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8 Notations et abréviations

Notations et abréviations

EDO Équation di�érentielle ordinaire

EDP Équation au dérivées partielles

R Corps des réels.

R≥0 Ensemble des nombres réels positifs.

Rn Espace vectoriel de dimension n.

‖.‖n Norme euclidienne sur Rn.

C0(E,F ) Ensemble des fonctions continues de E dans F.

Ck(E,F ) Ensemble des fonctions de classe k de E dans F.

X et Y Deux espaces de Banach.

‖.‖X , ‖.‖Y Normes des espaces X et Y .

[0, T ] Intervalle du temps T > 0.

Lp(Ω) Ensemble des fonctions de Ω −→ R tel que f est mesu-

rable et
∫

Ω
|f(x)|pdx < +∞.

LP (0, T ;X) Espace des fonctions f fortement mesurables sur ]0, T [

à valeurs dans X.

L2 Désigne L2([0, 1])

∂t Désigne ∂
∂t
.

∂v Désigne ∂
∂v
.

∂2
v Désigne ∂2

∂v2
.

∂v∂x Désigne ∂2

∂v∂x
.

< Partie réelle.

= Partie imaginaire.
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L (m) Longueur de train de tiges

I (kg.m) Inertie par unité de longueur

Ib ( kg.m2) Inertie de l'outil

J (m4) Moment d'inertie géométrique

G (N.m−2) Module de cisaillement

ca (Nm.s.rad−1) Coe�cient de couple de glissement

ρ1 (kg.m−3) Densité de la boue de forage

ρ3 (kg.m−3) Densité autour de l'espace annulaire

ca (N.m.s.rad) Coe�cient de couple de glissement

M (kg.m−4) Densité intégrée par section

β (bar) Module de compressibilité de la boue

V0 ( m3) Volume initial dans la couronne

g (ms−2) Direction de la gravité

S (m2) Surface annulaire

d Coe�cient d'amortissement autour de l'espace annulaire

Ω(t) Loi de contrôle

U(t) Loi de contrôle

cb Coe�cient d'amortissement visqueux au niveau de l'ou-

til
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Chapitre 1

Introduction générale

Introduction
L'étude de la stabilisation et de la stabilité des systèmes a fait l'objet au cours des

derniers siècles d'un très large développement dans la qualité des résultats ainsi que leurs

applications [77, 31, 9, 71, 78]. Plusieurs de ces résultats concernent les systèmes à pa-

ramètres localisés : systèmes décrits mathématiquement par des équations di�érentielles

ordinaires (EDO) linéaires ou non linéaires. En réalité, un grand nombre de systèmes sont

tels que les variables caractéristiques sont des fonctions de la variable d'espace : ce sont

les systèmes à paramètres répartis ou distribués. Sur le plan mathématique, ce type de

systèmes est régi par des équations aux dérivées partielles (EDP) ou intégrales ou inté-

grodi�érentielles. L'étude même de l'existence et de l'unicité des solutions de ces systèmes

pose de nombreux problèmes. Par ailleurs, l'étude de la stabilité des systèmes est basée

sur leur comportement asymptotique au voisinage de l'in�ni. D'autre part, la stabilisa-

tion est une notion qui consiste à assurer, en boucle fermée, des objectifs de stabilité, de

régulation, ... etc.

Dans la littérature, plusieurs chercheurs ont étudié la stabilité et la stabilisation de sys-

tèmes linéaires et non linéaires. En ce qui concerne les systèmes linéaires, de nombreuses

approches performantes permettent de construire un tel contrôle. En e�et, la stabilité

au sens de Lyapunov est bien développée pour les systèmes linéaires. Par contre, la sta-

bilisation des systèmes dynamiques non linéaires reste encore largement inconnue dans

11



12 Chapitre 1. Introduction générale

l'industrie, bien que des méthodes de linéarisation permettent d'obtenir dans certains cas

de bons résultats. Dans le domaine des systèmes non linéaires, les outils d'analyse de

la stabilité sont relativement peu nombreux. Le plus fameux d'entre eux est la fonction

de Lyapunov introduite par le mathématicien russe Alexander Lyapunov au dix-huitième

siècle. Autour de cette technique, s'est développée une théorie qui porte aujourd'hui le

nom de son illustre fondateur "Théorie de Lyapunov". C'est grâce à ces fonctions de

Lyapunov que nous allons mener l'étude de la stabilisation des systèmes non linéaires.

Historiquement, les problèmes associés à des systèmes contrôlés n'étaient abordés que

sous un aspect asymptotique, c'est-à-dire au bout d'un temps su�samment important.

Nous pouvons également étudier le cas de la convergence exponentielle garantissant un

"taux de convergence". Cependant, les conditions d'obtention de la convergence exponen-

tielle sont, en général, di�ciles à obtenir pour des systèmes non linéaires. Au vue d'une

application, il est important de pouvoir préciser des performances de convergence, c'est

à-dire de faire en sorte que le processus physique considéré rejoigne en un temps spéci�é

une consigne ou une trajectoire souhaitée.

Le présent manuscrit a pour objectif d'étudier le système de forage rotary. En e�et, dans

le cas du forage pétrolier, la tige du forage est soumise à une forte torsion (représentée

par une EDP). Par conséquent, des vibrations type "stick-slip" peuvent être ressenties

sur la tige et sur le porteur de la tête. Celles-ci engendrent, si elles ne sont pas contrôlées,

la perte de la tête et la détérioration de l'ensemble du système. Cette thèse aborde les

dé�s de contrôle au sein du forage pour l'industrie. Le forage comporte certains risques et

erreurs qui peuvent avoir des conséquences désastreuses pour les personnes et sur le plan

économique. L'automatisation des systèmes de forage permet de percer des trous di�ciles

(puits) et d'améliorer l'e�cacité du forage et de sécurité globale. Les systèmes de forage

ont traditionnellement été abordés manuellement. Néanmoins, le potentiel de gain écono-

mique incite à l'introduction du contrôle automatique fournissant une amélioration des

performances et une réduction du temps de forage. Un exemple de forage automatisé est

le contrôle automatique de la pression au fond du trou. Gérer la pression via une glissière

est une méthode relative pour le forage nécessitant une régularisation de pression précise.
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Contribution de la thèse

Le but de cette thèse est d'apporter une contribution dans les domaines suivants :

stabilisation des équations aux dérivées partielles (EDP), stabilisation des équations dif-

férentielles ordinaires (EDO), connexion entre les EDO et les EDP, et en�n stabilisation

d'observateur du système EDP. Nous nous intéressons particulièrement au système de

forage rotary comme application et à l'interconnexion entre ce système et le système

de �uide injecté. La dynamique du premier système est régie par une équation aux déri-

vées partielles. Le deuxième système est décrit par une équation di�érentielle ordinaire du

premier ordre fortement non linéaire. Le travail réalisé a pour but d'étudier le problème

généré par la présence des frottements secs connus et que l'on appelle plus fréquemment

le phénomène de "stick-slip" ou encore la "collé-glissé". Pour cela, une modélisation, puis

des propositions de lois de contrôle atténuant cet e�et sont données. La contribution de

la thèse comporte alors trois parties importantes :

i) Partie I : Vibrations de torsion : modèle de dimension in�nie (EDP) : stabiliser le

phénomène dit 'stick-slip' en présence d'un phénomène largement négligé lié à la

dynamique du lubri�ant. Le lubri�ant peut entrainer le bouchage au fond du trou

par conséquent à l'accroissement des vibrations.

ii) Partie II : Modèle couplé décrivant les vibrations de torsion et la dynamique de

la boue : élaborer une commande qui couple le modèle de vibration de torsion et

celui du déplacement des trains de tiges.

iii) Partie III : Vibrations de torsion : estimateur de dimension in�nie d'observation :

construire une loi de contrôle pour l'observateur du système de forage rotary avec

une seule mesure aux limites dans le haut de la colonne pour estimer les paramètres

de l'outil de forage qui ne sont pas accessibles pour être mesurés.

Organisation de la thèse

Cette thèse est subdivisée en trois parties. Outre la première partie, le présent chapitre

d'introduction générale, les autres chapitres sont organisés de la manière suivante :

Le chapitre 2 présente, d'un point de vue général, les di�érentes caractéristiques du sys-

tème de forage rotary. Nous présentons tous les principes fondamentaux sur lesquels
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reposent la synthèse de forage rotary, la modélisation et les paramètres du système de

forage, la réduction des vibrations, les di�érents types de vibrations existantes et précisé-

ment les vibrations de torsions étant décrites.

Le chapitre 3 est consacré à l'étude de la stabilisation d'équations aux dérivées partielles

de type ondes avec terme d'amortissement. La synthèse de contrôle permettant d'étudier

la stabilité du système de forage rotary par deux méthodes di�érentes, dont une construite

à l'aide de la transformation backstepping et la théorie de Lyapunov.

Le chapitre 4 présente la modélisation du système de forage, à savoir, la partie hydraulique

et la partie mécanique et l'étude de la stabilité du système obtenu. Il s'agit de trouver des

lois de contrôle qui résolvent le problème de stabilisation posé. D'une part, si la vitesse

de rotation est constante, le modèle obtenu est un système d'équations di�érentielles non

linéaires de dimension cinq. D'autre part, si la vitesse de rotation n'est pas constante, le

modèle obtenu est un système d'équations di�érentielles non linéaires de dimension six.

En plus du résultat théorique, nous présentons à la �n de ce chapitre une illustration

numérique, de l'un de ces deux modèles.

Nous traitons, dans le chapitre 5, une connexion entre le système de forage rotary et le

système du �uide. Nous obtenons un système couplé sous la forme Équation aux Dérivées

Partielles- Équation Di�érentielles Ordinaires (EDP-EDO). L'idée principale dans ce cha-

pitre est d'étudier la stabilité. Également nous avons transformé le système couplé à un

système neutre avec retard. Nous achevons ce chapitre par le résultat de simulation pour

le système de type neutre.

Dans le chapitre 6, nous présentons un modèle d'observateur adaptatif pour une équation

au dérivées partielles de second ordre avec le terme d'amortissement généralement négligé.

La conception repose sur la construction d'une fonction de Lyapunov et à l'aide de la tech-

nique du backstepping, nous développons un contrôle basé observateur pour cette EDP.

Nous montrons la stabilité exponentielle des vibrations du puits partiellement équipé du

système de forage. Les résultats de la simulation con�rment l'e�cacité de contrôle basé

observateur de l'EDP proposé.

Une conclusion, les perspectives et quelques annexes contenant des compléments de dé�-

nitions, et une bibliographie complètent ce document.
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Chapitre 2

Principe et modélisation d'un système

de forage rotary

Au cours des cinquante dernières années, des recherches approfondies ont été menées

sur le sujet de vibrations de torsion pour les systèmes de forage pétrolier. Ces vibrations de

torsion entraînent une détérioration des performances de la tige de forage. Elles peuvent

conduire à une défaillance prématurée des outils, des moteurs et des autres composants

coûteux utilisés dans les opérations de forage.

Une des principales raisons des vibrations de torsion est le phénomène de "stick-slip". Le

phénomène est caractérisé par des phases bâton "stick", où la rotation vient à un arrêt

complet, et des phases de glissement "slip" où la vitesse angulaire de l'outil augmente

jusqu'à trois fois sa valeur nominale. Ce mouvement indésirable de l'outil entraînera non

seulement une usure indésirable, mais il réduit aussi le taux de pénétration (ROP), ce

constitue est une considération �nancière importante pour les opérations de forage.
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Figure 2.1 � Forage pétrolier en mer

2.1 Système de forage rotary
Les puits de production de gaz et de pétrole sont réalisés à l'aide d'un système de

forage rotary. La rotation, générée depuis la surface par la table de rotation, est transmise

jusqu'au fond du puits (pétrole ou gaz) par l'intermédiaire des trains de tiges. Les copeaux

générés lors de la destruction de la roche par l'outil sont évacués à la surface par la

circulation d'un �uide de forage (boue ou air comprimé).

Les di�érents types de vibrations des garnitures de forage jouent un rôle important dans les

dysfonctionnements des opérations de forage car elles conduisent à la rupture prématurée

du train de tige, à l'endommagement de certains de leurs composants (par exemple le

trépan) et à la baisse globale des performances de forage. Les vibrations des trains de tiges

sont décrites en termes de déplacement entre l'outil (le trépan) et la table de rotation. Il

existe trois types de vibrations : vibrations de torsion, vibrations latérales ou de �exion

et vibrations axiales.

2.1.1 Principe de forage rotary

A�n d'accéder directement à la poche contenant les hydrocarbures tels que le pétrole

ou le gaz naturel, les foreurs vont devoir réaliser un trou de forage. Il y a plus de 4000

ans, les Chinois foraient déjà les premiers puits à l'aide d'une tige de bambou : la pointe
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cognait la terre et perçait le sol. Cette technique consiste à soulever un outil très lourd

et le laisser retomber sur la roche à perforer en chute libre. Elle est utilisée pendant des

siècles avec quelques modi�cations sur les outils (Fig. 2.2).

Figure 2.2 � Forage à la terre manuel

Actuellement, la méthode de forage utilisée est celle du Rotary, bien plus rapide et e�cace.

Cette méthode consiste tout d'abord à mettre en place un appareil de forage. Celui-ci est

très cher, coûtant trois millions d'euros en moyenne.

Les procédés de forage rotary sont des mécanismes qui jouent un rôle important dans

l'extraction de pétrole ou du gaz. La technique de forage rotary consiste à mettre en

rotation un outil (appelé trépan) sur lequel on applique une force orientée dans le sens

d'avancement souhaité. Une pompe hydraulique assure la circulation du �uide qui transite

par le train de tige, et remonte par l'espace annulaire qui permet l'évacuation des déblais

vers la surface.

2.1.2 Extraction des hydrocarbures

L'extraction pétrolière ou gazière, que ce soit en mer ou sur terre, nécessite un pro-

cessus de forage pour extraire la matière et parvenir aux réservoirs d'hydrocarbures. La

production pétrolière dans un bassin d'hydrocarbures impose de connecter les réservoirs

à la surface par des canaux reliés à des systèmes de pompage comme le montre la �gure
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(Fig.2.3).

Installation marine (o�shore) Installation sur terre (onshore)

Transfert des hydrocarbures Système de pompage

Figure 2.3 � Di�érentes phases pour l'extraction des hydrocarbures

L'acheminement de l'exploration des hydrocarbures passe par le fonctionnement d'un

processus de forage dont le plus connu dans l'industrie pétrolière ou gazière, s'intitule :

"système de forage rotary".

Le système rotary comprend une tête d'injection, une tige d'entraînement qui passe à

travers une table de rotation et qui est reliée à un train de tige (ou une colonne de forage)

et en bout de colonne un outil de forage (trépan) creusant le sol. La tige d'entraînement,

et de fait la colonne de forage, et l'outil de forage, tous subissent une rotation via la table

de rotation et une section angulaire de la colonne qui se trouve au niveau de la table,

ou bien si la table n'est pas le moyen de rotation de la machine de forage, via la tête

d'injection qui sert également à l'entraînement de la colonne (Fig.2.4).

La progression de forage requiert la circulation continue et en boucle fermée d'un �uide

dont le but consiste à évacuer les déblais vers la surface. La nécessité de rechercher des

gisements d'hydrocarbures dans des milieux de plus en plus profonds conduit à forer des
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Figure 2.4 � Plateforme de forage [1]

puits qui s'étalent sur plus de cinq kilomètres dans le sol. Cela rend graduel le forage

durant lequel plusieurs phases, séparées par la remontée à la surface de la garniture, sont

nécessaires. Ces étapes ont pour but de favoriser la maintenance du processus et d'ef-

fectuer le tubage et la cimentation de la partie forée. Lorsque les poches contenant les

hydrocarbures sont atteintes, les gazoducs sont installés a�n d'extraire le pétrole ou le

gaz vers la surface.

