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Résumé : Les déces du cancer de la peau sont
majoritairement des mélanomes malins. Il est
considéré comme ['un des plus dangereux
cancer. A ses débuts, les mélanomes malins sont
traités avec des simples biopsies et sont
complétement curable. Pour cela, une détection
précoce est la meilleure solution pour réduire
ses conséquences  désastreuses.  Imagerie
médicale telle que la dermoscopie et les
caméras a images standard sont les outils
disponibles les plus adaptées pour diagnostiquer
précocement les mélanomes. Le diagnostic
assisté par ordinateur (CAD) est développé dans
le but d’accompagner les radiologistes dans la
détection et le diagnostic.

Cependant, il y a un besoin d’améliorer la
précision de la segmentation et de détection des
lésions. Dans ce travail, le modele de Chan et
Vese a été adapté pour segmenter davantage les
variations a I’intérieur des Ilésions avec un
résultat trés encouragent. La deuxiéme tache
consiste a extraire des caractéristiques afin de
discriminer les mélanomes. Deux méthodes ont
été développée, une se basant sur I’irrégularité
des bords des 1ésions et 1’autre par la fusion des
caractéristiques texturales et structurelles. Les
résultats ont montrés de bonnes performances
avec une précision de 86.54% et de 86.07%,
respectivement.

Title : Skin Cancer Segmentation and Detection Using Total Variation and Mutiresolution Analysis
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Abstract : The vast majority of skin cancer
deaths are due to malignant melanoma. It is
considered as one of the most dangerous
cancers. In its early stages, malignant
melanoma is completely curable with a simple
biopsy. Therefore, an early detection is the best
solution to improve skin cancer prognostic.
Medical imaging such as dermoscopy and
standard camera images are the most suitable
tools available to diagnose melanoma at early
stages. To help radiologists in the diagnosis of
melanoma cases, there is a strong need to
develop computer aided diagnosis (CAD)
systems. The accurate segmentation and
classification of pigment skin lesions still
remains a challenging task due to the various
colors and structures developed randomly
inside the lesions. The current work focused on
two main tasks. In the first task, a new
approach of the segmentation of skin lesions
based on Chan and Vese model is developed.
The model is adapted to segment the variations
of the pigment inside the lesion and not only
the main border. The subjective evaluation,
applied on a database of standard camera
images, obtained a very encouraging results

with 97.62% of true detection rate. In the
second main task, two feature extraction
methods were developed for the analysis of
standard camera and dermoscopy images. The
method developed for the standard camera skin
cancer images is based on border irregularities,
introducing two new concepts, which are
valleys and crevasses as first and second level
of the border irregularity. The method has been
implemented on Dermls and DermQues, two
databases of standard camera images, and
achieved an accuracy of 86.54% with a
sensitivity of 80% and a specificity of 95.45%.
The second method consisted of a fusion of
structural and textural features. The structural
features were extracted from wavelet and
curvelet coefficients, while the textural features
were obtained from the local binary pattern
operator. The method has been implemented on
the PH2 database for dermoscopy images with
1000-random sampling cross validation. The
obtained results achieved an accuracy, a
sensitivity and a specificity of 86:07%, 78.93%
and 93.25%. Compared to the existing
methods, the proposed methods in this work
show very good performances.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Melanoma is the most dangerous abnormal skin tissue. Its treatment requires chemother-
apy and radiotherapy and it becomes more difficult to treat when it is in advanced stages
such as metastasis step [6], where one person die each 54 minutes [2]. The statistics
show that approximately 132, 000 melanoma cases and 2 to 3 millions of non-melanoma
cases [6,7] are reported annually in the world. In total, it accumulates to 1.6% of cancer
cases worldwide [8]. Despite the rarity of this diseases, the vast majority of persons
affected by malignant skin cancer deaths within two years [2]. As ozone levels are de-
pleted, the World Health Organization (WHO) [6] estimates that 10% of decrease in
ozone level will result in an additional of 300, 000 non melanoma and 4500 melanoma
cases. According to WHO and Lee et al. [9], Caucasian populations generally have a
much higher risk of getting skin cancer disease than dark-skinned populations. Natu-
rally, brown and black people can usually safely tolerate relatively high levels of sun
exposure without getting sunburns or greatly increasing their skin cancer risk. In con-
trast, people with pale or freckled skin, fair or red hair and blue eyes belong to the
highest risk group. Followed by people with dark hair and eyes who do not normally
get sunburns are at medium risk of skin cancer developing [6]. According to the World
Health Organization, the following items present a set of risk factors of skin cancer: fair
skin; blue, green or hazel eyes; light-coloured hair; tendency to burn rather than suntan;
history of severe sunburns; many moles and/or freckles; a family history of skin cancer.

In the United States and worldwide, skin cancer incidence is reported as one of the most

1



increasing tumor. The risk of developing invasive melanoma was estimated to 1 in 39

of Caucasian men and 1 in 58 for Caucasian women in American society in 2010 [10].

1.1.1 Causes of Skin Cancer

Cancer starts when cells in the body begin to grow out of control. Cells in nearly any
part of the body can become cancer, and can then spread to other areas of the body [11].
Similarly, skin cancer is the uncontrolled growth of abnormal skin cells. It occurs when
unrepaired DNA damage to skin cells, most often caused by ultraviolet radiation from
sunshine or tanning beds, triggers mutations, or genetic defects, that lead the skin cells

to multiply rapidly and form malignant tumors [2].

1.1.2 Types of Skin Cancer

The multitude of benign and malignant melanoma complicates the recognition of skin
lesion cases. In the clinical practice, three main types of abnormal skin cells are noticed
i.e. Basic cell carcinoma, Squamous cell carcinoma and Melanoma [11,12]. The Skin
Cancer Foundation (SCF) [2], further into these, characterizes three more kinds of ab-
normal cells, i.e., Actinic keratosis, Merkel cell carcinoma and Atypical moles, which
are less common. Figure 1.1 illustrates the six types of skin lesions. It notices also that

the atypical moles are the second most dangerous cells after melanoma cases.
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Figure 1.1: Different kinds of skin cancer classified by the Skin Cancer Foundation [2]



According to Skin Cancer Foundation [2], the difference between these abnormality

tissues are:

e Actinic Keratosis, also known as a solar keratosis, is a crusty and scaly growth.
It is considered as pre-cancer because if left alone, it could develop into a skin

cancer.

e Merkel cell carcinoma is a rare and aggressive skin cancer that is at high risk of
recurring and spreading (metastasizing) throughout the body. But, it is 40 times

rarer than melanoma.

e Basic cell carcinoma is the most occurring form of skin cancer. It often looks like
open sores, red patches, pink growths, shiny bumps or scares. This skin cancer

very rarely spreads.

e Squamous cell carcinoma is the second most common form of skin cancer. It
often looks like scaly red patches, open sores, elevated growths with a central

depression, or warts.

e Atypical moles are unusual-looking benign moles, also known as dysplastic nevi.
They may resemble melanoma, and people who have them are at increased risk
of developing melanoma in a mole or elsewhere on the body. They have 10 times

or more the risk of developing melanoma.

e Melanoma is the most dangerous form of skin cancer, these cancerous growths
develop when unrepaired DNA damage to skin cells, mostly caused by ultraviolet
radiation from sunshine or tanning beds, triggers mutations (genetic defects) that
lead the skin cells to multiply rapidly and form malignant tumors. The majority
of melanomas are black or brown, but they can also be skin-colored, pink, red,
purple, blue or white. If melanoma is recognized and treated early, it is almost
always curable, but if it is not, the cancer can advance and spread to other parts

of the body, where it becomes hard to treat and can be fatal.

It is noticed that the first cause of these skin cancer types are the damage of skin tissue



from exposure to ultraviolet radiations [2,6,7,11].

1.2 Medical Diagnosis

To recognize melanoma cases, dermatologists compare and analyze a multiple signs of
each tumor. Mostly, they use two scoring systems based on visual characteristics to
recognize the melanoma tissue, which are ABCDE rule [2,12-15] and Glascow 7-point

checklist / 7-point checklist [12, 16—18].

These two scoring systems are well known by medical experts and they constitute
the basic methods of comparison for image processing experts. Most of the developed
and explored methods are based on these systems, such as Bareiro et al. [19] and She et
al. [20] for ABCD rule, and Argenziano et al. [21] for 7-point checklist. The features
used in these systems are also explored separately in the goal of melanoma recognition,
for example, pigment network [8,22] and vascular structure [23]. These systems are

summarized in the current chapter and detailed in the literature review chapter.

1.2.1 ABCD Rule

The skin cancer foundation explained the ABCD rule, called also ABCDE rule when
the evolving feature is available. The meaning used for each case is explained and

illustrated below:

o Asymmetry (A): The pigment is considered asymmetric if by drawing one vertical

or horizontal line, the two parts of the mole will not be similar.

. -

BENIGN MALIGMANT

Figure 1.2: Asymmetry of melanoma compared with benign lesion [2].



e Border (B): More the pigment border is not smooth, more it can be considered as

malignant case.

BENIGN MALIGNANT

Figure 1.3: Border irregularity between malignant and benign lesions [2].

e Color (C): Most benign pigments have one color (often brown color). Melanoma

has a variety of colors (black, red, blue and/or wight).

BENIGN MALIGNANT

Figure 1.4: Color variation between melanoma and benign lesion [2].

e Diameter (D): Benign pigments have usually smaller diameter than malignant

ones. Melanoma is often greater than 6 mm, but it can be smaller.

.9

BENIGN MALIGNANT

Figure 1.5: Diameter in melanoma and benign lesion [2].

e Evolving (E): Over time, benign pigment looks the same. However, malignant

melanoma evolves or changes in size, shape, color and/or elevation.

Figure 1.6: Evolving of melanoma over time [2].



Table 1.1: ABCD rule with the interval values of p; and the weight factor w; of each
component [1].

Weight  sub-score

Feature Description Points p;
factor w; range

Asymmetry One value of 0.5 for each axis. 0—-2 1.3 0—-26
Border Eight segmegt, one value of 1 for 0_38 0.1 0—08

each abrupt pigment cutoff.

One value of 1 for each color:
Color white, red, light brown, dark brown, 1 —6 0.5 05—-3

blue-gray.
Dermosconic One value for each structure: pig-

p ment network, structureless area, 1—5 0.5 0.5—-25

structures

dots, globules, branched streaks.

Figures from 1.2 to 1.6 illustrate the five rules of ABCD/ABCDE rules showing
the difference between malignant and benign lesion. The real computation of ABCD

system is done only for the first four components using the following formula:

4
Sabed = Z W;P; (1.1)
i=1

where w; and p; are the weight and the value attributed to each point. They are summa-
rized in table 1.1 as explained by Capdehourat et al. [1], according to Stolz et al. [14].
Knowing that the evolution of the lesion over time is the most missed data, then the
feature given by the item E is used only for visual comparison by dermatologists when

it is available.

The evaluation of ABCD rule is performed following equation (1.1) using the scores
given in the table 1.1 to classify the pigment into three cases, benign, clinically doubtful

and malignant [1]:

(
Savea < 4.75  then the pigment is benign

4.75 < Sgpea < 5.45  then the pigment is clinically doubful

Sabea > 5.45  the pigment is malignant

\



Table 1.1 expresses the description of each feature of the system and gives their

different point values and weight factors.

1.2.2

7-point Checklist

The 7-point checklist [17] and Glascow 7-point checklist system [18], summarized by

Capdehourat et al. [1] (see Figure 1.7) and Korotkov et al. [12], is another scoring

system based on seven criteria divided into two sets. For Glascow 7-point checklist, the

major criteria are changes in shape, size and color, and the minor criteria are diameter,

inflammation, crusting and sensory changes. The 7-point checklist criteria works in the

same way, with some differences and more details, as presented below:

Atypical pigment network: Black, brown, or gray thickened and irregular lines

segments in the lesion.

Blue-whitish veil: Irregular, confluent, gray-blue to whitish-blue diffuse pigmen-
tation that can be associated with pigment network alteration, dots/globules, or

streaks.

Atypical vascular pattern: Linear-irregular and/or dotted red vessels not seen in

regression arca.

Irregular streaks: Pseudo pods or radial streaming irregularities arranged at the

periphery of lesion.

Irregular pigmentation: Black, brown or gray featureless areas with irregular

shape and/or distribution.

Irregular dots/Globules: Black brown, or gray rounded to oval, and variously

sized irregularity structures distributed in the lesion.

Regression structures: White scar-like areas and/or blue pepper-like areas (gray-

blue areas and/or multiple blue-gray dots).
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Table 1.2: The major and minor criteria of 7-point checklist and the different weights
for each criterion [1].

Major criteria Score Minor criteria Score
Atypical pigment network 2 Irregular streaks 1
Blue-whitish veil 2 Irregular pigmentation 1
Atypical vascular pattern 2 Irregular dots/globules 1
Regression structures 1

Regression
structures
5

Atypicall

pattern

Blue-whitish veil

Irregular streaks

- Irregular
— " |dots/globules|

IAtypical
=*pigment
network

Irregular
Pigmentation

Figure 1.7: 7-point checklist illustration [1].

For 7-point checklist, the scores given to each point, the same for Glascow 7-point
checklist, are 2 for major criteria and 1 for minor ones as summarized in table 1.2. The
evaluation of the score follows the following formula:
3 4
Stpe =3 _ M+ > m; (1.2)
i=1 j=1

where M; and m; define the i"* major and j'* minor criteria respectively.

The classification following this system is also based on thresholding functions into

two different classes [1]:

S7pe < 3 the pigment is benign

S7pe > 3 the pigment is malignant

Table 1.2 details the major and minor criteria of 7-point checklist system.



1.3 Computer Aided Diagnosis Systems

Computer Aided Diagnosis (CAD) systems have been developed in several contribu-
tions of medical imaging [24-26]. The objective of CAD systems is to provide a
computer output as a second opinion in order to assist radiologists on interpretation
to improve the accuracy of diagnosis and reduce the image reading time [27]. A CAD
system is generally identifying two types of systems depending upon its main func-
tion i.e. Computer Aided Detection (CADe) system and Computer Aided Diagnosis
(CADx) system. It is also explored for the early both detection and diagnosis [28]. A
CAD system is applied on different tumor images such as mammograms, dermoscopy,
MRI, radiography, etc. A CAD system was already known in the 1960s and became
more interesting topic in the 1980s, where many investigations and researches were ex-
plored in some laboratories and hospitals [12]. Since 2000s, the number of papers in
CAD system are mostly increased in the achievement of the detection and the diagnosis

of melanoma [24,27].

The CAD system applied in medical imaging contains five main steps from the

image acquisition to the classification and diagnosis:

1. Image acquisition: In image processing, this step is considered as source or data
for the next steps. In addition to that, there are many important and consistent
informations from the acquisition to help the image processing experts to have a

baseline and an intuitive work direction to explore.

2. Image enhancement: The objective of this step is to reduce noises and all arti-
facts in the images. These artifacts in most cases depend on the kind of image
acquisition technique employed, and represent, for example, numbering in mam-

mogram images, hair and blood vessels in dermocopic images.

3. Segmentation: The segmentation of the Region Of Interest (ROI) is an important
step in CAD system. The multitude of skin cancer images makes the segmenta-
tion task more difficult. It becomes one of the hardest and most challenging task

in CAD system.



4. Feature extraction: Once the ROI is isolated, the objective of this step is to
provide the best descriptor to extract features which discriminate the database

into two or more classes.

5. Classification and detection: The final step is classification and diagnosis where
the proposed system is observed and analyzed. Depending on the feature ex-
tracted and the number of classes desired, the choice of the classifier is primordial
to get better results on the detection. According to the classifier used, the classi-
fication rate is evaluated following some performance metrics, such as accuracy,

sensitivity, specificity and receiver operating characteristic (ROC).

CAD system is developed in melanoma recognition as well. Following the five steps
of the system, there are many methods adopted or developed specifically for melanoma
detection. The next chapter summarizes the literature review on skin cancer detection
according to these steps, it makes also in evidence the logic of these steps on CAD

system and the different contributions in each step.

1.4 Problem Statement

Melanoma treatment needs chemotherapy and radiotherapy, as breast cancer, blood
cancer, brain tumor, lung cancer, and other cancer types when they reach metastasis
state [2,29]. To avoid these painful procedures and receive successful treatment, early

detection is one of the most reliable solutions.

The CAD systems explored for improving the accurate decision is still in develop-
ment. Nowadays, as reported by Korotkov et al. [28], many CAD systems are available
for pigment skin lesions detection such as Dell’Eva-Burroni Melanoma Image process-
ing Software which is the most cited in the literature and gives lower performances in
real applications. However, it is difficult to draw overall conclusions regarding the per-
formance of these systems. The different image acquisition (dermoscopic, clinical and
standard camera images) in structured studies complicates furthermore the classifica-

tion task in one global methodology. Thus, the current CAD systems are still far from
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perfection and need more developments to improve the detection and the diagnosis of
melanoma. Despite, the improvements of CAD systems over years, there are still some
challenges involved, such as accurate and adaptive segmentation. Moreover, to clas-
sify the skin pigment lesions into malignant and benign cancer, two major problems are

evoked.

e Firstly, the accurate segmentation is the first challenging task to improve in the
first plan the detection of suspicious lesions, and in the second plan the classifi-

cation of these lesions into malignant and benign.

e Secondly, the extraction of the most discriminative set of features describing the
relevant characteristics separating the pigment lesions into benign and malignant

skin cancer.

In addition to that, the key to improve the real output quality of CAD systems is
to apply the proposed methods on free public datasets for the comparison of all de-
veloped algorithms. To reduce also the human error of diagnosis, each pigment skin
lesion should be accompanied by the ground truth and diagnosis reported from several

dermatologists [12].

1.5 Research Objectives

The main objective of this thesis is to improve melanoma detection and recognition.
To accomplish this objective, the PhD work was oriented into the following specific

directions:

e To investigate a method of segmentation adapted for skin lesions characteristics,

that could segment even the small regions inside the skin pigment lesion.

e To develop a method of features extraction based on fusion of structural and tex-

tural features.

e To develop a method based on border irregularities of pigment lesions.
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1.6 Research Hypothesis

To achieve our research objectives, the following research hypothesis are made:

e A total variation method exploring an extension of Chan and Vese model would

be efficient for segmentation of regions of interest in skin lesion images.

o A fusion of structural and textural features exploring the Local Binary Pattern op-
erator and multiresolution analysis methods (curvelet and wavelet transform) on
dermoscopic image database would be efficient to discriminate further between

malignant and benign lesion.

e An investigation of geometrical characteristics based on the border irregularities

may provide a description of pigment skin lesions.

1.7 Scope of Research Work

The scope of the work is to aid and improve the Computer Aided Diagnosis based on
image processing methods. The work is concentrated on two main directions, segmen-
tation and features extraction. The first direction is based on Chan and Vese model.
The model was extended and adapted for skin cancer segmentation. In addition to the
whole region of interest, the algorithm segments the inter-regions of the lesions. The
second part of the work consists of extracting the most discriminant features, either for
dermoscopic and standard camera images. For dermoscopic images, multiresolution
analysis using wavelet and curvelet were combined with local binary pattern and used
for feature extraction to discriminate skin lesions. For standard camera images, bor-
der smoothness and irregularities are explored and developed, introducing valleys and
crevasses concepts as features to make border between malignant melanoma and benign
skin lesion (non-melanoma) images. All results of developed methods and comparisons

are highlighted and discussed.
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1.8 Thesis Organization

The work of this thesis is organized into the following six chapters:

Chapter 1 describes the skin cancer, computer-aided diagnosis tasks, objectives and

contributions of the current work.

Chapter 2 presents a literature review of CAD systems and different methods de-
veloped for skin cancer enhancement, segmentation, feature extraction and finally the

detection and recognition step.

Chapter 3 contains mathematical tools used in the current work. It is divided into
three sections which are Total Variation, Multiresolution Analysis (Fourier transform,
wavelet, ridgelet and curvelet) and finally the classifiers used (support vector machine

and artificial neural network).

Chapter 4 introduces the methodology of the proposed system. It provides all the

details of the techniques developed during this PhD work.

Chapter 5 reports the obtained results from the proposed methodology and its com-
parison to existing methods and algorithms. It also illustrates different intermediate

steps of the work.

Chapter 6 concludes the overall work of the thesis and gives recommendations for
the future work. It enumerates the scientific papers published in workshops, conferences

and journals.
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CHAPTER 2

LITERATURE REVIEW

2.1 Overview

Skin cancer recognition on CAD systems has been an active research area for more than
30 years back [28]. For instance, many methods have been developed and explored for
melanoma detection [30]. Korotkov and Garcia [12] presented an interesting overview
of used and explored methods on clinical and dermoscopic images from 1984 to 2012.
Their review is organized following ABCDE [31] criteria and other methods developed
in clinical and computer-aided diagnosis system (CAD) from the data acquisition step to
the classification and diagnosis. Maglogiannis and Doukas [16] have also presented in
2009 an overview on CAD system methods. A non exhaustive comparison of the most
important implementations is reported, specifically features selection such as color and
border, and wavelet coefficients. They also presented the classifiers often used in the
literature, such as Artificial Neural Network and Support Vector Machine. Masood
and Al-Jumaily [32] in 2013 presented a review of techniques and algorithms used in
skin cancer, and also a comparison of performances of these methods on skin lesion
recognition. Recently, in 2015, Celebi et al. [33] presented a state of the art survey
on the 50 published border detection methods. The authors evaluated the subjective
and objective evaluations and their impact on the quality of segmentation results of
skin border lesions. The conclusions of these review papers are detailed below in the

different steps of CAD system.

As mentioned in the Introduction chapter (Chapter 1), the two scoring systems,

ABCD rule and 7-point checklist, well known by the clinicians and dermatologist in
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clinical diagnosis and by non dermatologists in screening procedures are detailed in
this chapter. In this topic, the scoring system related to ABCD rule was proposed by
Friedman [13] in 1985 and developed by Stolz et al. [14] in 1994. This system is widely
used in clinical practice [12]. Following each feature, the system is divided into points

values and weight factors as detailed in Table 1.1 in the last chapter.

According to Capdehourat et al. [1], the scoring system for ABCD rule follows
equation (1.1) (page: 6). Where p; represents the number of points attributed to each

feature and w; 1s the weight factor as explained in table 1.1.

The classification of the ABCD system scoring is based on two thresholds following
the value of Sy;.q given in equation (1.1). Therefore, if S,.q < 4.75 the lesion is clas-
sified as benign, if 4.75 < Sy peq < 5.45 the lesion is considered as clinically doubtful
and if Sg.q > 5.45 then the lesion is classified as malignant. It can be seen from the
table 1.1 that border irregularity feature has less impact, with variation from 0 to 0.8,

comparing to other features with variation from 0 to more than 2.5.

