction

The border irregularities are one of the widely visible features to explore for discrimi-

nation. However, the benign lesion borders are not so smooth to fit them with a math-

ematical function. Malignant and benign lesions can be developed in different ways as

indexed by Lee et al. [108]. The construction of these features is started by the idea

of evaluation of border irregularities exploring different features which are more local.

It is based on algorithm detecting each two consecutive null derivation of the border

curve. However, it is very difficult to formulate the analytic function of each lesion bor-

der. Then, an new algorithm is implemented to express this need. Two new concepts,

valleys and crevasses, are extracted as first and second level of border irregularity.

To detect these new concepts, a newer and simpler algorithm exploring the border

irregularities in four directions is proposed. The horizontal direction explores all pixels

from right to left and vice versa, and vertical direction explores the pixels from up to

down and vice versa. Figure 4.16 illustrates the four directions applied in the proposed
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Figure 4.16: Four direction to detect the regular border. Horizontal direction: left to
right and right to left. Vertical direction: up to down and down to up.

approach. This algorithm is applied on the standard oriented images explained in the

last sub-section (4.3.3.1).

The four directions shown in Figure 4.16 are divided into two groups, horizontal

and vertical. Thus, for each line and column of pixels, the area between the box limit

and the first contact of the arrow with the ROI’s edge are isolated and removed. Thus,

only the missed areas are kept. Therefore, if the border is more regular, all the outside

part of the pigment will be detected and removed. In the other case, more the border is

irregular, more it misses many parts of the outside part of the pigment.

Two kinds of missed parts are noted. Firstly, valley part is the missed one using

only one direction (horizontal or vertical) separately. Secondly, the crevasse part is the

missed one using both directions in the same time, the crevasse have almost the cul-de-

sac geometrical form. Figure 4.17 illustrates the valley and the crevasse cases. They

can be considered as the first and the second level of the border irregularities.

These border irregularities quantified by the valleys and crevasses are used as fea-

tures exploring the size and number of the concepts detected. Thus, let v denotes valleys

and c crevasses, two counting functions are defined, N to compute the number of areas
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Figure 4.17: Illustration of the valley and the crevasse cases: Valley: using only one
direction (horizontal or vertical) and Crevasse: Using two directions (horizontal and
vertical)

detected and S to compute the size of each area detected. Therefore, 8 features are ex-

tracted and divided in 2 groups, globals and locals. The global ones are the features not

depending on some thresholds and the local ones are those depending on these thresh-

olds. The choice of these global and local features is done gradually to increase the

performance of classification between the malignant and benign lesions.

The first group contains 4 global features concerning the total number of valleys and

crevasses detected and their total size as detailed below.

• N(v) is the number of valleys and N(c) is the number of crevasses.

• S(v) is the size of all valleys and S(c) is the size of all crevasses.

The second group contains 3 other features computing the number and the size of de-

tected valleys and crevasses greater or smaller than two thresholds τv and τc respectively.

These features are added in order to increase the performance of detection and decreas-

ing the noises of border segmentation i.e a crevasse detected with a size of one or two

pixels will be less important than a crevasse of fifty pixels of size, for example. Then,

the following equations are formulating these three local features.

• N(1S(v)≥τv) and N(1S(v)<τv) quantify the number of valleys greater/smaller than

the threshold τv.

• N(1S(c)≥τc) quantify the number of crevasses greater than the threshold τc
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where,

1S(x)≥τ =

1 S(x) ≥ τ

0 otherwise

, with

x ∈ {v, c}τ ∈ {τv, τc}
(4.29)

Finally, the eighth features is the ratio of pigment pixels over the box area, this

feature is introduced to moderate the differences of image dimensions in the database

which are standard camera dataset with different size. It contains also information due

the global border irregularity i.e after standardization step, the area of the background

of the image is minimized, then the ratio is behaving like the relation of p-norms, where

the border defines the 2-norm and the box the inf −norm as illustrated in figure 4.18.

This value is defined by Γ-value given by the following equation:

Γ =
Area(r)

Area(b)
(4.30)

where r denotes the Region of Interest (ROI) and b the selected box containing the ROI.

Figure 4.18: p-norms illustration

Therefore, combining all the characteristics defined above, for each image a set of
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8 features are extracted, as summarized by the variable feat given by equation (4.31):

feat =
{
N(v), N(c), N(s(v)), N(s(c)), N(1s(v)≥τv),

N(1s(v)<τv), N(1s(c)≥τc),Γ
}

(4.31)

where τv, τc ∈ N chosen empirically. In the implementation of the algorithm, τc is fixed

to 2 and τv ∈ [0, 100].

The two steps of the current approach is implemented on skin database provided

from standard camera. The results are presented and discussed in the next chapter.

4.4 Summary

This chapter provides the three methods developed in the current work.

• Firstly, the extension of Chan and Vese model is explored, which is a general-

ization of the model and an adaption for skin cancer images characteristics. It

was adapted to segment the small details inside the lesions, such as colors and

pigment areas and structures.

• Secondly, a fusion by concatenation of structural and textural features are ex-

plored and developed to discriminate benign and malignant pigment skin lesions.

The structural features are obtained exploring a wavelet and curvelet transforms,

while the textural features are obtained exploring local binary pattern operator.

• Thirdly, a method based on border irregularities is developed, introducing two

new concepts in skin images which are valleys and crevasses as first and sec-

ond level of border irregularities. A normalization of skin cancer view is also

proposed in the method as preprocessing step.

The proposed methods are applied on skin cancer databases. The results are pre-

sented in the next chapter.
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CHAPTER 5

RESULTS AND DISCUSSION

5.1 Overview

The obtained results from the three proposed methods of the current work are presented

and discussed in this chapter. Firstly, it started by the introduction of the different

databases used which are dermoscopic images and standard camera images. Secondly,

it is followed by the obtained results from the three methods developed which are,

segmentation of the region of interest using the extension of Chan and Vese model, the

fusion of textural and structural features and border irregularity features. Finally, the

comparison of the obtained results with the existing methods is performed.

5.2 Datasets

Two different acquisition of database, dermoscopic and standard camera images, are

used in the current work divided following their acquisition mode into dermoscopic and

standard camera images. The two sets contains 406 images, 200 are dermoscopic and

206 are from standard camera. The two databases, dermoscopic and standard camera

images, are presented in subsections 5.2.1 and 5.2.3, respectively.

5.2.1 Dermoscopic Images Database

PH2 Database was introduced in 2013 by Mendoca et all. [149] and more detailed in

2015 by the same authors [177]. PH2 is a public and free database, built to perform and
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compare the evaluation of several systems. The database was built up through the joint

collaboration between Universidade do Porto, Técnico Lisboa, and the Dermatology

service of Hospital Pedro Hispano in Matosinhos, Portugal. The acquisition of images

was obtained under the same conditions. They are 8-bit RGB color images with a

resolution of 768× 560 pixels.

The database contains a total of 200 dermoscopic images divided into 160 benign

lesions and 40 melanomas. The benign lesions contain 80 common nevi and 80 atypical

nevi. The quality, resolution and dermoscopic features of images are highlighted in

the current database. Every image was segmented manually and diagnosed by several

dermatologists. It contains also the clinical diagnosis and dermoscopic criteria such as

asymmetry, color and presence of typical and atypical structures.

Table 5.1 summarizes all the given characteristics in PH2 database, where sub-

feature is describing the different cases of each feature, for example, fully asymmetry is

a sub-feature of Asymmetry. The table shows the percentage of the presence / absence

of each sub-feature. For each percentage, the number of images is noted between brack-

ets. The table is to be read by columns, thus for example, the common nevus is 96.25%

fully symmetric, 2.5% is symmetric in one axis and only 1.25% is fully asymmetric and

melanoma is 12.5% fully symmetric, 5% symmetric in one axis and 82.5% fully asym-

metric. The table shows the dominant characteristics for each feature. It represents the

cross table between characteristics and skin lesions diagnosis.

Based on the given features in table 5.1, intuitively, the most difficult is to recog-

nize the atypical nevus. Thus, for example the asymmetry feature makes a real border

between common nevus and melanoma only. The pigment network feature separates

more common nevus with a total absent of pigment network to atypical and melanoma.

However the dots/globules features are not descriptive between the three cases. We can

observe also that streaks and regression area features are more common in common ne-

vus and atypical nevus than melanoma. Blue-whitish veil discriminates better between

benign and malignant compared to other features. Finally, the color increases gradually

from common nevus to melanoma.
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Table 5.1: Summary of the characteristics of PH2 database representing the percentage
of each sub-feature and between brackets the number of images.