2.2 Phénomène "stick-slip" en forage

Stick-slip est un phénomène qui apparaît lorsque deux surfaces glissent en contact

l'une avec l'autre, et les surfaces alternent entre collage et glissement. Cela entraînera

un changement de la force de frottement, puisque le frottement statique est généralement

plus grand que le cinétique. À titre d'exemple, il peut être considéré comme un objet situé

sur une surface plane. Si la force appliquée à l'objet est su�samment grande du fait du

frottement statique, la réduction du frottement cinétique peut provoquer un saut brusque
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de la vitesse depuis l'arrêt. S'il existe une certaine élasticité entre la source de la force et

le point où le frottement agit, le système peut avoir une fréquence spéci�que et alterner

entre les phénomènes de collage et de glissement.

Le phénomène du stick-slip est présent dans de nombreux di�érents contextes de notre

vie quotidienne ; certains d'entre eux seront présentés ici.

2.2.1 Exemple 1 : la langouste

Le phénomène du stick-slip est également présent dans la nature, et la langouste

(Panulirus Argus) peut-être un tel exemple [64]. Le homard pro�te du phénomène de

stick-slip quand il produit un son fort et un abrasif pour e�rayer les prédateurs. En

frottant un plectre (une extension basale sur l'antenne du tissu élastique souple) sur des

bardeaux microscopiques sur un �chier (situé sous ses yeux), le homard produit des sons

à haute fréquence à l'aide du mécanisme de stick-slip. L'énergie est stockée dans le tissu

souple et élastique du plectre pendant la phase bâton "stick", puis libérée pendant la phase

de glissement, une impulsion sonore est ensuite générée chaque fois que les deux surfaces

glissent. Le homard peut e�cacement e�rayer les prédateurs en utilisant le phénomène

du stick-slip pendant le cycle de la mue quand leur exo-squelette est doux.

Figure 2.5 � Le homard épineux
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2.2.2 Exemple 2 : séismes tectoniques

Une autre situation dans la nature où les vibrations de stick-slip peuvent être remar-

quables quand il existe des tremblements de terre. La dure enveloppe externe de la terre

est actuellement divisée en huit plaques majeures, et de nombreuses plaques mineures.

Un tremblement de terre tectonique est causé par une libération soudaine d'énergie dans

la croûte terrestre qui crée des ondes sismiques. L'énergie est libérée à la suite d'un glisse-

ment soudain lors d'un contact entre deux plaques. Comme les plaques ont des aspérités

le long de leurs limites, elles auront tendance à coller où se bloquer l'un à l'autre comme

ils se déplacent. Le mouvement relatif continu entre les plaques entraînera une contrainte

croissante et une force accumulée lorsque les plaques se déforment élastiquement. Lorsque

la force est su�sante pour que les plaques se détachent, l'énergie stockée est libérée sous

forme d'ondes sismiques qui font vibrer le sol. Les plaques �niront par se coller et se blo-

quer à nouveau dans un comportement stick-slip et encore plus de tremblements de terre

se produiront au �l du temps.

Figure 2.6 � Stick-slip peut causer de grands dégâts lors de la génération de tremblements
de terre

2.3 Paramètres de forage
Les paramètres de forage sont les di�érents facteurs mécaniques et hydrauliques (les

grandeurs physiques) agissant sur la vitesse de progression �Rate of Penetration� (Le

ROP correspond à la profondeur forée par heure (mètres /heures). ). L'optimisation de la
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vitesse de progression est un aspect très important dans l'analyse du processus de forage

car c'est directement lié au temps passé sur une installation sur terre ou marine.

Figure 2.7 � Schéma d'une structure de forage rotary [20].

2.3.1 Facteurs mécaniques

Les principaux paramètres mécaniques sont : la vitesse de rotation, le poids sur l'outil

et le couple exercé sur l'outil.

La vitesse de rotation. Le choix de la vitesse de rotation dépend de celle du poids

sur l'outil (WOB). En surface, elle peut être contrôlée mais elle peut être di�érente de la

vitesse de rotation de l'outil (trépan).

Les vitesses de rotation usuelles s'étendent entre 60 et 250 (tours/min).

Le poids sur l'outil WOB (Weight on Bit). Le WOB désigne la force appliquée par

la garniture de forage sur l'outil suivant son axe de rotation. Cette force dépend du poids

de la garniture de forage, et de la tension du câble de soutien de la garniture.
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Les grandeurs usuelles de WOB s'étendent entre 10kN et 103kN .

Le couple exercé sur l'outil TTOB (Torque On Bit). Le couple exercé sur l'outil

correspond au couple transmis par la garniture au trépan suivant la révolution de son axe

de rotation. Compte tenu des frottements des trains de tiges contre la paroi du puits de

gaz ou du pétrole, ce couple est nettement inférieur à celui mesuré en surface. Le couple

TTOB représente les e�ets combinés du couple réactif et des forces des frottement non

linéaires sur la longueur du BHA (Bottom Hole Assembly).

La valeur du couple en surface varie typiquement entre 200 et 3000 Kg.m.

2.3.2 Facteurs hydrauliques

L'opération de forage se réalise en présence d'un système de la lubri�cation se trouvant

à la surface et gérer par un système hydraulique.

Fluide de forage. Le type de boue de forage est choisi en fonction des performances

recherchées et désigne les propriétés physico-chimiques du �uide de forage. Trois types

de boues sont souvent employés : la boue à base d'eau, (Water Based Mud), la boue à

base d'huile (Oil Based Mud) et la boue synthétique (Synthetic Based Mud). Une boue

synthétique est constituée d'un mélange d'additifs chimiques et d'eau. ·

Pression et débit hydraulique. Le problème d'évacuation des déblais ne dépend pas

uniquement des propriétés du �uide et du débit qui lui sont imposés, mais la surface de

la colonne d'évacuation et les pertes sont d'autres facteurs à prendre en compte. Le �uide

(boues ayant une densité et une composition a�ectée au forage) dans un forage est un

élément clé, car il évacue les déblais qui s'accumulent au fond du trou, il stabilise les

parois du trou lorsque ce dernier est encore sans cuvelage (protection des constructions

situées en sous sol contre les pressions hydrostatiques horizontales) et en�n il peut aussi

lubri�er et refroidir l'outil en activité [22].

La perte du �uide mène habituellement à une diminution de la pression, ce qui peut poser

des problèmes majeurs au foreur. Nous nous intéressons au �uide en "circulation directe",

celui qui descend par les train de tiges. Le �uide en "circulation inverse" est celui qui

monte par l'espace annulaire.

La pression et le débit hydraulique représentent les variables physiques qui doivent favo-
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riser une bonne évacuation des déblais et éviter des problèmes d'encrassement du trépan

ou du puits.

Densité de la boue ρ. L'obtention des informations relatives au puits et particulière-

ment le contrôle de la pression dans le puits s'e�ectue à travers la densité de la boue.

La boue de forage ramène à la surface les déblais, mais aussi du gaz contenu dans les

roches. Cela fournit des indications sur la nature des �uides se situant dans le réservoir

et représente un élément important dans le pilotage de la garniture.

2.3.3 Caractéristiques d'un outil de forage

L'élément destructeur de la roche (outil de forage) est très important dans la conduite

d'un forage. Le choix de l'outil de forage est dicté par les caractéristiques de la formation

rocheuse (dureté, nature) et par les conditions économiques de puits.

Une variété des outils (trépans) présentant des géométries spéci�ques existent. Les trépans

sont conçus pour forer une certaine gamme de roches et sont choisis en fonction des

puits à réaliser. Ils se catégorisent en deux grandes familles : les outils tricônes et les

outils monobloc de type PDC (Polycristallin Diamond Compact). Les outils tricônes sont

principalement composés d'acier ou de carbure de tungstène. Tandis que les monoblocs de

type PDC sont composés de diamants, ou de diamants synthétiques. La grande di�érence

entre ces deux familles de trépans réside dans leurs façons d'arracher la roche.

Outils tricônes. Les outils tricônes disposent de trois cônes rotatifs qui embarquent des

plaquettes de coupe conçues en fonction de la roche à forer. Ils peuvent être en carbure

de tungstène, en acier ou en diamant. L'arrachage de la roche s'e�ectue lorsque les cônes

e�ectuent des rotations autour de l'outil. Le principal mode de destruction de la roche, par

les taillant �xés sur les molettes, est le poinçonnement. Il se déroule par la progression

verticale du taillant dans la roche sous l'e�et d'un e�ort normal créant un champ de

contraintes au voisinage du taillant. Lorsque les limites à la rupture sont atteintes un

déblai se produit. Ce type d'outil est particulièrement adapté lorsque les roches à forer

présentent une forte dureté.
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Figure 2.8 � Trépan tricône et monobloc

Outils monobloc. La rotation du train de tiges entraîne celle de l'outil (trépan). Ces

outils se composent de diamant naturel ou synthétique brasé sur du carbure de tungstène.

Ils sont connus sous le nom PDC et détruisent la roche par cisaillement. Le cisaillement

caractérise l'opération durant laquelle les taillant pénètrent la roche dans un mouvement

parallèle à la surface de la roche et un déblai est obtenu dès que les limites à la rupture

sont atteintes. L'emplacement des pastilles dans ce type d'outil est primordial pour son

optimisation et présente une in�uence considérable sur l'équilibre de l'outil, sur la vitesse

de pénétration de la garniture ainsi que l'évacuation des déblais.

2.4 Vibrations lors d'un forage
Les vibrations d'un train de tiges peuvent être classées en trois catégories : axiales,

latérales et de torsion.

2.4.1 Vibration type latérale

Ce sont des vibrations pour lesquelles le mouvement se fait perpendiculairement à

l'axe des trains de tiges. Le phénomène de "précession" (whirl) peut se déclencher lorsque

l'amplitude de ces vibrations devient considérable. Le "whirl" se produit lorsque les tiges

voient leur centre s'écarter de l'axe du puits, et qu'en plus de tourner sur elles mêmes

(rotation propre), elles tournent autour du puits (précession).
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2.4.2 Vibration type axiale

Le mouvement se fait selon l'axe des train de tiges. Ces vibrations peuvent dégénérer

dans certaines conditions en "rebond de l'outil" (bit bounce). Il s'agit d'un phénomène de

rebonds successifs de l'outil de forage avec séparation périodique à l'interface outil-roche.

Le phénomène de bit bounce se manifeste préférentiellement lorsqu'il y a accord entre la

vitesse de rotation des trains de tiges et une fréquence propre axiale du train de tiges.

Le bit bounce peut engendrer le bouncing de surface, c'est à dire, l'entrée en résonance

du système de suspension de la garniture en surface provoquant ainsi un mouvement

alternatif en translation de forte amplitude.

2.4.3 Vibration type torsion

Les vibrations de torsion se manifestent sous la forme d'un phénomène d'adhérence

glissement s'appelle "stick-slip". Le phénomène de stick slip associé aux vibrations de tor-

sion provoque des arrêts cycliques de l'outil sur des périodes pouvant représenter jusqu'à

cinquante pour cent du temps de forage. Pendant ces périodes d'arrêt, les tiges, entraî-

nées en rotation depuis la surface, sont mises en torsion grâce à leur élasticité propre.

L'outil ne redémarrera que lorsque le couple au fond sera supérieur au couple de frotte-

ment statique. La détente des tiges provoque alors une forte accélération favorisée par le

fait que le couple de frottement dynamique est inférieur au couple statique. La vitesse

de rotation instantanée peut atteindre le triple, voire plus, de la vitesse de surface. Ceci

permet une relaxation de la garniture. Le couple au fond passe alors en dessous du couple

de frottement dynamique, ce qui arrête à nouveau la rotation de l'outil.

2.4.4 EDP hyperbolique retenue pour modéliser la torsion

Les équations di�érentielles régissant le mouvement pour le forage rotary sont dérivées

par l'analyse du bilan des forces. Le train de tige de longueur L est mis en rotation à partir

de la partie supérieure (ς = 0) et le trépan est situé au fond (partie inférieure) du trou de

forage (ς = L). L'angle de torsion du train de tiges à la distance ς à l'instant t est noté

par ϑ(t, ς). Ainsi, la dynamique de la variable de torsion est décrite par l'équation aux
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dérivées partielles hyperbolique à coe�cients constants suivante [11] :

GJ
∂2ϑ

∂ς2
(t, ς)− I ∂

2ϑ

∂t2
(t, ς)− d∂ϑ

∂t
(t, ς) = 0, ς ∈ (0, L), t ∈ (0,+∞)

à laquelle est associée des conditions aux limites.

On suppose que toutes les conditions aux limites sont situées sur les extrémités du train de

tiges et de ce fait, toutes les conditions se calculent à partir des forces qui s'exercent aux

frontières. L'assemblage au fond (BHA) représente la partie inférieure de la structure de

garniture de forage. Le BHA à l'extrémité inférieure du train de tiges est habituellement

modélisé comme une simple inertie Ib. D'une part, autour de l'axe du train de tiges le

BHA est soumis à un couple noté Toutil dû au train de tiges. D'autre part, le BHA est

soumis à un couple T (∂ϑ
∂t

(t, L)) qui tient compte du frottement causé par l'interaction de

l'outil avec le sol. Nous obtenons alors la condition aux limites inférieure traduisant la

dynamique de l'outil en ς = L

Ib
∂2ϑ

∂t2
(t, L) = −Toutil − T (

∂ϑ

∂t
(t, L))

Comme Toutil = GJ ∂ϑ
∂ς

(t, L), alors on obtient :

Ib
∂2ϑ

∂2t
(t, L) = −GJ ∂ϑ

∂ς
(t, L)− T (

∂ϑ

∂t
(t, L))

Le frottement dans le système de forage rotary constitue un phénomène très important.

Di�érentes expressions mathématiques sont présentées dans la littérature pour modéliser

ce phénomène qui peut s'avérer complexe [11, 10]. Par exemple, l'expression du modèle

T (∂ϑ
∂t

(t, L)) peut prendre la forme suivante :

T (
∂ϑ

∂t
(t, L)) = cb

∂ϑ

∂t
(t, L) +R(

∂ϑ

∂t
(t, L))

avec R(∂ϑ
∂t

(t, L)) représente le couple de frottement qui modélise l'interaction entre l'outil

et le sol.

On sait que les frottements entre l'outil et le sol dans un système de forage rotary s'ex-
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priment par une relation non linéaire entre le couple exercé par l'outil Toutil du à la table

en rotation et la réaction du sol. Alors, il existe une variété de conditions aux limites

de surface qui di�èrent suivant la complexité du problème et le degré de rigidité du sol.

Comme exemples, on peut présenter les deux cas récemment étudiés :

• Saldivar dans [11], étudie le cas où la vitesse non constante Ω de la table tournante

et le train de forage ne tournent pas exactement à la même vitesse. Par conséquent,

le couple est exprimé comme suit :

GJ
∂ϑ

∂ς
(t, 0) = ca(

∂ϑ

∂t
(t, 0)− Ω(t)) (2.1)

• Fridman dans [17], suppose que la variable de torsion ϑ(t, 0) à la surface peut être

contrôlée directement, soit

ϑ(t, 0) = U(t)

ou U(t) est la commande.

Dans cette thèse, nous nous sommes intéressés à la condition aux limites donnée par (2.1).

Le modèle d'étude dont la dynamique du train de tiges s'écrit :

GJ
∂2ϑ

∂ς2
(t, ς)− I ∂

2ϑ

∂t2
(t, ς)− d∂ϑ

∂t
(t, ς) = 0, ς ∈ (0, L), t ∈ (0,+∞)

dont les conditions aux limites sont de la forme

GJ
∂ϑ

∂ς
(t, 0) = ca(

∂ϑ

∂t
(t, 0)− Ω(t)) ς = 0

GJ
∂ϑ

∂ς
(t, L) + Ib

∂2ϑ

∂t2
(t, L) = −T (

∂ϑ

∂t
(t, L)) ς = L

C'est une équation aux dérivées partielles hyperbolique de second ordre linéaire. Les condi-

tions aux limites sont du types dynamiques. Notre étude sert à trouver la bonne vitesse

de rotation de la tige pour que le système soit stable à l'équilibre et supprimer les vi-

brations de torsion. En fait, l'instabilité provoquée par les vibrations de torsion provoque
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des imprécisions dimensionnelles des trous et peut endommager le système de forage, par

conséquent écrouler le puits.