The 7-point checklist was proposed by Argenziano et al. [17], which is another
variation of pattern analysis with fewer criteria for identification and analysis [1]. The
idea of 7-point checklist system is to attribute the score of 2 for major and 1 for minor

criteria as summarized in the table 1.2.

The classification is performed following a fixed threshold equal to 3 separating the
pigment lesions on two classes. Thus, the pigment is classified as benign if the total
value is lower than 3 (Total < 3), on the other side it is classified as malignant if the
total is greater than 3 (Total > 3) as explained in the previous chapter. Argenziano
et al. [21] in 2011 and Walter et al. [34] in 2013 presented a new version of 7-point

checklist to improve the accuracy of diagnosis.

Dolianitis et al. [35] compared 4 dermoscopic algorithms, ABCD rule, pattern anal-
ysis, Menzies method and 7-point checklist. The study showed that the best results are
obtained by Menzies method with an accuracy of 81.1%, followed by ABCD rule with

an accuracy of 79%, 7-point checklist is in the third place with an accuracy of 77.2%
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and in the last position, the pattern analysis algorithm. They reached the same conclu-
sion that Carli et al. [36], where 7-point checklist is more sensitive than ABCD rule and
pattern analysis. However, in their study (Dolianitis et al.), the Menzies method showed
the highest sensitivity of 84.6%, followed by 7-point checklist with 81.4% and ABCD
rule with 77.5%, and finally, pattern analysis had the lowest sensitivity of 68.4%. On
the other hand, the highest value of specificity of 85.3% is reported by pattern analysis
followed by ABCD rule with 80.4% and Menzies method with 77.7% and in the last
position 7-point checklist with a specificity of 77.2%. This study was conducted by the

ground truth of sixty-one medical experts, but only on 40 melanocytic skin lesions.

In the literature, most CAD system papers contribute in one or more than one area
of image processing, which include image preprocessing, segmentation, feature extrac-
tion and finally the classification and diagnosis. The techniques developed in image
preprocessing are presented in section 2.2 where the main objective is to enhance the
image quality and remove noise. Then, it is followed by the segmentation techniques
treated in section 2.3 for the detection of the Regions of Interest. Methods explored
for feature extraction to discriminate the lesions are presented in section 2.4. Finally
the classification and diagnosis treated in section 2.5 describes the most cited classifiers
and methodologies used for melanoma recognition. The different obtained results are

described continuously following the main area of contribution.

2.2 Preprocessing: Image Enhancement

The main objective of image enhancement is to improve the quality and readability of
the images. In the literature, it is also known as the preprocessing image step. In skin
cancer images, the goal of this step is specially to remove the artifacts, such as hair and
human made artifacts. Image enhancement is also used to improve the contrast quality
for the exploration and visibility of details. Therefore, to compensate the imperfection
of image acquisition and eliminate different artifacts, many methods and algorithms
are developed and explored on various skin lesion databases. The dermoscopic images

artifacts can be obtained and observed as uneven illumination, dermoscopic gel, black
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frames, ink markings, rulers and air bubbles. In fact, the border detection can also be
affected by intrinsic cutaneous features such as blood vessels, hairs, and skin lines [16].
In the literature, according to Koroktov [28], artifacts are divided into two sets, artifacts
rejection and image enhancement. Artifacts rejection contains hair, air bubbles, spec-
ular reflections and ink marking. In the other part, image enhancement contains color
correction and calibration, illumination correction, contrast enhancement and edge en-
hancement. In 2009, Celebi et al. [37] focused on the importance of the current step in
border detection, mentioning the most important used methods such as Gaussian and

Median filters.

In dermoscopic images, the most common artifact, and necessary to remove, is the
hair. Many methods and algorithms are presented in the literature to remove the hair
when it is not shaved before the acquisition step. Therefore, the typical algorithm of

hair removal methods is based on two main steps:

1. The hair detection: it consists on detecting and removing the different hairs in the
image using algorithms of detection. Most developed methods in this step use

segmentation because the hair is an integral component compared to other noise

types.

2. The image restoration: the restoration or inpainting step consists on filling the
space occupied by the removed hair with proper intensity and color values. The
image quality can be affected when the density of hair is big in the lesion bor-
der. Also, the texture of the pigment can be affected in some cases. Therefore,
the shaving of the concerned area, when it is possible, is a good solution and

compromise to reduce diagnosis errors.

Many methods are explored in the hair removal task. In the literature, DullRazor
software [38], proposed in 1997, is the first widely adopted method for removal-of
hair [12]. DullRazor performs the identification of the dark hair location using mor-
phological closing operation, the verification of hair pixel shape and the replacement
using bilinear interpolation, and the smoothness of replaced pixels with median filter.

In 2008, Wighton et al. [39] proposed an alternative method for the inpainting step of
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DullRazor software. In addition to the interpolation used in DullRazor software, the
authors explored other information, like the direction of the border using Laplacian to

regulate and measure the smoothness.

In 2011, Kiani et al. [40] proposed an improvement of DullRazor method using
different approaches. The authors used Prewitt filter for edge detection and Radon
transform for predominant direction of the hair, they also used different masks to iso-
late the hair from other noises. Following the same idea, Toossi et al. [41] proposed a
morphological operator using adaptive canny edge detector for hair detection and multi-
resolution coherence transform inpainting technique to repair and replace smoothly the
emplacements of removed hair. On a database of 50 images, the method achieves 88.3%
of diagnostic accuracy and 9.9% of error segmentation. Nguyen et al. [42] used univer-
sal matched filtering kernel and local entropy thresholding to get raw binary hair mask.
Therefore, a combination of morphological thinning with Gaussian curve fitting is used
for refining and verification of hair masks. Xie et al. [43] focused their research on re-
pairing removed hair using PDE-based image inpainting. The method proposed by the
authors contains three main parts, morphological closing is used for enhancement in
the first step, followed by hair segmentation using statistical thresholding and extracted
by the elongate of connected regions, and at the end they used PDE-based image in-
painting for restoration. The authors applied their proposed method on 80 images (40
images without hair and 40 with hair). The obtained result showed 5% of errors for
the case without hair and 18% for the images containing hair. Following the same idea
Fierose et al. [44] proposed PDE-based image inpainting for restoration combined with
top-hat operator (morphological enhancement) for segmentation and Otzu threshold for
hair detection. Applying the current method on 20 images, the results showed an error
of 15.6%. Huang et al. [45] explored multi-scale curvilinear matched filtering for hair
detection and linear discriminant analysis for image restoration. Abbas et al. [46] pro-
posed a matched filtering with first derivative-of-Gaussian method for hair detection.
This approach showed accurate results, but the multitude of parameters complicates its
implementation. Applied on 100 dermoscopic images, the method showed a diagnostic
accuracy of 93.3%. The authors applied the same method in the next published pa-

per [47,48] when hair removal was needed. Barata et al. [49] used a bank of directional
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filters and PDE-based interpolation for hair detection and inpainting, respectively.

Gomez et al. [50] proposed an unsupervised algorithm based on Independent His-
togram Pursuit. This algorithm estimates a set of linear combinations of images bands to
enhance the different structures of the image. The results obtained showed an increment
of border quality detection. Following the similar objective of contrast enhancement,
Celebi et al. [51], proposed for a given RGB image input, they maximize the histogram
bi-modality measure to increase the contrast between the lesion and the background.
Madooei et al. [52] explored artifacts removal and image enhancement on 120 images
based on the effect of light-intensity on the edges. The experience was implemented on

border detection after enhancement with a sensitivity of 92% and a specificity of 88%.

Recently, in 2015, Koehoorn et al [53] proposed a new approach based on threshold-
ing set decomposition and morphological analysis using gap-detection by multi-scale
skeletons. Mizaarlian et al. [54] proposed an alternative approach to detect hair in
dermoscopic images using the measurement of turbulence quaternion [55] and dual
matched filters for hair suppression. For the restoration, the authors used the interpola-
tion used in DullRazor software developed in [38]. On a database of 40 dermoscopic
image and 94 synthetic images, the results obtained for hair segmentation are 86% and
85% of accuracy for dermoscopic and synthetic images respectively. The results of
enhancement gave 90% and 96% of sensitivity for dermoscopic and synthetic images

respectively.

To remove other artifacts such as capillary and blood vessels, many methods are
also developed and explored. Huang et al. [56] extracted capillaries from skin lesions,
they used a compact set of 1 curvilinear and 2 color parameter features and trained us-
ing SVM classifier to detect the different capillaries. Applying the proposed method on
a database of 49 images with 21 visible capillaries and 28 non visible capillaries. The
authors obtained 98.8% of accuracy, 90.5% of sensitivity and 89.3% of specificity. Ear-
lier, Argenziano et al. [23] described the different vascular structures and its association
with various melanocytic and nonmelanocytic tumors using statistical tests, such as >
and Fisher tests. On a database of 531, the dots vessels showed a positive prediction on

melanocytic lesions of 90%.
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Abbas et al. [47] also treated specular reflexion reduction using Fourier transform
and median filter for air bubbles or dermoscopic-gel reduction. Barata et al. [49] used in
their work a sub-band thresholding for the intensity to reduce the reflexion to enhance

the quality of images in pigment network detection.

Table 2.1 summarizes some methods used for hair detection and inpainting steps

with the results obtained for each one. Most of the presented methods in this table had

compared their result to DullRazor software.

Table 2.1: Comparison of different used methods on hair-removal task

Method Hair detection Restoration Database | Results
DullRazor | Generalized mor- | Bilinear inter- | 5 images Visual presentation
[38]. phological clos- | polation of the segmenta-
(1997) ing operator tion
Kiani et | Perwitt edge de- | Color averag- | 5 images Visual presentation
al. [40]. | tector ing and  comparison
(2011) with DullRazor
Toossi et | Adaptive canny | Multi- 50 images | 88.3% of diagnos-
al. [41]. | edge detector resolution tic accuracy and
(2013) coherence 9.9% of error seg-
transform mentation
inpainting
Nguyen et | Universal Linear interpo- | not avail- | visual illustration
al. [42]. | matched fil- | lation able on synthetic and
(2010) tering kernel and real images
Gaussian fitting
Xie et | Top-hat operator | PDE-based im- | 80 images: | 5% of false hair
al. [43]. | + elongate func- | age inpainting | 40 with | error and 18% of
(2009) tion for thresh- hair, 40 | misclassified
olding without
hair)
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Method Hair detection | Restoration Database | Results

Fiorese et | Top-hat operator | PDE-based im- | 20 images | 15.6% of misclas-

al.  [44]. | + Otzu Threshold | age inpainting sified

(2010)

Huang et | Multiscale Median filter- | 20 images | 81% of true hair

al. [45]. | matched filters ing detection

(2013)

Abbas et | Derivative of | Coherence 100 images | Diagnostci  accu-

al. [48]. | Gaussian transport racy of 93.3%

(2011)

Mizaarlian | Quaternion color | Bilinear inter- | 40 der- | & 85% of accu-

et al. [54]. | curvature filter polation [38] moscopic racy for hair detec-

(2014) and 94 | tion and over then
synthetic 90% of sensitivity
images for both databases

Koehoorn | Gap- detection | Fast Marching | 300 images | Visual comparison

et al. [53]. | by multi-scale | method [57] with methods pre-

(2015) skeletons sented in [38, 40,

43-45,47].

In hair segmentation and removing, there have been many contributions and less

for published papers analyzing on tubular structures and vessels. In the state-of-the-

art research, the results obtained of most papers are based more on visual analysis and

comparison. We notice that the majority of methods developed for skin image enhance-

ment are based on thresholding. Despite the multitude approaches, it is very difficult to

draw a clear conclusion due to the use of private databases and the application of these

methods on small datasets.
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2.3 Segmentation

The accurate detection of skin lesion border is the most important step and the crucial
stage for classification and diagnosis. In image processing, many methods and algo-
rithms were developed and applied in different databases. As mentioned in the previous
chapter, the border detection is not so trivial and it has some shortcomings and prob-
lems [28]. Two points are related, firstly, there are the ground truth problem done by
dermatologists which is difficult to discriminate by algorithms and reproduce by the
human observers, where the variation in contrast or blur [58] are not visible or well
explored by naked eyes. Secondly, the issue between the manual and the automated
segmentation is the morphological structure of the lesion as explained by Celebi et
al. [37], specially the low contrast between the lesion and the normal skin and the fuzzy

lesion borders in some cases.

The multitude of lesion development and its appearance in dermoscopic images
complicates and influences the choice of the best method to detect lesion border [12,28,
37]. Therefore, the current subsection is organized following three major methods sets
explored in image segmentation in generally, and skin lesion images particularly. In the
first step, the methods developed using total variation segmentation are presented, then
followed by multiresolution analysis and finally, those using thresholding approaches.
Other various methods, that do not belong to these sets are also studied and explored.
Recently, Celebi et al. [33] reviewed the border lesions detection and classified them
into twelve categories, such as Histogram thresholding, clustering and active contours,

etc.

2.3.1 Total Variation Segmentation

In the literature, as in general image processing, many methods are developed and/or
implemented for skin lesion segmentation. Using total variation regularization, Ab-
bas et al. [47] for the segmentation part, used a modified region-based active contours

(RACs) developed by Lankton et al. in [59]. The current method explored the same
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concept of Chan and Vese model [60], and its generalization [61] proposed for the reso-
lution of Mumford-Shah function [62] (see chapter 3). On a database of 320 images, the
results present over than 90% true detection rate (TDR) and less than 10% of false pos-
itive rate (FPR). For the same objective, Safi et al. [63] applied another generalization
of Chan and Vese Model developed by Li et al. [64] (see chapter 4). Using ABCD rule
for feature extraction and SVM classifier on a database of 4240 benign and 232 malig-
nant moles, the performance evaluation was conducted using a 10-fold cross-validation
and it performed a true detection rate over than 98% for all 10 tested cases. Another

extension of the model is presented recently by Kang et al. [65].

In 2009, Silviera et al. [66] compared 6 methods of segmentation, adaptive thresh-
olding (AT), gradient vector flow, adaptive snake (AS), level set of Chan and Vese model
(C-LS), expectation-minimization level set (EM-LS) and fuzzy-based split-and merge
(FBSM) algorithm. The comparison shows that the best result of false positive rate
(FPR) of 2.55% is given by C-LS method, but the results are lower for true detection
rate (TDR) of 83.39% comparing to Adaptive snake with a TDR of 95.47%. In 2015, an
extension of Chan and Vese model applied on dermoscopic images is developed [67],

the proposed extension is detailed in Chapter 4.

2.3.2 Multiresolution Analysis

Multiresolution analysis is also used for segmentation of pigment skin lesions. There-
fore, Castillejos et al. [68], in 2012, mixed wavelet transform [69] with Fuzzy K-Means
Clustering algorithm, Fuzzy C-means algorithm and Cluster Preselection Fuzzy C-
Means algorithm using all color channel for segmentation. On a database of 50 im-
ages, the diagnostic performance was quantified by the AUC measure, the best result
was performed using Daubechies wavelet with an AUC value over than 0.96 for the
three combinations. In another way, Ma et al. [70, 71] used wavelet decomposition
banks [72] to discriminate melanoma and non-melanoma cases, the artificial neural net-
work (ANN) classifier is used for classification. The authors applied the approach on

a database of 134 skin lesion images with 72 melanoma and 62 benign lesions. The
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obtained results achieved a sensitivity of 90% and a specificity of 83%.

A comparison between wavelet [73] and curvelet transforms [74] for segmentation
and identification of melanoma was implemented by Abu Mahmoud et al. [75]. Us-
ing the two layers back-propagation neural network classifier on 448 digital skin lesion
images, the result showed a better performance for curvelet compared to wavelet trans-
form. The accuracy obtained using curvelet transform is 86.57%, which is much higher
than the result obtained by wavelet transform with 58.44% of accuracy. Erkol et al. [76]
proposed the gradient vector flow to find the border of skin lesions under 20 iterations.
On a database of 100 dermoscopic images (30 malignant melanoma and 70 benign le-

sions), 13.77% of error detection is obtained.

2.3.3 Thresholding Approaches

The idea of thresholding method is one of the simplest approaches of segmentation. The
structure of these kind of methods is mostly to separate the image following some limits
applied on gray-scale into binary image. Mostly, these methods are complemented by

other approaches as morphological operators.

The thresholding approaches by morphological operators segmentation is one of
the most known method and used in border detection in different imaging databases
[77-82]. In skin cancer images, the morphological segmentation was used by Ganster et
al. [83]. The authors explored a gray-scale morphology for segmentation. The method
based on three algorithms of thresholding, global thresholding, dynamic thresholding
and they also explore the blue color channel of RGB and CIE-Lab color space on 4000
lesion images, and after rejection of 159 images considered as rejected due to segmen-
tation failures, they obtained around 96% of correctly segmented skin lesion images.
Earlier, Shmid [84] used anisotropic diffusion and morphological flooding on dermo-
scopic lesion detection. In [66], the adaptive thresholding showed a potential result
compared to other used methods in terms of TDR and FPR performances. It performed

a better result of true detection rate and false detection rate in benign and malignant
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melanoma than gradient vector flow method, and it showed an equivalent result com-
paring to other methods. In 2013, Celebi et al. [82] proposed an automated fusion of
thresholding method with a Markov random field, applied on 90 dermoscopic images
(23 malignant melanoma and 67 benign lesions), and compared to the state of the art

methods expressing the result using exlusive-OR errors of 9.16 + 5.21%.

Otsu thresholding segmentation [85] is developed and applied for automatic bor-
der detection in dermoscopic images [75, 86—89]. This method is always combined
with other methods to perform the segmentation. In Abbas et al. [88], the authors
proposed a combined algorithm of Otsu thresholding algorithm and a morphological
reconstruction-based algorithm. The authors presented a result of 92.10% of TDR and

6.41% of FPR on a database of 100 dermoscopic images.

2.3.4 Other Segmentation Methods

Genetic algorithms [90] were used by Xie et al. [91], where a self-generating neural
network and the genetic algorithm were combined for the segmentation of dermoscopic
images. Watershed technique [79,92] was also used for lesion segmentation by Wang
et al. [93]. It was applied on 100 skin lesions and had a percentage error of 15.98%.
An anisotropic mean shift based on Fuzzy C-Mean (FCM) algorithm variant is used by
Zhou et al. [94], where the authors utilized an anisotropic mean shift algorithm cou-
pled with fuzzy c-means for the segmentation. Sobiecki et al. [95] used Gap-sensitive
segmentation on digital images. The authors also applied their method on skin cancer
images. Glaister et al. [96] used TDLS algorithm for textural feature extraction joined
with TD metric to calculate the dissimilarity of the texture. Applied to 126 standard
camera images, the segmentation results achieved an accuracy of detection of 98.3%,
a sensitivity of 91.2% and a specificity of 99%. An unsupervised segmentation algo-
rithm using £ means clustering under spatial constraints was also proposed by Zhou et
al. [97]. Qi et al. [98] applied a fully deep constitutional neural network to automati-
cally segment melanoma. the authors learned their model on 2000 training images and

tested on 600 images, then validated on 150 images. However, the authors illustrate
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visually their results and they did not present any performance due to the small dataset

used for learning step.

Table 2.2 summarizes the different methods of segmentation explored for skin lesion
images. For each paper, the method used, the result obtained and the size of the dataset

(number of images) are mentioned.

Table 2.2: Comparison and summary of some different methods used for segmentation

Authors Segmentation Database | Results

method
Abbas et al. | Region-based Active | 320 images | TDR of 92.17% and FPR of
[47] (2011) | Contours [59] 5.62%
Safi et | Multipahse seg- | 4472 Accuracy of 98.57% with a
al. [63] | mentation with TV | images TDR of 99.1%
(2011) and H' regulariza-

tion [64]
Casttilejos Wavelet Transform | 50 images | AUC value over then 0.96
et al. [68] | mixed with three
(2012) variants of FCM

algorithm
Clawson Harmonic  wavelet | 30 images | With ground truth of two ex-
et al. [99] | transform [100] perts: 1St- Acc: 93.3%, Sen:
(2009) 50%, Spe: 100%. 2nd-Acc:

93.3%, Sen: 95.2%, Spe:
88.9%

Ma et | Wavelet decomposi- | 134 images | Spe: 90.32%, Sen: 83.33%
al. [71] | tion bank [72] and Area of ROC: 89.07%.
(2013)
Ganster etal. | Gray-scale morpho- | 4000 Around 96% of correct seg-
[83] (2001) | logical segmentation | images mentation.
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Authors Segmentation Database | Results

method
Abu  Mah- | Wavelet and curvelet | 448 images | Using ANN, 58.44% and
moud [75] | transforms 86.57% of accuracy for
(2013) wavelet and curvelet trans-

forms resp.

Glaister Texture Distinctive- | 126 images | Accuracy detection of 98.3%,
et al. [96] | ness Lesion Seg- a sensitivity of 91.2% and a
(2014) mentation  (TDLS) specificity of 99%.

algorithm

The majority of developed methods for segmentation step are based on usual method-
ologies developed in image processing segmentation. we can notice that Safi et al. [63]
claimed an accuracy of 98.57% on a database 4472 images, however the authors did not
highlight the parameters used in the model knowing that the model is an extension of
Chan and Vese model which is dependent on parameters chosen. It can be seen also
that Clawson et al. [99], on a database of only 30 images, the results obtained by their
model shows a big difference sensitivity performance between the ground truth of two
experts (50% and 95.2%). We noted also that the accuracy is affected by the difference
between malignant and benign lesions. Therefore, there is a need to develop an adapted
and specified method for skin lesions. From the literature, it can be seen that majority
of contributions used a private databases which is very hard to re-implement the dif-
ferent methods. It can be seen also that the segmentation step development for skin
cancer is not highlighted since few years. In the current work, an adequate and accurate

segmentation for skin cancer using an extension of Chan and Vese model is developed.

2.4 Feature Extraction

Feature extraction of melanoma is the most important stage for the classification and
diagnosis step (next stage). The main task of this step is to extract the discriminant fea-

tures to aid the separation of malignant and benign skin lesions. To correctly diagnose
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and classify the lesion, the features extracted have to represent in the best way the char-
acteristics of the tumor that can be used and understood by the computer. In hospitals as
mentioned before, medical doctors use two famous scoring systems as features, ABCD
criteria (or rule) [2, 13] and 7-point checklist [31]. The ABCD rule (Asymmetry, Bor-
der irregularities, Color variation and Diameter) is more used and explored than 7-point

checklist.

In the literature, most of the papers develop their methods according to one or more
points of ABCD rule, specially Asymmetry [20,89,101-105], Border irregularities [20,
63,70,82,88,105—-111] and Color variation [20,63,88,104,112-120]. The non common
utilization of the Diameter does not mean that it is useless comparing to the other ABCD
rule points, but in most of the cases the diameter is missed data. Nevertheless, it was

used by Shen et al. [20].