Database characteristics Common
Nevus (80)

Atypical
Nevus (80)

Melanoma
(40)

Asymmetry
Fully symmetric 96.25% (77) 43.75% (35) 12.5% (5)
Symmetric in 1 Axe 2.5% (2) 33.75% (27) 5% (2)
Fully Asymmetric 1.25% (1) 22.5% (18) 82.5% (33)

Pigment
network

Typical 100% (80) 3.75% (3) 2.5% (1)
Atypical 0% (0) 96.25% (77) 97.5% (39)

Dots /
Globules

Absent 36.25% (29) 50% (40) 45% (18)
Typical 57.5% (46) 10% (8) 0% (0)
Atypical 6.25% (5) 40% (32) 55% (22)

Streaks
Absent 98.75% (79) 80% (64) 67.5% (27)
Present 1.25% (1) 20% (16) 32.5% (13)

Regression
area

Absent 100% (80) 95% (76) 47.5% (19)
Present 0% (0) 5% (4) 52.5% (21)

Blue-whitish
veil

Absent 100% (80) 92.5% (74) 25% (10)
Present 0% (0) 7.5% (6) 75% (30)

Color

1 color 42.5% (34) 25% (20) 0% (0)
2 colors 53.75% (43) 63.75% (51) 32.5% (13)
3 colors 3.75% (3) 11.25% (9) 27.5% (11)
4 colors 0% (0) 0% (0) 32.5% (13)
5 colors 0% (0) 0% (0) 7.5% (3)
6 colors 0% (0) 0% (0) 0% (0)

Another way of reading table 5.1 is horizontally. Indeed, it shows the influence of

each sub-feature. For example, the typical Dot/Globules feature is more frequently in

common nevus than atypical nevus and almost inexistent in melanoma case. However,

the atypical Dot/Globules feature shows an opposite behavior with a high presence in

melanoma, less in atypical nevus and rarely present in common nevus. A statistical

analysis of the database is performed and compared to a based scoring system used in

the hospitals in the next sub-section.

From the table 5.1, it can be seen that:

• Asymmetry makes a border between common nevus and melanomas with 96.25%

fully symmetric for common nevus and 82.5% fully asymmetric for melanoma.

However, for atypical nevus, the asymmetry feature is not significant as shown in

the table with 43.75%, 33.75% and 22.5 for asymmetry, symmetric in 1 axis and

89



fully asymmetric, respectively.

• The pigment network feature makes a border common nevus in one side with

100% typical network and in the other side atypical and melanoma with 96.25%

and 97.5% respectively for atypical pigment network feature.

• Dots / Globules feature is more typical for common nevus than atypical nevus and

melanoma with 57.5%, 10% and 0%, respectively. Then, the opposite behavior

is visible for atypical, where it is rare in commons nevus with 6.25% and more

present in atypical nevus and melanoma with 40% and 55%, respectively.

• Streaks feature is more discriminating between common nevus in one side and

atypical nevus and melanoma in other side when it is present. However, when it

is absent, it is very difficult to conclude regarding the percentage of absence of

streaks of common, atypical and melanoma, which are 98.75%, 80% and 67.5%,

respectively.

• Regression area is describing the common nevus by the total absence, and more

it is present, more there is a high probability to get melanoma.

• Blue-whitish veil has the same behavior than regression area, where is more ab-

sent for common and atypical nevus and more present for melanoma.

• Color feature is discriminating melanoma if three or more colors are detected with

a percentage of 67.5%, and discriminating common and atypical nevus if two

colors or less are detected with a percentage of 96.25% and 88.75%, respectively.

5.2.2 Significance of the database

The significance and the representativeness of the database in medical images is one the

most challenging task. The information given by the current database contain almost

ABCD rule developed by Stolz et al. [14] and used for comparison by Capdehourat et

al. [1] and Dolianitis et al. [35].
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The PH2 database quantifies each pigment following ABCD rule excepting border

irregularities. According to Capdehourat et al. [1], the evaluation of ABCD rule follows

the scores summarized in the table 1.1 where dermoscopic structures contains pigment

network, structures ares, dots, globules and branched streaks. The authors added to

these features Blue-whitish veil which is a major criteria of 7-point checklist [1] system.

This scoring system is applied on the features described in table 5.1. It followed the

method used by Capdehourat et al. [1] where :

• Asymmetry is evaluated from 0 to 2 , with 0 being fully symmetric, 1 for sym-

metric in one axis and 2 for fully asymmetric. It has the highest weight factor of

1.3.

• Border is evaluated with score from 0 to 8, drawing eight segments; one point is

given for each abrupt pigment cutoff with a weight factor of 0.1.

• Color is evaluated from 1 to 6, attributing one point for each color with a weight

factor of 0.5. Colors considered are white, red, black, light brown, dark brown

and blue-gray.

• Dermoscopic structures encompass five structures which are: pigment network,

structureless area, dots, globules and branched streaks. One point per structure

with a weight factor of 0.5.

We notice that there are some differences between extracted features in PH2 database

and ABCD rule. Therefore, the threshold of the scoring system is adapted by removing

the contribution of border irregularities. Then, the thresholds 4.75 and 5.45 became

4.50 and 5.20, respectively. Therefore, for each image the obtained score value (Sabcd)

of the function given in equation (1.1) is evaluated as follow:

• benign: if the score is Sabcd < 4.50,

• clinical doubt: lesion if the score lies between 4.50 ≤ Sabcd ≤ 5.20,

• malignant: if the score is Sabcd > 5.20.

91



Figure 5.1: ANOVA test results

There are other characteristic explored in the database, such as blue-whitish veil, not

used in ABCD rule, but used in another scoring system which is 7-point checklist [1].

However, the objective evaluation is difficult to be achieved due the visual features char-

acterized depending only on the decision of absence or presence of each characteristic.

The results reported by Dolianitis et al. [35] are presented in the table 5.2. They

are compared to the results obtained from PH2 database applying ABCD rule. These

results show a similar behavior and equivalent results for the three performance metrics

which are sensitivity, specificity and accuracy. The threshold of ABCD rule, given in

the table ??, applied on PH2 database was adapted taking in consideration the missing

values of border irregularities. Then, the value of the threshold is reduced to 4.5 and

5.20 in place of 4.75 and 5.45 respectively.

Table 5.2: Result of ABCD rule obtained from PH2 database

Diagnositic Parameter Doliantilis et al. [35] PH2 Database

Sensitivity 77.5% 77.5%

Specificity 80.4% 97.5%

Accuracy 73.2% 87.5%

Applying Analysis of Variance (ANOVA) on the vector obtained by ABCD rule

on the H0 (same population) against H1 (different classes). The P-value obtained is

less than 0.01 as given in the Matlab table reported in figure 5.1. Then, the hypothesis

H0 is significantly rejected. Thus, the database presents significantly heterogeneous

population (more than two classes).
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Figure 5.2: Variability of the three classes of the PH2 database. (1): Common nevus.
(2): Atypical nevus. (3): Melanoma.

The box plot in Figure 5.2 illustrates graphically the variability of each group and

deduce three different classes in the population.

Figure 5.3: Results of ABCD rule system applied on PH2 database.
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Figure 5.3 describes the results of ABCD rule (blue) of the whole database and

the mean of each class (red). Descriptively, using ABCD rule results, the graph shows

more stability in common nevus lesion than the two other cases (atypical nevus and

melanoma).

5.2.3 Standard Camera Images Database

The standard camera image database is provided from two dermatology website, Der-

matology Information System (DermIS) [4] and Dermquest [5]. The database contains

a total of 206 images where 118 are melanomas cases and 87 are benign lesions. DermIS

contains 69 images divided into 43 melanomas and 26 benign lesions and DermQuest

contains 137 images divided also into 76 melanomas and 61 benign lesions. Recently

(2014) Amelard et al. [105] used this database in his work.

The DermQuest database shows a redundancy of some images due the different ac-

quisition of the same image changing the distance and the view of acquisition. To avoid

a confusion and make independence between lesions, only clear images are chosen.

Therefore, 40 images are deleted where 38 are melanomas and 2 are benign lesions.

Figure 5.4 illustrates one case of redundant images. In this cases the image in fig-

ure 5.4a is kept and the other in figure 5.4b is deleted in the database. Thus, the new

database contains 166 images divided into 99 melanomas and 67 benign lesions.

(a) (b)

Figure 5.4: Illustration of the same image acquired with different distance. (a):
LMM8_orig image (kept). (b): LMM8_2_orig image (removed) [4].
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5.3 Segmentation of Images Results

The obtained results of the extension of Chan and Vese Model proposed in section 4.2

are presented in this section. The implementation of the developed method on different

images is presented in the next subsection (5.3.1), then an evaluation of the segmenta-

tion is presented in subsection 5.3.2.

The algorithm is implemented in the whole database of malignant and benign le-

sions presented in section 5.2.3. The following figures illustrate different image seg-

mentations showing visually more and less accurate cases. As mentioned in the lit-

erature, the most difficult of the original method is to provide the best parameters of

the model to get attended segmentation. Therefore, for each presented image, the two

parameters ν and dt are given. An exhaustive table for the whole database is given in

the end of the section. The minimization given in equation (4.12) is not implemented

in the current work. The reasons are discussed and some methods are suggested in

perspectives and future directions.