2.5 Conclusion
Dans ce chapitre, nous avons présenté le système de forage rotary : son principe,

les éléments qui le composent ainsi que les di�érentes types de vibrations pouvant se

produire lors de la phase de forage. L'étude des instabilités vibratoires est complexe, en

particulier dans le cas du phénomène "stick-slip", qui peut se présenter sous plusieurs

formes, se produire dans de nombreux contextes de forage et entrer en interaction avec

d'autres modes vibratoires. L'ensemble des travaux présenté dans cette thèse ont pour

objet d'étudier ce phénomène et ses interactions. Au cours des chapitres suivants nous

nous attacherons à :

� la suppression des vibrations de torsion, avec le développement d'une commande

qui annule les vibrations de torsion, et permet par conséquent de stabiliser le

système.

� l'étudie de l'impact du �uide injecté sur le phénomène des vibrations de torsion :

le �uide de forage sert à stabiliser la pression au fond de puits pour leur éviter de

s'écrouler, et également lubri�er et refroidir les outils.

� l'analyse de paramètres mesurables et non mesurables (problème d'observateur) :

dans le modèle du système de forage rotary, il y a certains paramètres qui ne sont

pas mesurables. Donc il est utile de construire un observateur de dimension in�nie

à l'image de dimension du système.
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Chapitre 3

Contribution à la suppression du

phénomène dit "stick-slip"

3.1 Introduction

Pour étudier la stabilité des équations aux dérivées partielles (EDP), il existe deux

techniques principales : la première est celle de la solution exacte si cette solution est

facile d'être établie, la deuxième, qui est beaucoup plus générale, est celle de la théorie de

Lyapunov. Une solution exacte peut être obtenue en utilisant la méthode de séparation

de variable ou la technique de la transformée de Laplace. Dans la littérature, l'étude

de stabilité exponentielle des systèmes hyperboliques est bien décrite. En e�et, en dépit

du travail fait par Krstic et Smyshlyaev [40], Coron et d'autres [36, 60, 61, 12, 4, 3, 5,

14, 21, 24, 48], l'étude de stabilité des EDP demeure un champ d'investigation ouvert.

Dans [60], Coron et ses collaborateurs se sont intéressés au problème de la stabilité aux

frontières et à l'estimation d'états pour un système linéaire d'équations hyperboliques 2×2

de premier ordre avec coe�cients variables. Dans [35], les auteurs ont utilisé l'évolution

explicite des invariants de Riemann le long de la courbe caractéristique pour transformer

les équations d'ondes en un système quasi linéaire des équations 2 ×2 et aussi pour les

systèmes quasi linéaires n×n [76]. Nous pouvons nous référer aussi à [18, 19], dans laquelle,

existe une étude bien développée concernant le problème de la stabilisation aux frontières

et l'estimation d'état pour n + 1 systèmes de premier ordre d'équations hyperboliques

35
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linéaires avec des coe�cients variables ; l'étude est similaire à celle qui se trouve dans

[60]. Dans le présent chapitre on se restreindra à l'étude de la stabilité de l'équation

hyperbolique décrivant la dynamique de torsion.

Au cours du dernier siècle, de nombreuses recherches sur la modélisation et le contrôle des

systèmes de forages ont été réalisées. En 1960, Bailey et Finnie, de Shell Développement

Company sont les premiers qui ont développé une étude expérimentale et analytique sur

les vibrations axiales et celles des torsions [31]. Depuis lors, de nombreuses approches pour

la modélisation et le contrôle ont été proposées. La plupart des techniques de contrôles sont

les suivantes : système de direction de réaction du couple, système de rotation à couple

doux (DOD). Le procédé de forage des puits de pétrole consiste à la création d'un forage

de plus de cinq milles mètres de profondeur dans le sol jusqu'à ce qu'on atteigne l'huile et

le gaz. Le train de tiges se constitue de l'ensemble de tiges de forage, masses-tiges, et l'outil

taille de pierre visée comme outil de forage tourne autour de son axe vertical, pénétrant

à travers la roche. Dans la partie supérieure du train de tiges, la table de rotation fournit

le couple nécessaire pour mettre le système en mouvement de rotation. Le train de tige

est soumis à trois principaux types des vibrations [10, 37, 54, 50] : vibrations verticales,

vibrations axiales et vibrations de torsion qui sont distinguées par le nom "oscillation de

stick slip". Une description détaillée de chaque mode de vibration est présentée dans le

(chapitre 8, [10]).

Dans [11], Saldivar et d'autres ont proposé une fonction d'énergie pour le modèle distribué

permettant de trouver une loi de commande qui assure la dissipation d'énergie pendant

le forage. Les auteurs de [13] proposent une loi de commande pour éviter les oscillations

de torsions indésirables du train de tiges pertinents dans les forages des puits de pétrole.

Dans ce chapitre, nous nous préparons à l'étude de stabilité de l'équation décrivant le

système de forage rotary.

Notre chapitre est constitué de cinq parties. Dans la Section 3.2 nous allons montrer

l'existence et l'unicité de la solution. La Section 3.3 est une première méthode pour étudier

la stabilité d'un système d'équations aux dérivées partielles hyperboliques 2×2 du premier

ordre. Comme technique, nous allons utiliser les invariants de Riemann, la transformation

backstepping et la théorie de Lyapunov. Le principal résultat de cette section est de
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trouver la commande qui prouve la stabilité localement exponentielle du système original.

La Section 3.4 comporte une deuxième approche sur l'étude de la stabilité d'un système

d'EDP de second ordre. Nous utilisons la technique du backstepping et la théorie de

Lyapunov pour déterminer la loi de contrôle. Nous testons l'e�cacité des lois de contrôle

numériquement dans la Section 3.5. L'étude de l'existence et de l'unicité des noyaux est

traitée dans l'appendice.

3.2 Existence et unicité de la solution

Considérons le système mécanique suivant :

Figure 3.1 � Modèle de forage rotary

Ce système est décrit par l'équation aux dérivées partielles suivante :

GJ
∂2ϑ

∂ς2
(t, ς)− I ∂

2ϑ

∂t2
(t, ς)− d∂ϑ

∂t
(t, ς) = 0, ς ∈ (0, L), t ∈ (0,+∞) (3.1)
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où les conditions aux limites sont données par :

GJ
∂ϑ

∂ς
(t, 0) = ca(

∂ϑ

∂t
(t, 0)− Ω(t)), (3.2)

GJ
∂ϑ

∂ς
(t, L) + Ib

∂2ϑ

∂t2
(t, L) = −T (

∂ϑ

∂t
(t, L)), (3.3)

avec

• ϑ : angle de torsion

• I : inertie par unité de longueur

• G : module de cisaillement

• Ib : inertie de la tige de forage

• J : moment géométrique d'inertie

• d : amortissement de la garniture de forage

• Ω(t) ∈ R : loi de contrôle.

Nous utilisons le changement de variable suivant :

u(t, x) = ϑ(L

√
I

GJ
t, L(1− x)), x ∈ (0, 1) (3.4)

nous obtenons

∂ttu(t, x) = ∂xxu(t, x)− λ∂tu(t, x), x ∈ (0, 1) (3.5)

∂xu(t, 1) = U(t) (3.6)

∂ttu(t, 0) = a∂xu(t, 0) + aF (∂tu(t, 0)), (3.7)

tel que :

U(t) = caL
GJ

(
Ω(t)− 1

L

√
GJ
I
∂tu(t, 1)

)
, λ = dL

√
1

IGJ
,

F
(
∂tu(t, 0)

)
= − L

GJ
T
(

1
L

√
GJ
I
∂tu(t, 0)

)
, a = LI

Ib
.

En raison de la présence d'une relation non linéaire complexe résultant de l'interaction

entre l'outil et le sol, l'étude de l'existence et l'unicité de la solution du système décrivant

la dynamique de torsion deviennent plus complexes. Par conséquent, dans ce qui suit,

nous traitons cette question en utilisant la théorie de semi-groupe [6].
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Soit T > 0, la solution naturelle du problème de Cauchy est donnée par

∂ttu(t, x) = ∂xxu(t, x)− λ∂tu(t, x) (3.8)

∂xu(t, 1) = U(t) (3.9)

∂ttu(t, 0) = a∂xu(t, 0) + aF (∂tu(t, 0)) (3.10)

u(0, x) = α0(x), ut(0, x) = β0(x) (3.11)

où x ∈ (0, 1), t ∈ (0, T ) , α0 ∈ K, β0 ∈ L2(0, 1), K := {u ∈ H1(0, 1);u(t, 0) = 0} et U(t)

la loi de contrôle.

L'espace vectoriel K est muni du produit scalaire suivant

〈α1, α2〉K = a

∫ 1

0

α1
xα

2
xdx

Soit Z(t) = (u(t, .), ut(t, .), ut(t, 0))T . Le système (3.8)-(3.11) peut s'écrire de cette façon

compacte Ż(t) = AZ(t) +H(Z(t)) +BU(t)

Z(0) = Z0

(3.12)

où A =


0 1 0

∂xx −λ 0

−a〈δ′0(x), .〉 0 0

, H(Z(t)) =


0

0

aF (ut(t, 0))

,

et B =


0

δ(x− 1)

0

 tel que δ désigne la fonction de Dirac pour laquelle

〈δ′1(x), u(t, x)〉 = −ux(t, 1) et 〈δ′0(x), u(t, x)〉 = −ux(t, 0)

Tout d'abord, nous considérons la partie linéaire. Soit le Théorème suivant.

Théorème 3.2.1 L'opérateur A génère un C0 semi-groupe de contractions S(t), t ≥ 0.
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Preuve Soit X = K × L2([0, 1])× R

Cet espace vectoriel X est muni du produit scalaire suivant :

〈
u1(t, .)

u1
t (t, .)

u1
t (t, 0)

 ,


u2(t, .)

u2
t (t, .)

u2
t (t, 0)

〉X = a〈u1, u2〉K + a〈u1
t , u

2
t 〉L2[0,1]

+ 〈u1
t (t, 0), u2

t (t, 0)〉R.

Notons que ‖ . ‖ est la norme dans X associé au produit scalaire.

Soit A : D(A) ⊂ X → X l'opérateur linéaire dé�nit par

D(A) = {Z : u ∈ H2(0, 1), ut ∈ K, ut(t, 0) ∈ R, ux(t, 1) = 0}

Nous avons

A


u(t, x)

ut(t, x)

ut(t, 0)

 =


ut(t, x)

∂xxu(t, x)− λut(t, x)

aux(t, 0)

 , ∀


u(t, x)

ut(t, x)

ut(t, 0)

 ∈ D(A)

De plus

〈AZ,Z〉X = −aλ
∫ 1

0

u2
tdx ≤ 0, ∀Z ∈ D(A)

Il reste à montrer que pour tout Z =


z1

z2

z3

 ∈ X, il existe y ∈ D(A) tel que y−Ay = Z.

A l'aide de l'approche variationnelle nous démontrons l'existence et l'unicité de la solution.

Soit Z ∈ X, nous avons

y − Ay = Z ⇐⇒


y − yt = z1

(1− λ)y − yxx = z2 − λz1

y(t, 0)− ayx(t, 0) = z3
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Nous multiplions l'équation véri�ée par y par une fonction test f ∈ K, puis nous intégrons

par partie, nous obtenons alors que

∫ 1

0

yxfxdx− yx(t, 1)f(t, 1) + yx(t, 0)f(t, 0) + (1− λ)

∫ 1

0

yfdx =

∫ 1

0

(z2 − λz1)fdx

alors ∫ 1

0

yxfxdx+ (1− λ)

∫ 1

0

yfdx =

∫ 1

0

(z2 − λz1)fdx car f ∈ K

Le problème variationnel associé consiste donc à déterminer y ∈ K tel que :

S(y, f) =
∫ 1

0
yxfxdx+ (1− λ)

∫ 1

0
yfdx et l(f) =

∫ 1

0
(z2 − λz1)fdx

La continuité de S(., .) et l(.) est évidente de même que la coercivité de la forme bilinéaire

S(., .). En e�et,

S(y, y) =

∫ 1

0

yxyxdx+ (1− λ)

∫ 1

0

yydx

≥ 1

a
‖ y ‖2

K

Les hypothèses du Théorème de Lax-Milgram sont réunies. Il existe donc une solution

unique au problème variationnel. Nous véri�ons en�n en e�ectuant les même intégrations

par partie que

∫ 1

0

−yxxfdx+ (1− λ)

∫ 1

0

yfdx+ yx(t, 1)f(t, 1)− yx(t, 0)f(t, 0) =

∫ 1

0

(z2 − λz1)fdx

d'ou −yxx + (1− λ)y = (z2 − λz1) p.p

yx(t, 1)f(t, 1)− yx(t, 0)f(t, 0) = 0, pour tout f

Alors, D(A) est dense dans X et A est fermé. Ainsi, en utilisant le Théorème du Lumer-

Phillips (Théorème A.4 dans [30]), A est un générateur in�nitésimal d'un semi-groupe de

contractions S(t), t ∈ [0,+∞), dansX. �

Maintenant, nous allons prouver l'existence et l'unicité du système non linéaire

Théorème 3.2.2 Pour toute condition initiale Z0 ∈ D(A), le problème
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Ż(t) = AZ(t) +H(Z) admet une unique solution Z ∈ C1([0, T ], X)
⋂
C0([0, T ], D(A)).

De plus la solution est donnée par : Z(t) = S(t)Z(0) +
∫ t

0
S(t− s)H(Z(s))ds

Pour prouver le Théorème 3.2.2, nous avons besoin du lemme suivant :

Lemme 3.2.1 L'opérateur non linéaire H(Z) est dissipatif et localement lipschitzien.

Preuve Rappelons que la fonction non linéaire F résultante de l'interaction entre l'outil

et la roche est donnée par (Chapitre 3, [10])

F
(
∂tu(t, 0)

)
= − L

GJ
T
( 1

L

√
GJ

I
∂tu(t, 0)

)
,

= − L

GJ

k 1
L

√
GJ
I
∂tu(t, 0)

1
L

√
GJ
I
∂tu(t, 0)2 + k2

avec k > 0. Après avoir calculé

〈H(Z(t))), Z(t)〉X = F (ut(t, 0))ut(t, 0)

= − L

GJ

k 1
L

√
GJ
I
∂tu(t, 0)2

1
L

√
GJ
I
∂tu(t, 0)2 + k2

nous obtenons

〈H(Z(t)), Z(t)〉X ≤ 0

Cela implique que l'opérateur H(Z) est dissipatif.

Il est facile de véri�er que H(Z) est localement lipschitzien. En conséquence, l'opérateur

H(Z) est dissipatif et localement lipschitzien. �

Preuve du Théorème 3.2.2 En appliquant le lemme ci-dessus et à partir des résultats

donnés dans (Théorème 4.2 [47], [77, 6, 30]), il est évident de prouver que notre système

(3.12) admet une unique solution. �
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3.3 Prémière approche : système 2 × 2 d'EDP du pre-

mier ordre
Dans ce paragraphe, en se basant sur la théorie de Lyapunov et la transformation

backstepping, nous étudions la stabilité d'un système d'équations hyperboliques du pre-

mier ordre. Tout d'abord, nous commençons par linéariser le système d'EDP autour d'une

trajectoire de référence puis, nous utilisons les invariants de Riemann pour transformer

un EDP de second ordre en deux équations hyperboliques du premier ordre. Finalement,

nous montrons la stabilité de l'EDP transformé.