Many other methods of image processing are also used, specially textural and struc-
tural features. In Abbas et al. [121], in addition to color-related features, the authors
combined them with textural ones extracted from Steerable Pyramids Transformation
(SPT) algorithm, and performed a sensitivity of 89.28%, a specificity of 93.75% and
an area under AUC of 0.986. Abu Mahmoud et al. [75] explored discrete wavelet and
discrete curvelet transforms as features for melanoma recognition. For smart-phone-
based real-time system, Abuzaghleh et al. [118] proposed fast Fourier transform (FFT)
mixed with discrete cosine transform applied on color and shape for feature extraction.
Earlier in 2009, Clawson et al. [99] used Harmonic Wavelet Transform [100] for border
smoothness features on 30 dermoscopic images. Using the ground truth of two experts
and C5 algorithm with 10-fold cross-validation, the results show an accuracy of 93.3%
for both experts, and a sensitivity of 50% and 95.2% and a specificity of 100% and
88.9% for the ground truth of expert 1 and expert 2, respectively. Codella et al. [122]
used Sequential Pattern Mining (SPAM) algorithm to learn dictionaries constructed on
color (RGB) and gray level spaces of the dataset. The authors applied the approach on

ISIC database of 4624 images with 334 melanoma, 144 atypical nevi and 2146 benign
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lesions. Using SVM classifier, the results obtained showed an accuracy of 93.1%, a sen-
sitivity of 94.9% and a specificity of 92.8%. Local Binary Pattern (LBP) [123, 124] op-
erator is also used for feature extraction on dermoscopic images by Gonzdles et al. [125]

and Adjed et al [126].

Sadghi et al. [127], to classify absent, regular and irregular streaks, which are impor-
tant for melanoma detection inspired from 7-point checklist system, used the orientation
and spatial arrangement of streak lines. Takruri et al. [128] proposed the extraction of
features on wavelet or curvelet coefficients applied on gray scale lesions with color
features obtained from original images. Using SVM classifier, the results performed
an accuracy of 87.1%, a sensitivity of 86.4% and a specificity of 88.1% for the sys-
tem based on wavelet features and an accuracy of 83.6%, a sensitivity of 76.9% and a

specificity of 85.4% for the system based on curvelet features.

Cavalcanti et al. [129] is a typical work following all the steps of ABCD rule on stan-
dard images database. Therefore, for asymmetry they used two axis passing through the
center of the pigment, and magnitude of gradient using Sobel operator. They explored
the values of pixel intensities in color variation channel for color features. However,
on standard camera images, the morphological and vascular structures are not visible.
On a database of 220 images (138 melanoma and 82 benign lesions), they performed
an accuracy of 93.63%, a sensitivity of 94.92% and a specificity of 91.46% using kNN
classifier. Exploring the same method, Amelard et al. [105] extracted features using
multi-stage illumination algorithm and defined a set of high level intuitive features to
quantify the asymmetry and border irregularities as [129]. They applied their algorithm
on a database of 206 standard digital camera images. Using SVM classifier, the results
obtained performed an accuracy of 81.26%, a sensitivity of 84.04% and a specificity of
79.91%. Sabbaghi et al. [130] explored the Bag-Of-Feature using SIFT (Scale Invariant
Feature Transform) descriptor mixed color identification [131] to extract the features.
Two classifiers are used to evaluate the proposed method. Firstly, they employed linear
SVM for the classification step, and secondly, they used Stacked Sparse Auto-Encoder
(SSA) neural network variant. The results achieved by these methods on a database

of 814 images are 85% and 95% of accuracy for SVM and SSA, respectively. Bi et
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al. [132] proposed a multi-scale lesion-biased representation (MLR) and performed the
classification under joint reverse classification (JRC) model. The results obtained on
a database of 200 dermoscopic images are 87.50 of sensitivity, 93.13% of specificity
and 90.31 of accuracy. However, the authors did not cross validate the obtained re-
sults of the proposed method. Recently, Li and Shen [133] used deep learning network
to detect melanoma. Applying straight-forward CNN algorithm for segmentation and
lesion index calculation unit for classification. On ISIC database containing 2750 im-
ages, the method showed an accuracy of 92.2%, a sensitivity of 78.9% and a specificity
of 97.5%. On the same database, Gal et al. [134] and Lopez et al. [135] proposed a
bayesian convolutional neural network and convolutional neural network, respectively,
Gal et al. obtained an AUC of 0.75 and Lopez et al. obtained an accuracy of 81%.
In the same idea, Esteva et al. [136] applied a deep convolutional neural network on
a database of 129450 clinical images into 2,032 different diseases. Their results were
compared to 21 board-certified dermatologists.

Table 2.3: Comparison and summary of some different methods used for feature extrac-
tion and their obtained results

Authors feature extraction | Database | Obtained results
method
Codellaetal. | Sequential  Pattern | 2624 Accuracy of 93.1%, Sensitiv-
[122] (2015) | Mining images ity of 94.9% and specificity of
92.8%
Abuzaghleh | Fast Fourier trans- | 200 images | 90.6%, 91.3% and 97.7 of ac-
[118] (2014) | form mixed with curacy of common, atypical
discrete cosine and melanoma resp.
transform
Abbas et al. | Combination of | 1039 Sensitivity of 89.28%, speci-
[121] (2013) | color-related feature | images ficity of 93.75% and area un-
and Treeble Pyramid der AUC of 0.986.
transformation
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Authors feature extraction | Database | obtained results
method

Sadghi et al. | Spatial arrangement | 945 images | Accuracy of 78.3% with AUC

[127] (2013) | and orientation of od 83.2% for absent/present
streak lines to detect and an accuracy of 83.6%
regular and irregular with AUC of 88.9% for regu-
streaks lar/irregular.

Takruri et al. | Wavelet and curvelet | 448 images | Wavelet: Acc: 87.1%, Sen:

[128] (2014) | features 86.4% and Spe: 88.1%.

Curvelet: Acc: 83.6%, Sen:
76.9% and Spe: 85.4%

Cavalvanti Computerization of | 220 images | An accuracy of 93.63%, a sen-

et al. [129] | ABCD rule sitivity of 94.92% and a speci-

(2011) ficity of 91.46%

Amelard Multi-stage illumina- | 206 images | An accuracy of 81.26%, a sen-

et al. [105] | tion algorithm sitivity of 84.04% and a speci-

(2014) ficity of 79.91%.

Sabbaghi SIFT mixed with | 814 images | With SVM An accuracy of

et al. [130] | color identification 85%, and with SSA an ac-

(2016) algorithm under curacy of 95% a sensitivity
SVM and SSA of 94.9% and a specificity of
classifiers. 95.4%.

Bi et | MLR method under | 200 images | An accuracy of 90.31%, a sen-

al. [132] | JRC model for classi- sitivity of 87.50% and a speci-

(2016) fication. ficity of 93.13%.

Li et | CNN algorithm for | 2750 An accuracy of 92.2%, a sen-

al. [133] | segmentation and le- | images sitivity of 78.9% and a speci-

(2017) sion index calculation ficity of 97.5%.

unit for classification.

32



Authors feature extraction | Database | obtained results
method
Codellaetal. | combination of | 1279 An accuracy of 76%, a sensi-
[137] (2017) | hand-coded feature | images tivity of 82% and a specificity
extractors, sparse- of 62%.
coding methods,
SVMs, with fully
CNN

It can be seen that the most of recent contributions of skin cancer recognition are
developed in feature extraction area such as presented in table 2.3. However, the results
are still should improved specifically the decrease of false negative cases such as the
results obtained by Li et al. [133] using CNN method. Another problematic can be seen
in the literature is that most of contributions are not validating their obtained results
such as Cavalvanti et al. [129] and Bi et al. [132]. Therefore, there is a need to develop
and adapt a new approach of feature extraction following a rigorous methodology of

work by validation and parameters highlighting.

2.5 C(lassification

The classification and diagnosis is the last step of the CAD system on melanoma recog-
nition. The classification stage uses the selected features in the previous section to
separate the database into different groups. The result can be binary as malignant /
benign or typical / atypical, ternary as common nevus / atypical nevus / melanoma, or

more than three groups.

To accomplish the classification task, many classifier methods are explored and used
depending on the descriptor used for feature selection. The performance of the whole
proposed method depends extremely on the couple descriptor / classifier. The review
of Korotkov et al [12] enumerated several methods of classification used in the litera-

ture. According to the classifier used, many different performance metrics are used as
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accuracy, TDR, FPR or AUC. These performance metrics are explained and detailed in

subsection 3.5.4.

Support Vector Machine (SVM) classifier [138] and Artificial Neural Network meth-
ods (ANN) [139] are the most used for classification of skin cancer images. The mathe-
matical theory of these two classifiers are explained in the next chapter. Thus, the SVM
and the ANN classifiers divide the dataset into two sets, one for training and the other for
tests. In most of cases, 70% of the data is used for training and 30% is used for tests. The
SVM classifier was used in [19,56,63,104-106,111,118,119, 122,126, 130, 140-146]
and ANN was used in [71,75,111,112,122,125, 130, 143, 144, 146—-148]. In addition
to these two classifiers, there are also many other classifiers used in melanoma recog-
nition such as the k-Nearest Neighbor (kNN) classifier [83, 129, 140], Discriminant
Analysis [45, 58, 144], Decision trees [1, 8, 129], Regression Analysis [111, 147, 148]
and AdaBoost [1, 8, 140]. The review of the comparative studies achieved by Masood
et al. [32] concluded that SVM classifier outperforms decisions trees, and many other

statistical classifiers.

Abuzaghlegh et al. [118], proposed to classify the PH? Database [149] into binary
and ternary results. The ternary results used to classify between typical, atypical or
melanoma and the binary is to classify only between normal and abnormal lesions. The
authors used SVM classifier using 75% for training and 25% for tests. On the same
database (PH?), Barata et al. [141] used SVM classifier with the x? kernel, the perfor-
mance of the contribution is computed by the adjusted accuracy calculated with some
interval of accuracy metric. In the same work, the authors are applied also their method
on bigger database from the ERDA database [150]. AdaBoost with C4.5 decision trees
was used by Capdehourat et al. [1] and performed their results by specificity and sensi-

tivity metrics.

Table 2.4 summarizes the different classifier utilized in the literature for classifica-
tion and recognition of melanoma. As already mentioned above, it can be seen easily

from the table that the most used classifiers are SVM and ANN.
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Table 2.4: Summary of the most used classifiers in skin cancer recognition

Classifier Author references

Support Vector Machine [19,56,63,104-106,111,118,119,122,126,128,
140-146]

Artificial Neural Network [71,75,91,106,111,112,122,125,143,144,146—
148, 151]

k-Nearest Neighbor [83,129, 140, 146]

Decision Trees [1,8,99,129]

Discriminant Analysis [45,58, 144]

Regression Analysis [111,147,148]

AdaBoost [1,8,121,140].

2.6 Summary

In the literature, skin cancer detection and classification is developed and explored by
many researchers. There are two major topics where the contributions are focused.
These two topics are the lesion segmentation and the descriptors for feature extraction.
The multitude of artifacts in skin lesion images increases the contributions in image
enhancement, specially for hair removing and blood vessels. Computer Aided Diag-
nosis systems for pigmented skin lesions have achieved good performances. However,
the results obtained and methods proposed cannot provide the best diagnostic results as

clinicians, they are only used as second opinions during screening procedure [28].

The segmentation was studied in different views. Many approaches and methods
were adapted and/or developed. Therefore, as it is detailed in section 2.3, the segmen-
tation methods used the total variation methods following Mumford and Shah theory,
specially Chan and Vese model and its extensions. The multiresolution analysis was
also used for pigment lesion segmentation as wavelet and curvelet transforms. The

thresholding methods were also mostly used for segmentation.

The choice of the descriptor to use and/or to develop for feature extraction is more
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difficult and more complicate than other steps. Unlike segmentation, where the ob-
jective is to find the border lesion, the descriptor’s objective is to develop an adaptive
method to discriminate widely the lesions. It can be textural, statistical, structural or
geometrical features. In skin cancer images, many feature extraction methods are for-
mulated and developed from the two scoring systems used by clinicians in the hospitals,
ABCD rule and 7-point checklist. Other methods also used different mathematical tools
and descriptors such as Fourier, wavelet and curvelet coefficients. The major limitation
of ABCD rule and 7-point checklist is that the two systems are based on visual inter-
pretation, which is subjective between dermatologists. The cancerous lesions are ran-
dom biological phenomena manifesting various structures in sizes, shapes and densities.
Therefore, there is a need to perform and develop an accurate descriptor. Two research
directions should be further investigated which are structural and textural features. The
structure of lesion boundaries and the texture inside the lesions have an important in-
formation for discrimination and characterization of melanoma. Wavelet coefficients
are ideal for single point discrimination but not for edges which characterize the lesion
boundaries. Thus, curvelet coefficients can achieve better characterization. In addition
to curvelet, a fusion of these coefficients with textural information of the lesion need
to be investigated. On the other side, the investigation of the geometrical information
from the borders with a new approach challenging irregular versus smooth border is

also another direction for the discrimination of melanoma.

Various classifiers are used in CAD systems for skin cancer recognition. Artificial
Neural Network and Support Vector Machine are the most common used. Commonly,
skin cancer lesions are classified following two or three classes which are benign /

malignant and nevus / atypical / melanoma.

The different metric performances used for each classifier makes harder the com-
parison between the results of the different proposed methods. In addition to that, the
absence of a large public available benchmark dataset accompanied by the ground truth
and the diagnosis from several dermatologists makes really hard, even impossible to

compare objectively the approaches developed in the literature.
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CHAPTER 3

MATHEMATICAL TOOLS

3.1 Overview

This chapter presents the theoretical background of the explored methods in the cur-
rent work which is divided into three main parts. Section 3.2 provides total variation
theory of Mumford and Shah and Chan and Vese model well, used for segmentation in
image processing [152, 153]. The multiresolution analysis is presented in section 3.3.
It provides an overview of the history of multiresolution analysis and the need of the
development of new applications. It starts by introducing Fourier transform, followed
by wavelet and ridgelet and finally by curvelet transforms. Section 3.5 gives an intro-
duction of the mathematical background of the two used classifiers, Artificial Neural
network and Support Vector Machine. Finally, this chapter ends by a short summary

given in section 3.6.

3.2 Total Variation

In classical analysis, the total variation for function f for one variable defined on the

interval [a, b] C R, is given by the following formula:

1

TV(f) =sup 3 |f(zisa) = f ()] (3.1)
1=0

where [ = {I, I, ..., I, } is a partition of [a,b] fori € {1,...,p}, z; € I,.
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The total variation of function f € R™ where n > 1 used in the current work is
defined as follow:

Let € be an open subset of R™ and f € L'(2), then the total variation is:

TV%ﬂzmm{Lf@mwwmm;¢e¢mwmﬂms1} (3:2)

where C,, is the set of continuously differentiable functions of compact of Q2 and ||¢|| 1 ()

is the essential infimum norm.

3.2.1 Mumford Shah Function

Mumford and Shah applied the total variation for image segmentation in 1989 [62].
Let R € R? the domain divided in n disjoint subsets 1; where a smooth function f; is
defined and I' will be the union of boundaries parts of the R; inside R . Let [ be the

given image and f a differentiable function on R, then the energy to minimize is :

B = [ [0y [ [ lsayon 63)

where |I'| represents the total length of the curve I, 11 and v are the regulation parame-

ters.

3.2.2 Chan and Vese Model

To minimize the given energy in equation (3.3), Chan and Vese [60] proposed to mini-

mize first, the following energy function:

Fol(C) = A /

[I(x,y) — c1|*dedy + )\2/ [I(z,y) — col*dzdy (3.4)
inside(C)

outside(C)

where C' is a given curve in the domain R and ¢, ¢ are the averages of [ inside and
outside C'. Using this formulation, the function F-(C') is minimized on the boundary

of the object.
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Therefore, the energy functional is defined by F'(cy, ¢, C') given below:

F(c1,c9,C) = p Length(C) + v Area(inside(C)) + Fo(C) (3.5)

Using a zero level set of Lipschitz function ¢ : {2 — R, then :

4

C=0w=A{(z,y) € Q; ¢(x,y) =0}

inside(C) =w = {(z,y) € ; ¢(x,y) > 0} (3.6)

outside(C) = Q\w = {(z,y) € Q; ¢(z,y) <0}

\

Where w € QQ and C = Ow.

Using the heaviside function H and the dirac function J, given in equation (3.7),
the curve C' and the areas inside and outside the level set function ¢ given in equation

(3.6) are expressed by equation (3.8)

1 if 2>0 d
H(z) = do = —H(z) 3.7)

0 if 2<0 dz

(

C = Length(¢ = 0) = [ do(z, y)|¢(z, y)|dxdy

Inside(C) = Area(¢(z,y) > 0) = [, H(d(z,y))dzdy (3.8)

Outside(C) = Area(p(z,y) < 0) = [, (1 — H(¢(z, y)))dxdy

\

Then, equation (3.4) is also expressed by the heaviside function /:

Fe(e) = A /Q (i, y)— 1 [PH (. y)) dirdy-+ A /Q (2, y)—e2 2 (1— H((x, y))) dady
(3.9)
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Therefore, the energy given in equation (3.5) becomes:

F(cla027¢> = u/éo(x,y)|gb(x,y)|dxdy+1//H(gb(m,y))dxdy

Q
+A / I(x,y) — c1|*H (¢(x, y))dady (3.10)
Q

Y / I(z,) — e (1 — H((x,y)))dady

where,

O T H @) G-AD
JoI(e,9) (1~ H(é(x. 1))

Y
Jo (1= H(d(z,y)))

¢ (3.12)

The energy to minimize for the segmentation of Chan and Vese model is given by

equation (3.10).

3.3 Multiresolution Analysis

In this section, the multiresolution analysis is introduced. Mathematical theories of

Fourier, wavelet, ridgelet and curvelet transforms are presented.

The Fourier transform has the ability to represent any integrable function in the fre-
quency domain with a limitation of stationarity in time [154]. With wavelet transform,
the time representation is resolved, however the line singularity of edges in wavelet
transforms need many coefficients. An extension was presented which is ridgelet trans-
form for detection of edges with less coefficients. The incapability to detect the angle
of edges using ridgelet transform, curvelet transform was introduced to fit better the
curves and edges. Curvelet and wavelet transforms are used in the proposed work, they

are introduced in next sections and used in the next chapter.
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3.3.1 Fourier Transform

Let f : R — C an integrable function, the Fourier transform of f is conventionally
noted f decomposes into frequencies. Therefore, the function f is the continuous-time
function defined in spatial domain, and f is its Fourier transform defined in frequency

domain given by the following equation:

HGE /_ ) fz) e ™ da (3.13)

The inverse Fourier transform of f , under suitable conditions is given by:

flz) = /_ ) f(&) T de (3.14)

This transform is an extension of Fourier series applied on periodic functions using the
properties of sine and cosine. Therefore, suppose that 7" is large enough that the interval
[—T'/2,T/2] contains F' non identically zero. Then, the nth Fourier coefficients ¢, is

given by the following equation:

1 (72 .
Cn = — (z) e~ 2/ Tz gy (3.15)
T J 1
Equation (3.14) can be written using Fourier coefficients. Then, lets &, = n/7T and

AE=1/T:
f(x) — Z .]E(én) e27ri£nxAx — Z cn 627ri(n/T)ac (3.16)

n=—oo n=—0oo

In signal and image processing, the discrete Fourier transform (DFT) is applied.
In the one-dimensional case (signals), the Fourier transform is given by the function f
above. This signal is divided into N sequences denoted f, fi, ..., fxv_1. Then the DFT
of f is:

N-1

fo=)_foe @I ke (3.17)

n=0
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The inverse DFT is as continuous case given by the following equation:

2

k=0

For image which is 2 dimension matrix M x N, the DFT of the function f(x,y) is

denoted by F(m,n) given by:

M-1N-1

F(m,n) _ Z Z f(l',y) 6—27ri(wm/M+yn/n) (3.19)

=0 y=0

where m =0,1,.... M —landn =0,1,...., N — 1.

By the same, the inverse DFT in 2 dimensions is given by the function f below:

1 M—

~ MN

m=0

2

f B F 27ri(xm/1V1+yn/”) (320)

i
[e)

Different algorithms of fast Fourier transforms were implemented and combined
with band filtering and convolutions. However, the Fourier transform indicates the
spectral information without the instant when it happens [155]. In image implemen-
tation, Mallat [73] noticed that an apple in the corner of a given image required many
Fourier coefficients to represent a localized event. Indeed, the Fourier transform f (€)
depends on the values f(t) for all times ¢ € R. Therefore, to analyze or represent any

local property of f(t) from f(¢) is difficult.

3.3.2 Wavelet Transform

Wavelet transform was introduced by Grosmann and Morlet [156] using translation and
dilations on a 1square integrable function ¢ € L*(R). The wavelet transform is defined

by the following formula:

Yap(T) = %w(t — b) 3.21)

where a > 0 defines the scale and b the shift.
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A multiresolution approximation of L*(R) is a sequence (V;);cz of closed sub-

spaces of L%(R), such that:
{0yc---cvicVycV,cC---CL*R) (3.22)
Let ¢(x) be a real square integrable function defined by:
din(x) =V2P(Pr—k), kel (3.23)

Then, {¢; 1 };kez is the orthonormal basis of V; [69].

All the functions expressible with this basis are referred to the closed span of the

expansion set:

V; = Span{(¢;.x, k € Z)} (3.24)

where if f(x) € Vj, then f(x) € Span{(¢;x, k € Z)}, and f(x) = >, cawd;i().

The subspace of L*(R), W; designs the orthogonal complements of the subspaces
V; defined above, such that:
VioW; =V, (3.25)

In multiresolution analysis, the subspaces V; are generated by the function (¢; 1 )kez

and The subspace IV is generated by a scaling function (1), ;. )xez as given below:
W; = Span{ (¢, k € Z)} (3.26)

then, the subspace V; represents the large scale and W; represents the small scale (de-

tails).

Let f(x) be a one-dimensional discrete function as sequence of numbers, the dis-

crete wavelet transform coefficients are defined as:
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M-1

Coljor k) = \/LM S F@)opu( (3.27)
. e
Dy(j, k) = NaYi 2 f(@x)jn(x) (3.28)

where j > jo, M is power of 2 which ranges from 2 to j — 1 and Cy(jo, k), Dy (7, k)
are the approximation and details coefficients respectively. Using these coefficients, the

signal function f(z) can be reconstructed as:

f(w)z%ﬂg 5 (jos k) Bjoi (@ ZZDw G k)is(x)  (3.29)

JJok

The implementation of wavelet transform was presented by Mallat [69] introducing

a set of filters (hy);ez and (g;);ez Where:

ik = Z hidji1 2641 (3.30)
l
Yik = Z Py ok (3.31)
!
and
hy = (—1)"g1 (3.32)

Therefore, the approximation and details coefficients are computed.