To remove different noises, the segmentation is applied on cropped and resized im-

age focused on the lesions. It makes the subjective evaluation of experts more confident

when the border are formally recognized by the naked eyes.

5.3.1 Implementation

The two methods developed for detection of the three regions illustrated by figures

4.4 and 4.5 are applied and implemented on standard camera images in the database

described in subsection 5.2.3. Therefore, two extended models are applied defined by

equations (4.13) and (4.14) representing the separation and the inclusion of the two sets

φ1 and φ2 respectively.

In this section, the methodology of implementation is presented, the different pa-

rameters used and the illustration of some images presenting the advantages and limita-

tions of the method are also highlighted. As mentioned above, the minimization of these
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two methods, given by equation (4.19), is not performed in the current work. Then, the

results obtained using both methods are presented and illustrated.

5.3.1.1 Segmentation by Inclusion

In this section, equation (4.14) is applied as illustrated. Figure 5.5 presents 4 image ex-

amples showing different segmentations obtained. From these examples, it can be seen

easily that the algorithm developed follow perfectly the inclusion method explained in

section 4.2. The segmentation by inclusion has an effect very important to distinguish

between the different lesion darkness regions.

In Figure 5.5, four images are illustrated using the inclusion segmentation method.

The first column of the figure shows the original images segmented, the second column

illustrates the results of segmentation and finally the third one shows the different re-

gions segmented accounting the background. In the second column, the size of images

is reduced to show better the different lesions. The current method is very sensible to

noises and borders inhomogeneity [178], as it can be visible in the sub-figure5.5h. For

each image, all parameters used in the illustrated segmentation are given. Therefore,

we notice that the parameter ν and dt are different for each image and chosen manually.

These dependent parameters make the method very difficult for the automation.

5.3.1.2 Segmentation by Separation

The implementation of this second method provides the expected results as shown in

figure 4.4. However, the separated cases in the current database are rarely visible due

to the fast development of skin lesion [179]. Knowing that our algorithm in this case

searches only the convergence of two separated sets. The following examples in figure

5.6 are chosen to illustrate some possible cases .
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.5: Implementation of the approach using equation (4.14) on images from Der-
mIs database. (a): Original RGB image SSM18. (b): Segmentation of the two regions
with ν = 0.2 and dt = 0.5. (c): Global region-based segmentation. (d): Original
RGB image SSM9. (e): Segmentation of the two regions with ν = 0.28 and dt = 1.5.
(f): Global region-based segmentation. (g): Original RGB image SSM11. (h): Seg-
mentation of the two regions with ν = 0.07 and dt = 1.5. (i): Global region-based
segmentation. (j): Original RGB image SSM11. (k): Segmentation of the two regions
with ν = 0.15 and dt = 0.3. (l): Global region-based segmentation.
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(a) (b) (c)

(d) (e) (f)

Figure 5.6: Implementation of the approach using equation (4.13). (a): Original RGB
image (SSM34). (b): Segmentation of the two regions. (c): Global region-based seg-
mentation.(d): Original RGB image (SSM18). (e): Segmentation of the two regions.
(f): Global region-based segmentation

5.3.2 Obtained results

The evaluation of the developed method is highlighted by a subjective evaluation per-

formed by three image processing experts into acceptable and unacceptable segmenta-

tion. For each acceptable segmentation a 3 choices of evaluation is proposed which are

excellent, good and average. Table 5.3 explains how the experts evaluated the proposed

method. In the first step, the experts evaluated the segmentation into acceptable and

unacceptable, and in the second step they evaluated separately the acceptable ones into

excellent, good or average segmentation. The second intermediate evaluation makes in

evidence further the possible improvement of the proposed method. For each expert,

only the protocol of evaluation is explained without any influence on their evaluation.

Figure 5.7 illustrates an example of the four qualities segmentations explained in table

5.3. Due to the missing of information in the ground truth, it is very difficult to evaluate
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the proposed extension using other evaluation methods such as Jaccard Index.

Table 5.3: Subjective evaluation rules.

Evaluation Description

Acceptable

Excellent It separates perfectly the two regions and improvement

needed.

Good It separates very well the two regions but it can be im-

proved

average It separates the two regions with small missed parts

where the improvement of the segmentation is required.

Unacceptable It cannot not recognize the two regions or big parts of the

lesion are missed.

(a) (b)

(c) (d)

Figure 5.7: Subjective evaluation examples. (a): Excellent Segmentation. (b):Good
Segmentation. (c): Average segmentation.(d): Unacceptable segmentation.
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Table 5.4 reports the results of the subjective evaluation performed by two image

processing expert (the first expert and the third expert) and medical expert (the sec-

ond expert). Thus, from the database used, only 2.38% and 6.98% are evaluated as

the unacceptable segmentation by the image processing experts respectively. However

the medical expert evaluated 9.30% of images as Unacceptable segmentation. For the

excellent segmentation, 96.06%, 48.84% and 13.95% are evaluated by the first, second

and the third experts. We can notice that the difference between experts are more visi-

ble than unacceptable case. The same difference between the experts is visible for good

and average segmentation.

Table 5.4: Subjective Evaluation done by image processing expert on the results ob-
tained from the extension of Chan and Vese model by inclusion method

Segmentation quality First expert Second expert Third expert

Excellent segmentation 69.06% 48.84% 13.95%

Good segmentation 21.42.% 23.26% 55.81%

Average segmentation 7.14% 18.60% 23.26%

Unacceptable segmentation 2.38% 9.30% 6.98%

Table 5.5 reports the results of experts for the two cases of evaluation, acceptable

and unacceptable. It can be seen that more than 90% of segmentations are evaluated

as acceptable by the three experts. Furthermore, these performances are obtained not

only for the detection of lesion ROIs but also for the segmentation of the different

development of moles in the skin lesion, which is the main objective of the proposed

method.

Table 5.5: Subjective Evaluation done by image processing expert on the results ob-
tained from the extension of Chan and Vese model by inclusion method

Segmentation quality First expert Second expert Third expert

Acceptable segmentation 97.62% 90.70% 93.98%

Unacceptable segmentation 2.38% 9.30% 6.98%
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It can be seen that for the medical expert, the results of acceptable segmentation is

lower than image processing experts. It is explained by the expert that it is not accept-

able to miss a malignant parts of the lesion, because to succeed the treatment of cancer

they have to treat the whole lesion, and the missing of a small part of lesion can develop

other malignant cells. It can be concluded that in hospitals that the false negatives are

considered more dangerous than false positives.

Therefore, we can conclude that the proposed method of segmentation highlights

the random development of melanoma, it is extended from Chan and Vese model. The

objective of current method is to follow the development of the whole lesion and its

particular parts of the lesion. The results obtained show an acceptable detection and

segmentation over than 90%, and only less than 10% of wrong detection or missed parts

in the segmentation. The subjective evaluation is performed by two image processing

experts and medical expert. However, to process the current method in a typical CAD

system, more developments are needed, specially the automation of all parameters of

the model. These points are also discussed in the next chapter in perspective section.

5.4 Multi-resolution analysis results

The results presented in this section refer to the method explained in section 4.3.2. To

enhance the quality of images used, the computation of the result was forwarded by the

hair removing preprocessing using DullRazor Software as detailed in subsection 5.4.2.

Applying the method on a database of 200 dermoscopic images from PH2 database

[149]. This database contains 160 non melanoma (benign) and 40 melanoma (malig-

nant) images. The classification is performed using SVM classifier with the linear

kernel, 70% of the database are used for training and 30% for test. A random sam-

pling cross validation method is applied to validate the obtained results, where thousand

(1000) combinations of training and test sets are chosen randomly from the database.

Thus, each image is used in average 700 times for training and 300 times for tests. An

unbiased standard deviation (Std) for the thousand combinations is also computed for

the three performance metrics.
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The evaluation is performed between the three sets of skin lesions (common nevus,

atypical nevus and melanoma). Thus, to get a representative training set from the be-

nign lesions, 70% of each set are chosen separately as illustrated in figure 5.8. Two

cases are computed and analyzed in this study, a separate case which is the recognition

of melanoma mixed only with common nevus or atypical nevus. The second case is to

recognize melanoma mixed with the whole benign lesions respecting the representativ-

ity of common and atypical nevus in training and test sets.

Figure 5.8: Training and test sets selection

The next subsections are organized as follow: Firstly, the technical details of the

implementations, secondly the intermediate step which is image enhancement by hair

removing and finally the obtained results and discussion.