3.3.1 Formulation du problème

Pour linéariser la condition aux limites (3.7), nous utilisons la forme suivante [13] :

ū(t, x) =
λwr

2
x2 − F (wr)x+ wrt+ u0 (3.13)

comme trajectoire de référence, avec

Ū(t) = λwr − F (wr) (3.14)

représente l'entrée de la commande de référence et wr = ūt(t, x). Donc le système (3.5)-

(3.7) devient

∂ttu(t, x) = ∂xxu(t, x)− λ∂tu(t, x), (3.15)

∂xu(t, 1) = U(t) (3.16)

∂ttu(t, 0) = a∂xu(t, 0) + ab∂tu(t, 0), (3.17)

tel que b = ∂F
∂w

(wr) et w(t) = ut(t, 1).

On peut écrire (3.15) sous cette forme

∂t

 s

r

 = ∂x

 r

s

− λ
 s

0


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avec (r, s) = (∂xu(t, x), ∂tu(t, x)).

Nous introduisons les invariants de Riemann :

y = r − s, z = r + s

qui résolvent le système suivant :

∂ty + ∂xy =
λ

2
(z − y), (3.18)

∂tz − ∂xz = −λ
2

(z − y), (3.19)

z(t, 1) = 2U(t)− y(t, 1), (3.20)

∂t(z − y)(t, 0) = a
(
z(t, 0) + y(t, 0)

)
+ ab

(
z(t, 0)− y(t, 0)

)
, (3.21)

Nous introduisons les notations

φ(x) = exp(
λ

2
x), ψ(x) = exp(−λ

2
x)

et les deux nouvelles cordonnées

y1(t, x) = φ(x)y(t, x), y2(t, x) = ψ(x)z(t, x).

Alors le système (3.18)-(3.21) est transformé au système suivant :

0 = ∂ty1 + ∂xy1 −
λφ

2ψ
y2, (3.22)

0 = ∂ty2 − ∂xy2 −
λ

2

ψ

φ
y1, (3.23)

y2(t, 1) = 2ψ(1)U(t)− ψ(1)

φ(1)
y1(t, 1), (3.24)

∂t(y2 − y1)(t, 0) = a(y2(t, 0) + y1(t, 0)) + ab(y2 − y1)(t, 0). (3.25)
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3.3.2 Construction d'un système cible

Notre but est de trouver une application qui transforme (3.22)-(3.25) au système

suivant :

∂tα(t, x) = −∂xα(t, x), (3.26)

∂tβ(t, x) = ∂xβ(t, x), (3.27)

β(t, 1) = 0, (3.28)

∂t
(
β − α

)
(t, 0) = a

(
β(t, 0) + α(t, 0)

)
− ab2

(
β(t, 0)− α(t, 0)

)
. (3.29)

Lemme 3.3.1 Considérons le système (3.26)-(3.29) avec les conditions initiales (α0, β0) ∈

L2([0, 1]). Alors l'équilibre (α, β) = (0, 0) est localement exponentiellement stable dans L2.

En outre, β tend vers zéro en temps �ni.

Preuve Nous proposons la fonction de Lyapunov suivante :

V (t) =

∫ 1

0

(
α β

)
P

α
β

 (t, x)dx+
∣∣β(t, 0)− α(t, 0)

∣∣2,

tel que P =

Ae−µx 0

0 Beµx

 . A, B et µ sont des constantes positives tel que B ≥ 2a ≥ A.

Nous dérivons V par rapport au temps, nous intégrons par parties et nous utilisons les

conditions aux limites (3.28)-(3.29), nous trouvons

V̇ (t) =

∫ 1

0

2Aα∂tαe
−µx + 2Bβ∂tβe

µxdx+ 2(∂tβ − ∂tα)(t, 0)(β − α)(t, 0)

= −[Ae−µxα2(t, x)]10 −
∫ 1

0

µAe−µxα2(t, x)dx+ [Beµxβ2(t, x)]10 − µ
∫ 1

0

Beµxβ2(t, x)dx

+ 2
[
a(β(t, 0) + α(t, 0))− ab2(β − α)(t, 0)

]
(β − α)(t, 0)

= −Ae−µα2(t, 1)− (2a− A)α2(t, 0)− (B − 2a)β2(t, 0)− 2ab2(β − α)2(t, 0)− µV (t)

≤ −min(µ, 2ab2)V (t).

Cela montre que le système (3.26)-(3.29) est localement exponentiellement stable. En
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outre, nous calculons par la méthode de la caractéristique la fonction β telle que la condi-

tion initiale β(0, x) = β0(x) [voir [40], chapitre 9], nous obtenons

β(t, x) =

β0(t+ x) 0 ≤ t < 1− x,

0 t ≥ 1− x.
Ainsi, nous montrons la stabilité en temps �ni de la fonction β.

�

3.3.3 Transformation backstepping et équations des noyaux

Pour convertir le système original (3.22)-(3.25) au système cible (3.26)-(3.29), nous

considérons la transformation backstepping suivante :

α(t, x) = y1(t, x)−
∫ x

0

Kuu(x, ξ)y1(t, ξ)dξ −
∫ x

0

Kuv(x, ξ)y2(t, ξ)dξ

+
1

2
(b+ b2)e−abx(y2(t, 0)− y1(t, 0)) (3.30)

β(t, x) = y2(t, x)−
∫ x

0

Kvu(x, ξ)y1(t, ξ)dξ −
∫ x

0

Kvv(x, ξ)y2(t, ξ)dξ

+
1

2
(b+ b2)eabx(y2(t, 0)− y1(t, 0)) (3.31)

Considérons les notations :

ε1(x) = λφ(x)
2ψ(x)

, ε2(x) = λ
2
ψ(x)
φ(x)

, w(t, x) =

y1(t, x)

y2(t, x)

, δ(t, x) =

α(t, x)

β(t, x)

,

K(x, ξ) =

Kuu(x, ξ) Kuv(x, ξ)

Kvu(x, ξ) Kvv(x, ξ)

 , Υ(t, x) =

1
2
(b+ b2)e−abx(y2(t, 0)− y1(t, 0))

1
2
(b+ b2)eabx(y2(t, 0)− y1(t, 0))

 .

Nous écrivons (3.30)-(3.31) sous cette forme

δ(t, x) = w(t, x)−
∫ x

0

K(x, ξ)w(t, ξ)dξ + Υ(t, x). (3.32)
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Nous injectons (3.30)-(3.31) dans (3.26)-(3.27), nous intégrons par parties et nous utilisons

les conditions aux limites, nous obtenons le système suivant :

−Kuu
x (x, ξ)−Kuu

ξ (x, ξ)− ε2(ξ)Kuv(x, ξ) = 0, (3.33)

−Kuv
x (x, ξ) +Kuv

ξ (x, ξ)− ε1(ξ)Kuu(x, ξ) = 0, (3.34)

Kvu
x (x, ξ)−Kvu

ξ (x, ξ)− ε2(ξ)Kvv(x, ξ) = 0, (3.35)

Kvv
x (x, ξ) +Kvv

ξ (x, ξ)− ε1(ξ)Kvu(x, ξ) = 0, (3.36)

dont les conditions aux limites sont données par :

−Kuv(x, 0) = Kuu(x, 0) =
1

2
(b+ b2)ae−abx, (3.37)

Kuv(x, x) =
1

2
ε1(x), (3.38)

Kvu(x, x) = −1

2
ε2(x), (3.39)

−Kvv(x, 0) = Kvu(x, 0) =
1

2
(b+ b2)aeabx. (3.40)

Ces équations sont dé�nies dans le domaine triangulaire ∆ = {(x, ξ) : 0 ≤ ξ ≤ x ≤ 1}.

Par le Théorème 6.1.1, nous montrons l'existence, l'unicité et la continuité de la solution

du système (3.33)-(3.36) où les conditions aux limites sont données dans (3.37)-(3.40).

3.3.4 Transformation backstepping inverse

Maintenant, nous étudions l'inverse de la transformation (3.30) et (3.31). Nous recher-

chons une transformation du système cible (3.26)-(3.27) au système original (3.22)-(3.25)

comme suit :

y1(t, x) = α(t, x) +

∫ x

0

Lαα(x, ξ)α(t, ξ)dξ +

∫ x

0

Lαβ(x, ξ)β(t, ξ)dξ

− b+ b2

2
e−abx(β(t, 0)− α(t, 0)) (3.41)

y2(t, x) = β(t, x) +

∫ x

0

Lβα(x, ξ)α(t, ξ)dξ +

∫ x

0

Lββ(x, ξ)β(t, ξ)dξ

− b+ b2

2
eabx(β(t, 0)− α(t, 0)) (3.42)
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Notons que

L(x, ξ) =

Lαα(x, ξ) Lαβ(x, ξ)

Lβα(x, ξ) Lββ(x, ξ)

 , Λ(t, x) =

−1
2
(b+ b2)e−abx(β(t, 0)− α(t, 0))

−1
2
(b+ b2)eabx(β(t, 0)− α(t, 0))

.
Nous écrivons (3.41)-(3.42) sous cette forme

w(t, x) = δ(t, x) +

∫ x

0

L(x, ξ)δ(t, ξ)dξ + Λ(t, x). (3.43)

Nous injectons (3.41)-(3.42) dans (3.22)-(3.25). Nous intégrons par parties et nous utilisons

les conditions aux limites, nous obtenons les noyaux satisfaisants le système suivant :

Lααξ (x, ξ) + Lααx (x, ξ)− ε1(x)Lβα(x, ξ) = 0, (3.44)

−Lαβξ (x, ξ) + Lαβx (x, ξ)− ε1(x)Lββ(x, ξ) = 0, (3.45)

Lβαξ (x, ξ)− Lβαx (x, ξ)− ε2(x)Lαα(x, ξ) = 0, (3.46)

−Lββξ (x, ξ)− Lββx (x, ξ)− ε2(x)Lαβ(x, ξ) = 0, (3.47)

les conditions aux limites sont données par :

Lαα(x, 0) = Lαβ(x, 0) + a(b+ b2)e−abx, (3.48)

Lαβ(x, x) =
ε1(x)

2
, (3.49)

Lβα(x, x) = −ε2(x)

2
, (3.50)

Lββ(x, 0) = Lβα(x, 0)− a(b+ b2)eabx, (3.51)

Pour prouver l'existence, l'unicité et la continuité du système d'équations (3.44)-(3.47),

avec les conditions aux limites (3.48)-(3.51), nous utilisons le Théorème 6.1.1.
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3.3.5 Stabilité du système original et identi�cation d'une com-

mande stabilisante

Dans cette partie, nous étudions le résultat principale de contrôle. Nous introduisons

(3.31) dans (3.28) et nous utilisons (3.24) ; nous trouvons

β(t, 1) = y2(t, 1)−
∫ 1

0

Kvu(1, ξ)y1(t, ξ)dξ −
∫ 1

0

Kvv(1, ξ)y2(t, ξ)dξ

+
1

2
(b+ b2)eab(y2(t, 0)− y1(t, 0)) = 0.

Ainsi

2ψ(1)U(t) − ψ(1)

φ(1)
y1(t, 1)−

∫ 1

0

Kvu(1, ξ)y1(t, ξ)dξ −
∫ 1

0

Kvv(1, ξ)y2(t, ξ)dξ

+
1

2
(b+ b2)eab(y2(t, 0)− y1(t, 0)) = 0.

Cela implique que la loi de contrôle est donnée par :

U(t) =
1

2

[ 1

φ(1)
y1(t, 1) +

1

ψ(1)

(∫ 1

0

Kvu(1, ξ)y1(t, ξ)dξ +

∫ 1

0

Kvv(1, ξ)y2(t, ξ)dξ

− 1

2
(b+ b2)eab(y2(t, 0)− y1(t, 0))

)]
. (3.52)

Théorème 3.3.1 Considérons le système (3.22)-(3.25), avec les conditions initiales (y0
1, y

0
2),

la loi de contrôle (3.52) et tels que les noyaux Kvu et Kuu véri�ent (3.33)-(3.40) où Λ,

Υ ∈ L2([0, 1]). Alors l'équilibre (y1, y2) = (0, 0) est localement exponentiellement stable

dans L2. En outre, l'équilibre y2 = 0 est stable en temps �ni.

Preuve Rappellons que

w(t, x) = δ(t, x) +

∫ x

0

L(x, ξ)δ(t, ξ)dξ + Λ(t, x),

et

δ(t, x) = w(t, x)−
∫ x

0

K(x, ξ)w(t, ξ)dξ + Υ(t, x).
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Par le Théorème 6.3.5 les deux noyaux K et L sont continus.

||w(t, .)||L2([0,1]) ≤ ||δ(t, .)||L2([0,1]) + ‖Λ(t, .)‖L2([0,1]) +
∣∣∣∣∣∣ ∫ .

0

L(., ξ)δ(t, ξ)dξ
∣∣∣∣∣∣
L2([0,1])

≤ ||δ(t, .)||L2([0,1]) + ‖Λ(t, .)‖L2([0,1]) + |||L|||∞||δ(t, .)||L2([0,1])

≤ C1(t)||δ(t, .)||L2([0,1])

tel que C1(t) =
{‖Λ(t,.)‖L2([0,1])

||δ(t,.)||L2([0,1])
+ 1 + |||L|||∞

}
.

De plus

||δ(t, .)||L2([0,1]) ≤ ||w(t, .)||L2([0,1]) + ‖Υ(t, .)‖L2([0,1]) +
∣∣∣∣∣∣ ∫ .

0

K(., ξ)w(t, ξ)dξ
∣∣∣∣∣∣
L2([0,1])

≤ ||w(t, .)||L2([0,1]) + ‖Υ(t, .)‖L2([0,1]) + |||K|||∞||w(t, .)||L2([0,1])

≤ C2(t)||w(t, .)||L2([0,1])

tel que C2(t) =
{ ‖Υ(t,.)‖L2([0,1])

||w(t,.)||L2([0,1])
+ 1 + |||K|||∞

}
.

Si t = 0 alors

||δ(0, .)||L2([0,1]) ≤ C2(0)||w(0, .)||L2([0,1]),

tel que C2(0) =
{ ‖Υ(0,.)‖L2([0,1])

||w(0,.)||L2([0,1])
+ 1 + |||K|||∞

}
.

Par le lemme 3.3.1, il existe c0 > 0 et k > 0 tel que

||δ(t, .)||L2([0,1]) ≤ c0||δ(0, .)||L2([0,1])e
−kt.

Ainsi, il existe C > 0 et k > 0 tel que

||w(t, .)||L2([0,1]) ≤ C||w(0, .)||L2([0,1])e
−kt.

Finalement, nous savons que β tend vers zéro en temps �ni, alors y2 tend vers zéro en temps

�ni. �

3.4 Deuxième approche : modèle d'EDP du second ordre

Dans cette section, nous étudions la stabilité exponentielle de l'équation aux dérivées

partielles du second ordre décrivant la dynamique des vibrations de torsion. Nous construi-
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sons une nouvelle approche pour la résolution de la stabilité du système dynamique.

3.4.1 Transformation backstepping et système cible

Rappelons que la dynamique de torsion transformée s'écrit sous cette forme :

utt(t, x) = uxx(t, x)− λut(t, x) (3.53)

ux(t, 1) = U(t) (3.54)

utt(t, 0) = aux(t, 0) + abut(t, 0) (3.55)

La plupart de recherches et d'analyses des équations qui décrivent le système de forage sont

traitées en négligeant le terme d'amortissement en dynamique (3.53). Dans notre étude

nous allons tenir compte de ce terme d'amortissement négligé. Notons que les tiges de

forage se comportent classiquement de manière élastique sans amortissement interne. Les

termes d'amortissement proviennent généralement d'interactions extérieures (frottement

visqueux tiges-boue) ou de sous composants destinés à amortir les vibrations (amortis-

seurs de chocs). Fondamentalement, cela rend notre problème de stabilisation di�érent.