In two dimensions case, there are one scaling function ¢(x, y) and three directional
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Wavelet Horizontal
Coefficient | details

j=0 j=0
Vertical Diagonal
details details

j=0 j=0

Figure 3.1: Wavelet representation scale j=0

Horizontal details

Wavelet Horizontal
Coefficients | details
j=1 =1
Vertical Diagonal
details
j=1 j=1

j=0

Vertical details

j=0

Diagonal details

j=0

the following formulas:

wavelets as defined below:

(

YY(z,y) =

\

tively as represented in figures 3.1 and 3.2.

Figure 3.2: Wavelet representation scale j=0 and j=1

o(z,y) = ¢(x)¢(y)

W (2,y) = P(2)e(y)
P(2)Y(y)
VP (2, y) = d(z)Y(y)

where ¥, 4" and 1) measure the horizontal, vertical and diagonal variation respec-

Finally, the wavelet coefficients of a given image I (M x N) are computed using
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Ws(j, k) = —— I(z,y)pjx(z,y) (3.34)
MN =0 y=0
1 M—-1N-1
WG k) = ——==>_ > I, y)¥j(z,y) (3.35)
P 9 ) X 9
MN =0 y=0 "
1 M—-1N-1
Wy (5. k) = == I(z,y)v;, (2, y) (3.36)
[ ) ) . )
MN =0 y=0 o
1 M—-1N-1
W3, k) = —— I(x,y)¢j, (z.y) (3.37)
(] ) ) )
MN =0 y=0 "

The potential of wavelet representation had a wide impact in theory and in practice.
It’s used for non-linear approximation, compression and image denoising on different

databases. But wavelet is less efficient in some cases for line singularities [157].

3.3.3 Ridgelet Transform

The Ridgelet transform was introduced by Candés and Donoho [158] and Finite ridgelet
transform for image representation [157] by Do and Vetterli. Ridgelet transform has the

ability to detect line singularities.

The continuous ridgelet transform is defined for each a > 0,5 € Rand 6 € [0, 7/2]

by the bivariate function 1, ¢ : R? — R*:

Yapo(x) = a—1/2¢((x1 cos(f) + o sin(é’))/a) (3.38)

This function is an extension of wavelet transform, where when (1 cos(6) + 2 sin(f)
is constant the two functions are equal. In addition to that the ridgelet transform has the

ability to fit easily the lines compared to wavelet transform [158].

Let f(x) be an integrable bivariate function, the ridgelet transform of f is R given

below:

R(0.0.6) = [ Gasalo)f(e)ds (3.39)
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Do and Vetterli [157] proposed the finite ridgelet transform for image representa-

tion, they used the inner product of finite radon transform and wavelet transform.

The Ridgelet transform is efficient for the detection of straight lines, unless it is

inefficient for curves fitting.

3.3.4 Curvelet Transform

The Curvelet transform was designed to represent edge and curve singularities more
efficiently than previous transforms presented in this chapter. It needs fewer coefficients

to describe edges and curves through the directional parameter added.

Curvelet Transform was introduced in 2000 by Candes and Donoho [159], they
presented the second generation of curvelet [160] known as the fast digital curvelet
transform (FDCT) in 2006, which is less redundant and it has better performances than
its predecessors. Curvelets have the capability to detect finest edges, those can present

more details in curvelet coefficients [161].

Curvelet transforms are defined in two dimensions, with spatial variable x and
frequency-domain variable w. The polar coordinates of the frequency-domain are r
and 0. Two windows W (r) and V (t) called radial window and angular window re-
spectively [160]. These windows will always obeying the following admissibility con-

ditions:

STwWEn =1, re(3/4,3/2) (3.40)
j=—00
SVt -1 =1,  te(-1/2,1/2) (341)
=00

The frequency window Uj, in Fourier domain given by equation (3.42), represents
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a polar wedge, which is supported by W (¢) and V (¢).

oli/2)
) (3.42)

U,(r,0) = 2731/ (23 V(
J (r7 ) ( 7”) 27T
At scale 277, orientation 6; and position x (7, 1), the curvelet transform function of

{z = (21, x2)} is given by equation (3.43).

wiix(r) = @ (Rel (:c — x,ﬂf”)) (3.43)

Where Ry is the rotation in radians and ¢; is the waveform and its Fourier transform
¢(w) = U;(w) given in equation (3.42). It is considered as mother curvelet in the sens

that all Curvelets are calculated by rotations and translations of ¢; [160].

The curvelet coefficient, ¢ given in equation (3.44), it is obtained by the inner prod-

uct between the element f € L*(R?) and the curvelet transform ¢; 1.

c(y,k, 1) = /}R2 f(@)@jpi(x)de. (3.44)

Fast Discrete Curvelet Transform (FDCT) via wrapping was introduced by Candes
et al. in their second generation of curvlet [160]. This implementation is based on
wrapping of Fourier samples with a 2D image as input in a Cartesian array form f[m, n]
where 0 < m < M,0 <n < N, M and N are the dimension of the array (image).

Then, the discrete coefficients of FDCT are given below:
CD(j7 L ki, ko) = Z flm, n]Sﬁfl,kl,kg [m, n (3.45)
0<m<M, 0<n<N
Equation (3.45) defines the Digital curvelet coefficients. ¢”(j, 1, ki, k) is indexed

by a scale j, an orientation [ and the spatial location parameters k; and k;. Where

©F k1 x, 18 the digital waveform. These coefficients are used as features in the current
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f
i

Figure 3.3: A comparison between wavelet (a) and curvelet (b) [3]

(a) (b)

work.

Figure 3.3 illustrates the advantages of curvelet transform in curve detection com-
pared to wavelet transform [3]. It can be seen easily that for the same curve curvelet

transform is more accurate and needs fewer coefficients than wavelet transform.

3.4 Local Binary Pattern

The Local Binary Patterns (LBP) operator is used for texture description. It is one of the
best performing texture descriptors and it has been widely used in multiple applications
[162, 163]. This operator was developed by Ojala et al. [123, 124]. Many variants
of LBP were developed, for example Heikkila et al. [164] proposed center-symmetric
local binary pattern, then, Zhang et al. [165] developed a new approach replacing the
neighbor pixels by the mean of the neighbors’ blocks, and Wolf et al. [166] proposed
novel patches based LBP where they explored the similarities between neighboring
patches of pixels. The majority of these developments are applied in face detection and

recognition.

The LBP operator attributes for each pixel of the image a new value from 0 to 255

depending on its neighborhood as explained below:

Let the image I(x,y) and g. denote the gray level of an arbitrary pixel (x,y), i.e

ge = I(x,y). And let g, denote the gray value of the local neighborhood, where P
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defines the number of pixels around the point (x, y) with radius R, then :

gp = ‘[(xp’yp)7 p:07,P—1
r, = x4+ Rcos(2mp/P)

Yy, = y— Rsin(2mp/P)

Assuming that the local texture of the image /(x,y) is characterized by the joint

distribution ¢(.) of gray values of P 4 1 (P > 0) pixels:

T = t(ges 9o, 91+ s GP—1). (3.46)

Without loss of information, the center pixel value can be subtracted from the neigh-

borhood pixel values and equation (3.46) can be written as the following formula:

T =t(gey go — Ger G1 — Gy -y GP—1 — Je)- (3.47)

Assuming that the center pixel is statistically independent to the differences, equa-

tion (3.47) is approximated by:

T =~ t(ge)t(go = ges 91 = Ges s GP—1 = Ge)- (3.48)
The important information is given by the differences distribution part i.e (g —
9es 91 — Gey -, gp—1 — ge). However, the estimation of this distribution from image

data is difficult. Ojala et al. [123] proposed to apply vector quantization given by the

following formula:

t(s(go — ge)s S(, g1 — Ge)s -ry S(gP—1 — Ge)- (3.49)
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where s(z),

s(z) = (3.50)

Then, the generic local binary patterns operator is defined by: [167]:

T

LBPP,R((L'C? yc) = S(gp - gc)2p (351)

i
o

According to our previous work [126], the choice of P = 8 and R = 1 is the best case

for melanoma description.

Ojala et al. [124] introduced uniform pattern and invariant rotation local binary
pattern. The uniform pattern variant indexed by LBP"? keeps only the pattern contains
in maximum 2 transition 0/1 and/or 1/0, this variant contains 59 combinations. The
invariant rotation variant pattern indexed by LBP" has the same configuration for all
rotations, it contains 36 combinations. The invariant rotation uniform pattern variant is
an intersection of the uniform patterns LBP"? and the invariant rotation variant LBP">
It represents only the uniform patterns which has the same configuration in all rotations,

then it contains 9 combinations.

3.5 Statistical Classification and Pattern Recognition

The classification is the method which cat attribute from a set of features observed or
learned a new class to the studied object not belonging to the learned set. It can be
achieved using supervised learning such as Support Vector Machine and Artificial Neu-
ral Network or unsupervised learning as K -means clustering and k-Nearest Neighbors.
In this section, the representation of basic ideas of support vector machine and artificial

neural network are explained.

The pattern recognition is a branch of machine learning focused on description of
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patterns. It may use the supervised or unsupervised recognition [168]. The supervised
learning utilizes a set of training data which is properly labeled with the correct output.
In the other hand, the unsupervised learning assumes training data has not been well-
labeled and try to find the best pattern which can make a correct output value for the

data.

Depending on the classifier used, many performance metrics can be explored to
compare and analyze the obtained results such as accuracy, sensitivity, specificity. The
mathematical equations of some of these metrics are given in the current chapter (see

section 3.5.4).

3.5.1 Support Vector Machine

Support Vector Machine (SVM) was introduced by Vapnik and Lerner 1963, Vapnik and
Chervonenskis 1964, an overview of the basic ideas of SVM and its advanced methods
for large datasets are explained and detailed by Smola et all. [169]. The basic idea of

SVM is introduced and developed in the current subsection.

Let {(x1,y1), s (Tm,ym)} C X x {£1} a set of empirical data, where X is some
nonempty set that the patterns z; belongs. Let the function f : X — {£1}. In this
current study only the hyperplane classifier is presented. Therefore, considering the

class of hyperplanes

(w-z)+b=0 (3.52)

where w € RY, b € R (in the current work, the choice of these parameters are done

using Statistic and machine learning toolbox of Matlab 2015).

The decision of SVM corresponds to the results of the following formula:

f(z) = sign((w - x) + b) (3.53)
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To construct an optimal hyperplane, it is needed to resolve the following optimiza-
tion problem:

Minimize |jw/||?, (3.54)

subject to:

(3.55)
(x-2;+0) <—-1, if y;=-1
The two contrast given in the formula (3.55) can be expressed by:
yi(w-x; +b) > 1 (3.56)

The current formulation is used well in perfect separability of the data.

In the case of no-separability, the function to minimize is |w|*+ C " | & where C
is constant and £ a real small positive (§; > 0). The constraint is to verify the following

formula:

yilw-z; +b) >1-§ (3.57)

To classify the more complex cases, the linear SVM classifier cannot be accurate by
constructing only a hyperplane between classes. Therefore, a non-linear SVM classifier

was proposed using the following mapping function ¢:

x — o(x) (3.58)

Then, equation decision rule, such as given by (3.53) for linear case, is formulated by
the following equation:

flx)=w-o(x)+0b (3.59)

Depending on the choice of the mapping function ¢, different variants of the non-linear

SVM classifier could be built, such as the polynomial mapping and the kernel trick.
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3.5.2 Artificial Neural Network

Artificial neural network (ANN) commonly referred to neural network has its inception
for recognition as the human brain computes using different way in separate or parallel,
linear and/or non-linear approaches [170]. The first interest given in ANN emerged

after the introduction of simplified neurons by McCulloch and Pitts in 1943 [171].

In the literature [172], there are many different ANN models developed and imple-
mented. In the current work, the basic idea on ANN model and the most used method

variants are presented.

Let x; = (w1, T2, ..., Ti,) be the input vector considered as one neuron ¢ and y;
the output where n represents the number of layers, then the result of y; is given by the

following formula [173]:
yi = f(net(r;)) (3.60)

where f is the activation function and net is called Network input. It is very popular

such as the sum function given below [172]:
j=1

where w; = (w1, ... w;y,) is the wight vector.

For the output value y;, the simplest way to compute the activation function is fol-

lowing threshold level system given below:

1 if z>6
y = folx) = (3.62)
0 otherwise

where 6 is the threshold. The formula given in equation (3.62) is the basic idea explored
by McCulloch and Pitts in 1943. Many other variants and extensions were explored

such as Hebb’s method [173] and Auto Regressive (AR) model [170].

The introduction of hidden layers was introduced with the iteration concept between
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two instants following some conditions. Let g called the propagation function, then:

net; = g(oj, w;) (3.63)
where o; defines the output of the neuron calculated using equation (3.60).

The propagation function g depends on the acceptance condition of the output o; and
controls the evolution of the weight vector w;. There exist different models developed

in the literature. The three models are detailed below:

e Hebbian learning: The basic idea of interconnection of two neurons simultane-
ously.

wji(t + 1) = w;(t) + x;0,(t) (3.64)

e Perceptron learning rule: It was introduced for single layer for linearly indepen-

dent problems.
wi(t+1) =w;(t) + ow; with  dw; = n(o;(t) — y;(t))z; (3.65)

where 7) is the learning rate.

e Back propagation learning: it defines the multiple layer and it can approximate

the nonlinear functions to arbitrary accuracy.

B aaw (3.66)

2v]

where F' designs the average square error, 77 and « are the learning rate and the

momentum respectively.

The last step is the activation function as given by f in equation (3.60) is also ex-
plored to make border between classes. Two common activation functions are used
[172], threshold function following some threshold ¢ given by fy(z) in equation (3.62).

The second common function is the logistic which is differentiable and used in the
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continuous models, as given by the following equation:

fz) = (3.67)

Thus, f is a continuous function belonging to the interval [0, 1].

3.5.3 Validation of the Results

The validation of the results step is a statistical method to prove that there is an indepen-
dence in the choice of training and test sets. The cross validation method [174, 175] is
the most used in skin cancer recognition. As reported by Massod et al. [32], some arti-
cles do not report comparison and cross-validation for their results. They suggested that

it is imperative to present in papers these details for the validity of the used methods.

Therefore, to validate the obtained results, the random cross-validation and n-fold
cross validation methods [174,175] are applied in the literature. 10-fold cross validation
method is the most used in skin cancer. It was used by Barata et al. [49] for the region
segmentation and lesion classification. Clawson et al. [99] and Abbas et al. [121] also
applied 10-fold cross validation to validate their results. Two-cross validation is also
used By Codella et al. [122]. Recently Barreiro et al. [19] used K-fold cross validation
to present their result under ABCD rule for feature extraction and sensitivity, speci-
ficity and accuracy metrics to assess the result. The value of K began from 3 to 15.
D’ Alesandro et al. [119], randomly repeated their proposed procedure 10 times to per-

form the average result, which is called random cross validation.

3.5.4 Performance Metrics

To measure how is close the prediction to the truth, the results of classifiers are eval-
uated following some performance metrics. Therefore, once the results attribution are

computed, four sets are directly obtained:

e True Positives set contains all the malignant melanoma classified as malignant by

56



the classifier used, and they are noted by TP.

e False positives set contains all the benign lesions incorrectly identified by the

classifier used, and they noted FP.

e True Negatives set contains all the benign lesions classified as benign by the clas-

sifier used, and they are noted by TN.

e False negatives set contains all the malignant melanoma incorrectly identified by

the classifier used, and they are noted FN.

The objective is to reduce the FP and FN to zeros. The false positives entrains more
biopsies for medical doctors and analysts. In the other hand, the false negatives is more
dangerous due to the non application of any medical treatment for these false negatives

(unhealthy people) cases.

Several databases are used in different articles, therefore, for comparison, it is
preferable to compute a percentage of detection or precision. For that, many perfor-
mance equations are suggested and applied on skin cancer classification [32]. The most

used performance metrics in melanoma recognition are detailed below:

e Accuracy (Acc):

TP+ TN
Acc = 1 .
“=TprrNt P+ N <107 (3.68)

e Sensitivity (Sen):

TP
e Specificity (Spe):

TN
e Positive predictive value (PPR):

TP
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e Negative predictive value (NPR):

T
NPR = ———x1 72
R TN+FNX 00% (3.72)
e Error probability (Ep):
FP+FN
Ep = 1 3.73
P=rpirn+rp+ N 0% G-15)

e ROC curve : a plot of the true positives TP-rate versus false positives FP-rate.

These metrics are evaluated for classification and recognition step. But, they can be
adapted for segmentation results, for example, attributing the variables FP, TP, FN and

TN to pixels belonging into regions of interest or background.

3.6 Summary

This chapter introduced a mathematical background of the different methods used in
next chapter. It provides as well a deep theoretical understanding of these methods.

The chapter is divided into four parts:

1. It started by the Total Variation theory, explaining the Mumford and Shah function
and the minimization developed by Chan and Vese. This theory is primordial to
explain the extension of Chan and Vese model proposed in the next chapter for

skin lesion segmentation.

2. Then, it is followed by the multiresolution analysis theory, where wavelet and
curvelet transforms are introduced to be used in the next chapter. It provides
also the the multiresolution analysis development starting by Fourier transform
into curvelet transform explaining more the main task and limitations of each

transform.

3. The third part provides the Local Binary pattern theory. This method is mixed
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with multiresolution analysis and used for feature extraction to discriminate melanoma.

. The fourth (i.e. last part) provides the statistical classification methods to separate
the skin cancer into two or more different sets, explaining more the theory of
SVM and ANN classifiers. Then, it provides the statistical validation methods
referring some methods used in skin cancer area, and finally, it provides the most

used performance metrics in skin cancer.
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CHAPTER 4

METHODOLOGY

4.1 Overview

In this chapter, the methods developed on skin cancer detection and recognition that can

be used in CAD system are presented. Two domains are mainly developed, which are:

1. Segmentation of skin lesion using the adaption of Chan and Vese model for skin
cancer images. This adaption can be seen as an extension of the model for other

kind of images.

2. Classification of malignant and benign skin lesion using a new method based on

border irregularities.

3. Classification of into malignant and benign lesions using a fusion of structural

and textural features.

In this chapter, two domains are developed, the first domain is highlighted and dis-
cussed in section 4.2. This method is an adapted segmentation for skin cancer images.
It is focused to detect the border between the lesion and the background, and the main
variation inside the lesion. The second domain is focused on features extraction pre-
sented in section 4.3, where two methods are developed. Firstly, border irregularities
information is extracted for each lesion to build a descriptor separating the lesions into
malignant and benign cases. Secondly, a fusion of structural and textural features using
multiresolution analysis (wavelet and curvelet transforms) and local binary pattern is

developed.
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4.2 Segmentation

In this section, the proposed extension of Chan and Vese model is introduced as follow:
e Firstly, the work developed by Chan and Vese in 2001 [60] is summarized.
e Secondly, the generalization developed by Vese and Chan in 2002 [61],
e Thirdly, the generalization proposed by Li et al. [64] in 2010.
e Finally, the proposed extension and adaption of Chand and Vese model

The basic idea of total variation segmentation and a brief theory of Chan and Vese

model was introduced in the last chapter (section 3.2).

4.2.1 Chan and Vese Model

Chan and Vese model is introduced in [60] and its generalization in [61]. The following
definition is the one adapted for image segmentation. This method is used to minimize

Mumford and Shah equation [62]

Let €2 be open and bounded set and C' an evolving curve in (2. We consider C
as a boundary of an open subset w of 2 (i.e w C 2 and C' = Ow), in what follows,
inside(C') denotes w and outside(C') denotes the region 2\w. The segmentation prob-

lem presented in [61] is to solve the following minimization problem:

u,C

inf { /(u — ) dady + u/ \Vu|?dedy + V|C\} 4.1)
Q o\C

where p, v are fixed parameters to weight the different terms in the energy given by
equation (4.1), up : 2 — R is a given bounded image-function, u is an optimal approx-

imation of uo and |C/ is the length of curves making C.

A given C' = Ow (the boudary of open set w € (2) is presented implicitly as the zero

Lipscitz continuous function ¢ : 2 — R such that ¢(z,y) < 0in w, ¢(x,y) > 0 in

62



2\ w and ¢(z,y) = 0 on w. Using the following Heaviside function H (z).

1 ifz>0
H(z) =
0 ifz<0

The length of C' and the area of w can be expressed respectively by [61]:

) = / VH@), |o| = / H($)drdy 42)

Thus, Chan and Vese model is expressed by the following formula [60]:

N /Q(”O —&)2(1 — H(¢))dady 4.3)

Where c; and ¢, are the averages of u, inside the curve C' (area of w) and respectively
outside (area of €2 \ w). These constants (¢; and ¢y) are given by the formula (4.4) and

(4.5) after approximation and regularization.

Considering H. and 6, any C'! approximation and regularization of H and &, func-

tion, as ¢ — 0 and with H. = 6.. The constants ¢; and ¢, are given by the following

formula:
Jo oz, y)Ho(o(t, 2, y))dxdy
c(p) = =2 T H.000, o)y (4.4)
o fQ Uo(l‘,y) 8(1 —qb(t,l‘,y))dl)?dy
0 = T ol g dedy @3)
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Figure 4.1: The zero level set function. The boundary C' is illustrated by the ellipse
which is equivalent to ¢(x,y) = 0 and it separates the domain ) into 2 regions

¢(z,y) > 0and ¢(z,y) < 0.

In figure (Fig.4.1), € is represented by the square and the curve C' by the ellipse

where ¢(z,y) is positive inside and negative outside the elliptic curve.

4.2.2 Generalization of Chan and Vese model

The first generalization of this method was proposed by the same authors [61]. Using a

union of zero level set functions ¢;, equation (4.3) becomes:

Fo(c,®) = Z /Q(UO—CI)QXIdIdy

1<I<2m

+ > v /Q [VH(¢:)]. (4.6)

1<i<m

Where ¢ = (c1,¢a, ..., ¢n), © = (01, b, ..., ¢,) and &; is the characteristic function for

each class /.

Figures (Fig. 4.2) and (Fig. 4.3) illustrate the cases 2 and 3 zero level sets function

respectively. Ellipses and circles represent the curve C' and the different classes of ¢;.

As noted in [64], the generalization developed by Vese and Chan considers only the
cases 2™, with m € {0,1,2,...}. Therefore, for any m > 2, at least, one situation N
with N €]2m1 2™[ is ignored.

Li et al. [64] proposed in 2010 a new generalization of Chan and Vese model. Their
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Figure 4.2: C'is represented by the 2 curves {¢; = 0} U{po = 0} which gives 4 distinct
regions illustrated in this figure, 3 in the foreground and the background.