5.4.1 Technical details

In this section, the details of the implementation are given and explained for further re-

production and comparison. Therefore, for structural features, curvelet and wavelet co-

efficients are computed for the first and second level. Thus, 9 curvelet coefficients matri-

ces are extracted from each image. Then, for each curvelet coefficient matrix, Energy,

Entropy, Mean, Standard deviation, Maximum, Moment and Homogeneity are

computed. Then, 7 features from the first level and 56 features from the 8 different an-

gles of the second level are obtained. For wavelet, Daubechies 4 transform is used, then

8 coefficient matrices are computed, 4 from the first level and 4 from the second level

(one approximation coefficient matrix and three details coefficient matrices). Comput-

ing the same quantities as curvelet coefficient matrices, then for each level 32 features
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are extracted. In total, 63 and 64 features are extracted from curvelet and wavelet trans-

forms, respectively.

Depending on the variant of LBP operator as explained in section 3.4, we have

59 textural features from LBPu2, 36 from LBPri and 9 from LBPriu2. Indeed, in the

experiments only radius R = 1 and eight neighborhood pixels (P = 8) are used.

The evaluation of the proposed method is measured using three performance met-

rics which are sensitivity (sen), specificity (spe) and accuracy (acc) [33], as given in

equations (5.1) to (5.3).

sen =
TP

TP + FN
(5.1)

spe =
TN

TN + FP
(5.2)

acc =
TP + TN

TP + FN + TN + FP
(5.3)

Where TP (True Positives) defines the melanoma classified as melanoma, TN (True

Negatives) defines the non melanoma classified as non melanoma, FP (False Positives)

and FN (False Negatives) are the non melanoma and melanoma which are not classified

on the right set respectively.

Equation (5.3) depends on the number of benign and malignant lesions. To remove

this dependence, we estimate the accuracy in the following way:

âcc =
αTP + TN

αTP + αFN + TN + FP
(5.4)

The parameter α is added to compensate the difference of images number in the

accuracy performance. This parameter is obtained by the following formula:

α =
#Benign

#Malignant
(5.5)

Where #Benign and #Malignant design the number of benign and malignant im-

ages respectively. Therefore, α = 2 for the first and second classification (melanoma vs
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atypical, and melanoma vs common nevus) and α = 4 for the last classification (malig-

nant and benign lesions). The performance results are computed also by accuracy given

by equation (5.4).

Equation (5.4) can be also used with different values of the parameter α to give

more weight for false negatives or false positives to tolerate or reject some special situ-

ations, such as let cancerous patients without treatment which are false negatives. In our

case, the α chosen is used just to regulate the difference between benign and malignant

lesions. This formulation is equivalent to (sen + spe)/2 used in Barata et al. [141]. In

the next section, the results show a significant difference between the two metrics.

Figure 5.9a presents the evolution of the modified accuracy (âcc) depending on dif-

ferent values of α, from 0.1 to 5, fixing other variables (sensitivity, specificity, malignant

number and benign number). While, Figure 5.9b illustrates the dependence of the ac-

curacy metric (eq.(5.3)) on malignant and benign number, presented by the dark curve.

By varying the β value from 0.1 to 5 in M = βB, where M is malignant number, B is

benign number, we can see easily that the accuracy (acc) is strongly dependent on those

quantities. The blue color line presents the modified accuracy (âcc), with α = 1/β, to

compensate the difference between malignant and benign number.

Knowing that the database is presented in three different classes: Common nevus,

Atypical nevus and Melanoma. Then, to have a representative training set, 70% of

each class (common and atypical) is taken for training and the other 30% for test. This

choice guarantees the representativeness of atypical and common nevus in training and

test sets.

To detect melanoma lesions, the results are classified into three cases . Firstly,

we explored the classification between melanoma and atypical nevus. Secondly, we ex-

plored classification performance between melanoma and common nevus and finally we

performed the classification between melanoma and the whole benign lesions. Three

performance metrics i.e. sensitivity, specificity and accuracy/modified accuracy given

by equations (5.1) to (5.4) are computed. For each performance, we compute also 1000
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(a)

(b)

Figure 5.9: Illustration of the modified accuracy effect’s on the obtained result using
the formula given by equation (5.4). (a): Modified accuracy (âcc) in function of α,
presented by blue calor. (b):Accuracy (acc) depending on the number of malignant and
benign lesions, presented by the dark color.
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random combinations for the choice of the training and test sets which is the valida-

tion method N -random fold cross validation. In the result tables (5.7, 5.8 and 5.9),

VP defines the validation performance and Std represents the standard deviation of the

thousand combinations used for validation. The results are divided into three categories

which are textural features using local binary pattern operator, structural features us-

ing wavelet and curvelet coefficients and finally the mixture of textural and structural

features.

5.4.2 Hair removing

The preprocessing step is also implemented in the current work to enhance the image

quality. Thus, DullRazor1 Software is used for hair removing, it was applied on all the

visible hairs as illustrated in figure 5.10.

(a) (b)

(c) (d)

Figure 5.10: Hair removing with DullRazor software. (a,c): original images. (b,d):
Dullrazor software treatment on the original images.

1DullRazor software is available on http://www.dermweb.com/dull_razor/
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In figure 5.10, two kinds of hair removal are presented, thick and thin, under DullRa-

zor software. It can be seen easily that the skin lesion is more clear and less influenced

by the treatment when the hair is thick than thin as illustrated by figures (b) and (d), re-

spectively. Despite that, even in the worst scenario, the lesion is more clear and efficient

than before the treatment.

5.4.3 Obtained Results

The recognition of melanoma can be easier or either more difficult depending on the be-

nign lesions set used for classification. Therefore, to reduce this effect of the database,

two studies are done for the classification and recognition of melanoma mixed with each

set of benign lesions and compared. the other classification is done between melanoma

and the whole benign lesions respecting the condition of representativity explained be-

low.

For each classification, 12 evaluation performances are computed. The three variant

of LBP operator, wavelet and curvelet coefficients for the non-fusion cases. Six combi-

nations are computed from the fusion of structural features (wavelet and curvelet) with

textural ones (LBP variants). Finally, wavelet and curvelet coefficients are mixed, as

explored by Li et al. [180] for image compression. Table 5.6 summarizes the number of

features of the thirteen combinations studied in the current work. Each fusion is done

by the concatenation of vectors obtained from each method.

Table 5.6: Number of features of studied combinations

Features Methods
Features

number
Fusion Methods

features

number

Textural

Features

LBPri 36

Fusion of

textural and

structural

features

LBPri + Wavelet 100

LBPriu2 9 LBPriu2 +Wavelet 73

LBPu2 59 LBPu2 +Wavelet 123

Structural

Features

Wavelet 64 LBPri + Curvelet 99

Curvelet 63 LBPriu2 +Curvelet 72

Wavelet + Curvelet 127 LBPu2 +Curvelet 122
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The next subsections present firstly the result classification obtained between melanoma

and atypical nevus, then melanoma with common nevus and finally between malignant

and benign cases.

5.4.3.1 Melanoma Vs Atypical Nevus

In this part, the classification is focused on the detection and the recognition of melanoma

mixed only with atypical nevus, those presented by the second and the third columns

in the table 5.1. The results obtained are given in the table 5.7. Therefore, for textural

features, the best performances are obtained by LBPu2 followed by the LBPri, and the

worst result are obtained by the LBPriu2. For structural features, wavelet shows bet-

ter results then curvelet for all metrics performances used. The fusion of textural and

structural features gives better results in wavelet coefficients with LBP operator and it

shows a smallest standard deviation for the variability of validation results expressed

by the variable Std. Wavelet with LBPu2 improves the three metrics used and gives the

best results compared to all the methods and method combinations studied. The fusion

of curvelet coefficients with LBP operator improves the sensitivity, specificity and ac-

curacy metrics compared to curvelet and LBP separately. However, wavelet with LBP

shows better results than curvelet with LBP.

From this first study, the dominant features are expressed LBPPu2 and wavelet meth-

ods with an accuracy validation of 80.85% and 84.23%, respectively. It can be seen that

the results obtained by the fusion of LBPu2 and wavelet shows the best performance

with an accuracy validation of 85.20%. However, wavelet with LBPri and LBPriu2 is

showing a result lower the wavelet method. In the other case, the fusion is of curvelet

and and LBP variants is showing a better results than LBP and curvelet separately. It

can be seen also that the the low results are obtained by th LBPriu2 variant, it can be

explained by the few features used in this method (see table 5.6). Finally, the fusion of

wavelet and curvelet, which is the last case studied in the table 5.7, is not showing any

increase of performance, oppositely it shows lower performance than wavelet features.
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Table 5.7: Results obtained for Melanoma Vs Atypical nevus giving Performance vali-
dation VP and the standard deviation Std for 1000 random-cross validation under SVM
classifier.