Le principale dé� dans cette section, est de trouver une loi de contrôle U(t) de façon

que notre système (3.53)-(3.55) soit exponentiellement stable à l'équilibre. Cette section

montre l'importance d'un système cible, la technique du backstepping et les équations du

noyau comme outils d'analyse de stabilité. A partir de la transformation backstepping,

nous proposons une loi de contrôle qui transforme le système (3.53)-(3.55) au système

cible suivant (u(t, x)→ w(t, x)),

wtt(t, x) = wxx(t, x)− λwt(t, x) (3.56)

wx(t, 1) = 0 (3.57)

wtt(t, 0) = ae−αwx(t, 0)− (2aε+ 1)wt(t, 0) (3.58)

Les deux paramètres α et ε seront dé�nis par la suite.

La technique du backstepping est une approche élégante pour la conception de la loi de

contrôle pour le système des EDP. Par conséquent, nous allons construire une application
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qui transforme notre système original au système cible (3.56)-(3.58).

Lemme 3.4.1 Dé�nissons la fonction

L(t) =
1

2

[ ∫ 1

0

(
e−α(wx)

2 + e−α(wt)
2 + εe−αx(1− x)wtwx

)
dx
]

+
1

a
(wt(t, 0))2

avec 1
2
> ε > 0, α ≤ − 2+ε

ε(1−x)
, tel que x ∈ [0, 1[ et la norme Θ ou

Θ2(t) = ‖ wt ‖2
L2([0,1]) + ‖ wx ‖2

L2([0,1]) + | wt(t, 0) |2

Alors

m1Θ2(t) ≤ L(t) ≤ m2Θ2(t)

avec

m1 = min{e
−α

2
− εe−α

4
,

1

a
} et m2 = max{e

−α

2
+
εe−α

4
,

1

a
}

Preuve En utilisant les inégalités de Cauchy-Schwarz et de Young, nous obtenons

L(t) =
1

2

[ ∫ 1

0

(
e−α(wx)

2 + e−α(wt)
2 + εe−αx(1− x)wtwx

)
dx
]

+
1

a
(wt(t, 0))2

≥ e−α

2
‖ wt ‖2 +

e−α

2
‖ wx ‖2 +

1

a
| wt(t, 0) |2 −εe

−α

2

∫ 1

0

| wtwx | dx

≥ (
e−α

2
− εe−α

4
)(‖ wt ‖2 + ‖ wx ‖2) +

1

a
| wt(t, 0) |2

≥ min{e
−α

2
− εe−α

4
,

1

a
}Θ2(t)

D'autre part,

L(t) =
1

2

[ ∫ 1

0

(
e−α(wx)

2 + e−α(wt)
2 + εe−αx(1− x)wtwx

)
dx+

1

a
(wt(t, 0))2

]
≤ e−α

2
‖ wt ‖2 +

e−α

2
‖ wx ‖2 +

1

a
| wt(t, 0) |2 +

εe−α

2

∫ 1

0

| wtwx | dx

≤ (
e−α

2
+
εe−α

4
)(‖ wt ‖2 + ‖ wx ‖2) +

1

a
| wt(t, 0) |2

≤ max{e
−α

2
+
εe−α

4
,

1

a
}Θ2(t).

Alors m1Θ2(t) ≤ L(t) ≤ m2Θ2(t) avec m1 = min{ e−α
2
− εe−α

4
, 1
a
} et m2 = max{ e−α

2
+
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εe−α

4
, 1
a
}. �

Théorème 3.4.1 (Stabilité du système cible) Considérons le système (3.56)-(3.58),

avec la condition initiale w0 = w(0, x) ∈ L2([0, 1]). Alors le système (3.56)-(3.58) est

exponentiellement stable à l'équilibre au sens de cette norme

Θ2(t) =‖ wt ‖2
L2([0,1]) + ‖ wx ‖2

L2([0,1]) + | wt(t, 0) |2

Preuve Pour prouver la stabilité du système cible, nous introduisons L(t) comme une

fonction de Lyapunov

L(t) =
1

2

[ ∫ 1

0

(
e−α(wx)

2 + e−α(wt)
2 + εe−αx(1− x)wtwx

)
dx
]

+
1

a
(wt(t, 0))2

Sa dérivation par rapport au temps donne :

L̇(t) =

∫ 1

0

(
e−αwtxwx + e−αwttwt +

1

2
εe−αx(1− x)wttwx +

1

2
εe−αx(1− x)wtxwt

)
dx

+
1

a
wtt(t, 0)wt(t, 0)

= −λe−α
∫ 1

0

w2
t +

∫ 1

0

(
e−αwtxwx + e−αwxxwt +

1

2
εe−αx(1− x)wxxwx

+
1

2
ε(1− x)wtxwt

)
dx+

1

a
(wtt(t, 0)wt(t, 0))− λε

2

∫ 1

0

e−αx(1− x)wtwxdx

= −e−αwt(t, 0)wx(t, 0)− ε

4
wx(t, 0)2 − ε

4
wt(t, 0)2 −

∫ 1

0

−ε− αε(1− x)

2
e−αx

w2
x

2
dx

− 2aε+ 1

a
w2
t (t, 0) + e−αwt(t, 0)wx(t, 0)−

∫ 1

0

−ε− αε(1− x)

2
e−αx

w2
t

2
dx

− λ

2

∫ 1

0

εe−αx(1− x)wtwxdx− λ
∫ 1

0

e−αw2
t dx

≤ −eα
∫ 1

0

e−α
w2
x

2
dx− 1

a
w2
t (t, 0)− λ

2

∫ 1

0

εe−αx(1− x)wtwxdx− λ
∫ 1

0

e−αw2
t dx

≤ −min(eα, λ, 1)L(t).

Par le Lemme 3.4.1, nous avons

m1Θ2(t) ≤ L(t) ≤ m2Θ2(t).
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Par conséquent, il existe c > 0 et k ≥ 0 tel que

Θ(t) ≤ ce−ktΘ(0).

Ceci implique que le système cible (3.56)-(3.58) est exponentiellement stable à l'équilibre

au sens de la norme Θ.

�

A�n de convertir le système original au système cible, nous proposons la transformation

backstepping suivante

w(t, x) = u(t, x)−
∫ x

0

k(x, ξ)u(t, ξ)dξ − %(x)u(t, 0)

−
∫ x

0

p(x, ξ)ut(t, ξ)dξ −
∫ x

0

l(x, ξ)uξ(t, ξ)dξ (3.59)

Nous introduisons la transformation backstepping (3.59) dans le système cible (3.56)-

(3.58). Nous faisons une intégration par parties, nous utilisons les conditions aux limites,

nous obtenons les noyaux suivants :

lξξ(x, ξ) = lxx(x, ξ), (3.60)

kξξ(x, ξ) = kxx(x, ξ), (3.61)

pξξ(x, ξ) = pxx(x, ξ), (3.62)

avec les conditions aux limites suivantes

lx(x, x) = 0, kx(x, x) = 0, px(x, x) = 0 (3.63)

lξ(x, 0) = k(x, 0), kξ(x, 0) = %′′(x), k(0, 0) = −ae−α (3.64)

p(x, 0) = 0, pξ(x, 0) = 0 (3.65)

l(x, 0) = %(x), l(0, 0) = 0, ρ(0) = 1, (3.66)

kξ(0, 0) = ae−αk(0, 0) + ae−α%′(0) = %”(0) (3.67)
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Notons que le noyau de la transformation backstepping satisfait un système intéressant des

EDP d'onde qui est facilement solvable. Ce système est dé�ni sur un domaine triangulaire

∆ = {(x, ξ) ∈ R2 : 0 ≤ ξ ≤ x ≤ 1}.

À cette étape, nous injectons la transformation (3.59) dans (3.57), nous déduisons la loi

de contrôle suivante

U(t) =
1

1− l(1, 1)
[k(1, 1)u(t, 1) +

∫ 1

0

kx(1, ξ)u(t, ξ)dξ

+ p(1, 1)ut(t, 1) +

∫ 1

0

px(1, ξ)ut(t, ξ)dξ

+

∫ 1

0

lx(1, ξ)uξ(t, ξ)dξ + %′(1)u(t, 0)]. (3.68)

Remarque Il est noter que l(1, 1) 6= 1, en e�et :

Pour trouver une solution de l'équation l(x, y), nous la transformons d'abord en équation

intégrale. Soit le changement de variables suivant y = x+ ξ et η = x− ξ, nous avons

l(x, ξ) = G(y, η) (3.69)

lx = Gy +Gη (3.70)

lxx = Gyy + 2Gyη +Gηη (3.71)

lξ = Gy −Gη (3.72)

lξξ = Gyy − 2Gyη +Gηη (3.73)

Ainsi, le noyau l devient

Gyη(y, η) = 0 (3.74)

Gy(y, 0) = −Gη(y, 0) (3.75)

G(y, y) = ρ(y) (3.76)

K(y, 0) = Gy(y, y)−Gη(y, y) (3.77)

G(0, 0) = 0, ρ(0) = 1 (3.78)
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En intégrant (3.74) par rapport à η de 0 à η, nous obtenons

Gy(y, η) = −Gy(y, 0) (3.79)

Ensuite, nous intégrons (3.79) par rapport à y de η à y pour obtenir

G(y, η) = G(η, η) +G(η, 0)−G(y, 0)

or l(1, 1) = G(2, 0) = G(0, 0) +G(0, 0)−G(2, 0) donc l(1, 1) = G(0, 0) = 0

Il reste à étudier le comportement du système original à partir de la transformation

inverse (w(t, x)→ u(t, x)). Laissez-nous dé�nir la transformation backstepping inverse du

système cible au système original comme suit

u(t, x) = w(t, x) +

∫ x

0

e(x, ξ)w(t, ξ)dξ +

∫ x

0

h(x, ξ)wξ(t, ξ)dξ

+

∫ x

0

f(x, ξ)wt(t, ξ)dξ + π(x)w(t, 0). (3.80)

Nous injectons la transformation backstepping inverse (3.80) dans le système original

(3.53)-(3.55), nous trouvons le système de noyaux suivant

hξξ(x, ξ) = hxx(x, ξ),

eξξ(x, ξ) = exx(x, ξ),

fξξ(x, ξ) = fxx(x, ξ),

avec les conditions aux limites suivantes

hx(x, x) = 0, ex(x, x) = 0, fx(x, x) = 0

e(x, 0) = hξ(x, 0), eξ(x, 0) = π′′(x), π′(0) = 0

f(x, 0) = 0, h(x, 0) = π(x), fξ(x, 0) = 0

e(0, 0) = hξ(0, 0) = 0, h(0, 0) = π(0) = −1,
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Il est facile à véri�er que ces équations sont dé�nies sur un domaine triangulaire ∆ =

{(x, ξ) ∈ R2 : 0 ≤ ξ ≤ x ≤ 1}. Pour obtenir une solution de ce dernier des systèmes

des EDP d'onde, nous commençons par le convertir en une équation intégrale et nous

introduisons le changement des variables y = ξ + x et η = x − ξ et �nalement nous

utilisons la méthode des approximations successives (plus de détails dans [40], chapitre

4).

3.4.2 Étude de la stabilité et construction de la loi de contrôle

Maintenant, nous nous intéressons à stabiliser le système (3.53)-(3.55).

Théorème 3.4.2 (Stabilité du système original) Considérons le système (3.53)-(3.55)

avec la condition initiale u0 ∈ L2([0, 1]) et la loi de contrôle (3.68) où les noyaux k, p, et l

sont obtenus de (3.60)-(3.67). Alors le système (3.53)-(3.55) est exponentiellement stable

à l'équilibre au sens de la norme suivante

Σ2(t) =‖ u(t, .) ‖2
L2([0,1]) + ‖ ut(t, .) ‖2

L2([0,1]) + ‖ ux(t, .) ‖2
L2([0,1]) + | ut(t, 0) |2 .

Preuve Tout d'abord, notons que L2 = L2([0, 1]) et laissons introduire les normes sui-

vantes (par exemple) comme suit : %∞ = supx∈[0,1] |%(x)|, k∞ = max(x,ξ)∈∆ ‖|k(x, ξ)|‖2
2,

et ainsi de suite pour l∞, (pξξ)∞, p∞, où ‖|k(x, ξ)|‖2
2 désigne la norme de l'opérateur

classique. Nous allons prouver qu'il existe ρ1 > 0 et ρ2 > 0 tel que

ρ1Θ(t) ≤ Σ(t) ≤ ρ2Θ(t).

Rappelons que pξ(x, 0) = 0, p(x, 0) = 0, px(x, x) = 0, l(x, 0) = %(x). Par conséquent, wt

est réécrit sous cette forme

wt(t, x) = ut(t, x)−
∫ x

0

k(x, ξ)ut(t, ξ)dξ − p(x, x)ux(t, x)−
∫ x

0

pξξ(x, ξ)u(t, ξ)dξ

+

∫ x

0

λp(x, ξ)ut(t, ξ)dξ − l(x, x)ut(t, x) +

∫ x

0

lξ(x, ξ)ut(t, ξ)dξ − %(x)ut(t, 0).
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En utilisant l'inégalité de Cauchy-Schwarz, nous pouvons montrer que :

‖ wt(t, .) ‖2
L2 ≤ ((1 + k∞ + l∞ + (lξ)∞ + λp∞) ‖ ut(t, .) ‖2

L2

+ p∞ ‖ ux(t, .) ‖2
L2 +(pξξ)∞ ‖ u(t, .) ‖2

L2 +%∞ | ut(t, 0) |2)

≤ c1Σ2

tel que c1 = max{1 + k∞ + l∞ + (lξ)∞ + λp∞, (pξξ)∞, p∞, %∞}.

Comme u(t, 0) = u(t, x)−
∫ x

0
uy(t, y)dy , nous trouvons

‖wx(t, .)‖2
L2 ≤ ‖ux(t, .)‖2

L2 + k∞‖u(t, .)‖2
L2 + (kx)∞‖u(t, .)‖2

L2 + p∞‖ut(t, .)‖2
L2

+ (px)∞‖ut(t, .)‖2
L2 + l∞‖ux(t, .)‖2

L2

+ (lx)∞‖ux(t, .)‖2
L2 + %′∞‖u(t, .)‖2

L2 + %′∞‖ux(t, .)‖2
L2

≤ c2(‖ux(t, .)‖2
L2 + ‖u(t, .)‖2

L2 + ‖ut(t, .)‖2
L2)

avec c2 = max{1 + l∞ + (lx)∞ + %′∞, k∞ + (kx)∞ + %′∞, p∞ + (px)∞}.

En outre, | wt(t, 0) |2≤ 4 | ut(t, 0 |2. Par conséquent, il existe ρ1 > 0 tel que ρ1Θ(t) ≤ Σ(t).

Rappelons que la transformation backstepping inverse est donnée par

u(t, x) = w(t, x) +

∫ x

0

e(x, ξ)w(t, ξ)dξ + π(x)w(t, 0)

+

∫ x

0

f(x, ξ)wt(t, ξ)dξ +

∫ x

0

h(x, ξ)wξ(t, ξ)dξ.

Comme w(t, 0) = w(t, x)−
∫ x

0
wy(t, y)dy, nous utlisons l'inégalité de Poincaré, nous obte-

nons

‖ u(t, .) ‖2
L2 ≤ ‖ w(t, .) ‖2

L2 +e∞ ‖ w(t, .) ‖2
L2 +f∞ ‖ wt(t, .) ‖2

L2 +h∞ ‖ wx(t, .) ‖2
L2

+ π∞ ‖ wx(t, .) ‖2
L2 +π∞ ‖ w(t, .) ‖2

L2

≤ (c0(1 + e∞) + π∞(1 + c0)) ‖ wx(t, .) ‖2
L2 +f∞ ‖ wt(t, .) ‖2

L2 +h∞ ‖ wx(t, .) ‖2
L2

≤ c3(‖ wx(t, .) ‖2
L2 + ‖ wt(t, .) ‖2

L2),
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où c3 = max{c0(1 + e∞) + π∞(1 + c0) + h∞, f∞} > 0, c0 > 0.