I
2=0) 1>
|, ¢ / ‘§7>0 1<0
| @30 / ¢1>0\ 3=0/02=0
M, ! j =0,

\ [ 62<0 ‘|
0320 |

01<0 L = S ]

$2<0 H2<0 /

Figure 4.3: C'is represented by the 3 curves {¢1 = 0} U {¢o = 0} U {¢p3 = 0} dived it
to 8 regions with the background.

main work is to find a global formula for each N between 2™~ ! and 2™, with m €
{0,1,2, ...}, using smooth membership function w; € [0,1]. Therefore, the energy

given in equation (4.1) is reformulated as the following formula:

i/ |Vu,;|dx
i=1 v/

N
+ )\Z/\uo—ck]]\/[,évda:
k=1

F({ufity {ahiz) =
4.7)

where for ko = N — 277!, ki = k — ko and 07" = 0V 1 with S = 337, 5",
then:

(

M2" = (=1)5%Tm, (u; — b1 i N =2m

MY = (=150 (u; — ) if 27l < N<2mandk=1,--- , ko

N syt m m—1,k—1 : m—1 m
MY = (=1)% I, (u; — b ) if2n < N<2mandk=2kg+1,--- N
\
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For N = 3, the following formula of M?" is obtained:
M =ugug, M3 =uy(1—uy), M;=1—u. (4.9)

Equation (4.9) can be written by zero level set function ¢ and the Heaviside function

used in Chan and Vese model:

p

U Us x  H(p1)H(p2)
u(l—uz) o< H(¢1)(1— H(gz)) (4.10)
1 —wu o 1— H(¢1)

The existence of soft segmentation developed in equation (4.8) requires to satisfy
two constraints. The first one requires that each membership function u; belongs to the
interval [0, 1]. Then, the second is the constraint of summation of all the soft member-

ship functions to be one [176] as given by equation (4.11) below:

N
Y MY =1 (4.11)
k=1

In the formula (4.9), we notice M3 depends only on the membership function u;.
The interrogations of how and why M3 can be independent of us using zero level set
functions are explained in the next section. The development and the illustration of all

possible configurations for the detection of 3 regions is also done.

4.2.3 Proposed Extension of Chan and Vese model

Unlike the generalizations of Chan and Vese model developed only for one configura-
tion, in this current work, the objective is to find for each N, with 271 < N < 2™
(= N € N), all the possible configurations. This objective will help to segment further

the details of skin cancer images.

The idea of this work is to complete the segmentation with unfixed number of zero
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0,>0 9,<0
0.<0 0,50

¢;<0
$,<0

Figure 4.4: C'is represented by the 2 curves without intersection between ¢, and ¢o. It
illustrates one possible case of N = 3.

level set function ¢;. Therefore, for each number of zero set level functions ¢;, all
possible configurations are studied. Furthermore, the challenge is to choose the best
configuration for the segmentation of a given image without fixing the number of ¢,
beforehand. In this work, the detection of three regions (N = 3) are developed using 2

zero level set functions. An overview for four and five regions is also discussed.

In the general case, the energy of minimization given in equation (4.3) becomes
another minimization which takes all the possible combinations for each number of

zero level sets:

Fy = inf {inf Fy; } 4.12)

N,j c,®

where j designates the j™ combination.

4.2.3.1 Detection of three regions

To detect three regions, exactly two zero level set functions ¢, and ¢, are needed. Thus,
to study the case N = 3, figures Fig. 4.4 and Fig. 4.5 represent the two possible config-
urations. the first one considers the null intersection (total separation), and the second

one is for the total inclusion. For the inclusion, by symmetry ¢; C ¢» is equivalent to

¢2 C ¢1.
The energy represented in Fig. 4.4 and Fig. 4.5 are given respectively by Fj3; and
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Figure 4.5: C' is represented by the overlapping curves. It is illustrated by ¢o C ¢
which is symetric to ¢, C ¢s.

F32. Then F31 1s:

Fule.) = [ (w0 =1 = Ho))H(G:)drdy
[ (w0 e Hon) (1~ H(ow)dody
[ a0 = (1 = H@)(1 = H(o)dody
+ 1//Q|VH(¢>1)|+V/Q|VH(¢2)| .13)

and

Fuale.0) = [ (w0 eu"Hén) H(éo)dody
+ [ (w0 cwPH(o)(1 - Hgn))dndy
[ w0 — (1= (o) (1 = () dady
+ I//Q|VH(¢1)|+V/Q|VH(¢2)| 4.14)
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where ¢ = (0007 Co1, C10, 011), with:

C10

Co1

Coo

Jo uwoH (1) H (¢2)dady

fQ H(¢1)H(¢2)dxdy
Jo uoH (¢1)(1 — H(¢s))dwdy

Jo H(é1)(1 — H(¢2))dxdy
Jouo(1 = H(d1))H(¢2)dxdy

Jo(1 = H(¢1))H(¢a)dxdy
Jouo(l — H(¢1))(1 — H(¢2))dxdy

Jo(1 = H(¢1))(1 = H(¢2))dwdy

(4.15)

(4.16)

(4.17)

(4.18)

In this special case, equation (4.12) treats only two configurations expressed by

equations (4.13) and (4.14) illustrated by figures 4.4 and 4.5. Thus the energy of the

image given is expressed by the following formula:

F3 = inf (lcﬂqf F31716T71£ Fs)

(4.19)

Using equation (4.13) and (4.14), the comparison will be only between the third

component of each equation, then equation (4.19) becomes:

Fy =

+

where

(651

(8%

A%—wa%m—meM@

/WN%M%fHWMQ—meW@

VQ/Q IVH ()| + u/ﬂ IVH(¢2)|

inf <CY1, Oég)

= /Q(u() — cn)?H(¢y)(H(¢pa))dxdy

mewmu—mwwwmmw

(4.20)

4.21)

(4.22)

The algorithm will not be more complex in computing, because the comparison is con-

ducted only between the different parts (o; and «5). For example, the background of
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the image will be computed once.

In the case where a, given in equation (4.22) is minimum then ¢, C ¢, as illustrated
by figure 4.5. In this case, if ¢; < 0, it means automatically ¢ < Oi.e (1 — H(¢1))(1—
H(¢9)) is equivalent to (1 — H(¢1)), then equation 4.20 is simplified as follow:

P = [ to = cw)H ()1~ H(on))dady
[ (0= (1= Ho) H(G) sy
+ /Q(uo—coo)Q(l — H(¢))dzdy
+ v /Q VH ()| + v /Q IV H ()| 4.23)

This formulation joints M5 of equation (4.9) developed by Li et al. [64], where it

depends only on ¢;.

Using a regularized version of H and the Dirac delta function dy by H. and .
respectively. Introducing an artificial time ¢ > 0 in the Lipschitz function ¢(t, z, y)
with ¢(0, x,y) = ¢o(x, y) as used by Chan and Vese [60,61]. Keeping c as fixed vector,

and minimizing F'31 and F'32. The initial contour is giving by the following formulas:
e For F'31:

% = 5a(¢1){y diV(éZ\) B [_ (uo — cor)” H(2)

+((u0 — cm>2 — (up — COO))(l — H(gbg))} } (4.24)

% = 5a(¢2){y div<lgz;> B [_ (1o — ¢10)°H(1)

+((uo — cor) — (1o — co0) ) (1 — H(gsl))} } (4.25)
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e For F'32:

%%2254¢g{ymvgggﬁ>—[um—cnﬂﬂ¢g
(w0 = e10)” = (o = co0)?)(1 = H(6))| } (4.26)

4w—mﬂu—m@w}(mn

The soft smooth membership function u; € [0, 1] introduced by Li et al. [64] for H*
regularization is used. Then, in the current studied case, H(¢;) and H(¢5) are replaced
by u; and wusy respectively. These functions are introduced to verify the constraint of
summation of all membership functions as required by Shen et al. [176]. Therefore, our

system will be presented by the following functions:
e F'31 will be defined by: (1 — uq)us, ui(1 — uz) and (1 — uq)(1 — ug).
e F'32 will be defined by: uqug, us(1 —wuy) and (1 — up)(1 — uy).

For the energy F3; given in equation (4.13) and illustrated in figure 4.4, to put the
potential intersection in one of the sets and to respond to the constraint of summation,
the following combination: u;, us(1 —uy) and (1 — uy)(1 — uz) is proposed. Therefore,
uy represents the first choice of the zero level set function, us(1 — uy) represents the
second zero set level function excluding u; (it pushes to the separability of the two
level set functions and reduces the intersection to an empty set), then (1 — u;)(1 — us)
represents the image background. This combination is an extension of Chan and Vese

model for NV = 3 not developed by Vese and Chan [61] and neither by Li et al. [64].

For the energy Fj3, given in equation (4.14) illustrated in figure 4.5, knowing that
¢1 C ¢o the background defined by (1 — u1)(1 — ug) can be defined only by (1 — uy).

Therefore, the constraint of summation is satisfied and the current combination will be
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presented by: ujuy, us(1 —uq) and 1 —us. It corresponds to the combination developed
by Li et al [64]. By symmetry this combination can be expressed by: ujus, u; (1 — usg)

and 1 — uy.

Then, all the possible configurations by the following system are encompassed as

follow:

ur, up(l—w), (1= up)(1—up) (4.28)

ugta, us(l —uy), 1—wy

The system given in equation (4.28) is applied on skin images database. The ob-
tained results and the implementation are illustrated in figures 4.12 and 4.13a in the next

sub-section (4.2.3.5).

4.2.3.2  Extension to detect four regions

This extension developed can be adapted for the detection of more than 3 regions. Thus,
to detect four regions, Li et al. [64] explored the one developed by Vese and Chan [61]

using only two sets with intersection as illustrated in figure 4.2.

To detect four regions, a minimum of two sets and a maximum of three sets is
needed. The possible configurations are illustrated below with the corresponding equa-
tion systems using soft membership function u; where numerically uw; = H(¢;). The
proposed systems satisfy the constraint of summation of all membership function to be
one given in equation (4.11). At all, 5 configurations are obtained, one configuration

using two sets and four configurations using three sets as detailed below:

1. Using two sets ¢; and ¢», there is only one possible configuration to get 4 differ-

ent regions. It is the alone case developed for total variation segmentation.
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4
UU2

up (1 — ug)

ug(1 — uy)

\(1 — Ul)(]_ — Ug)

Figure 4.6: Four regions using two level set functions
¢1 and ¢a.

2. Using three sets, the first configuration is presented by total separability between
sets. It is equivalent to the first case developed in the current study for the detec-

tion of 3 regions illustrated by figure 4.4.

9,<0 p

9, <0 Us
9,<0

ug(1 — us)
Ul(l — UQ)(]_ — U3)

\(1 — U,l)(l — UQ)(l — Ug)

Figure 4.7: Four regions using three level set func-
tions ¢1, ¢o and ¢3 using the total separation method

3. The second configuration using three sets to detect four regions is characterized
by the mixture between inclusion and separability as illustrated below. It illus-

trates separability between ¢, and ¢3 and inclusion of ¢; in ¢,.

9,0

<0
us

9,<0

U1U2(1 — Ug)
UQ(]_ — Ul)(l — U3)

(1~ ua)(1 — us)

Figure 4.8: Four regions using two level set functions
01, P2 and ¢3 using separation-inclusion
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4. The third configuration using three sets to detect four regions is characterized by
the mixture between inclusion of the two sets and their separability as illustrated
below. It illustrates separability between ¢; and ¢ and inclusion of ¢; and ¢, in

Ps.

9,<0

9,<0
#,<0 Urusg

Figure 4.9: Four regions using two level set functions
01, Oo and ¢3 using inclusion-separation.

5. The last configuration using three sets is presented only by the inclusion of sets
as illustrated below. This configuration is equivalent to case developed to detect

3 regions illustrated in figure 4.5.

¢,<0 (
9.<0
¢,<0 Uu2uUs
U2 (1 — Ul)

Ug(l — ul)(l — Ug)

(1~ u)(1 — us)

Figure 4.10: Four regions using two level set func-
tions ¢1, ¢o and ¢3 using total inclusion.

4.2.3.3 Extension for five regions

To detect 5 regions, 12 configurations are possible. Thus, the minimum of sets (¢;)
required is three and the maximum is four. Therefore, 4 possible configurations in case

of three sets (¢;) and 8 possible configurations in the case of four sets (¢, ) are obtained.
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4.2.3.4 comparison with Generalization of Chan and vese model

Figure 4.11 illustrates the generalization of the proposed method compared to the ones
developed in the literature. We can see that, in the proposed method, all possible situa-

tion are studied to segment efficiently the lesions.

‘ Chan and Vese Extension

o Li et al. Extension

&  Proposed Extension

Number of regions

-

20
» @
¢

TTTT RNV,

000000000000 -0

Figure 4.11: Comparison with existing generalization of Chan and Vese model

4.2.3.5 Implementation and illustration

The implementation of the proposed method is applied on skin cancer images. The

illustration of some cases to present the method and its visual effect are shown.
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(a) (b) (c)

Figure 4.12: Implementation of the approach using equation (4.13). (a): Original RGB
image. (b): Segmentation of the two regions under separability model (equation (4.13)).
(c): Global region-based segmentation.

() (b) (©)

Figure 4.13: Implementation of the approach using equation (4.14). (a): Original RGB
image. (b): Segmentation of the two regions under inclusion model (equation (4.14)).
(c): Global region-based segmentation.

Figures 4.12 and 4.13 illustrate the typical results segmentation of the developed

approach applying the two versions of NV = 3 described by equations (4.13) and (4.14)
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respectively. It can be seen easily from figures 4.12b and 4.13b the separability and
the inclusion of the sets ¢, and ¢, respectively. We notice that the minimization model
given in equation (4.19) is not implemented in the current work due to the manual

parameterization of Chan and Vese model (v and dt).

The image used in these figures (4.12 and 4.13) is taken from Dermls (http:

//www.dermis.net) under the name SSM34.

In the next chapter (5), the application of this method is analyzed and discussed.
More examples are given and compared to the previous approaches on standard camera

skin cancer images. The result of the segmentation are also evaluated by three experts.

4.3 Feature Extraction

4.3.1 Overview

The random development of skin lesions, specially melanoma cases, complicate the
classification and the recognition of malignant skin lesions. Therefore, there is a need

to develop a discriminant set of features to well classify using CAD system.

In the current section, two distinct methods are developed to recognize benign and
malignant lesions. For dermoscopic images, the fusion of structural and textural fea-
tures is explored, as explained in subsection 4.3.2, and for standard camera images, the

border irregularity features is presented in section 4.3.3.

4.3.2 Structural and textural features

The multitude of skin cancer lesions, benign and malignant, complicates the recogni-
tion of skin cancer. In addition to that, melanoma is developing randomly in different
directions. However, finding the best descriptor to discriminate melanoma is one of the
hardest task in medical image processing. In the current study, a set of discriminating

features obtained from different descriptors to distinguish benign and malignant cases
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Input image

i

Hair removing

Structural features Textural features
- Wavelet : -LBP"
Fusion ) I_BP”_ 2
- Curvelet - LBP

- Classification
- Validation

Figure 4.14: Flowchart of structural and textural features fusion proposed in this work.

is presented. Then, two kinds of features are selected and used in dermoscopic images

for melanoma recognition as illustrated by the diagram in Fig.4.14.

The fusion of two descriptors introduced in the last chapter (see section 3.3) are
explored. Therefore, a set of structural features from multi-resolution analysis methods
(wavelet and curvelet coefficients) are used. Further, local binary pattern (LBP) operator
is used to extract the textural features. The method is also presented in section 3.4. The

details and the implementation of the proposed approach are explained below.

1. First, the structural features are extracted using wavelet and curvelet coefficients.
Two level decompositions of Discrete Wavelet Transform (DWT) and Fast Digi-
tal Curvelet Transform (FDCT) via warping (see section 3.3) are applied on the
melanoma region of interest (ROIs). For each coefficient matrix seven statistical
features were computed namely: Energy, Entropy, Mean, Standard deviation,

Maximum, Moment and Homogeneity.
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2. Second, a set of textural features using different variants of local binary pattern
(LBP) i.e. rotationally invariant, uniform and non-uniform rotationally invariant

distinct textures features are extracted.

3. Then, a feature fusion is performed using the concatenation of structural and tex-

tural features of each image.

4. Lastly, SVM classifier is used for classification and diagnosis. Then, 1000—random

sampling cross validation is explored to validate the obtained results.

4.3.2.1 Structural features

The structural features are extracted as follow:

e For wavelet, we used Daubechies 4 waveform, then 8 coefficient matrices are
computed, 4 from the first level and 4 from the second level (one approximation
coefficient matrix and three details coefficient matrices) using equations (3.34) to

(3.37). In total, we extracted 64 features from wavelet transforms.

e For two level of curvelet decomposition 9 curvelet coefficient matrices were ob-
tained for each image i.e. 1 matrix from the first level and 8 matrices from the
second level. These matrices are built using equation (3.45) detailed in the next
section. Thus for each level, seven statistical features were computed. Thus a

total of 63 features from curvelet two level decompostion were obtained.

4.3.2.2 Textural features

For textural features, Local Binary Pattern (LBP) operator is used to extract local tex-
tural variations. Thus, depending on the variant of LBP operator as detailed in section

3.4, three LBP variants are explored in the current work. Therefore, we have:

e 59 textural features from LBP"? (Uniform pattern).
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e 36 from LBP" (invariant rotation).
e 9 from LBP"™? (Invariant rotation uniform pattern).

Indeed, only radius R = 1 and eight neighborhood pixels (P = 8) are used in the
experiments. Here it is worth mentioning that all the features were normalized to the
range [0 — 1] and their influence before and after fusion can be recorded in validation

performances.

4.3.2.3 Implementation

The proposed approach is implemented on the public database PH? presented by Men-
docca et al. [149]. A descriptive and statistical analysis of the database is also achieved
and presented in next chapter. The result of this analysis is compared to the known

ABCD rule used in the hospitals.

Many implementations are computed separately and/or by combination between
structural and textural features selected. The obtained results of the three variants of
LBP methods (invariant rotation LBP, uniform Pattern LBP and invariant rotation uni-
form pattern LBP), wavelet and curvelet coefficients, and the different combination are
validated using random sampling cross validation under SVM classifier with linear ker-
nel. Then, a comparison with the exiting results in the literature using the same database

is also achieved. The results are presented and discussed in chapter 5.

4.3.3 Border Irregularity Features

The geometrical characteristics of borders are explored by the approach developed in
this section. Therefore, the proposed work is divided mainly into two main stages. First,
the standardization of image direction which is a kind of normalization of the database
to have the same view for all images. Second, the border feature are extracted using

two new concepts, valleys and crevasses, to explore the irregularities for diagnosis.
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4.3.3.1 Standard image orientation

Different illumination conditions, skin tones, hairs on the skin and varying the angle of
image acquisition, add noise to this images. These artifacts make the feature extraction
more challenging. Thus, a preprocessing is required to remove these additional noises.
Once the noise is removed, there is a need to present all the images in one standard
view. Hence, in the current study, a conversion of the images into one common view is

presented. Thus, the approach to normalize the images is presented.

The proposed method is applied when the region of interest (ROIs) are detected and
boxed using bounding box and coordinates of ROIs from the binary images of ground
truth given in the database. The dimensions of the bounding box depend on the size of
the abnormal region itself. The ROI used are extracted manually, and taken as ground

truth to show the contribution of the current approach.

To resolve this issue and standardize the size, the following strategy is adopted:

e Firstly, the minimization of the unwanted area using rotation of the ROIs from 0

to 180 degrees. Then, the box of ROI containing small area is selected.

e Secondly, horizontal (or vertical) orientation of boxes is chosen for standard
view. Figure 4.15 illustrates the reorientation and the choice of direction on our
database. It can be seen that ROI box is minimized to contain only the lesion.
The image provides from Dermls website (www . dermis.net) under the name

of SSM26a.

The algorithm 1 summarizes the different steps of the standard image orientation

method.
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Algorithm 1 Standard Image Orientation Algorithm

1mg: Image input

for o = 11to 180 do
new_img = rotate(img, o)
boxr_img = detection of the box containing the ROI.
[a(@), b(a)] = size(box_img)

end for

[M, ind] = min(a)

std_img = rotate(img, ind)

std_box = detection of the box containing the ROI

o

(b) © (d)

Figure 4.15: Illustration of the normalization of the images using standard view orienta-
tion approach. (a): Original RGB image. (b): The ROI of the lesion. (c): The isolation
of the ROI. (d): Reorientation of the ROI to horizontal view. The image is provided
from Dermls website (www . dermis.net) under the name of SSM26a.

4.3.3.2 Border feature extraction

The border irregularities are one of the widely visible features to explore for discrimi-
nation. However, the benign lesion borders are not so smooth to fit them with a math-
ematical function. Malignant and benign lesions can be developed in different ways as
indexed by Lee et al. [108]. The construction of these features is started by the idea
of evaluation of border irregularities exploring different features which are more local.
It is based on algorithm detecting each two consecutive null derivation of the border
curve. However, it is very difficult to formulate the analytic function of each lesion bor-
der. Then, an new algorithm is implemented to express this need. Two new concepts,

valleys and crevasses, are extracted as first and second level of border irregularity.

To detect these new concepts, a newer and simpler algorithm exploring the border
irregularities in four directions is proposed. The horizontal direction explores all pixels
from right to left and vice versa, and vertical direction explores the pixels from up to

down and vice versa. Figure 4.16 illustrates the four directions applied in the proposed

82


www.dermis.net

Figure 4.16: Four direction to detect the regular border. Horizontal direction: left to
right and right to left. Vertical direction: up to down and down to up.

approach. This algorithm is applied on the standard oriented images explained in the

last sub-section (4.3.3.1).

The four directions shown in Figure 4.16 are divided into two groups, horizontal
and vertical. Thus, for each line and column of pixels, the area between the box limit
and the first contact of the arrow with the ROI’s edge are isolated and removed. Thus,
only the missed areas are kept. Therefore, if the border is more regular, all the outside
part of the pigment will be detected and removed. In the other case, more the border is

irregular, more it misses many parts of the outside part of the pigment.

Two kinds of missed parts are noted. Firstly, valley part is the missed one using
only one direction (horizontal or vertical) separately. Secondly, the crevasse part is the
missed one using both directions in the same time, the crevasse have almost the cul-de-
sac geometrical form. Figure 4.17 illustrates the valley and the crevasse cases. They

can be considered as the first and the second level of the border irregularities.

These border irregularities quantified by the valleys and crevasses are used as fea-
tures exploring the size and number of the concepts detected. Thus, let v denotes valleys

and c crevasses, two counting functions are defined, /V to compute the number of areas
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Figure 4.17: Illustration of the valley and the crevasse cases: Valley: using only one
direction (horizontal or vertical) and Crevasse: Using two directions (horizontal and
vertical)

detected and S to compute the size of each area detected. Therefore, 8 features are ex-
tracted and divided in 2 groups, globals and locals. The global ones are the features not
depending on some thresholds and the local ones are those depending on these thresh-
olds. The choice of these global and local features is done gradually to increase the

performance of classification between the malignant and benign lesions.