Performances Metrics
Sensitivity
(sen)

Specificity
(spe)

Accuracy
(Acc)

Accuracy
(Ãcc)

Features Methods VP Std VP Std VP Std VP Std

Textural
Features

LBPri 77.44% 11.88 81.97% 8.04 80.46% 5.82 79.70% 6.30
LBPriu2 74.17% 12.09 73.19% 9.29 73.51% 6.77 73.68% 6.83
LBPu2 76.55% 12.32 85.15% 7.35 82.28% 5.56 80.85% 6.31

Structural
Features

Wavelet 79.47% 12.93 88.99% 7.10 85.79% 6.07 84.23% 6.84
Curvelet 73.10% 13.56 82.01% 7.56 79.04% 6.14 77.56% 6.85

Fusion of
Structural
and
Textural
Features

Wavelet +
LBPri 78.13% 12.08 88.63% 6.90 85.11% 5.49 83.38% 6.42

Wavelet +
LBPriu2 77.51% 12.37 88.22% 5.80 84.62% 5.80 82.86% 6.81

Wavelet +
LBPu2 81.84% 11.29 88.57% 6.80 86.31% 5.48 85.20% 6.24

Curvelet +
LBPri 79.08% 12.50 85.69% 7.34 83.49% 5.72 82.38% 6.08

Curvelet +
LBPriu2 76.15% 13.31 82.84% 7.66 80.61% 6.25 79.49% 6.83

Curvelet +
LBPu2 78.75% 11.89 86.83% 6.89 84.14% 5.51 82.79% 6.30

Wavelet + Curvelet 78.97% 12.84 85.51% 7.14 83.98% 6.01 82.24% 6.87

5.4.3.2 Melanoma Vs Common Nevus

As mentioned above, the second classification is done only between melanoma and

common nevus lesions. Table 5.8 shows the validation performance of sensitivity, speci-

ficity and accuracies metrics. Thus, for textural features, LBPri and LBPu2 show a high

performances than LBPriu2, and it can be seen that LBPri is more sensitive and less

specific than LBPu2. The textural features performances show that wavelet coefficients

discriminate melanoma better than curvelet coefficients and the fusion of the structural

and textural features contributes in the reduction of the variability between different

combinations in validation step.

It can be seen that the best results validation is performed using wavelet and the fu-

sion of wavelet with different variant of LBP with an accuracy of≈ 90%. The fusion of

wavelet and LBPu2 is the most stable operator showing the smallest standard deviation

value for the three me. It can be seen that wavelet is showing better results than the

fusion of wavelet and LPB variants. Therefore, it can be concluded that the fusion has
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Table 5.8: Results obtained for Melanoma Vs Common nevus giving Performance Val-
idation VP and the standard deviation Std for the 100− random-cross validation under
SVM classifier.

Performances Metrics
Sensitivity
(sen)

Specificity
(spe)

Accuracy
(acc)

Accuracy
(ãcc)

Features Methods VP Std VP Std VP Std VP Std

Textural
Features

LBPri 82.28% 11.11 84.29% 7.71 83.62% 5.72 83.29% 5.88
LBPriu2 78.92% 12.07 77.68% 8.35 78.09% 6.16 78.30% 6.40
LBPu2 80.82% 12.56 87.80% 6.78 85.47% 5.74 84.31% 6.70

Structural
Features

Wavelet 88.47% 10.36 91.99% 5.67 90.81% 5.23 90.23% 5.65
Curvelet 80.80% 12.25 84.53% 7.63 83.29% 6.20 82.66% 6.58

Fusion of
Structural
and
Textural
Features

Wavelet +
LBPri 88.82% 9.44 90.95% 5.93 90.24% 4.97 89.88% 5.15

Wavelet +
LBPriu2 88.91% 10.06 91.45% 5.85 90.60% 4.99 90.17% 5.54

Wavelet +
LBPu2 89.25% 9.26 90.80% 5.59 90.28% 4.76 90.02% 4.92

Curvelet +
LBPri 81.25% 11.36 85.68% 7.30 84.20% 5.76 83.47% 5.25

Curvelet +
LBPriu2 81.64% 11.93 85.34% 7.40 84.11% 6.23 83.49% 6.53

Curvelet +
LBPu2 82.86% 11.12 87.17% 6.86 85.73% 5.48 85.02% 6.03

Wavelet + Curvelet 87.73% 10.57 90.40% 6.99 89.51% 5.68 89.06% 6.19

not more contribution on the performance metrics, but the fusion is more contributing

on the standard deviation of the results obtaining 4.92 for wavelet + LBPu2 compared to

5.65 obtained by wavelet.

5.4.3.3 Melanoma Vs Atypical and Common Nevus

The last performance of the current study is the classification between malignant (melanoma)

and benign (atypical and common nevus) lesions. The results are presented in table 5.9.

Thus, for textural features, it can be seen that LBPri is more sensitive and more accurate

than the two other variants of LBP operator. The highest specificity results are obtained

using LBPu2 with a smallest variation compared to the other variants of LBP. The accu-

racy validation results show 81.76% and 82.10% for LBPri and LBPu2 respectively, and

only 76.84% for LBPriu2.

For structural features, wavelet coefficients showed a good performances compared
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Table 5.9: Results obtained for Melanoma Vs Atypical and Common nevus giving Per-
formance validation VP and the standard deviation Std for the 100− random-cross val-
idation under SVM classifier.

Performances Metrics
Sensitivity
(sen)

Specificity
(spe)

Accuracy
(acc)

Accuracy
(ãcc)

Features Methods VP Std VP Std VP Std VP Std

Textural
Features

LBPri 78.07% 12.35 86.14% 4.80 84.53% 3.89 82.10% 5.90
LBPriu2 77.74% 11.29 75.95% 5.92 76.31% 4.67 76.84% 6.02
LBPu2 74.13% 13.01 89.40% 4.52 86.34% 3.82 81.76% 6.28

Structural
Features

Wavelet 77.56% 13.17 93.50% 3.48 90.31% 3.44 85.54% 6.54
Curvelet 70.42% 14.50 89.29% 4.91 85.52% 4.41 79.85% 7.18

Fusion of
Structural
and
Textural
Features

Wavelet +
LBPri 75.42% 13.68 93.46% 3.65 89.85% 3.52 84.41% 6.79

Wavelet +
LBPriu2 76.73% 13.49 93.47% 3.59 90.12% 3.44 85.08% 6.67

Wavelet +
LBPu2 78.93% 11.95 93.25% 3.61 90.34% 3.27 86.07% 6.32

Curvelet +
LBPri 72.35% 13.34 90.56% 4.41 86.92% 3.81 81.46% 6.55

Curvelet +
LBPriu2 70.30% 14.76 89.19% 4.72 85.38% 4.24 79.74% 7.13

Curvelet +
LBPu2 72.67% 12.88 91.09% 3.99 87.40% 3.61 81.88% 6.46

Wavelet + Curvelet 76.16% 14.11 93.13% 3.68 89.74% 3.95 84.64% 6.99

to curvelet coefficients with an accuracy performance of 85.54% and 79.85% respec-

tively. These results gives an opposite conclusion to the ones obtained by Abu Mah-

moud et al. [75] where the authors concluded that curvelet coefficients are more effi-

cient than wavelet ones. This results could depend on the database used or the nature of

features extracted (for further studies and comparison, Daubechies 4 wavelet transform

is used).

The fusion of the wavelet and LBPu2 increases considerably the specificity and the

accuracy performances and only wavelet with LBPu2 for the sensitivity as shown in table

5.9. However the fusion doesn’t show a significant effect on sensitivity performance for

the fusion of wavelet with LBPri and LBPriu2 respectively.

The best results for all the performances metrics validation is obtained by the fusion

of wavelet coefficients and LBPu2 with 78.93% of sensitivity validation, 93.25 of speci-

ficity validation and 86.07% of accuracy validation. It shows also the smallest standard

deviation for the thousand combination of random fold-cross validation used. However,
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it can be seen that the fusion is not contributing on specificity compared to wavelet fea-

tures but it obtained the same performance over than 93%. The Sensitivity which is the

evaluation of the number false negatives is lower approaching a performance of 79%,

and it should be improved.

5.4.4 Analysis and comparison

From tables 5.7, 5.8 and 5.9, we can deduce by using the two sets of features (textural

and structural) that the detection of melanoma mixed with common nevus is easier as

compared with melanoma mixed with atypical nevus, which is expected as the class

overlap between melanoma and common nevus is less than that between melanoma and

atypical nevus. Thus, in table 5.8 we obtained the same behavior of common nevus

comparing to ABCD rule scoring system illustrated in figure 5.3. We can conclude that

the detection and the recognition performances of melanoma depends on the kind of the

benign lesions used for computation.

The fusion of wavelet and LBPu2 outperforms all the tested methods in the current

work, as it can be seen from the results in tables 5.7,5.8 and 5.9.

In general, curvelets have better performances than wavelets. However, in our case,

the results obtained show better performances from wavelet coefficients compared to

curvelet coefficients in the three tables. These results can be explained by the multitude

of singularity points coming from the random development of skin cancer lesions. It

could also be expressed by the redundancy of curvelet coefficients which represent the

double of the redundancy of wavelet coefficients [181].