En outre, comme f(x, 0) = 0, h(x, 0) = π(x), fξ(x, 0) = 0, fx(x, x) = 0, nous aurons

‖ ut(t, .) ‖2
L2 ≤ ‖ wt(t, .) ‖2

L2 +e∞ ‖ wt(t, .) ‖2
L2

+ f∞ ‖ wx(t, .) ‖2
L2 +(fξξ)∞ ‖ w(t, .) ‖2

L2

+ λf∞ ‖ wt(t, .) ‖2
L2 +h∞ ‖ wt(t, .) ‖2

L2

+ (hξ)∞ ‖ wt(t, .) ‖2
L2

≤ (1 + e∞ + h∞ + (hξ)∞ + λf∞) ‖ wt(t, .) ‖2
L2

+ (f∞ + c0(fξξ)∞) ‖ wx(t, .) ‖2
L2

≤ c4(‖ wt(t, .) ‖2
L2)+ ‖ wx(t, .) ‖2

L2),

tel que c4 = max{1 + e∞ + h∞ + (hξ)∞ + λf∞, f∞ + c0(fξξ)∞} ≥ 0.

Aussi, comme w(t, 0) = w(t, x)−
∫ x

0
wy(t, y)dy, nous trouvons

‖ ux(t, .) ‖2
L2 ≤ ‖ wx(t, .) ‖2

L2 +e∞ ‖ w(t, .) ‖2
L2

+ (ex)∞ ‖ w(t, .) ‖2
L2 +f∞ ‖ wt(t, .) ‖2

L2

+ (fx)∞ ‖ wt(t, .) ‖2
L2 +h∞ ‖ wx(t, .) ‖2

L2

+ π′∞(‖ wx(t, .) ‖2
L2 + ‖ w(t, .) ‖2

L2)

+ (hx)∞ ‖ wx(t, .) ‖2
L2

≤ c5(‖ wx(t, .) ‖2
L2 + ‖ wt(t, .) ‖2

L2),

tel que c5 = max{1 + c0e∞+ c0(ex)∞+h∞+ (hx)∞+π′∞(1 + c0), f∞+ (fx)∞}. En�n, nous

avons | ut(t, 0) |2≤ 4 | wt(t, 0) |2 . Par conséquent, il existe ρ2 > 0 tel que Σ(t) ≤ ρ2Θ(t).

Ceci implique que le système (3.53)-(3.55) est exponentiellement stable au sens de la norme

Θ. �

3.5 Résultat de simulation

Suite à l'analyse ultérieure, le programme numérique de simulation intègre aussi bien

le comportement du système cible que le comportement des vibrations de torsion. La loi de
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contrôle en vitesse angulaire assure la stabilité du système, par conséquent, la suppression

des vibrations de torsion. Les paramètres physiques utilisés dans la simulation sont donnés

dans le tableau suivant

Variable Valeur Unité Description
L 2000 m Longueur de la chaîne de forage
I 0.095 kg.m Inertie par unité de longueur
Ib 311 kg.m2 Inertie au fond du train de tiges,
J 1.19.105 m4 Moment d'inertie géométrique
G 79.3.109 N.m−2 Module de cisaillement
ca 2000 Nm.s.rad Coe�cient de couple de glissement
d 0.009 Coe�cient d'amortissement

Table 3.1 � Paramètres physiques

Dans la pratique, a�n d'optimiser les opérations de forage, l'opérateur de foreur contrôle

généralement les paramètres de forage à la surface, tels que la vitesse de rotation du train

de tige, le poids sur le trépan et la viscosité du �uide de forage. Nous avons montré que

le système de forage (3.1) - (3.3) est équivalent au système (3.22) - (3.25). Il est donc

important de tester l'e�cacité de la loi de contrôle pour le système (3.22) - (3.25). Les

�gures (Fig 3.2) et (Fig 3.3), montrent la convergence des états y1(t, x) et y2(t, x) vers

zéro. Comme prévu par les Théorèmes 3.4.1 et 3.4.2, les vibrations de torsion (stick-slip)

Figure 3.2 � Évolution en fonction du temps de l'état y1(t, x).

(Fig 3.5 - 3.6) sont réduites par l'application de la loi de contrôle suivante (Fig. 3.4)

Ω(t) =
GJ

caL
U(t) +

1

L

√
GJ

I
ut(t, 1),
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Figure 3.3 � Évolution en fonction du temps de l'état y2(t, x).

où U(t) est une commande : donnée par (3.68).

Figure 3.4 � Évolution temporelle de la loi de contrôle Ω(t).

Figure 3.5 � Stabilisation de la vitesse angulaire en termes de ut(t, 0) et wt(t, 0).

La �gure (Fig. 3.5) montre le comportement de la vitesse à l'extrémité inférieure des
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systèmes respectivement, original et cible. De deux �gures (Fig 3.4) et (3.6), nous remar-

quons que les vibrations stick-slip sont réduites au moyen de la loi de contrôle Ω selon le

comportement de la vitesse angulaire à l'extrémité inférieure.

Figure 3.6 � Évolution de la variable de torsion u(t, x) le long du système de tige de
forage.

3.6 Conclusion
Deux axes principaux sont abordés dans ce chapitre. Le premier axe concerne la

stabilité d'un système hyperbolique 2×2 du premier ordre en temps et en espace. Le second

axe concerne la stabilité d'un système d'équation hyperbolique du second ordre. Comme

technique, nous avons utilisé la théorie de Lyapunov et la transformation backstepping.

On a élaboré deux commandes qui servent à supprimer le phénomène dit "stick-slip" qui

peut se produire dans le système durant toute la phase de forage. Ce phénomène a des

e�ets important sur la durée de vie de l'outil.
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Chapitre 4

Dynamique de la boue et avance du

train de tiges : modèle �ni (EDO)

4.1 Introduction

Au cours des derniers siècles, l'exploration de gaz et de pétrole a fait de grands progrès

dans le développement des techniques de forage. Pour la modélisation et le contrôle des sys-

tèmes de forage, de nombreuses études de recherche ont été proposées [53, 69, 11, 49, 74].

En outre, dans la littérature, de nombreux auteurs se sont intéressés à la stabilisation du

système avec di�érentes méthodes : backstepping, platitude, etc.

Dans ce travail, nous utilisons la technique du backstepping et la théorie de Lyapunov

pour étudier le MPD. La technique du backstepping est développée en 1990 par Kokotovic

et al. [55, 57] pour analyser la stabilité des systèmes dynamiques non linéaires. Diverses

recherches ont utilisé cette technique et la théorie de Lyapunov pour prouver la stabilité

des équations di�érentielles non linéaires [42, 25, 26, 45, 7]. En ajoutant que, Kristick et

al. [42] ont introduit une nouvelle méthode pour les systèmes non linéaires munis d'une loi

de contrôle. Puis, dans [58], Roger et al. ont fourni une analyse des di�érentes techniques :

deux méthodes pour trouver la loi de contrôle sont proposées.

Au cours des opérations des forages, les déblais de fond doivent être transportés hors du

trou de forage à travers la couronne. Cela se fait à l'aide d'un système dit "pression géré"

(Managed Pressure Drilling, MPD). Un MPD est utilisé pour contrôler la pression annu-

65
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laire à travers le contrôle de la pression au fond du puits et supprimer les a�ux continus

de formation des �uides à la surface. Par conséquent, les principaux objectifs d'un MPD

consistent à contrôler la pression au fond, réguler la pression autour de l'espace annulaire

ainsi la vitesse de pénétration (ROP). C'est une nouvelle technique qui a la capacité d'at-

ténuer les risques de débouchage dans un forage, l'augmentation des taux de production

et l'amélioration des performances de forages. Dans la littérature, di�érents aspects de la

modélisation d'un MPD ont été proposés [72, 22, 51, 79]. L'estimation et la conception de

contrôle MPD a été étudiée par [22]. Divers dé�s de modélisation des systèmes de forage

et d'automatisation sont discutés dans [23, 56]. Dans [51], les auteurs ont proposé un

modèle de dimension �nie qui décrit les phénomènes du �uide entre la pompe principale

jusqu'à la sortie du �uide dans l'espace annulaire. Un système d'observateur réduit, qui

adapte à la friction, à la densité, et aux estimations de la pression au fond du trou dans

un puits, est présenté dans [52].

Dans ce chapitre nous présentons un modèle hydraulique (MPD) basé sur la loi de

masse et la loi de mouvement qui fournit les équations gouvernantes décrivant un MPD.

Nous élaborons des commandes qui servent à contrôler : la pression de la pompe au niveau

de l'outil, la vitesse de pénétration et également la vitesse de rotation du train de tiges.

Les lois de contrôle sont explicitement construites à l'aide de la méthode du backstepping

et la théorie de Lyapunov.

4.2 Stabilisation de la pression aux di�érents niveaux

d'un puits

Pour tout système contrôlé, la connaissance des points de fonctionnement autour

desquels la régulation peut être e�ectuée, est essentielle. Dans ce manuscrit, on n'entre

pas dans les détails de dérivation de la dynamique de la boue, le calcul se base sur les

équations fondamentales :

• viscosité : la viscosité d'un �uide est en fonction de la pression et la température

• densité : la densité dépend de la pression et de la température

• conservation de la masse : le bilan des masses appliqué dans la tige et la couronne
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• conservation du moment : le bilan des forces selon une direction d'écoulement, ou

la deuxième loi de Newton

La dynamique de la boue, qui est aussi un mélange d'un �uide injecté et de déblais

dégagé par l'outil, peut être décrite par un modèle de dimension in�nie. Or, dans la

pratique, l'étude de la pression en tout point n'est pas utile. La localisation de cette

pression répond aux critères MPD, par conséquent, un modèle �ni est su�sant pour

l'analyse de stabilité (Fig. 4.1). Trois points sont essentiels dans l'étude en question. Il

s'agit de la pression/débit injectée à la surface, pression/débit au fond et pression/débit

à la sortie de la couronne. Le problème posé par un point de contrôle en matière de

stabilité entrainera l'instabilité de l'ensemble avec une pression de grandeur entrainant

la destruction du système et/ou une mauvaise direction de forage, opération qui peuvent

être couteuse pour un industriel.

4.2.1 Modèle de la boue et avance du train de tiges

Figure 4.1 � Schéma d'un système MPD

Le modèle décrivant le comportement du �uide injecté pour faciliter l'extraction de la
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boue est le suivant :

Mq̇outil(t) = P1(t)− P3(t)− F (qoutil) + g(ρ1L− ρ3y(t)) (4.1)
V1

β1

Ṗ1(t) = u3(t)− qoutil(t) (4.2)

(V0 + Sy(t))Ṗ3(t) = β3

[
qoutil(t) + q2(t,Ω)− q3(t)− dV3

dt︸︷︷︸
Sv(t)

]
(4.3)

IΩ̇ = u1(t) (4.4)

ẏ(t) = v(t) (4.5)

v̇(t) = u2(t) (4.6)

avec les notations suivantes :

• y(t) ∈ [0, L] : la coordonnée spatiale le long de la trajectoire d'écoulement, (g

direction de la gravité)

• V0 : volume initiale de la couronne

• V3 = V0 + Sy(t) : volume de la couronne (dépend de l'avancement de l'outil)

• v : vitesse pénétration de l'outil (ROP)

• q1 : débit injecté par la pompe

• q2 : débit dû à l'enlèvement de la terre par l'outil

• S : surface de l'espace annulaire

• q3 : débit sortant de la couronne (mélange)

• V1 : volume traversant le train de tiges

• β1 et β3 : modules de compressibilité de la boue

• qoutil : taux d'écoulement à partir de l'outil

• M : densité intégrée par section,

• P1 : la pression fournie par la pompe à la surface

• P3 : pression au fond du trou

• I : inertie du train de tiges par unité de longueur

• u1 : couple appliqué au train de tiges par la table de rotation

• ue : vitesse de pénétration
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• u3 : commande virtuelle

• ρ1 : densité de la boue de forage dans le train de tiges

• ρ3 : densité d'un mélange boue-déblais

La chute de pression totale due au frottement entre le train de tiges et l'espace annulaire

est représentée par F (qoutil). En outre

F (qoutil) = Fa(qoutil) + Fd(qoutil)

avec le frottement dans le train de forage (Fd(qoutil)) et l'annulaire (Fa(qoutil)) sont ap-

proximés par les polynômes suivants [28] :

Fa(qoutil) = α1qoutil + β1q
2
outil

Fd(qoutil) = α2qoutil + β2q
2
outil

avec α1, α2, β1 et β2 sont des constantes.

Les équations (4.1)- (4.3) représentent la dynamique de la pression dans la partie hy-

draulique. Concernant cette partie, nous utilisons les lois fondamentales de la mécanique

des �uides : le principe de la conservation de la masse, le principe de conservation des

moments et la relation de Bernoulli. La dynamique liée à la vitesse de rotation est donnée

par (4.4). Les équations (4.5)-(4.6) décrivent la dynamique de déplacement de l'outil. Pour

modéliser cette partie mécanique nous utilisons la Loi de Newton.

Pour la détermination du débit q2 deux cas de �gure se présentent.

Hypothèse. Le débit q2 ne dépend pas de la vitesse de pénétration, par conséquent

de l'état v. Ainsi, on considère dans un premier temps que le phénomène de vibration de

torsion n'est pas a�ecté par le système d'injection �uidique.

4.2.2 Cas où le débit q2 , q2(t)

Ce cas se présente sous une vitesse de rotation constante Ω de l'ensemble train-trépan.

Ainsi, le débit q2 (interaction outil/sol) ne dépend pas de l'état du système. Alors le
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système (4.1)-(4.6) est transformé au suivant :

Mq̇outil(t) = P1(t)− P3(t)− F (qoutil) + g(ρ1L− ρ3y(t))

V1

β1

Ṗ1(t) = u3(t)− qoutil(t)

(V0 + Sy(t))Ṗ3(t) = β3

[
qoutil(t) + q2(t)− q3(t)− Sv(t)

]
ẏ(t) = v(t)

v̇(t) = u2(t)

A partir du changement de variable suivant z(t) =
1

V0 + Sy(t)
, le système donné ci-dessous

peut se mettre sous cette forme

q̇outil(t) = c1P1(t)− c1P3(t)− c1F (qoutil) + h(z) (4.7)

Ṗ1(t) = cu3(t)− cqoutil(t) (4.8)

Ṗ3(t) = f(qoutil, t)z(t)− β3z(t)Sv(t) (4.9)

ż(t) = −Sz2(t)v(t) (4.10)

v̇(t) = u2(t) (4.11)

où c = β1
V1
, h(z) = c1g(ρ1L− ρ3

S
( 1
z(t)
−V0)), c1 = 1

M
et f(qoutil, t) = β3

[
qoutil(t)+q2(t)−q3(t)

]
.

Il est facile de véri�er que (0, 0, 0, ρ3
ρ3V0+Sρ1L

, 0) est l'équilibre du système (4.7)-(4.11).

L'idée principale de cette partie est l'étude de stabilité de l'équation di�érentielle ordinaire

décrivant le MPD avec (u3, u2) est le vecteur commande. Rappelons que l'objectif est de

contrôler la pression/débit injectée par la pompe et la vitesse de pénétration de l'outil.

Théorème 4.2.1 Soit A < 0 telle que la quantité β3P3(t)Sz(t)+Sz2(t)(z(t)− ρ3
ρ3V0+Sρ1L

)+

A est di�érente de zéro et le vecteur commande décrit par :

u2(t) = Sz2(t)(z(t)− ρ3

ρ3V0 + Sρ1L
)− v(t) + Φ2(qoutil, P3, z)

+ Φ̇2(P3, z) + β3Sz(t)P3(t)

u3(t) = −P1 − Φ1(qoutil, P3, z)

c
+
c− c1

c
qoutil(t) +

1

c
Φ̇1(qoutil, P3, z)
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où

Φ1(qoutil, P3, z) = P3 − (
1

c1

qoutil − F (qoutil))−
1

c1

h(z)

et

Φ2(qoutil, P3, z) = (
P3(t))2 + (z(t)− ρ3

ρ3V0+Sρ1L
)2 + (P3(t)

2
+ f(qoutil, t)z(t))2

β3P3(t)Sz(t) + Sz2(t)(z(t)− ρ3
ρ3V0+Sρ1L

) + A

satisfaisant l'équilibre Φ2(0, 0, ρ3
ρ3V0+Sρ1L

) = 0 et Φ1(0, 0, ρ3
ρ3V0+Sρ1L

) = 0, alors après avoir

injecté les commandes, le système (4.7)-(4.11) en boucle fermé est asymptotiquement

stable.