The first group contains 4 global features concerning the total number of valleys and

crevasses detected and their total size as detailed below.
e N (v) is the number of valleys and N (c) is the number of crevasses.
e S(v) is the size of all valleys and S(c) is the size of all crevasses.

The second group contains 3 other features computing the number and the size of de-
tected valleys and crevasses greater or smaller than two thresholds 7, and 7. respectively.
These features are added in order to increase the performance of detection and decreas-
ing the noises of border segmentation i.e a crevasse detected with a size of one or two
pixels will be less important than a crevasse of fifty pixels of size, for example. Then,

the following equations are formulating these three local features.

® N(1s()>r,) and N(1ge)<r,) quantify the number of valleys greater/smaller than

the threshold 7,,.

e N(1g(>r.) quantify the number of crevasses greater than the threshold 7,
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where,

1 S(x)>r x € {v,c}

lspgsr = , with (4.29)
0 otherwise T € {1y, Te}

Finally, the eighth features is the ratio of pigment pixels over the box area, this
feature is introduced to moderate the differences of image dimensions in the database
which are standard camera dataset with different size. It contains also information due
the global border irregularity i.e after standardization step, the area of the background
of the image is minimized, then the ratio is behaving like the relation of p-norms, where
the border defines the 2-norm and the box the inf —norm as illustrated in figure 4.18.

This value is defined by I'-value given by the following equation:

_ Area(r)

b= Area(b)

(4.30)

where r denotes the Region of Interest (ROI) and b the selected box containing the ROI.

| ] | |
0.5 0 0.5 1

KN

Figure 4.18: p-norms illustration

Therefore, combining all the characteristics defined above, for each image a set of
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8 features are extracted, as summarized by the variable feat given by equation (4.31):

feat = {N(),N(e), N(s(v)), N(5(6), N (Lo)2.).
N(ls(v)<m)7 N(]-s(c)Zfrc); F} (431)

where 7, 7. € N chosen empirically. In the implementation of the algorithm, 7. is fixed

to 2 and 7, € [0, 100].

The two steps of the current approach is implemented on skin database provided

from standard camera. The results are presented and discussed in the next chapter.

4.4 Summary

This chapter provides the three methods developed in the current work.

e Firstly, the extension of Chan and Vese model is explored, which is a general-
ization of the model and an adaption for skin cancer images characteristics. It
was adapted to segment the small details inside the lesions, such as colors and

pigment areas and structures.

e Secondly, a fusion by concatenation of structural and textural features are ex-
plored and developed to discriminate benign and malignant pigment skin lesions.
The structural features are obtained exploring a wavelet and curvelet transforms,

while the textural features are obtained exploring local binary pattern operator.

e Thirdly, a method based on border irregularities is developed, introducing two
new concepts in skin images which are valleys and crevasses as first and sec-
ond level of border irregularities. A normalization of skin cancer view is also

proposed in the method as preprocessing step.

The proposed methods are applied on skin cancer databases. The results are pre-

sented in the next chapter.
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CHAPTER 5

RESULTS AND DISCUSSION

5.1 Overview

The obtained results from the three proposed methods of the current work are presented
and discussed in this chapter. Firstly, it started by the introduction of the different
databases used which are dermoscopic images and standard camera images. Secondly,
it is followed by the obtained results from the three methods developed which are,
segmentation of the region of interest using the extension of Chan and Vese model, the
fusion of textural and structural features and border irregularity features. Finally, the

comparison of the obtained results with the existing methods is performed.

5.2 Datasets

Two different acquisition of database, dermoscopic and standard camera images, are
used in the current work divided following their acquisition mode into dermoscopic and
standard camera images. The two sets contains 406 images, 200 are dermoscopic and
206 are from standard camera. The two databases, dermoscopic and standard camera

images, are presented in subsections 5.2.1 and 5.2.3, respectively.

5.2.1 Dermoscopic Images Database

PH? Database was introduced in 2013 by Mendoca et all. [149] and more detailed in

2015 by the same authors [177]. PH? is a public and free database, built to perform and
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compare the evaluation of several systems. The database was built up through the joint
collaboration between Universidade do Porto, Técnico Lisboa, and the Dermatology
service of Hospital Pedro Hispano in Matosinhos, Portugal. The acquisition of images
was obtained under the same conditions. They are 8-bit RGB color images with a

resolution of 768 x 560 pixels.

The database contains a total of 200 dermoscopic images divided into 160 benign
lesions and 40 melanomas. The benign lesions contain 80 common nevi and 80 atypical
nevi. The quality, resolution and dermoscopic features of images are highlighted in
the current database. Every image was segmented manually and diagnosed by several
dermatologists. It contains also the clinical diagnosis and dermoscopic criteria such as

asymmetry, color and presence of typical and atypical structures.

Table 5.1 summarizes all the given characteristics in PH? database, where sub-
feature is describing the different cases of each feature, for example, fully asymmetry is
a sub-feature of Asymmetry. The table shows the percentage of the presence / absence
of each sub-feature. For each percentage, the number of images is noted between brack-
ets. The table is to be read by columns, thus for example, the common nevus is 96.25%
fully symmetric, 2.5% is symmetric in one axis and only 1.25% is fully asymmetric and
melanoma is 12.5% fully symmetric, 5% symmetric in one axis and 82.5% fully asym-
metric. The table shows the dominant characteristics for each feature. It represents the

cross table between characteristics and skin lesions diagnosis.

Based on the given features in table 5.1, intuitively, the most difficult is to recog-
nize the atypical nevus. Thus, for example the asymmetry feature makes a real border
between common nevus and melanoma only. The pigment network feature separates
more common nevus with a total absent of pigment network to atypical and melanoma.
However the dots/globules features are not descriptive between the three cases. We can
observe also that streaks and regression area features are more common in common ne-
vus and atypical nevus than melanoma. Blue-whitish veil discriminates better between
benign and malignant compared to other features. Finally, the color increases gradually

from common nevus to melanoma.
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Table 5.1: Summary of the characteristics of PH? database representing the percentage
of each sub-feature and between brackets the number of images.

Database characteristics Common Atypical Melanoma
Nevus (80) Nevus (80) (40)

Fully symmetric 96.25% (77) | 43.75% (35) | 12.5% (5)
Asymmetry | Symmetric in 1 Axe || 2.5% (2) 33.75% (27) || 5% (2)

Fully Asymmetric 1.25% (1) 22.5% (18) 82.5% (33)
Pigment Typical 100% (80) 3.75% (3) 2.5% (1)
network Atypical 0% (0) 96.25% (77) || 97.5% (39)
Dots / Absent 36.25% (29) | 50% (40) 45% (18)
Clobales Typical 57.5% (46) || 10% (8) 0% (0)

Atypical 6.25% (5) 40% (32) 55% (22)
Streaks Absent 98.75% (79) | 80% (64) 67.5% (27)

Present 1.25% (1) 20% (16) 32.5% (13)
Regression Absent 100% (80) 95% (76) 47.5% (19)
area Present 0% (0) 5% (4) 52.5% (21)
Blue-whitish | Absent 100% (80) 92.5% (74) 25% (10)
veil Present 0% (0) 7.5% (6) 75% (30)

1 color 42.5% (34) 25% (20) 0% (0)

2 colors 53.75% (43) | 63.75% (51) | 32.5% (13)
Color 3 colors 3.75% (3) | 11.25% (9) | 27.5% (11)

4 colors 0% (0) | 0% (0) | 32.5% (13)

5 colors 0% (0) 0% (0) 7.5% (3)

6 colors 0% (0) 0% (0) 0% (0)

Another way of reading table 5.1 is horizontally. Indeed, it shows the influence of
each sub-feature. For example, the typical Dot/Globules feature is more frequently in
common nevus than atypical nevus and almost inexistent in melanoma case. However,
the atypical Dot/Globules feature shows an opposite behavior with a high presence in
melanoma, less in atypical nevus and rarely present in common nevus. A statistical
analysis of the database is performed and compared to a based scoring system used in

the hospitals in the next sub-section.
From the table 5.1, it can be seen that:

e Asymmetry makes a border between common nevus and melanomas with 96.25%
fully symmetric for common nevus and 82.5% fully asymmetric for melanoma.
However, for atypical nevus, the asymmetry feature is not significant as shown in

the table with 43.75%, 33.75% and 22.5 for asymmetry, symmetric in 1 axis and
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fully asymmetric, respectively.

e The pigment network feature makes a border common nevus in one side with
100% typical network and in the other side atypical and melanoma with 96.25%

and 97.5% respectively for atypical pigment network feature.

e Dots / Globules feature is more typical for common nevus than atypical nevus and
melanoma with 57.5%, 10% and 0%, respectively. Then, the opposite behavior
is visible for atypical, where it is rare in commons nevus with 6.25% and more

present in atypical nevus and melanoma with 40% and 55%, respectively.

e Streaks feature is more discriminating between common nevus in one side and
atypical nevus and melanoma in other side when it is present. However, when it
is absent, it is very difficult to conclude regarding the percentage of absence of
streaks of common, atypical and melanoma, which are 98.75%, 80% and 67.5%,

respectively.

e Regression area is describing the common nevus by the total absence, and more

it is present, more there is a high probability to get melanoma.

e Blue-whitish veil has the same behavior than regression area, where is more ab-

sent for common and atypical nevus and more present for melanoma.

e Color feature is discriminating melanoma if three or more colors are detected with
a percentage of 67.5%, and discriminating common and atypical nevus if two

colors or less are detected with a percentage of 96.25% and 88.75%, respectively.

5.2.2 Significance of the database

The significance and the representativeness of the database in medical images is one the
most challenging task. The information given by the current database contain almost
ABCD rule developed by Stolz et al. [14] and used for comparison by Capdehourat et
al. [1] and Dolianitis et al. [35].

90



The PH? database quantifies each pigment following ABCD rule excepting border
irregularities. According to Capdehourat et al. [1], the evaluation of ABCD rule follows
the scores summarized in the table 1.1 where dermoscopic structures contains pigment
network, structures ares, dots, globules and branched streaks. The authors added to
these features Blue-whitish veil which is a major criteria of 7-point checklist [1] system.
This scoring system is applied on the features described in table 5.1. It followed the

method used by Capdehourat et al. [1] where :

e Asymmetry is evaluated from 0 to 2, with O being fully symmetric, 1 for sym-
metric in one axis and 2 for fully asymmetric. It has the highest weight factor of

1.3.

e Border is evaluated with score from 0 to 8, drawing eight segments; one point is

given for each abrupt pigment cutoff with a weight factor of 0.1.

e Color is evaluated from 1 to 6, attributing one point for each color with a weight
factor of 0.5. Colors considered are white, red, black, light brown, dark brown

and blue-gray.

e Dermoscopic structures encompass five structures which are: pigment network,
structureless area, dots, globules and branched streaks. One point per structure

with a weight factor of 0.5.

We notice that there are some differences between extracted features in PH? database
and ABCD rule. Therefore, the threshold of the scoring system is adapted by removing
the contribution of border irregularities. Then, the thresholds 4.75 and 5.45 became
4.50 and 5.20, respectively. Therefore, for each image the obtained score value (S pcq)

of the function given in equation (1.1) is evaluated as follow:
e benign: if the score is Sypeq < 4.50,
e clinical doubt: lesion if the score lies between 4.50 < Speq < 5.20,

e malignant: if the score is Sypeq > 5.20.
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ANOVA Table

Source 55 df Ms F Prob>F
Columns T11.471 Z 355.736 317.71 8.55358e-68
Error 265.3689 23 1.12

Figure 5.1: ANOVA test results

There are other characteristic explored in the database, such as blue-whitish veil, not
used in ABCD rule, but used in another scoring system which is 7-point checklist [1].
However, the objective evaluation is difficult to be achieved due the visual features char-

acterized depending only on the decision of absence or presence of each characteristic.

The results reported by Dolianitis et al. [35] are presented in the table 5.2. They
are compared to the results obtained from PH? database applying ABCD rule. These
results show a similar behavior and equivalent results for the three performance metrics
which are sensitivity, specificity and accuracy. The threshold of ABCD rule, given in
the table ??, applied on PH? database was adapted taking in consideration the missing
values of border irregularities. Then, the value of the threshold is reduced to 4.5 and

5.20 in place of 4.75 and 5.45 respectively.

Table 5.2: Result of ABCD rule obtained from PH? database

Diagnositic Parameter | Doliantilis et al. [35] PH? Database
Sensitivity 77.5% 77.5%
Specificity 80.4% 97.5%
Accuracy 73.2% 87.5%

Applying Analysis of Variance (ANOVA) on the vector obtained by ABCD rule
on the H, (same population) against /; (different classes). The P-value obtained is
less than 0.01 as given in the Matlab table reported in figure 5.1. Then, the hypothesis
Hy is significantly rejected. Thus, the database presents significantly heterogeneous

population (more than two classes).
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Figure 5.2: Variability of the three classes of the PH? database. (1): Common nevus.
(2): Atypical nevus. (3): Melanoma.

The box plot in Figure 5.2 illustrates graphically the variability of each group and

deduce three different classes in the population.
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Figure 5.3: Results of ABCD rule system applied on PH? database.
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Figure 5.3 describes the results of ABCD rule (blue) of the whole database and
the mean of each class (red). Descriptively, using ABCD rule results, the graph shows
more stability in common nevus lesion than the two other cases (atypical nevus and

melanoma).

5.2.3 Standard Camera Images Database

The standard camera image database is provided from two dermatology website, Der-
matology Information System (DermlS) [4] and Dermquest [5]. The database contains
a total of 206 images where 118 are melanomas cases and 87 are benign lesions. DermlIS
contains 69 images divided into 43 melanomas and 26 benign lesions and DermQuest
contains 137 images divided also into 76 melanomas and 61 benign lesions. Recently

(2014) Amelard et al. [105] used this database in his work.

The DermQuest database shows a redundancy of some images due the different ac-
quisition of the same image changing the distance and the view of acquisition. To avoid
a confusion and make independence between lesions, only clear images are chosen.
Therefore, 40 images are deleted where 38 are melanomas and 2 are benign lesions.
Figure 5.4 illustrates one case of redundant images. In this cases the image in fig-
ure 5.4a is kept and the other in figure 5.4b is deleted in the database. Thus, the new

database contains 166 images divided into 99 melanomas and 67 benign lesions.

(b)

Figure 5.4: Illustration of the same image acquired with different distance. (a):
LMMS_orig image (kept). (b): LMMS8_2_orig image (removed) [4].
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5.3 Segmentation of Images Results

The obtained results of the extension of Chan and Vese Model proposed in section 4.2
are presented in this section. The implementation of the developed method on different
images is presented in the next subsection (5.3.1), then an evaluation of the segmenta-

tion is presented in subsection 5.3.2.

The algorithm is implemented in the whole database of malignant and benign le-
sions presented in section 5.2.3. The following figures illustrate different image seg-
mentations showing visually more and less accurate cases. As mentioned in the lit-
erature, the most difficult of the original method is to provide the best parameters of
the model to get attended segmentation. Therefore, for each presented image, the two
parameters v and dt are given. An exhaustive table for the whole database is given in
the end of the section. The minimization given in equation (4.12) is not implemented
in the current work. The reasons are discussed and some methods are suggested in

perspectives and future directions.

To remove different noises, the segmentation is applied on cropped and resized im-
age focused on the lesions. It makes the subjective evaluation of experts more confident

when the border are formally recognized by the naked eyes.

5.3.1 Implementation

The two methods developed for detection of the three regions illustrated by figures
4.4 and 4.5 are applied and implemented on standard camera images in the database
described in subsection 5.2.3. Therefore, two extended models are applied defined by
equations (4.13) and (4.14) representing the separation and the inclusion of the two sets

¢, and ¢, respectively.

In this section, the methodology of implementation is presented, the different pa-
rameters used and the illustration of some images presenting the advantages and limita-

tions of the method are also highlighted. As mentioned above, the minimization of these
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two methods, given by equation (4.19), is not performed in the current work. Then, the

results obtained using both methods are presented and illustrated.

5.3.1.1 Segmentation by Inclusion

In this section, equation (4.14) is applied as illustrated. Figure 5.5 presents 4 image ex-
amples showing different segmentations obtained. From these examples, it can be seen
easily that the algorithm developed follow perfectly the inclusion method explained in
section 4.2. The segmentation by inclusion has an effect very important to distinguish

between the different lesion darkness regions.

In Figure 5.5, four images are illustrated using the inclusion segmentation method.
The first column of the figure shows the original images segmented, the second column
illustrates the results of segmentation and finally the third one shows the different re-
gions segmented accounting the background. In the second column, the size of images
is reduced to show better the different lesions. The current method is very sensible to
noises and borders inhomogeneity [178], as it can be visible in the sub-figure5.5h. For
each image, all parameters used in the illustrated segmentation are given. Therefore,
we notice that the parameter v and dt are different for each image and chosen manually.

These dependent parameters make the method very difficult for the automation.

5.3.1.2 Segmentation by Separation

The implementation of this second method provides the expected results as shown in
figure 4.4. However, the separated cases in the current database are rarely visible due
to the fast development of skin lesion [179]. Knowing that our algorithm in this case
searches only the convergence of two separated sets. The following examples in figure

5.6 are chosen to illustrate some possible cases .
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Figure 5.5: Implementation of the approach using equation (4.14) on images from Der-
mls database. (a): Original RGB image SSM18. (b): Segmentation of the two regions
with v = 0.2 and dt = 0.5. (c): Global region-based segmentation. (d): Original
RGB image SSM9. (e): Segmentation of the two regions with v = 0.28 and dt = 1.5.
(f): Global region-based segmentation. (g): Original RGB image SSM11. (h): Seg-
mentation of the two regions with v = 0.07 and d¢t = 1.5. (i): Global region-based
segmentation. (j): Original RGB image SSM11. (k): Segmentation of the two regions
with v = 0.15 and dt = 0.3. (I): Global region-based segmentation.
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Figure 5.6: Implementation of the approach using equation (4.13). (a): Original RGB
image (SSM34). (b): Segmentation of the two regions. (c): Global region-based seg-
mentation.(d): Original RGB image (SSM18). (e): Segmentation of the two regions.
(f): Global region-based segmentation

5.3.2 Obtained results

The evaluation of the developed method is highlighted by a subjective evaluation per-
formed by three image processing experts into acceptable and unacceptable segmenta-
tion. For each acceptable segmentation a 3 choices of evaluation is proposed which are
excellent, good and average. Table 5.3 explains how the experts evaluated the proposed
method. In the first step, the experts evaluated the segmentation into acceptable and
unacceptable, and in the second step they evaluated separately the acceptable ones into
excellent, good or average segmentation. The second intermediate evaluation makes in
evidence further the possible improvement of the proposed method. For each expert,
only the protocol of evaluation is explained without any influence on their evaluation.
Figure 5.7 illustrates an example of the four qualities segmentations explained in table

5.3. Due to the missing of information in the ground truth, it is very difficult to evaluate
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the proposed extension using other evaluation methods such as Jaccard Index.

Table 5.3: Subjective evaluation rules.

Evaluation Description

Excellent || It separates perfectly the two regions and improvement

needed.

Acceptable | Good It separates very well the two regions but it can be im-
proved

average It separates the two regions with small missed parts

where the improvement of the segmentation is required.

Unacceptable It cannot not recognize the two regions or big parts of the

lesion are missed.

Figure 5.7: Subjective evaluation examples. (a): Excellent Segmentation. (b):Good
Segmentation. (c): Average segmentation.(d): Unacceptable segmentation.
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Table 5.4 reports the results of the subjective evaluation performed by two image
processing expert (the first expert and the third expert) and medical expert (the sec-
ond expert). Thus, from the database used, only 2.38% and 6.98% are evaluated as
the unacceptable segmentation by the image processing experts respectively. However
the medical expert evaluated 9.30% of images as Unacceptable segmentation. For the
excellent segmentation, 96.06%, 48.84% and 13.95% are evaluated by the first, second
and the third experts. We can notice that the difference between experts are more visi-
ble than unacceptable case. The same difference between the experts is visible for good

and average segmentation.

Table 5.4: Subjective Evaluation done by image processing expert on the results ob-
tained from the extension of Chan and Vese model by inclusion method

Segmentation quality First expert Second expert | Third expert
Excellent segmentation 69.06% 48.84% 13.95%
Good segmentation 21.42.% 23.26% 55.81%
Average segmentation 7.14% 18.60% 23.26%
Unacceptable segmentation 2.38% 9.30% 6.98%

Table 5.5 reports the results of experts for the two cases of evaluation, acceptable

and unacceptable. It can be seen that more than 90% of segmentations are evaluated
as acceptable by the three experts. Furthermore, these performances are obtained not
only for the detection of lesion ROIs but also for the segmentation of the different
development of moles in the skin lesion, which is the main objective of the proposed

method.

Table 5.5: Subjective Evaluation done by image processing expert on the results ob-
tained from the extension of Chan and Vese model by inclusion method

Segmentation quality First expert Second expert | Third expert
Acceptable segmentation 97.62% 90.70% 93.98%
Unacceptable segmentation 2.38% 9.30% 6.98%
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It can be seen that for the medical expert, the results of acceptable segmentation is
lower than image processing experts. It is explained by the expert that it is not accept-
able to miss a malignant parts of the lesion, because to succeed the treatment of cancer
they have to treat the whole lesion, and the missing of a small part of lesion can develop
other malignant cells. It can be concluded that in hospitals that the false negatives are

considered more dangerous than false positives.

Therefore, we can conclude that the proposed method of segmentation highlights
the random development of melanoma, it is extended from Chan and Vese model. The
objective of current method is to follow the development of the whole lesion and its
particular parts of the lesion. The results obtained show an acceptable detection and
segmentation over than 90%, and only less than 10% of wrong detection or missed parts
in the segmentation. The subjective evaluation is performed by two image processing
experts and medical expert. However, to process the current method in a typical CAD
system, more developments are needed, specially the automation of all parameters of

the model. These points are also discussed in the next chapter in perspective section.

5.4 Multi-resolution analysis results

The results presented in this section refer to the method explained in section 4.3.2. To
enhance the quality of images used, the computation of the result was forwarded by the

hair removing preprocessing using DullRazor Software as detailed in subsection 5.4.2.