As detailed in section 3.3, wavelets are efficient for singularity points and curvelets

are more efficient for the detection or characterization of curves. Therefore, we also

evaluate a fusion between the two sets of (wavelet and curvelet) coefficients as Li et

al. [180] used for image compression. Thus, the results obtained are not showing any

significant improvement in the detection and classification of benign and malignant

lesions.
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Table 5.10: Comparison of the results of proposed approach with the results of recent
methods in the literature using the same database

Method Method used sensitivity specificity accuracy

Abuzaghleh
et al. [118]
(2014)

The authors used color and shape geometry
features using Fast Fourier Transform (FFT)
and Discrete Cosine Transform (DCT). SVM
classifier is used on PH2 Database for 75% for
training and 25% for test.

− − 90.6%

Bi et
al. [132]
(2016)

The authors used multi-scale lesion-biased
representation under joint reverse classifica-
tion on PH2. However, the authors did not
cross validate the obtained results.

87.50 93.13 90.31%

Barata et
al. [141]
(2015)

Four algorithms to extract color constancy
(Gray World, max-RGB, Shady of Gray and
General Gray World). SVM classifier with
the χ2 kernel is used for classification on PH2

database.

92.5% 76.3% 84.3%

Proposed
method

A fusion textural and structural features. Re-
sults of random sampling cross-validation un-
der SVM classifier with the linear kernel used
for classification on PH2 database with 70%
for training and 30% for test.

78.93% 93.25% 86.07%

Table 5.10 presents a comparison of the proposed method with recent works on

classification and recognition of melanoma using the same database PH2. Our proposed

method shows the highest performance in terms of specificity and accuracy compared to

Barata et al. [141], showing a validated result of 93% and 86% respectively. Although

accuracy is higher for Abuzaghleh et al. proposition [118] and Bi et al. [132], they did

not perform any validation comparing neither the current work validated by n−random

sampling cross validation, nor k−fold cross validation used by Barata et al. In addi-

tion to this, the Abuzaghleh et al. [118] used 75% of the database for training in place

of 70% frequently used in the literature. The authors used the fusion of fast Fourier

transform with discrete cosine transform, and their results are still less efficient than the

proposed method due to the lack of validation of their results. Table 5.11 and figure
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Table 5.11: Comparison of the results of proposed approach with the results of recent
methods in the literature using the same database

Acc < 65% 65% ≤Acc< 75% 75% ≤Acc< 85% 85% ≤Acc< 95% Acc ≥ 95%

2 37 328 585 48

5.11 are showing the importance of validation, where wa can choose a specific training

and test sets to obtain higher result. In addition the this, the authors did not present

sensitivity and specificity performances, and no information on training and test sets is

presented. Therefore, it is difficult to reproduce the same result for comparison. Fur-

thermore, knowing that the benign lesions are heterogeneous [2], then, if we choose

some special configurations of training and test sets we could present higher results

than those presented in tables 5.7, 5.8 and 5.9. Thus, the validation result step is crucial

for the adaptability of the proposed method.

The known ABCD rule, often used in hospitals manually, has achieved an accuracy

of 87.5% as in table 5.2. In this work, the proposed automation of the ABCD rule

achieved an accuracy of 86.07% as in table 5.10, which is fairly comparable to the

result obtained manually. This achievement shows a great potential of developing CAD

system for melanoma detection.

In order to show the importance of the cross validation methods for the obtained

results, table 5.11 reports the accuracy performance obtained for each combination of

the 1000−random fold cross-validation used by the proposed method by intervals. Fig-

ure 5.11 illustrates the histograms of the thousand combinations. Thus, a probability of

0.633 to obtain an accuracy greater than 85% and only 0.141 to get an accuracy smaller

than 80%, and a probability of 0.279 to get an accuracy greater than 90%. Then, without

a cross validation methods, it will be difficult to compare objectively between methods.

To conclude, the proposed method achieved the second objective of the current work

which is an exploration of sets of features to make a border between benign and ma-

lignant lesions. Thus the method shows a significant set of features describing bet-

ter melanoma and benign lesions. The set of features includes textural and structural
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Figure 5.11: histogram of the thousand combinations results for accuracy metric

features extracted respectively from local binary pattern and wavelet and/or curvelet

transforms.

The obtained results are performed and validated using the fusion of different com-

binations of these features under SVM classifier. They are also compared to the previous

results presented in the literature performed on the same free public database PH2. The

recognition of melanoma were highlighted mixing with common nevus, atypical nevus

and the whole benign lesions. The obtained results are validated using n-fold random

sampling cross validation method. This validation is to increase the confidence of the

obtained results on different databases which is very important in a typical CAD system.

The results show an accuracy performance of 86.07% for melanoma mixed with the

whole benign lesions, 85.20% for melanoma mixed with atypical nevus and finally a

performance accuracy of 90.17% for melanoma mixed common nevus. In fact, addition

to the performance highlighted in this work, an other contribution consists on the de-

pendence of the performances on the diversity of benign lesions. Thus, more there are

common nevus cases, more the performances should be better as it can be seen from the

results presented in the two tables 5.7 and 5.8 referring to atypical and common nevus,
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respectively.

5.5 Results of Border features

The results presented in this section refer to the method developed in section 4.3.3

applied on a database of 166 standard camera images detailed above in section 5.2.3.

Therefore, the proposed method extracts the irregularity border features exploring val-

leys and crevasses concepts illustrated in figure 4.17. Depending on the number and

size of valleys and crevasses detected, for each image 8 different features are extracted,

as summarized by equation (4.31). Then, using this set of features, the classification is

performed utilizing Support Vector Machine (SVM) with linear kernel.

In the current section, the standard image orientation step is also implemented to

normalize all images of the database in the same and common view. This normalization

is summarized in algorithm1 and illustrated below in section 5.5.1.1.

Different implementations are explored with the proposed method, one with and

the other one without the preprocessing (standard image view) step described above.

A comparison between the original and standard image view is also done. The main

method of the current work includes the preprocessing step. The following points enu-

merates the procedure of implementation:

1. Implementation of the proposed method in its integrity using the both algorithms

presented in subsections 4.3.3.1 and 4.3.3.2.

2. Implementation of only the first algorithm proposed in subsection 4.3.3.1 for stan-

dard view images and its comparison with original images.

Therefore, two kinds of results are presented. Firstly, the main result given by the

whole algorithm using border features presented in the previous section. The second

result shows the intermediate contribution of standard view images and the effect of the

preprocessing step on the proposed method.
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5.5.1 Implementation

The implementation describes the preprocessing step detailed in section 5.5.1.1 as the

first stage of the algorithm and the extraction of features from border irregularities given

in section 4.3.3 as the second stage.

5.5.1.1 Standard view implementation

The single presentation and orientation of malignant and benign melanoma gives the

same features characteristics for all images of the database. Therefore, the implementa-

tion of the Standard Image Orientation Algorithm (see Algorithm 1) on some skin lesion

images (malignant and benign melanoma) is illustrated to show the reorganization and

the view standardization of these images.

(a) (b) (c)

(d) (e) (f)

Figure 5.12: Single orientation of melanoma sample from DermQuest Database [5].
(a): original malignant image NM61. (b): gray level ROI of the oriented ROI of NM61
image. (c) Binary ROI of the oriented ROI of the image NNM61. (d): Original Ma-
lignant image (SSM74). (e):gray level ROI of the oriented ROI of SSM74 image. (f)
Binary ROI of the oriented ROI of the image SSM74.
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(a) (b) (c)

(d) (e) (f)

Figure 5.13: Single orientation of benign lesions sample from DermQuest Database [5].
(a): original benign image D45. (b): gray level ROI of the oriented ROI of D45 image.
(c) Binary ROI of the oriented ROI of the image D45. (d): Original benign image D54.
(e):gray level ROI of the oriented ROI of D54 image. (f) Binary ROI of the oriented
ROI of the image D54.

Figures 5.12 and 5.13 show the effect of making images in the same orientation. It

can be seen easily that the border in binary image representation is a good descriptor

between malignant and benign lesions. It can seen also that the area between pigment

and its box is minimized. As mentioned above, the performances of this standardiza-

tion are presented in section 5.5.2.3 and illustrated in Fig.5.15 in comparison with the

original view.

5.5.1.2 Border irregularities implementation

The implementation of proposed work in section 4.3.3.2 is presented and illustrated in

the current section.

The detection of border irregularity uses the notion of crevasse and valley as illus-

trated in Fig.4.17. This algorithm is applied on standard camera image database. The

first classification following the number of valleys and crevasses detected are shown

in tables 5.12 and 5.13. The results of the two first features of feat given in equation
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(a) (b) (c)

(d) (e) (f)

Figure 5.14: Illustration of main stages of border irregularities. (a): Original gray level
image. (b): Binary ROI image. (c): valleys areas detected with the edge of the ROI.
(d): Valley areas detected (13 elements). (e): Crevasse areas detected with the edge of
the ROI. (f): Crevasse areas detected (3 elements).