Preuve Considérons d'abord le sous-système

q̇outil(t) = c1P1(t)− c1P3(t)− c1F (qoutil) + h(z) (4.12)

où la variable d'état P1 est traitée comme étant une commande. On remplace P1 par la

loi de contrôle virtuelle suivante dans (4.12)

Φ1(qoutil, P3, z) = P3 − (
1

c1

qoutil − F (qoutil))−
h(z)

c1

avec Φ1(0, 0, ρ3
ρ3V0+Sρ1L

) = 0. On obtient alors q̇outil(t) = −qoutil pour lequel on peut associer

la fonction de Lyapunov L1(t) = 1
2
q2
outil et montrer que (4.7) est asymptotiquement stable

à l'équilibre.

Maintenant, considérons la nouvelle variable d'état

ζ1 = P1 − Φ1(qoutil, P3, z)

Alors nous obtenons

q̇outil(t) = c1ζ1(t)− qoutil(t)

ζ̇1(t) = −Φ̇1(qoutil, P3, z) + cu3(t)− cqoutil(t)
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Nous prenons la fonction de Lyapunov

L2(t) = L1(t) +
1

2
ζ2

1 =
1

2
(q2
outil + ζ2

1 )

La dérivé par rapport au temps de L2 est donnée par

L̇2 = q̇outilqoutil + ζ̇1ζ1

= qoutil(c1ζ1 − qoutil) + ζ1(−Φ̇1(qoutil, P3, z) + cu3(t)− cqoutil(t))

= −q2
outil − ζ2

1 + ζ1(ζ1 + (c1 − c)qoutil − Φ̇1(qoutil, P3, z) + cu3(t))

Ainsi, la loi de contrôle s'écrit

u3(t) = −ζ1

c
+
c− c1

c
qoutil(t) +

1

c
Φ̇1(qoutil, P3, z)

cela implique que L̇2(t) = −2L2(t). D'où (4.7)-(4.8) est asymptotiquement stable à l'équi-

libre (qoutil, P1) = (0, 0).

Dans cette étape, nous considérons les dynamiques restantes dans (4.7)-(4.11)

Ṗ3(t) = f(qoutil, t)z(t)− β3z(t)Sv(t) (4.13)

ż(t) = −Sz2(t)v(t) (4.14)

v̇(t) = u2(t) (4.15)

Commençons par

Ṗ3(t) = f(qoutil, t)z(t)− β3Sz(t)v(t)

ż = −Sv(t)z2(t)

où f(qoutil, t) = β3(qoutil(t) + q2(t)− q3(t)), et nous introduisons la loi de contrôle virtuelle

qui satisfait

Φ2(qoutil, P3, z) =
P 2

3 (t) + (z(t)− ρ3
ρ3V0+Sρ1L

)2 + (1
2
P3(t) + f(qoutil, t)z(t))2

β3P3(t)Sz(t) + Sz2(t)(z(t)− ρ3
ρ3V0+Sρ1L

) + A
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véri�ant Φ2(0, 0, ρ3
ρ3V0+Sρ1L

) = 0.

Alors nous obtenons le système suivant :

Ṗ3(t) = f(qoutil, t)z(t)− β3z(t)SΦ2(qoutil, P3, z) (4.16)

ż = −Sz2(t)Φ2(qoutil, P3, z) (4.17)

Soit la fonction de Lyapunov associée à cette écriture :

L3(t) =
1

2
(P 2

3 + (z − ρ3

ρ3V0 + Sρ1L
)2)

Sa dérivation par rapport au temps, donne

L̇3(t) = Ṗ3P3 + ż(z − ρ3

ρ3V0 + Sρ1L
)

= f(qoutil, t)z(t)P3(t)− β3Sz(t)P3(t)Φ2(qoutil, P3, z)

− Sz2(t)(z − ρ3

ρ3V0 + Sρ1L
)Φ2(qoutil, P3, z)

Maintenant, à partir de l'hypothèse donnée dans le Théorème 4.2.1 et on remplace

Φ2(qoutil, P3, z) par son expression, nous obtenons

L̇3(t) ≤ f(qoutil, t)z(t)P3(t)−
[
P 2

3 (t) + (z − ρ3

ρ3V0 + Sρ1L
)2 + (

1

2
P3(t) + f(qoutil, t)z(t))2

]
≤ −P 2

3 (t)− (z − ρ3

ρ3V0 + Sρ1L
)2

≤ −2L3(t)

Ce qui montre que (4.13)-(4.14) est asymptotiquement stable à l'équilibre (P, z) = (0, ρ3
ρ3V0+Sρ1L

).

À présent, nous proposons l'état virtuel suivant, ζ2(t) = v(t)−Φ2(qoutil, P, z) pour trans-

former le système (4.13)-(4.15) sous cette forme

Ṗ3(t) = f(qoutil, t)z(t)− β3Sz(t)ζ2(t)− β3z(t)SΦ2(qoutil, P3, z)

ż(t) = −Sz2(t)ζ2(t)− Sz2(t)Φ2(qoutil, P3, z)

ζ̇2(t) = u2(t)− Φ̇2(P3, z)
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Le sous-système (4.16)-(4.17) est asymptotiquement stable à l'équilibre (P, z) = (0, ρ3
ρ3V0+Sρ1L

).

Ainsi, nous proposons la fonction de Lyapunov L4(t) = L3(t) + 1
2
ζ2

2 . Cette dernière a pour

dérivée,

L̇4(t) = Ṗ3(t)P3(t) + ż(t)(z(t)− ρ3

ρ3V0 + Sρ1L
) + ζ̇2(t)ζ2(t)

≤ −2L3 + ζ̇2(t)ζ2(t)− β3Sz(t)ζ2(t)P3(t)− Sz2(t)(z(t)− ρ3

ρ3V0 + Sρ1L
)ζ2(t)

≤ −2L3(t)− ζ2
2 (t) + (ζ2(t) + u2(t)− Φ̇2(P3, z))ζ2(t)

− β3Sz(t)ζ2(t)P3(t)− Sz2(t)(z(t)− ρ3

ρ3V0 + Sρ1L
)ζ2(t)

≤ −2L4(t) + (ζ2(t) + u2(t)− Φ̇2(P3, z)− β3Sz(t)P3(t)

− Sz2(t)(z(t)− ρ3

ρ3V0 + Sρ1L
))ζ2(t)

Maintenant, on peut proposer la loi de contrôle en

u2(t) = Sz2(t)(z(t)− ρ3

ρ3V0 + Sρ1L
)− ζ2(t) + Φ̇2(P3, z) + β3Sz(t)P3(t)

traduisant

L̇4(t) ≤ −2L4(t)

A ce stade, nous introduisons la fonction de Lyapunov globale pour le système (4.7)-(4.11)

Ξ(t) =
1

2

(
q2
outil +

(
P1 − Φ1(qoutil, P3, z)

)2)
+

1

2

(
P 2

3 (t) +
(
z(t)− ρ3

ρ3V0 + Sρ1L

)2)
+

1

2

(
v(t)− Φ2(qoutil, P3, z)

)2

Il est trivial de véri�er que

Ξ̇ = L̇2 + L̇4 ≤ −2(L2 + L4) ≤ −2Ξ

Ce qui assure la stabilité asymptotique de (4.7)-(4.11) à l'équilibre.

�

Remarque On considère que le phénomène des vibrations de torsion est indépendant

du système d'injection, ceci implique que la vitesse de pénétration de l'outil n'est pas
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impactée par la pression du �uide injecté. En e�et, dans le cas contraire, on aura a�aire

à un modèle couplant la dynamique de torsion ainsi que le comportement �uide injecté

par le système hydraulique à la surface.

4.2.3 Cas où le débit q2 , q2(t,Ω)

Ce cas se présente sous une vitesse de rotation Ω non constante de l'ensemble train-

tiges. Alors, le débit q2 (interaction outil/sol) dépend de l'état du système. Ainsi, on peut

exprimer :

q2(t,Ω) = ρ3Sr(Ω(t) + d(t))

IΩ̇ = u1(t)

où I l'inertie du train de tiges par unité de longueur, r le rayon de l'espace annulaire et

u1 le couple appliqué au train de tiges par la table de rotation. Comme le débit q2 ne

peut résulter uniquement de la vitesse de rotation Ω(t) du train-trépan, c'est-à-dire, que

d'autres facteurs peuvent contribuer à la forme de q2 selon la nature du sol, on procède

par le prise en compte un terme de perturbation borné. D'où d(t) dans l'expression du

débit regroupe tout ce qui est identi�able et entrainant une vitesse Ω(t) di�érente de celle

développée à la surface. Aux objectifs, traduisant le contrôle du système de pression, se

rajoute la vitesse de rotation de tiges. Par conséquent (u1, u2, u3) se présente comme le

vecteur de contrôle associé à l'état (Ω, v, P1). L'étude se base sur le système suivant

Ṗ1(t) = cu3(t)− cqoutil(t) (4.18)

q̇outil(t) = c1P1(t)− c1P3(t)− c1F (qoutil) + h(z) (4.19)

Ṗ3(t) = T (qoutil, t)z(t) + β3ρ3Sr(Ω(t) + d(t))z(t)− β3z(t)Sv(t) (4.20)

Ω̇ =
1

I
u1(t) (4.21)

ż(t) = −Sz2(t)v(t) (4.22)

v̇(t) = u2(t) (4.23)
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avec T (qoutil, t) = β3

[
qoutil − q3

]
, u3 est l'entrée de commande, u1 est le couple appliqué

au train de tiges par la table de rotation et u2 agit sur la vitesse de pénétration.

Nos résultat de stabilité sont évoqués dans le théorème suivant.

Théorème 4.2.2 Soient les trois lois de contrôles suivantes

u1(t) = I
(
− ρ3Srβ3P3(t)z(t) + Φ̇3 − Ω + Φ3

)
u2 = −v + Φ4 + Sz2(z − ρ3

ρ3V0 + ρ1SL
) + Φ̇4

u3(t) = −P1 − Φ1(qoutil, P3, z)

c
+
c− c1

c
qoutil(t) +

1

c
Φ̇1(qoutil, P3, z)

avec

Φ1(qoutil, P3, z) = P3 − (
1

c1

qoutil − F (qoutil))−
h(z)

c1

,

Φ3(P3, z, v) =
−P3 − T (qoutil, t)z(t)− ρ3Srβ3d(t)z(t) + β3Sz(t)v(t)

ρ3Srβ3z(t)
(4.24)

Φ4(z) =
z − ρ3

ρ3V0+ρ1SL

Sz2(t)

satisfaisant l'équilibre Φ1(0, 0, ρ3
ρ3V0+Sρ1L

) = Φ3(0, ρ3
ρ3V0+Sρ1L

, 0) = 0, et 0 = Φ4( ρ3
ρ3V0+Sρ1L

).

Alors le système (4.18)-(4.23) est asymptotiquement stable à l'équilibre (qoutil, P1, P3,Ω, z, v) =

(0, 0, 0, 0, ρ3
ρ3V0+Sρ1L

, 0).

Preuve Rappelons que le sous-système (4.18)-(4.19) est asymptotiquement stable à l'équi-

libre (qoutil, P1) = (0, 0) (voir Théorème 4.2.1), par conséquent le sous-système (4.18)-

(4.19) est asymptotiquement stable à l'équilibre.

Maintenant, considérons le sous-système

Ṗ3(t) = T (qoutil, t)z(t) + β3ρ3Sr(Ω(t) + d(t))z(t)− β3z(t)Sv(t)

Ω̇ =
1

I
u1(t)
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Nous introduisons la loi de contrôle virtuelle donnée par (4.24) . Nous proposons L5(t) =

1
2
P 2

3 , alors, nous trouvons L̇5(t) ≤ −P 2
3 . Soit ξ3(t) = Ω(t)− Φ3 l'état de contrôle virtuel,

alors nous obtenons le sous-système

Ṗ3(t) = T (qoutil, t)z(t) + β3ρ3Sr(ξ3(t) + Φ3 + d(t))z(t)− β3z(t)Sv(t)

ξ̇3 = −Φ̇3 +
1

I
u1(t)

À présent, nous introduisons la fonction de Lyapunov L6(t) = 1
2

(
P 2

3 (t) + ξ2
3(t)
)
. Nous

dérivons L6

L̇6(t) = Ṗ3P3 + ξ̇3ξ3

= P3(T (qoutil, t)z(t) + β3ρ3Srz(t)Φ3 + β3ρ3Srd(t)z(t)

− β3Sz(t)v(t)) + ξ3(t)(P3(t)ρ3Srβ3z(t)− Φ̇3 +
1

I
u1(t))

Nous sélectionnons la loi de contrôle

u1(t) = I
(
− ρ3Srβ3P3(t)z(t) + Φ̇3 − ξ3(t)

)
D'ou L̇6(t) ≤ −2L6(t). Finalement, soit le dernier sous-système

ż(t) = −Sz2(t)v(t)

v̇(t) = u2(t)

Nous considérons Φ4 =
z− ρ3

ρ3V0+ρ1SL

sz2(t)
comme une loi de contrôle virtuelle et la fonction de

Lyapunov L7(t) = 1
2
(z− ρ3

ρ3V0+ρ1SL
)2, nous obtenons L̇7(t) ≤ −2L7. Soit ξ4 = v−Φ4 l'état

virtuel. Ainsi nous obtenons le sous-système

ż(t) = −Sz2(t)ξ4(t)− Sz2(t)Φ4

ξ̇4(t) = −Φ̇4 + u2(t)
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Nous introduisons la fonction de Lyapunov L8(t) = L7(t) + 1
2
ξ2

4(t). Nous Dérivons L8(t)

par rapport au temps, nous trouvons

L̇8(t) = L̇7(t) + ξ(t)ξ̇(t)

≤ −2L̇7(t) + ξ4(−Sz2(z − ρ3

ρ3V0 + ρ1SL
)− Φ̇4 + u2(t))

≤ −2L̇8(t) + ξ4(ξ4 − Sz2(z − ρ3

ρ3V0 + ρ1SL
)− Φ̇4 + u2(t))

Alors la loi de contrôle u2 est donnée par

u2 = −ξ4 + Sz2(z − ρ3

ρ3V0 + ρ1SL
) + Φ̇4

Par conséquent, soit la fonction de Lyapunov

L =
1

2
[q2
outil + (P1 − Φ1)2 + P 2

3 + (Ω− Φ3)2 + (z − ρ3

ρ3V0 + ρ1SL
)2 + (v − Φ4)2]

Alors

L̇ = L̇2 + L̇6 + L̇8

≤ −2(L2 + L6 + L8) ≤ −2L

En conclusion la démarche proposée et détaillée ci-dessus prouve que le système (4.18)-

(4.23) est asymptotiquement stable à l'équilibre. �

4.3 Simulation

Les paramètres physiques utilisés dans la simulation sont donnés dans la table 4.1.