Applying the method on a database of 200 dermoscopic images from PH? database
[149]. This database contains 160 non melanoma (benign) and 40 melanoma (malig-
nant) images. The classification is performed using SVM classifier with the linear
kernel, 70% of the database are used for training and 30% for test. A random sam-
pling cross validation method is applied to validate the obtained results, where thousand
(1000) combinations of training and test sets are chosen randomly from the database.
Thus, each image is used in average 700 times for training and 300 times for tests. An
unbiased standard deviation (Std) for the thousand combinations is also computed for

the three performance metrics.
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The evaluation is performed between the three sets of skin lesions (common nevus,
atypical nevus and melanoma). Thus, to get a representative training set from the be-
nign lesions, 70% of each set are chosen separately as illustrated in figure 5.8. Two
cases are computed and analyzed in this study, a separate case which is the recognition
of melanoma mixed only with common nevus or atypical nevus. The second case is to
recognize melanoma mixed with the whole benign lesions respecting the representativ-

ity of common and atypical nevus in training and test sets.

Figure 5.8: Training and test sets selection

The next subsections are organized as follow: Firstly, the technical details of the
implementations, secondly the intermediate step which is image enhancement by hair

removing and finally the obtained results and discussion.

5.4.1 Technical details

In this section, the details of the implementation are given and explained for further re-
production and comparison. Therefore, for structural features, curvelet and wavelet co-
efficients are computed for the first and second level. Thus, 9 curvelet coefficients matri-
ces are extracted from each image. Then, for each curvelet coefficient matrix, Energy,
Entropy, Mean, Standard deviation, Maximum, Moment and Homogeneity are
computed. Then, 7 features from the first level and 56 features from the 8 different an-
gles of the second level are obtained. For wavelet, Daubechies 4 transform is used, then
8 coefficient matrices are computed, 4 from the first level and 4 from the second level
(one approximation coefficient matrix and three details coefficient matrices). Comput-

ing the same quantities as curvelet coefficient matrices, then for each level 32 features
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are extracted. In total, 63 and 64 features are extracted from curvelet and wavelet trans-

forms, respectively.

Depending on the variant of LBP operator as explained in section 3.4, we have
59 textural features from LBP"2, 36 from LBP" and 9 from LBP"*2. Indeed, in the

experiments only radius R = 1 and eight neighborhood pixels (P = 8) are used.

The evaluation of the proposed method is measured using three performance met-
rics which are sensitivity (sen), specificity (spe) and accuracy (acc) [33], as given in

equations (5.1) to (5.3).

TP
-7 5.1
sen TP+ FN SRY
TN
_ 2
°pe TN + FP (5-2)
TP+ TN
“e = TPIFN+TN+FP (5-3)

Where T'P (True Positives) defines the melanoma classified as melanoma, T'N (True
Negatives) defines the non melanoma classified as non melanoma, F'P (False Positives)
and F'N (False Negatives) are the non melanoma and melanoma which are not classified

on the right set respectively.

Equation (5.3) depends on the number of benign and malignant lesions. To remove

this dependence, we estimate the accuracy in the following way:

o oTP + TN 54)
W = ATP+aFN+TN 1 FP ‘

The parameter « is added to compensate the difference of images number in the

accuracy performance. This parameter is obtained by the following formula:

# Benign
o=

=_r—-J 55
#Malignant (5-5)

Where # Benign and # Malignant design the number of benign and malignant im-

ages respectively. Therefore, o = 2 for the first and second classification (melanoma vs
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atypical, and melanoma vs common nevus) and o = 4 for the last classification (malig-
nant and benign lesions). The performance results are computed also by accuracy given

by equation (5.4).

Equation (5.4) can be also used with different values of the parameter o to give
more weight for false negatives or false positives to tolerate or reject some special situ-
ations, such as let cancerous patients without treatment which are false negatives. In our
case, the a chosen is used just to regulate the difference between benign and malignant
lesions. This formulation is equivalent to (sen + spe)/2 used in Barata et al. [141]. In

the next section, the results show a significant difference between the two metrics.

Figure 5.9a presents the evolution of the modified accuracy (acc) depending on dif-
ferent values of «, from 0.1 to 5, fixing other variables (sensitivity, specificity, malignant
number and benign number). While, Figure 5.9b illustrates the dependence of the ac-
curacy metric (eq.(5.3)) on malignant and benign number, presented by the dark curve.
By varying the 3 value from 0.1 to 5 in M = B, where M is malignant number, B is
benign number, we can see easily that the accuracy (acc) is strongly dependent on those
quantities. The blue color line presents the modified accuracy (acc), with o = 1/, to

compensate the difference between malignant and benign number.

Knowing that the database is presented in three different classes: Common nevus,
Atypical nevus and Melanoma. Then, to have a representative training set, 70% of
each class (common and atypical) is taken for training and the other 30% for test. This
choice guarantees the representativeness of atypical and common nevus in training and

test sets.

To detect melanoma lesions, the results are classified into three cases . Firstly,
we explored the classification between melanoma and atypical nevus. Secondly, we ex-
plored classification performance between melanoma and common nevus and finally we
performed the classification between melanoma and the whole benign lesions. Three
performance metrics i.e. sensitivity, specificity and accuracy/modified accuracy given

by equations (5.1) to (5.4) are computed. For each performance, we compute also 1000

104



— Specificity
Accuracy
0.88 — Modified accuracy
sensitivity
0.96 -
0.84 - ;ff——__——
0.92
09
0.88 -
0.86 |-
0.84 -
0.82
08 I 1 1 1 1 1 1 1 1 ]
0 05 1 1.5 2 25 3 3.5 4 4.5 5
o
(a)
0.5 Specificity
Accuracy
Modified accuracy
sensitivity
0.9
0.85
0.8
0.75
I 1 I 1 1 1 I 1 1 1
0 0.5 1 15 2 25 3 3.5 4 4.5 5
M=pB

Figure 5.9: Illustration of the modified accuracy effect’s on the obtained result using
the formula given by equation (5.4). (a): Modified accuracy (acc) in function of «,
presented by blue calor. (b):Accuracy (acc) depending on the number of malignant and
benign lesions, presented by the dark color.
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random combinations for the choice of the training and test sets which is the valida-
tion method /N-random fold cross validation. In the result tables (5.7, 5.8 and 5.9),
VP defines the validation performance and Std represents the standard deviation of the
thousand combinations used for validation. The results are divided into three categories
which are textural features using local binary pattern operator, structural features us-
ing wavelet and curvelet coefficients and finally the mixture of textural and structural

features.

5.4.2 Hair removing

The preprocessing step is also implemented in the current work to enhance the image
quality. Thus, DullRazor! Software is used for hair removing, it was applied on all the

visible hairs as illustrated in figure 5.10.

Figure 5.10: Hair removing with DullRazor software. (a,c): original images. (b,d):
Dullrazor software treatment on the original images.

'DullRazor software is available on http: //www.dermweb.com/dull_razor/
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In figure 5.10, two kinds of hair removal are presented, thick and thin, under DullRa-
zor software. It can be seen easily that the skin lesion is more clear and less influenced
by the treatment when the hair is thick than thin as illustrated by figures (b) and (d), re-
spectively. Despite that, even in the worst scenario, the lesion is more clear and efficient

than before the treatment.

5.4.3 Obtained Results

The recognition of melanoma can be easier or either more difficult depending on the be-
nign lesions set used for classification. Therefore, to reduce this effect of the database,
two studies are done for the classification and recognition of melanoma mixed with each
set of benign lesions and compared. the other classification is done between melanoma
and the whole benign lesions respecting the condition of representativity explained be-

low.

For each classification, 12 evaluation performances are computed. The three variant
of LBP operator, wavelet and curvelet coefficients for the non-fusion cases. Six combi-
nations are computed from the fusion of structural features (wavelet and curvelet) with
textural ones (LBP variants). Finally, wavelet and curvelet coefficients are mixed, as
explored by Li et al. [180] for image compression. Table 5.6 summarizes the number of
features of the thirteen combinations studied in the current work. Each fusion is done

by the concatenation of vectors obtained from each method.

Table 5.6: Number of features of studied combinations

Features features
Features Methods Fusion Methods
number number
LBP" 36 LBP" + Wavelet 100
Textural ) ] .
LBP'2 9 Fusion of LBP"2 +Wavelet 73
Features
LBP*? 59 textural and LBP"2 +Wavelet 123
Structural | Wavelet 64 structural LBP" + Curvelet 99
Features | Curvelet | 63 features LBP™2 4Curvelet | 72
Wavelet + Curvelet 127 LBP"2 +Curvelet 122
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The next subsections present firstly the result classification obtained between melanoma
and atypical nevus, then melanoma with common nevus and finally between malignant

and benign cases.

5.4.3.1 Melanoma Vs Atypical Nevus

In this part, the classification is focused on the detection and the recognition of melanoma
mixed only with atypical nevus, those presented by the second and the third columns
in the table 5.1. The results obtained are given in the table 5.7. Therefore, for textural
features, the best performances are obtained by LBP*? followed by the LBP™, and the
worst result are obtained by the LBP™2. For structural features, wavelet shows bet-
ter results then curvelet for all metrics performances used. The fusion of textural and
structural features gives better results in wavelet coefficients with LBP operator and it
shows a smallest standard deviation for the variability of validation results expressed
by the variable Std. Wavelet with LBP“? improves the three metrics used and gives the
best results compared to all the methods and method combinations studied. The fusion
of curvelet coefficients with LBP operator improves the sensitivity, specificity and ac-
curacy metrics compared to curvelet and LBP separately. However, wavelet with LBP

shows better results than curvelet with LBP.

From this first study, the dominant features are expressed LBPP*? and wavelet meth-
ods with an accuracy validation of 80.85% and 84.23%, respectively. It can be seen that
the results obtained by the fusion of LBP“? and wavelet shows the best performance
with an accuracy validation of 85.20%. However, wavelet with LBP"* and LBP"*? is
showing a result lower the wavelet method. In the other case, the fusion is of curvelet
and and LBP variants is showing a better results than LBP and curvelet separately. It
can be seen also that the the low results are obtained by th LBP"*? variant, it can be
explained by the few features used in this method (see table 5.6). Finally, the fusion of
wavelet and curvelet, which is the last case studied in the table 5.7, is not showing any

increase of performance, oppositely it shows lower performance than wavelet features.
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Table 5.7: Results obtained for Melanoma Vs Atypical nevus giving Performance vali-
dation VP and the standard deviation Std for 1000 random-cross validation under SVM
classifier.

. Sensitivit Specificit Accurac Accurac
Performances Metrics (sen) y ( Sf; o Y (Aco) y (o) y
Features Methods VP Std VP Std VP Std VP Std
Textural LBPrf 77.44% | 11.88 || 81.97% | 8.04 80.46% | 5.82 79.70% | 6.30
Features LBPriu2 74.17% | 12.09 || 73.19% | 9.29 73.51% | 6.77 73.68% | 6.83
LBP"2 76.55% | 12.32 || 85.15% | 7.35 82.28% | 5.56 80.85% | 6.31

Structural | Wavelet 79.47% | 12.93 || 88.99% | 7.10 85.79% | 6.07 84.23% | 6.84
Features Curvelet 73.10% | 13.56 || 82.01% | 7.56 79.04% | 6.14 77.56% | 6.85

. Wavelet + | 7g 1307 | 12.08 || 88.63% | 6.90 | 85.11% | 5.49 || 83.38% | 6.42
Fusion of | LBP

Structural | Wavelet +
and LBPriv2
Textural Wavelet +
Features | LBP"2

77.51% | 12.37 || 88.22% | 5.80 84.62% | 5.80 82.86% | 6.81

81.84% | 11.29 || 88.57% | 6.80 86.31% | 5.48 85.20% | 6.24

E}L;fpvrfle” 79.08% | 12.50 || 85.69% | 7.34 || 83.49%| 5.72 || 82.38% | 6.08
E]‘;rpvfjf” 76.15% | 13.31 || 82.84% | 7.66 || 80.61% | 6.25 || 79.49% | 6.83
E;f}jgle” 78.75% | 11.89 || 86.83% | 6.89 || 84.14% | 5.51 || 82.79% | 6.30

Wavelet + Curvelet 78.97% | 12.84 || 85.51% | 7.14 83.98% | 6.01 82.24% | 6.87

5.4.3.2 Melanoma Vs Common Nevus

As mentioned above, the second classification is done only between melanoma and
common nevus lesions. Table 5.8 shows the validation performance of sensitivity, speci-
ficity and accuracies metrics. Thus, for textural features, LBP™ and LBP“? show a high
performances than LBP"™2_ and it can be seen that LBP" is more sensitive and less
specific than LBP“2. The textural features performances show that wavelet coefficients
discriminate melanoma better than curvelet coefficients and the fusion of the structural
and textural features contributes in the reduction of the variability between different

combinations in validation step.

It can be seen that the best results validation is performed using wavelet and the fu-
sion of wavelet with different variant of LBP with an accuracy of =~ 90%. The fusion of
wavelet and LBP"? is the most stable operator showing the smallest standard deviation
value for the three me. It can be seen that wavelet is showing better results than the

fusion of wavelet and LPB variants. Therefore, it can be concluded that the fusion has
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Table 5.8: Results obtained for Melanoma Vs Common nevus giving Performance Val-
idation VP and the standard deviation Std for the 100— random-cross validation under
SVM classifier.

Performances Metrics Sensitivity Specificity Accuracy Ac~curacy
(sen) (spe) (acc) (acc)
Features Methods VP Std VP Std VP Std VP Std
Textural LBP" 82.28% | 11.11 || 84.29% | 7.71 83.62% | 5.72 83.29% | 5.88
Features LBpriv2 78.92% | 12.07 || 77.68% | 8.35 78.09% | 6.16 78.30% | 6.40
LBP*? 80.82% | 12.56 || 87.80% | 6.78 85.47% | 5.74 84.31% | 6.70

Structural | Wavelet 88.47% | 10.36 || 91.99% | 5.67 90.81% | 5.23 90.23% | 5.65
Features Curvelet 80.80% | 12.25 || 84.53% | 7.63 83.29% | 6.20 82.66% | 6.58
. Wavelet + | oo 8007 | 0.44 || 90.95% | 5.93 | 90.24% | 4.97 || 89.88% | 5.15
Fusion of | LBP"
Structural | Wavelet +
and LBPriv2
Textural Wavelet +
Features | LBP"2

88.91% | 10.06 || 91.45% | 5.85 90.60% | 4.99 90.17% | 5.54

89.25% | 9.26 90.80% | 5.59 90.28% | 4.76 90.02% | 4.92

Egpvflet* 81.25% | 11.36 || 85.68% | 7.30 || 84.20% | 5.76 | 83.47% | 5.25
E}‘;gfjf” 81.64% | 11.93 || 85.34% | 7.40 || 84.11% | 6.23 | 83.49% | 6.53
ngljgeH 82.86% | 11.12 || 87.17% | 6.86 || 85.73% | 5.48 || 85.02% | 6.03

Wavelet + Curvelet 87.73% | 10.57 || 90.40% | 6.99 89.51% | 5.68 89.06% | 6.19

not more contribution on the performance metrics, but the fusion is more contributing
on the standard deviation of the results obtaining 4.92 for wavelet + LBP"> compared to

5.65 obtained by wavelet.

5.4.3.3 Melanoma Vs Atypical and Common Nevus

The last performance of the current study is the classification between malignant (melanoma)
and benign (atypical and common nevus) lesions. The results are presented in table 5.9.
Thus, for textural features, it can be seen that LBP" is more sensitive and more accurate
than the two other variants of LBP operator. The highest specificity results are obtained
using LBP"? with a smallest variation compared to the other variants of LBP. The accu-
racy validation results show 81.76% and 82.10% for LBP" and LBP"? respectively, and
only 76.84% for LBP™2,

For structural features, wavelet coefficients showed a good performances compared
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Table 5.9: Results obtained for Melanoma Vs Atypical and Common nevus giving Per-
formance validation VP and the standard deviation Std for the 100— random-cross val-
idation under SVM classifier.

Performances Metrics Sensitivity Specificity Accuracy Ac~curacy
(sen) (spe) (acc) (acc)
Features Methods VP Std VP Std VP Std VP Std
Textural LBP" 78.07% | 12.35 || 86.14% | 4.80 84.53% | 3.89 82.10% | 5.90
Features LBpriv2 77.74% | 11.29 || 75.95% | 5.92 76.31% | 4.67 76.84% | 6.02
LBP*? 74.13% | 13.01 || 89.40% | 4.52 86.34% | 3.82 81.76% | 6.28

Structural | Wavelet 77.56% | 13.17 || 93.50% | 3.48 90.31% | 3.44 85.54% | 6.54
Features Curvelet 70.42% | 14.50 || 89.29% | 4.91 85.52% | 4.41 79.85% | 7.18

. Wavelet + | 75 100 | 13.68 || 93.46% | 3.65 | 89.85% | 3.52 || 84.41% | 6.79
Fusion of | LBP

Structural | Wavelet +
and LBPriv2
Textural Wavelet +
Features | LBP"2

76.73% | 13.49 || 93.47% | 3.59 90.12% | 3.44 85.08% | 6.67

78.93% | 11.95 || 93.25% | 3.61 90.34% | 3.27 86.07% | 6.32

E}L;fpvrflet* 72.35% | 13.34 || 90.56% | 4.41 || 86.92% | 3.81 || 81.46% | 6.55
anest | 70.30% | 14.76 || 89.10% | 472 || 85.38% | 424 | 79.74% | 7.13
E;f}jlgle” 72.67% | 12.88 || 91.09% | 3.99 || 87.40% | 3.61 || 81.88% | 6.46

Wavelet + Curvelet 76.16% | 14.11 || 93.13% | 3.68 89.74% | 3.95 84.64% | 6.99

to curvelet coefficients with an accuracy performance of 85.54% and 79.85% respec-
tively. These results gives an opposite conclusion to the ones obtained by Abu Mah-
moud et al. [75] where the authors concluded that curvelet coefficients are more effi-
cient than wavelet ones. This results could depend on the database used or the nature of
features extracted (for further studies and comparison, Daubechies 4 wavelet transform

is used).

The fusion of the wavelet and LBP"? increases considerably the specificity and the
accuracy performances and only wavelet with LBP"? for the sensitivity as shown in table
5.9. However the fusion doesn’t show a significant effect on sensitivity performance for

the fusion of wavelet with LBP" and LBP"™"2 respectively.

The best results for all the performances metrics validation is obtained by the fusion
of wavelet coefficients and LBP*? with 78.93% of sensitivity validation, 93.25 of speci-
ficity validation and 86.07% of accuracy validation. It shows also the smallest standard

deviation for the thousand combination of random fold-cross validation used. However,
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it can be seen that the fusion is not contributing on specificity compared to wavelet fea-
tures but it obtained the same performance over than 93%. The Sensitivity which is the
evaluation of the number false negatives is lower approaching a performance of 79%,

and it should be improved.

5.4.4 Analysis and comparison

From tables 5.7, 5.8 and 5.9, we can deduce by using the two sets of features (textural
and structural) that the detection of melanoma mixed with common nevus is easier as
compared with melanoma mixed with atypical nevus, which is expected as the class
overlap between melanoma and common nevus is less than that between melanoma and
atypical nevus. Thus, in table 5.8 we obtained the same behavior of common nevus
comparing to ABCD rule scoring system illustrated in figure 5.3. We can conclude that
the detection and the recognition performances of melanoma depends on the kind of the

benign lesions used for computation.

The fusion of wavelet and LBP*? outperforms all the tested methods in the current

work, as it can be seen from the results in tables 5.7,5.8 and 5.9.

In general, curvelets have better performances than wavelets. However, in our case,
the results obtained show better performances from wavelet coefficients compared to
curvelet coefficients in the three tables. These results can be explained by the multitude
of singularity points coming from the random development of skin cancer lesions. It
could also be expressed by the redundancy of curvelet coefficients which represent the

double of the redundancy of wavelet coefficients [181].

As detailed in section 3.3, wavelets are efficient for singularity points and curvelets
are more efficient for the detection or characterization of curves. Therefore, we also
evaluate a fusion between the two sets of (wavelet and curvelet) coefficients as Li et
al. [180] used for image compression. Thus, the results obtained are not showing any
significant improvement in the detection and classification of benign and malignant

lesions.
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Table 5.10: Comparison of the results of proposed approach with the results of recent
methods in the literature using the same database

Method Method used sensitivity| specificity| accuracy
The authors used color and shape geometry
Abuzaghleh| features using Fast Fourier Transform (FFT)
et al. [118] | and Discrete Cosine Transform (DCT). SVM | — — 90.6%
(2014) classifier is used on PH? Database for 75% for
training and 25% for test.
Bi ot The authors used multi-scale lesion-biased
al. [132] r.epresentatlgn under joint reverse clas§1ﬁca- 87 50 93.13 90.31%
(2016) tion on PH”. However, the authors did not
cross validate the obtained results.
Four algorithms to extract color constancy
Barata et | (Gray World, max-RGB, Shady of Gray and
al. [141] | General Gray World). SVM classifier with | 92.5% 76.3% 84.3%
(2015) the 2 kernel is used for classification on PH?
database.
A fusion textural and structural features. Re-
Proposed sults of random sampling cross-validation un-
metrl)m d der SVM classifier with the linear kernel used | 78.93% | 93.25% | 86.07 %
for classification on PH? database with 70%
for training and 30% for test.

Table 5.10 presents a comparison of the proposed method with recent works on
classification and recognition of melanoma using the same database PH?. Our proposed
method shows the highest performance in terms of specificity and accuracy compared to
Barata et al. [141], showing a validated result of 93% and 86% respectively. Although
accuracy is higher for Abuzaghleh et al. proposition [118] and Bi et al. [132], they did
not perform any validation comparing neither the current work validated by n—random
sampling cross validation, nor k—fold cross validation used by Barata et al. In addi-
tion to this, the Abuzaghleh et al. [118] used 75% of the database for training in place
of 70% frequently used in the literature. The authors used the fusion of fast Fourier
transform with discrete cosine transform, and their results are still less efficient than the

proposed method due to the lack of validation of their results. Table 5.11 and figure
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Table 5.11: Comparison of the results of proposed approach with the results of recent
methods in the literature using the same database

Acc < 65% | 66% < Acc< 75% | 75% < Acc < 85% | 85% < Acc < 95% | Acc > 95%

2 37 328 585 48

5.11 are showing the importance of validation, where wa can choose a specific training
and test sets to obtain higher result. In addition the this, the authors did not present
sensitivity and specificity performances, and no information on training and test sets is
presented. Therefore, it is difficult to reproduce the same result for comparison. Fur-
thermore, knowing that the benign lesions are heterogeneous [2], then, if we choose
some special configurations of training and test sets we could present higher results
than those presented in tables 5.7, 5.8 and 5.9. Thus, the validation result step is crucial

for the adaptability of the proposed method.

The known ABCD rule, often used in hospitals manually, has achieved an accuracy
of 87.5% as in table 5.2. In this work, the proposed automation of the ABCD rule
achieved an accuracy of 86.07% as in table 5.10, which is fairly comparable to the
result obtained manually. This achievement shows a great potential of developing CAD

system for melanoma detection.