(4.31), which areN(v) for number of valleys detected andN(c) for number of crevasses

detected, are presented and discussed.

Figure 5.14 describes the different steps of valleys and crevasses detection. This

example shows well the different sizes of valleys and crevasses. It can be seen easily

that the irregularities are exploring the small areas locally and the large areas globally.

5.5.2 Obtained Results

Two results are presented in this section, statistical analysis to illustrate the effect of

valleys and crevasses concepts introduction, and SVM classification on the obtained

features.

5.5.2.1 Statistical analysis of the results

The number of detected valleys are computed and divided into equidistant segment

with length 5 from 0 to 50 as presented in table 5.12. From this table, it can see that
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Table 5.12: Number of detected area in equidistant segments using first level of irregu-
larity (horizontal

⋃
vertical). Valley geometrical forms

number of elements
malignant melanoma
(99 images)

benign melanoma (67
images)

0 sets 0(≈ 0%) 0 (≈ 0%)
[1-5] 2 (≈ 2%) 9 (≈ 13.4%)
[6-10] 5 (≈ 5%) 15 (≈ 23.9%)
[11-15] 22 (≈ 22%) 15 (≈ 22.4%)
[16-20] 25(≈ 25%) 14 (≈ 20.8%)
[21-25] 15 (≈ 15%) 10 (≈ 14.9%)
[26-30] 16 (≈ 16%) 3 (≈ 4.4%)
[31-35] 4 (≈ 4%) 0 (≈ 0%)
[36-40] 4 (≈ 4%) 0 (≈ 0%)
[41-45] 4 (≈ 4%) 0 (≈ 0%)
[46- ...] 2 (≈ 2%) 0 (≈ 0%)

for N(v) > 25, malignant melanomas present 30% of the database valleys against less

than 5% for benign melanoma. In the same time, for the number of detected valleys

[1 to 5] 13.4% are found for benign melanoma and only 2% for malignant melanoma.

Using valleys concepts, around 50% of the data can be selected and classified. However

from 11 to 25 valleys detected number is almost the same between benign and malignant

melanoma. We conclude from this table that the malignant melanoma has more chances

to contains more valleys than benign lesions.

Table 5.13 presents the number of crevasses detected with segment length of 2 from

0 to 14. Thus, from the table the absence of crevasses in benign lesions presents around

40% compared to malignant melanoma where only 6% without any crevasse are de-

tected. Even if the crevasses exist in benign melanoma, in average, there are more in

malignant than benign ones. In the other side, melanoma cases contain more crevasses

with around 23% against 6% for benign lesion when N(c) > 5. From this table, the

conclusion is that benign lesions contains less crevasses than malignant cases.

The two tables (5.12 and 5.13) describe perfectly the idea of border irregularity of

ABCD rule with more deep analysis and study. The introduction of the two concepts

(valleys and crevasses) as first and second level of border irregularity feature increases

the detection and helps more the understanding of the feature itself.
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Table 5.13: Number of detected area in equidistant segments using second level of
irregularity (horizontal

⋂
vertical). Crevasse geometrical forms

number of elements
malignant melanoma

(99 images)

benign melanoma (67

images)

0 sets 6 (≈ 6.1%) 27 (≈ 40.3%)

[1-2] 38(≈ 38.4%) 24 (≈ 47.1%)

[3-4] 26 (≈ 26.3%) 12 (≈ 17.9%)

[5-6] 12(≈ 12.1%) 2 (≈ 3%)

[7-8] 7(≈ 7.1%) 1 (≈ 1.5%)

[9-10] 7 (≈ 7.1%) 1 (≈ 1.5%)

[11-12] 1 (≈ 1%) 0 (≈ 0%)

[12-...] 2 (≈ 2%) 0 (≈ 0%)

To improve these statistical analysis results, the size of the detected valleys and

crevasses using different thresholds to discriminate better the benign and malignant le-

sions is added, as explained in section 4.3.3 and summarized by equation (4.31). There-

fore, a machine learning via SVM training and classifier are applied on the feature set

obtained. The obtained results are presented in subsection below (subsection:5.5.2.2).

5.5.2.2 SVM classification on border irregularity features

Support Vector Machine (SVM) classifier is used on a database of 166 skin lesions im-

ages (67 benign lesions and 99 malignant melanoma), it is applied on different integer

values of the threshold τv (τv ∈ [0, 100]) as given in equation (4.31). The other threshold

τc mentioned in the equation is fixed empirically to 2.5. This choice reduces consider-

ably the complexity of the algorithm and time running. Thus, the features extracted are

used as input for the SVM classifier with linear kernel following 70% (69 malignant,

45 benign) for the training and 30% (30 malignant, 22 benign) for the test. Table 5.14

shows different results for τv ∈ (0, 10, 20, 30, 40, 50, 60, 70, 80, 90) adding to that the

optimum value of τv showing the best results.
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Table 5.14: Result of SVM classifier using the extracted features following the different
values of the threshold τv.

τ sensitivity specificity accuracy

0 73.33% 72.73% 73.08%

10 60% 95.45% 75%

19 80% 95.45% 86.54%

20 80% 90.91% 84.61%

30 86.67% 77.27% 82.69%

40 80% 68.18% 75%

50 86.67% 68.18% 78.85%

60 83.33% 72.73% 78.85%

70 86.67% 72.73% 80.77%

80 83.33% 81.82% 82.69%

90 86.67% 63.64% 76.92%

Table 5.14 presents the results of classification using different thresholds τv. The

results are performed following three performance metrics which are accuracy (acc),

sensitivity (sen) and specificity (spe).

The result shows a maximum of accuracy of 86.54% given by τv = 19 with sensitiv-

ity of 95.45% and specificity of 80%. it can be seen from this table that the good result

of the sensitivity for big values of τv i.e more than 83% for all τv ≥ 50. The opposite

is seen for the specificity where it gives irregular values when τ ≥ 50, from 68.18% to

81.82%.

For the threshold τ = 0 (Table 5.14), more than 72% of sensitivity, specificity and

accuracy performances are obtained. This result represents the information extracted

from border features by the proposed method and the effect of these new concepts

introduced in this work (valleys and crevasses).
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5.5.2.3 Standard image view contribution

The normalization of the database is one of the keys contributing to result improving

of the method proposed. It shows the impact of making all images in the same view.

However the choice of horizontal, vertical or oblique view has no any effect.

Figure 5.15 shows the effect of preprocessing step. The intermediate contribution

of the standard view presented in section 4.3.3.1 using the same training and test sets

on SVM classifier. The graph illustrates the accuracy performance of the same database

between the original orientation and the proposed standard view. Therefore, from the

graph it can be seen easily that the accuracy for all thresholds (from 0 to 100), shows

greater results in standard view than the original images. The maximum of accuracy in

original is only 78.85% compared to standard view images which is 86.54%.

Figure 5.15: Accuracy of standard view and original images using border features pre-
sented in the current method. blue (up) : proposed standard view images, red (down):
Original images.
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5.5.2.4 Comparison with existing methods

In this subsection, the obtained results are compared with the method used by Amelard

et al. [105] (2014). Using the same database from dermQuest [5] and DermIs [4], our

results outperforms significantly those presented by Amelard et al. as shown in Table

5.15 with an accuracy of 86.26% obtained by the proposed method to an accuracy of

81.26% obtained by Amerald et al.

In addition to that, as mentioned above, a preprocessing of the database is also done

to clean all the redundant images as illustrated by figure 5.4 where the same image were

acquired at different distance.

Table 5.15: Comparison of the obtained result with the existing method using the same
database.

Method Approach used Accuracy

Amelrd et

al. [105] (2014)

Illumination correction algorithm quantifying

asymmetry and border irregularities character-

istics.

81.26%

Proposed method
Border irregularity features on standard view

images
86.54%

Thus, by the proposed method, the border of pigment lesions is studied to discrimi-

nate the malignant and benign lesions on standard camera images. Therefore, the border

irregularity of each pigment are deeply explored. In the literature, most of methods stud-

ied the irregularities following the two axis x and y giving some score as used in ABCD

rule. The proposed method extracts a small set of features containing 8 irregularity bor-

der features. The obtained results are encouraging and showing higher performances

comparing to the literature on the same database.

To conclude, in the current work, two ideas are proposed and explored. Firstly, the

introduction of valleys and crevasses concepts for the irregularity of lesion borders, and

secondly the standard view of the whole database with its impact on the result as it
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presented and illustrated in figure 5.15, where the standard view results is compared

with the image original randomly acquired. The implementation of these two ideas

shows an accuracy of 86.45% compared to amelard et al. [105] where the authors used

illumination, asymmetry and border irregularities and obtained only 81.26%.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

In this chapter, all research works presented in this thesis are summarized in section

6.1, where the objectives enumerated in section 1.5. Then, The limitations of presented

methods and their perspectives are introduced and discussed in section 6.2.

6.1 Conclusion

The main aim of this PhD work is to propose a mathematical methods to automate the

detection of skin cancer. The main issue of this thesis is to treat the different output

images in skin cancer. Therefore, in the current work, the majority of image category

acquisition, which are standard camera images and dermoscopy images, are treated to

improve the CAD system for skin cancer. The work is separated into two parts following

these two categories of input images.

In the current work, two main tasks were treated, firstly the development of an

adapted segmentation for skin lesions, and secondly the classification of lesions into

malignant and benign cases using a sets of discriminative features. This second part is

also divided into two distinguished methods depending on the input image.

6.1.1 Part I: Segmentation method

In this part, the research on the segmentation of skin lesion is focused on the develop-

ment of new approach of skin lesion segmentation based on Chan and Vese Model. It
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has the particularity to segment the the random development of melanoma lesion. This

approach is applied and evaluated on skin cancer coming from standard camera images

given in DermIs and DermQuest databases. One of Chan and Vese model particularities

is its high sensibility to different edges and colors. The skin cancer is recognized prin-

cipally by sets of rules defined by dermatologists and researchers which are ABCD rule

and 7-point checklist. Our proposed approach can be considered as a specialization in

one side and a generalization in other side of Chan and Vese model. Therefore, a choice

of one specific combination treats the segmentation deeply compared to the original

Chan and Vese model. In the second view, all the combination of Chan and Vese model

are treated in the current approach.

The approach is evaluated using the subjective evaluation method. The results ob-

tained shows a high performance of the proposed method for the used database. Al-

though, a Jaccard index method could be applied to evaluate the proposed method.

However, the ground truth given for these images shows only the whole lesion and not

the specific level lesions basing on the color and intermediary borders. The method an-

swered to the first objective of adaptive segmentation. However, it is not fully automatic

due to the manual fixed parameters of the original method.

The main contribution of the proposed approach is more theoretical, and it can be

applied on other kind of images. Therefore, it explains the generalization of the model

for different more cases than the original model.

6.1.2 Part II: Feature extraction

This second part summarizes the two methods developed to extract the main features of

skin lesions for their classification into benign and malignant lesion. Firstly, the border

irregularities of lesions applied on standard camera images is explored. Secondly, a

new descriptor based on a mixture of structural and textural features is developed. This

second approach was applied on dermoscopy images from the free database PH2.
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1. The first method of feature extraction is based on different combinations of struc-

tural and textural features to select the best discriminative set for the classifica-

tion of benign and malignant lesions. Therefore, for structural features, a multi-

resolution analysis was explored using wavelet and curvelet transforms. While,

the textural features are extracted using local binary pattern operator. The method

was also cross validated by n−random sampling cross validation using 1000 ran-

dom combinations. The method highlights the performances of three skin lesions

sets from PH2 database, which are common nevus, atypical nevus and melanoma.

The results obtained show a higher performances in term of accuracy, sensitiv-

ity and specificity in case of wavelet-local binary uniform pattern fusion. This

method is answering to the second objective of feature extraction based on the

the fusion of structural and textural features.

2. The second method of feature extraction is based on the border irregularities be-

havior. The method explored a new concept of border representation, where two

kinds of features are extracted from the border, which are valleys and crevasses

geometrical forms. These two new concepts can considered as first and second

level of lesion border irregularities. These features are learned by SVM classifier

with linear kernel. The results obtained show a higher performances of classifi-

cation compared to the literature’s results using the same database. This idea of

characterization of border could be implemented in a typical flow of ABCD rule

method, it represents more variability than the method based on eight segments

from the border used currently in ABCD rule. The challenge fixed in the third

objective , which is the exploration of the border irregularities in formation of, is

achieved.

A comparison of these methods with previous work in the literature are highlighted

and discussed in the last chapter. All details of proposed methods are explained as

suggested in the literature. In addition to that, for all methods proposed, only the free

benchmark databases, which are DermIs and DermQuest for standard camera images

and PH2 for dermoscopy images, are used.
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6.2 Future directions

Despite the several developed approaches, to our knowledge, there is no CAD system

available for medical doctors that can perfectly discriminate melanoma. Thus, there

is a need to explore new directions in skin cancer detection using images processing.

Therefore, the main directions for further work can be itemized in general and specified

perspectives. The specified ones include:

• Minimization of the segmentation proposed for the extension of Chan and Vese

model expressed by equation (4.12) using random forest or gradient descent meth-

ods. This perspective is one of the main directions of the current work. It present

a new view of segmentation in image processing.

• The automation of all parameters of Chan and Vese model and its generalizations.

This issue makes the segmentation using this method very difficult for non-image

processing experts. Therefore, the artificial neural network such as Conventional

Neural Network which could be a good compromise method to resolve this issue.

The general perspectives includes some main points about the methodology of work

in skin cancer detection domain, such as:

• A systematic validation of all obtained results. We highlighted this point in the

fusion of structural and textural features. Thus, it allows for the future work the

more visibility for the best direction of research. It increases also the efficiently

of results comparison.

• The highlighting of proposed and explored methods in public free database in ad-

dition to their private databases such as PH2 and ISIC (International Skin Images

Collaboration in process) databases to easily validate the comparison between

methods.
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Titre : Segmentation et Détection du Cancer de la Peau en Utilisant la Variation Totale et l’Analyse 

Multi-résolution 
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Résumé : Les  décès du cancer de la peau sont 

majoritairement des mélanomes malins. Il est 

considéré comme l’un des plus dangereux 

cancer. A ses débuts, les mélanomes malins sont 

traités avec des simples biopsies et sont 

complètement curable. Pour cela, une détection 

précoce est la meilleure solution pour réduire 

ses conséquences désastreuses. Imagerie 

médicale telle que la dermoscopie et les 

caméras à images standard sont les outils 

disponibles les plus adaptées pour diagnostiquer 

précocement les mélanomes. Le diagnostic 

assisté par ordinateur (CAD) est développé dans 

le but d’accompagner les radiologistes dans la 

détection et le diagnostic.  

Cependant, il y a un besoin d’améliorer la 

précision de la segmentation et de détection des 

lésions. Dans ce travail, le modèle de Chan et 

Vese a été adapté pour segmenter davantage les 

variations à l’intérieur des lésions avec un 

résultat très encouragent. La deuxième tâche 

consiste à extraire des caractéristiques afin de 

discriminer les mélanomes. Deux méthodes ont 

été développée, une se basant sur l’irrégularité 

des bords des lésions et l’autre par la fusion des 

caractéristiques  texturales et structurelles. Les 

résultats ont montrés de bonnes performances 

avec une précision de 86.54% et de 86.07%, 

respectivement.    

 
 

 

Title : Skin Cancer Segmentation and Detection Using Total Variation and Mutiresolution Analysis 

Keywords : Segmentation, Detection, Total Variation, Multiresolutional Analysis, medical imaging  

Abstract : The vast majority of skin cancer 

deaths are due to malignant melanoma. It is 

considered as one of the most dangerous 

cancers. In its early stages, malignant 

melanoma is completely curable with a simple 

biopsy. Therefore, an early detection is the best 

solution to improve skin cancer prognostic. 

Medical imaging such as dermoscopy and 

standard camera images are the most suitable 

tools available to diagnose melanoma at early 

stages. To help radiologists in the diagnosis of 

melanoma cases, there is a strong need to 

develop computer aided diagnosis (CAD) 

systems. The accurate segmentation and 

classification of pigment skin lesions still 

remains a challenging task due to the various 

colors and structures developed randomly 

inside the lesions. The current work focused on 

two main tasks. In the first task, a new 

approach of the segmentation of skin lesions 

based on Chan and Vese model is developed. 

The model is adapted to segment the variations 

of the pigment inside the lesion and not only 

the main border. The subjective evaluation, 

applied on a database of standard camera 

images,  obtained  a  very  encouraging   results  

with 97.62% of true detection rate. In the 

second main task, two feature extraction 

methods were developed for the analysis of 

standard camera and dermoscopy images. The 

method developed for the standard camera skin 

cancer images is based on border irregularities, 

introducing two new concepts, which are 

valleys and crevasses as first and second level 

of the border irregularity. The method has been 

implemented on DermIs and DermQues, two 

databases of standard camera images, and 

achieved an accuracy of 86.54% with a 

sensitivity of 80% and a specificity of 95.45%. 

The second method consisted of a fusion of 

structural and textural features. The structural 

features were extracted from wavelet and 

curvelet coefficients, while the textural features 

were obtained from the local binary pattern 

operator. The method has been implemented on 

the PH2 database for dermoscopy images with 

1000-random sampling cross validation. The 

obtained results achieved an accuracy, a 

sensitivity and a specificity of 86:07%, 78.93% 

and 93.25%. Compared to the existing 

methods, the proposed methods in this work 

show very good performances. 
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