In order to show the importance of the cross validation methods for the obtained
results, table 5.11 reports the accuracy performance obtained for each combination of
the 1000—random fold cross-validation used by the proposed method by intervals. Fig-
ure 5.11 illustrates the histograms of the thousand combinations. Thus, a probability of
0.633 to obtain an accuracy greater than 85% and only 0.141 to get an accuracy smaller
than 80%, and a probability of 0.279 to get an accuracy greater than 90%. Then, without

a cross validation methods, it will be difficult to compare objectively between methods.

To conclude, the proposed method achieved the second objective of the current work
which is an exploration of sets of features to make a border between benign and ma-
lignant lesions. Thus the method shows a significant set of features describing bet-

ter melanoma and benign lesions. The set of features includes textural and structural
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Figure 5.11: histogram of the thousand combinations results for accuracy metric

features extracted respectively from local binary pattern and wavelet and/or curvelet

transforms.

The obtained results are performed and validated using the fusion of different com-
binations of these features under SVM classifier. They are also compared to the previous
results presented in the literature performed on the same free public database PH?. The
recognition of melanoma were highlighted mixing with common nevus, atypical nevus
and the whole benign lesions. The obtained results are validated using n-fold random
sampling cross validation method. This validation is to increase the confidence of the

obtained results on different databases which is very important in a typical CAD system.

The results show an accuracy performance of 86.07% for melanoma mixed with the
whole benign lesions, 85.20% for melanoma mixed with atypical nevus and finally a
performance accuracy of 90.17% for melanoma mixed common nevus. In fact, addition
to the performance highlighted in this work, an other contribution consists on the de-
pendence of the performances on the diversity of benign lesions. Thus, more there are
common nevus cases, more the performances should be better as it can be seen from the

results presented in the two tables 5.7 and 5.8 referring to atypical and common nevus,
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respectively.

5.5 Results of Border features

The results presented in this section refer to the method developed in section 4.3.3
applied on a database of 166 standard camera images detailed above in section 5.2.3.
Therefore, the proposed method extracts the irregularity border features exploring val-
leys and crevasses concepts illustrated in figure 4.17. Depending on the number and
size of valleys and crevasses detected, for each image 8 different features are extracted,
as summarized by equation (4.31). Then, using this set of features, the classification is

performed utilizing Support Vector Machine (SVM) with linear kernel.

In the current section, the standard image orientation step is also implemented to
normalize all images of the database in the same and common view. This normalization

is summarized in algorithm1 and illustrated below in section 5.5.1.1.

Different implementations are explored with the proposed method, one with and
the other one without the preprocessing (standard image view) step described above.
A comparison between the original and standard image view is also done. The main
method of the current work includes the preprocessing step. The following points enu-

merates the procedure of implementation:

1. Implementation of the proposed method in its integrity using the both algorithms

presented in subsections 4.3.3.1 and 4.3.3.2.

2. Implementation of only the first algorithm proposed in subsection 4.3.3.1 for stan-

dard view images and its comparison with original images.

Therefore, two kinds of results are presented. Firstly, the main result given by the
whole algorithm using border features presented in the previous section. The second
result shows the intermediate contribution of standard view images and the effect of the

preprocessing step on the proposed method.
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5.5.1 Implementation

The implementation describes the preprocessing step detailed in section 5.5.1.1 as the
first stage of the algorithm and the extraction of features from border irregularities given

in section 4.3.3 as the second stage.

5.5.1.1 Standard view implementation

The single presentation and orientation of malignant and benign melanoma gives the
same features characteristics for all images of the database. Therefore, the implementa-
tion of the Standard Image Orientation Algorithm (see Algorithm 1) on some skin lesion
images (malignant and benign melanoma) is illustrated to show the reorganization and

the view standardization of these images.

ol

C) (e) ()

Figure 5.12: Single orientation of melanoma sample from DermQuest Database [5].
(a): original malignant image NM61. (b): gray level ROI of the oriented ROI of NM61
image. (c) Binary ROI of the oriented ROI of the image NNM61. (d): Original Ma-
lignant image (SSM74). (e):gray level ROI of the oriented ROI of SSM74 image. (f)
Binary ROI of the oriented ROI of the image SSM74.
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(d) (e) ®

Figure 5.13: Single orientation of benign lesions sample from DermQuest Database [5].
(a): original benign image D45. (b): gray level ROI of the oriented ROI of D45 image.
(c) Binary ROI of the oriented ROI of the image D45. (d): Original benign image D54.
(e):gray level ROI of the oriented ROI of D54 image. (f) Binary ROI of the oriented
ROI of the image D54.

Figures 5.12 and 5.13 show the effect of making images in the same orientation. It
can be seen easily that the border in binary image representation is a good descriptor
between malignant and benign lesions. It can seen also that the area between pigment
and its box is minimized. As mentioned above, the performances of this standardiza-
tion are presented in section 5.5.2.3 and illustrated in Fig.5.15 in comparison with the

original view.

5.5.1.2 Border irregularities implementation

The implementation of proposed work in section 4.3.3.2 is presented and illustrated in

the current section.

The detection of border irregularity uses the notion of crevasse and valley as illus-
trated in Fig.4.17. This algorithm is applied on standard camera image database. The
first classification following the number of valleys and crevasses detected are shown

in tables 5.12 and 5.13. The results of the two first features of feat given in equation
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Figure 5.14: Illustration of main stages of border irregularities. (a): Original gray level
image. (b): Binary ROI image. (c): valleys areas detected with the edge of the ROL.
(d): Valley areas detected (13 elements). (e): Crevasse areas detected with the edge of
the ROL. (f): Crevasse areas detected (3 elements).

(4.31), which are N (v) for number of valleys detected and N (c) for number of crevasses

detected, are presented and discussed.

Figure 5.14 describes the different steps of valleys and crevasses detection. This
example shows well the different sizes of valleys and crevasses. It can be seen easily

that the irregularities are exploring the small areas locally and the large areas globally.

5.5.2 Obtained Results

Two results are presented in this section, statistical analysis to illustrate the effect of
valleys and crevasses concepts introduction, and SVM classification on the obtained

features.

5.5.2.1 Statistical analysis of the results

The number of detected valleys are computed and divided into equidistant segment

with length 5 from 0 to 50 as presented in table 5.12. From this table, it can see that
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Table 5.12: Number of detected area in equidistant segments using first level of irregu-
larity (horizontal | J vertical). Valley geometrical forms

malignant melanoma | benign melanoma (67
number of elements (99 images) images)
0 sets 0(=~ 0%) 0 (=~ 0%)
[1-5] 2 (=~ 2%) 9 (=~ 13.4%)
[6-10] 5 (=~ 5%) 15 (=~ 23.9%)
[11-15] 22 (=~ 22%) 15 (= 22.4%)
[16-20] 25(~ 25%) 14 (=~ 20.8%)
[21-25] 15 (=~ 15%) 10 (=~ 14.9%)
[26-30] 16 (=~ 16%) 3 (=~ 4.4%)
[31-35] 4 (=~ 4%) 0 (=~ 0%)
[36-40] 4 (~ 4%) 0 (~ 0%)
[41-45] 4 (~ 4%) 0 (=~ 0%)
[46- ...] 2 (= 2%) 0 (=~ 0%)

for N(v) > 25, malignant melanomas present 30% of the database valleys against less
than 5% for benign melanoma. In the same time, for the number of detected valleys
[1 to 5] 13.4% are found for benign melanoma and only 2% for malignant melanoma.
Using valleys concepts, around 50% of the data can be selected and classified. However
from 11 to 25 valleys detected number is almost the same between benign and malignant
melanoma. We conclude from this table that the malignant melanoma has more chances

to contains more valleys than benign lesions.

Table 5.13 presents the number of crevasses detected with segment length of 2 from
0 to 14. Thus, from the table the absence of crevasses in benign lesions presents around
40% compared to malignant melanoma where only 6% without any crevasse are de-
tected. Even if the crevasses exist in benign melanoma, in average, there are more in
malignant than benign ones. In the other side, melanoma cases contain more crevasses
with around 23% against 6% for benign lesion when N(c) > 5. From this table, the

conclusion is that benign lesions contains less crevasses than malignant cases.

The two tables (5.12 and 5.13) describe perfectly the idea of border irregularity of
ABCD rule with more deep analysis and study. The introduction of the two concepts
(valleys and crevasses) as first and second level of border irregularity feature increases

the detection and helps more the understanding of the feature itself.
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Table 5.13: Number of detected area in equidistant segments using second level of
irregularity (horizontal [ vertical). Crevasse geometrical forms

RO malignant melanoma | benign melanoma (67
(99 images) images)

0 sets 6 (~ 6.1%) 27 (= 40.3%)

[1-2] 38(~ 38.4%) 24 (= 47.1%)

[3-4] 26 (=~ 26.3%) 12 (= 17.9%)

[5-6] 12(~ 12.1%) 2 (= 3%)

[7-8] 7(= 7.1%) 1 (~1.5%)

[9-10] 7 (=~ 7.1%) 1 (~ 1.5%)

[11-12] 1 (=~ 1%) 0 (=~ 0%)

[12-...] 2 (=~ 2%) 0 (=~ 0%)

To improve these statistical analysis results, the size of the detected valleys and
crevasses using different thresholds to discriminate better the benign and malignant le-
sions is added, as explained in section 4.3.3 and summarized by equation (4.31). There-
fore, a machine learning via SVM training and classifier are applied on the feature set

obtained. The obtained results are presented in subsection below (subsection:5.5.2.2).

5.5.2.2  SVM classification on border irregularity features

Support Vector Machine (SVM) classifier is used on a database of 166 skin lesions im-
ages (67 benign lesions and 99 malignant melanoma), it is applied on different integer
values of the threshold 7, (7, € [0, 100]) as given in equation (4.31). The other threshold
7. mentioned in the equation is fixed empirically to 2.5. This choice reduces consider-
ably the complexity of the algorithm and time running. Thus, the features extracted are
used as input for the SVM classifier with linear kernel following 70% (69 malignant,
45 benign) for the training and 30% (30 malignant, 22 benign) for the test. Table 5.14
shows different results for 7, € (0,10, 20, 30, 40, 50, 60, 70,80, 90) adding to that the

optimum value of 7, showing the best results.
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Table 5.14: Result of SVM classifier using the extracted features following the different
values of the threshold 7,,.

T sensitivity specificity accuracy
0 73.33% 72.73% 73.08%
10 60% 95.45% 75%

19 80% 95.45% 86.54%
20 80% 90.91% 84.61%
30 86.67% 77.27% 82.69%
40 80% 68.18% 75%

50 86.67% 68.18% 78.85%
60 83.33% 72.73% 78.85%
70 86.67% 72.73% 80.77%
80 83.33% 81.82% 82.69%
90 86.67% 63.64% 76.92%

Table 5.14 presents the results of classification using different thresholds 7,. The
results are performed following three performance metrics which are accuracy (acc),

sensitivity (sen) and specificity (spe).

The result shows a maximum of accuracy of 86.54% given by 7, = 19 with sensitiv-
ity of 95.45% and specificity of 80%. it can be seen from this table that the good result
of the sensitivity for big values of 7, i.e more than 83% for all 7, > 50. The opposite
is seen for the specificity where it gives irregular values when 7 > 50, from 68.18% to

81.82%.

For the threshold 7 = 0 (Table 5.14), more than 72% of sensitivity, specificity and
accuracy performances are obtained. This result represents the information extracted
from border features by the proposed method and the effect of these new concepts

introduced in this work (valleys and crevasses).
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5.5.2.3 Standard image view contribution

The normalization of the database is one of the keys contributing to result improving
of the method proposed. It shows the impact of making all images in the same view.

However the choice of horizontal, vertical or oblique view has no any effect.

Figure 5.15 shows the effect of preprocessing step. The intermediate contribution
of the standard view presented in section 4.3.3.1 using the same training and test sets
on SVM classifier. The graph illustrates the accuracy performance of the same database
between the original orientation and the proposed standard view. Therefore, from the
graph it can be seen easily that the accuracy for all thresholds (from 0 to 100), shows
greater results in standard view than the original images. The maximum of accuracy in

original is only 78.85% compared to standard view images which is 86.54%.

1':":' T T T T T T T T T
standard images
Criginal images

80

80 - -

Accuracy (%)

all]

a0

40

a0

20

10

40

&0

B0

Figure 5.15: Accuracy of standard view and original images using border features pre-
sented in the current method. blue (up) : proposed standard view images, red (down):
Original images.
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5.5.2.4 Comparison with existing methods

In this subsection, the obtained results are compared with the method used by Amelard
et al. [105] (2014). Using the same database from dermQuest [5] and Dermls [4], our
results outperforms significantly those presented by Amelard et al. as shown in Table
5.15 with an accuracy of 86.26% obtained by the proposed method to an accuracy of
81.26% obtained by Amerald et al.

In addition to that, as mentioned above, a preprocessing of the database is also done
to clean all the redundant images as illustrated by figure 5.4 where the same image were

acquired at different distance.

Table 5.15: Comparison of the obtained result with the existing method using the same
database.

Method Approach used Accuracy

[llumination correction algorithm quantifying
Amelrd et

asymmetry and border irregularities character- | 81.26%
al. [105] (2014)

istics.

Border irregularity features on standard view
Proposed method 86.54%
images

Thus, by the proposed method, the border of pigment lesions is studied to discrimi-
nate the malignant and benign lesions on standard camera images. Therefore, the border
irregularity of each pigment are deeply explored. In the literature, most of methods stud-
ied the irregularities following the two axis x and y giving some score as used in ABCD
rule. The proposed method extracts a small set of features containing 8 irregularity bor-
der features. The obtained results are encouraging and showing higher performances

comparing to the literature on the same database.

To conclude, in the current work, two ideas are proposed and explored. Firstly, the
introduction of valleys and crevasses concepts for the irregularity of lesion borders, and

secondly the standard view of the whole database with its impact on the result as it
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presented and illustrated in figure 5.15, where the standard view results is compared
with the image original randomly acquired. The implementation of these two ideas
shows an accuracy of 86.45% compared to amelard et al. [105] where the authors used

illumination, asymmetry and border irregularities and obtained only 81.26%.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

In this chapter, all research works presented in this thesis are summarized in section
6.1, where the objectives enumerated in section 1.5. Then, The limitations of presented

methods and their perspectives are introduced and discussed in section 6.2.

6.1 Conclusion

The main aim of this PhD work is to propose a mathematical methods to automate the
detection of skin cancer. The main issue of this thesis is to treat the different output
images in skin cancer. Therefore, in the current work, the majority of image category
acquisition, which are standard camera images and dermoscopy images, are treated to
improve the CAD system for skin cancer. The work is separated into two parts following

these two categories of input images.

In the current work, two main tasks were treated, firstly the development of an
adapted segmentation for skin lesions, and secondly the classification of lesions into
malignant and benign cases using a sets of discriminative features. This second part is

also divided into two distinguished methods depending on the input image.

6.1.1 Part I: Segmentation method

In this part, the research on the segmentation of skin lesion is focused on the develop-

ment of new approach of skin lesion segmentation based on Chan and Vese Model. It
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has the particularity to segment the the random development of melanoma lesion. This
approach is applied and evaluated on skin cancer coming from standard camera images
given in Dermls and DermQuest databases. One of Chan and Vese model particularities
is its high sensibility to different edges and colors. The skin cancer is recognized prin-
cipally by sets of rules defined by dermatologists and researchers which are ABCD rule
and 7-point checklist. Our proposed approach can be considered as a specialization in
one side and a generalization in other side of Chan and Vese model. Therefore, a choice
of one specific combination treats the segmentation deeply compared to the original
Chan and Vese model. In the second view, all the combination of Chan and Vese model

are treated in the current approach.

The approach is evaluated using the subjective evaluation method. The results ob-
tained shows a high performance of the proposed method for the used database. Al-
though, a Jaccard index method could be applied to evaluate the proposed method.
However, the ground truth given for these images shows only the whole lesion and not
the specific level lesions basing on the color and intermediary borders. The method an-
swered to the first objective of adaptive segmentation. However, it is not fully automatic

due to the manual fixed parameters of the original method.

The main contribution of the proposed approach is more theoretical, and it can be
applied on other kind of images. Therefore, it explains the generalization of the model

for different more cases than the original model.

6.1.2 Part II: Feature extraction

This second part summarizes the two methods developed to extract the main features of
skin lesions for their classification into benign and malignant lesion. Firstly, the border
irregularities of lesions applied on standard camera images is explored. Secondly, a
new descriptor based on a mixture of structural and textural features is developed. This

second approach was applied on dermoscopy images from the free database PH2.
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1. The first method of feature extraction is based on different combinations of struc-
tural and textural features to select the best discriminative set for the classifica-
tion of benign and malignant lesions. Therefore, for structural features, a multi-
resolution analysis was explored using wavelet and curvelet transforms. While,
the textural features are extracted using local binary pattern operator. The method
was also cross validated by n—random sampling cross validation using 1000 ran-
dom combinations. The method highlights the performances of three skin lesions
sets from PH? database, which are common nevus, atypical nevus and melanoma.
The results obtained show a higher performances in term of accuracy, sensitiv-
ity and specificity in case of wavelet-local binary uniform pattern fusion. This
method is answering to the second objective of feature extraction based on the

the fusion of structural and textural features.

2. The second method of feature extraction is based on the border irregularities be-
havior. The method explored a new concept of border representation, where two
kinds of features are extracted from the border, which are valleys and crevasses
geometrical forms. These two new concepts can considered as first and second
level of lesion border irregularities. These features are learned by SVM classifier
with linear kernel. The results obtained show a higher performances of classifi-
cation compared to the literature’s results using the same database. This idea of
characterization of border could be implemented in a typical flow of ABCD rule
method, it represents more variability than the method based on eight segments
from the border used currently in ABCD rule. The challenge fixed in the third
objective , which is the exploration of the border irregularities in formation of;, is

achieved.

A comparison of these methods with previous work in the literature are highlighted
and discussed in the last chapter. All details of proposed methods are explained as
suggested in the literature. In addition to that, for all methods proposed, only the free
benchmark databases, which are Dermls and DermQuest for standard camera images

and PH? for dermoscopy images, are used.
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6.2 Future directions

Despite the several developed approaches, to our knowledge, there is no CAD system
available for medical doctors that can perfectly discriminate melanoma. Thus, there
is a need to explore new directions in skin cancer detection using images processing.
Therefore, the main directions for further work can be itemized in general and specified

perspectives. The specified ones include:

e Minimization of the segmentation proposed for the extension of Chan and Vese
model expressed by equation (4.12) using random forest or gradient descent meth-
ods. This perspective is one of the main directions of the current work. It present

a new view of segmentation in image processing.

e The automation of all parameters of Chan and Vese model and its generalizations.
This issue makes the segmentation using this method very difficult for non-image
processing experts. Therefore, the artificial neural network such as Conventional

Neural Network which could be a good compromise method to resolve this issue.

The general perspectives includes some main points about the methodology of work

in skin cancer detection domain, such as:

e A systematic validation of all obtained results. We highlighted this point in the
fusion of structural and textural features. Thus, it allows for the future work the
more visibility for the best direction of research. It increases also the efficiently

of results comparison.

e The highlighting of proposed and explored methods in public free database in ad-
dition to their private databases such as PH? and ISIC (International Skin Images
Collaboration in process) databases to easily validate the comparison between

methods.
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Titre : Segmentation et Détection du Cancer de la Peau en Utilisant la Variation Totale et I’ Analyse

Multi-résolution
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Résumé : Les déces du cancer de la peau sont
majoritairement des mélanomes malins. Il est
considéré comme ['un des plus dangereux
cancer. A ses débuts, les mélanomes malins sont
traités avec des simples biopsies et sont
complétement curable. Pour cela, une détection
précoce est la meilleure solution pour réduire
ses conséquences  désastreuses.  Imagerie
médicale telle que la dermoscopie et les
caméras a images standard sont les outils
disponibles les plus adaptées pour diagnostiquer
précocement les mélanomes. Le diagnostic
assisté par ordinateur (CAD) est développé dans
le but d’accompagner les radiologistes dans la
détection et le diagnostic.

Cependant, il y a un besoin d’améliorer la
précision de la segmentation et de détection des
lésions. Dans ce travail, le modele de Chan et
Vese a été adapté pour segmenter davantage les
variations a I’intérieur des Ilésions avec un
résultat trés encouragent. La deuxiéme tache
consiste a extraire des caractéristiques afin de
discriminer les mélanomes. Deux méthodes ont
été développée, une se basant sur I’irrégularité
des bords des 1ésions et 1’autre par la fusion des
caractéristiques texturales et structurelles. Les
résultats ont montrés de bonnes performances
avec une précision de 86.54% et de 86.07%,
respectivement.

Title : Skin Cancer Segmentation and Detection Using Total Variation and Mutiresolution Analysis

Keywords : Segmentation, Detection, Total Variation, Multiresolutional Analysis, medical imaging

Abstract : The vast majority of skin cancer
deaths are due to malignant melanoma. It is
considered as one of the most dangerous
cancers. In its early stages, malignant
melanoma is completely curable with a simple
biopsy. Therefore, an early detection is the best
solution to improve skin cancer prognostic.
Medical imaging such as dermoscopy and
standard camera images are the most suitable
tools available to diagnose melanoma at early
stages. To help radiologists in the diagnosis of
melanoma cases, there is a strong need to
develop computer aided diagnosis (CAD)
systems. The accurate segmentation and
classification of pigment skin lesions still
remains a challenging task due to the various
colors and structures developed randomly
inside the lesions. The current work focused on
two main tasks. In the first task, a new
approach of the segmentation of skin lesions
based on Chan and Vese model is developed.
The model is adapted to segment the variations
of the pigment inside the lesion and not only
the main border. The subjective evaluation,
applied on a database of standard camera
images, obtained a very encouraging results

with 97.62% of true detection rate. In the
second main task, two feature extraction
methods were developed for the analysis of
standard camera and dermoscopy images. The
method developed for the standard camera skin
cancer images is based on border irregularities,
introducing two new concepts, which are
valleys and crevasses as first and second level
of the border irregularity. The method has been
implemented on Dermls and DermQues, two
databases of standard camera images, and
achieved an accuracy of 86.54% with a
sensitivity of 80% and a specificity of 95.45%.
The second method consisted of a fusion of
structural and textural features. The structural
features were extracted from wavelet and
curvelet coefficients, while the textural features
were obtained from the local binary pattern
operator. The method has been implemented on
the PH2 database for dermoscopy images with
1000-random sampling cross validation. The
obtained results achieved an accuracy, a
sensitivity and a specificity of 86:07%, 78.93%
and 93.25%. Compared to the existing
methods, the proposed methods in this work
show very good performances.
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