Le �uide dans un forage est un élément clé, car il évacue les déblais qui s'accumulent au

fond du trou, il stabilise les parois du trou lorsque ce dernier est encore sans cuvelage et

en�n il peut aussi lubri�er et refroidir l'outil en activité. Une "perte de �uide" indique

habituellement la présence des fractures ou autres vides dans les terrains traversés. La

perte de �uide mène habituellement à une diminution de la pression, ce qui peut poser

des problèmes majeurs durant l'opération. On s'intéresse au �uide en "circulation directe"
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Variable Valeur Unité Description
L 2000 m Longueur de la chaîne de forage
I 0.095 kg.m Inertie par unité de longueur
ρ1 = ρ3 1250 kg.m−3 Densité de la boue de forage
ρ3 1250 kg.m−3 Densité annulaire
M 8300 kg.m−4 Densité intégrée par section
β1 = β3 24750 bar Module de la compressibilité de la boue
V0 110 m3 Volume initial dans la couronne
g 9.81 m.s−2 Gravité
S π × (0.25)2 m2 Surface annulaire
cd 0.61
Fa 0.003.106 bar.s2.m−6 Coe�cient de frottement
d(t) sin(t) Perturbation

Table 4.1 � Paramètres physiques [52]

(celui qui descend par le train de tiges) et au �uide en "circulation inverse" (celui qui monte

par l'espace annulaire). En l'absence d'un système de mesure autour de la couronne, on

peut reconstituer le débit dû à la boue sortant à partir des autres dynamiques, données

par (4.18)- (4.23)

q3 = cdS

√
2

ρ3

(Pfond − P3 + ρ3
g

S
(
1

z
− V0))

(a) Débit à travers l'outil de forage qoutil (b) Débit injecté par la pompe q1(t) , u3(t)

Figure 4.2 � Évolution temporelle des débits

Comme prévu par les théorèmes 4.2.1 et 4.2.2, les lois de contrôle proposées stabilisent

toutes les variables de forage y compris la pression au fond du puits (Fig. 4.2- 4.4).
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Le déplacement de l'outil permet de construire la pression au fond du trou. La pression

au fond du trou peut être décrite par la pression P3 à travers l'espace de la couronne. En

appliquant la relation de Bernoulli à travers l'espace annulaire, on peut reconstituer la

pression au fond du puits :

Pfond = P3 −
ρ3g

S
(
1

z
− V0) + Faq

2
outil

où Fa désigne le coe�cient de frottement dans l'espace annulaire. Nous remarquons que

toutes les simulations impliquent une convergence su�sante des variables du système

à leurs valeurs attendues (Fig. 4.2- 4.4). Par exemple, notons que la hauteur du puits

y converge vers ρ1L
ρ3

= 2000m (Fig. 4.4, (a)). En appliquant les deux lois de contrôle

(agissant par la vitesse de rotation du train de tiges Ω(t) et la vitesse de pénétration v(t),

Fig. 4.3), l'équilibre est montré asymptotiquement stable.

(a) Vitesse de pénétration v(t) (b) Vitesse de rotation du train de tiges Ω(t)

Figure 4.3 � Présentation du comportement de deux vitesses
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(a) Longueur du puits y(t) (b) Pression au fond du trou P3(t)

Figure 4.4 � Évolution temporelle de la longueur du puits y(t) et de la pression au
fond du trou P3(t)

4.4 Conclusion
Ce chapitre a été consacré au développement d'un modèle MPD qui sert à étudier le

processus de lubri�cation au cours du forage. En e�et, ce procédé consiste à injecter un

�uide (boue, eau, ....) par le derrick le long du train de tiges. Ceci permet de remonter les

déblais en surface et de refroidir l'outil. À savoir aussi que la vitesse optimale de remontée

des déblais augmente avec l'augmentation de la taille des cuttings et de ROP. Comme

perspective, il existe certains paramètres qui ne sont pas mesurables dans notre modèle.

Donc il est utile de construire un observateur de dimension �nie à l'image de dimension

du système.
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Chapitre 5

Suppression de vibration en présence

d'une injection �uidique : couplage

EDP-EDO

5.1 Introduction

L'extraction du pétrole consiste à la création d'un forage de plusieurs centaines de

mètres de profondeur dans le sol jusqu'à ce qu'on atteint le pétrôle et le gaz. Le système

de forage rotary comprend une tête d'injection, une tige d'entraînement qui passe à travers

une table de rotation et qui est reliée au train de tiges et en bout de la colonne un outil

de forage (appelé trépan) creusant le sol. La tige d'entraînement et l'outil de forage, tous,

subissent une rotation via la table de rotation. Au dernier siècle, de nombreux e�orts

de recherches sur la modélisation et le contrôle des systèmes forages ont été proposés.

Malgré le développement d'une vaste approche pour éliminer les vibrations de forage :

axiales, latérales et de torsions, de nos jours de nombreux problèmes restent ouverts (plus

de détails dans [37]).

La dynamique de torsion du train de tiges est décrite par une équation d'onde avec un

terme d'amortissement. Au cours des opérations de forages, la tige de forage dépend d'un

système de boue liquide qui doit être injecté. Il est nommé la pression de forage géré

(Managed Pressure Drilling, MPD) [52]. En fait, la raison principale de ce système est de

83
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réguler la pression au-dessus des pores du réservoir. Plusieurs chercheurs se sont intéressés

à stabiliser le MPD de di�érentes façons [51, 22]. La dérivation d'un modèle hydraulique

est décrite par les lois fondamentales suivantes [27] : la viscosité du �uide, la conservation

de la masse, la conservation du moment et la conservation de l'énergie. Le dé� principal

de ce travail, est d'étudier le système MPD dans l'industrie de pétrole couplé avec la

dynamique de vibration de torsion.

La théorie de Lyapunov et l'approche du backstepping sont l'une des plus connues tech-

niques utilisées pour trouver la stabilité des équations di�érentielles ordinaires et des

équations aux dérivées partielles [78, 71, 59, 33, 34, 39, 41, 55, 40, 58] ... etc. Par consé-

quent, ces dernières techniques sont utilisées pour prouver la stabilité du système couplé

torsion-boue.

Ce chapitre est structuré comme suit : dans la section 5.2, nous rappelons l'équation

aux dérivées partielles avec les conditions aux limites qui permettent de décrire la dy-

namique de vibration de torsion (EDP) et nous présentons la dynamique de la boue et

avance du train de tiges (EDO). On commence par introduire le système couplé pour

lequel on étudiera, en détails, l'existence et l'unicité de la solution puis, on montre la

stabilité du système couplé à l'aide de théorie de Lyapunov. Dans la section 5.3, à l'aide

de la transformation d'Alembert, le modèle de torsion-boue couplé est transformé en un

système d'équations di�érentielles ordinaires à retard du type neutre. Les résultats de

simulation, la conclusion et les perspectives font l'objectif de la section 5.4.

5.2 Couplage du système de torsion avec le modèle

hydraulique

Le problème de l'endommagement des réservoirs par les �uides de forage et de son

impact sur la production des puits pétroliers est souvent évoqué par di�érents interve-

nants. Depuis 1990, des dizaines du puits horizontaux ont été forés, avec comme objectifs

la caractérisation complète du réservoir d'une part, et d'autre part, le développement des

interzones et des autres niveaux réservoir. Cependant, l'inconvénient des puits horizon-

taux est lié au déclin rapide de production, enregistré avec un taux annuel plus de 15
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% [8]. L'endommagement des drains traversés par �ltration du �uide de forage ne peut

être totalement évité à cause de la surpression nécessaire que doit exercer la colonne de

boue sur le réservoir. Notre approche tentera non seulement d'appréhender l'impact des

�uides de forage et des méthodes d'étude des processus d'endommagement des roches ré-

servoirs, mais également l'incidence de cet endommagement sur la production pétrolière.

Ce phénomène est étroitement lié à la nature de la roche et aux interactions �uides de

forage-roche.

Rappelons que la propagation des ondes de torsion ϑ(t, ς) le long d'une tige de longueur

L est décrite par l'équation hyperbolique suivante :

GJ
∂2ϑ

∂ς2
(t, ς)− I ∂

2ϑ

∂t2
(t, ς)− d∂ϑ

∂t
(t, ς) = 0 (5.1)

ς ∈ (0, L), t ∈ (0,+∞), dans laquelle les conditions aux limites sont données par :

GJ
∂ϑ

∂ς
(t, 0) = ca(

∂ϑ

∂t
(t, 0)− Ω(t)) (5.2)

GJ
∂ϑ

∂ς
(t, L)− Ib

∂2ϑ

∂t2
(t, L) = −T (

∂ϑ

∂t
(t, L)) (5.3)

où l'inertie et le module de cisaillement sont désignés par I et G. L'extrémité (ς = L)

est soumis à un couple sur l'outil T (∂ϑ
∂t

(t, L)) qui tient compte du frottement causé par

l'interaction de l'outil avec le sol, Ib l'inertie de l'outil, J le moment d'inertie, d l'amor-

tissement du train de tiges, et Ω l'entrée de contrôle (vitesse angulaire due à la table de

rotation). On propose le changement de variable suivant [13] :

u(t, x) = ϑ(L

√
I

GJ
t, L(1− x)), x ∈ (0, 1), (5.4)

nous obtenons

∂ttu(t, x) = ∂xxu(t, x)− λ∂tu(t, x), x ∈ (0, 1) (5.5)

∂xu(t, 1) = τ1(t) (5.6)

∂ttu(t, 0) = a∂xu(t, 0) + aF (∂tu(t, 0)) (5.7)
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où

τ1(t) = caL
GJ

(
Ω(t)− 1

L

√
GJ
I
∂tu(t, 1)

)
, λ = dL

√
1

IGJ
,

F
(
∂tu(t, 0)

)
= − L

GJ
T
(

1
L

√
GJ
I
∂tu(t, 0)

)
et a = LI

Ib
.

Il est possible de linéariser la condition aux limites (5.7) autour de la trajectoire de

référence comme dans [13]

ū(t, x) =
λwr

2
x2 − F (wr)x+ wrt+ u0 (5.8)

tel que wr = ∂tū(t, x). Nous obtenons un nouveau système

∂ttu(t, x) = ∂xxu(t, x)− λ∂tu(t, x) (5.9)

∂xu(t, 1) = τ1(t) (5.10)

∂ttu(t, 0) = a∂xu(t, 0) + ab∂tu(t, 0) (5.11)

tel que b = ∂F
∂w

(wr) et w(t) = ∂tu(t, 1).

Au cours du forage, les déblais "cuttings" doivent être enlevés rapidement que possible

pour empêcher l'obstruction annulaire. Cela peut devenir plus compliqué dans le cas du

puits dévié où les déblais ont tendance à former un lit de copeaux sur le côté bas du trou.

Plus loin, les copeaux produits dans quelques formations ont tendance à être réactifs dans

les �uides à base d'eau. Ils peuvent se dégrader chimiquement, mécaniquement ou s'y

disperser en fonction du temps et font changer par conséquent les propriétés de la boue.

Les �uides de forage sont composés de matières solides en suspension dans une solution.

Il est impératif que ces particules qui composent la phase solide restent suspendues pour

que la boue ne perde pas ses caractéristiques. Si les particules se déposent, plusieurs

problèmes peuvent se produire et les conséquences peuvent être coûteuses. La stabilité de

la garniture de forage dépend d'un système de boue du �uide qui doit injecté. La pression

du �uide au fond peut endommager l'ensemble du système. Il est important d'intégrer la

dynamique de la pression dans cette étude sous la forme : EDP-EDO.

Rappelons que le modèle de la dynamique de la boue et avance de train de tiges est décrit
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par :

Mq̇outil(t) = P1(t)− P3(t)− F (qoutil) + g(ρ1L− ρ3y(t))

V1

β1

Ṗ1(t) = q1(t)− qoutil(t)

(V0 + Sy(t))Ṗ3(t) = β3

[
qoutil(t) + q2(t)− q3(t)− Sv(t)

]
ẏ(t) = v(t)

v̇(t) = τ3(t)

À partir du changement de variable suivant z(t) =
1

V0 + Sy(t)
, le système donné ci-dessous

s'écrit sous cette forme

q̇outil(t) = c1P1(t)− c1P3(t)− c1F (qoutil) + h(z)

Ṗ1(t) = cτ2(t)− cqoutil(t)

Ṗ3(t) = β3

[
qoutil(t) + q2(t)− q3(t)

]
z(t)− β3z(t)Sv(t)

ż(t) = −Sz2(t)v(t)

v̇(t) = τ3(t)

avec c1 = 1
M
, c = β1

V1
, h(z) = c1g(ρ1L− ρ3

S
( 1
z(t)
− V0)).

Le �ux q2 décrivant la quantité d'écoulement à travers la surface de contrôle (outil/sol)

dans le système de forage rotary s'écrit comme suit

q2 = ρ3Sr∂tϑ(L

√
I

GJ
t, L) = ε∂tu(t, 0)

avec ε = ρ3Sr
L

√
GJ
I

et r le rayon de l'espace annulaire (Fig. 5.1). Il est à noter que ce �ux

dépend de la variation du l'angle de torsion en fonction du temps, ce qui assure le couplage

entre le deux systèmes. Alors, nous obtenons le système couplé EDP-EDO suivant :
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Figure 5.1 � Circulation du �uide

∂ttu(t, x) = ∂xxu(t, x)− λ∂tu(t, x) (5.12)

∂xu(t, 1) = τ1(t) (5.13)

∂ttu(t, 0) = a∂xu(t, 0) + ab∂tu(t, 0) (5.14)

q̇outil(t) = c1P1(t)− c1P3(t)− c1F (qoutil) + h(z)

Ṗ1(t) = cτ2(t)− cqoutil(t)

Ṗ3(t) = β3(qoutil(t)− q3)z(t) + β3ε∂tu(t, 0)z(t)− β3z(t)sv(t)

ż(t) = −Sz2(t)v(t)

v̇(t) = τ3(t). (5.15)

Le chalenge dans cette section, est l'étude de stabilité des équations couplées EDP-EDO

obtenues en considérant (τ1, τ2, τ3) comme étant le vecteur commande. Il s'agit par consé-

quent d'élaborer les entrées de commande adéquates permettant d'atténuer/ supprimer

les vibrations de torsion en agissant sur les pressions aux di�érents niveaux du système.

La première question qui se pose : le problème, mathématiquement décrit ci-dessus est-il

bien posé ?



5.2. Couplage du système de torsion avec le modèle hydraulique 89

5.2.1 Existence et unicité de la solution

Le but de cette section est de prouver l'existence et l'unicité de la solution du système

couplé de torsion-boue contrôlé à l'aide du théorème de Lumer-Phillips' et de la théorie

des opérateurs (voir [6], [30]). Soit T > 0, la solution du problème de Cauchy est écrite

comme suit

∂ttu(t, x) = ∂xxu(t, x)− λ∂tu(t, x) (5.16)

∂xu(t, 1) = τ1(t) (5.17)

∂ttu(t, 0) = a∂xu(t, 0) + aF (∂tu(t, 0)) (5.18)

q̇outil(t) = c1P1(t)− c1P3(t)− c1R(qoutil) + h(z)

Ṗ1(t) = cτ2(t)− cqoutil(t)

Ṗ3(t) = β3(qoutil(t)− q3)z(t) + β3ε∂tu(t, 0)z(t)− β3Sz(t)v(t)

ż(t) = −Sz2(t)v(t)

v̇(t) = τ3(t) (5.19)

u(0, x) = α(x), ut(0, x) = β(x), qoutil(0) = q0
outil,

P1(0) = P 0
1 , P3(0) = P 0

3 , z(0) = z0, v(0) = v0 (5.20)

tel que x ∈ (0, 1), t ∈ (0, T ), α ∈ K := {u ∈ H1(0, 1), u(t, 0) = 0}, β ∈ L2(0, 1). τi(t)

pour i = 1, 2, 3 sont les lois de contrôles. Les variables q0
outil, P

0
1 , P

0
3 , z

0, v0 sont les valeurs

imposées à la solution à t = 0. Considérons l'espace vectoriel K qui est muni du produit

scalaire < u1, u2 >K= a
∫ 1

0
u1
xu

2
xdx. Il est évident que K est un espace de Hilbert.

Nous introduisons Z = (u(t, x), ut(t, x), ut(t, 0), qoutil(t), P1(t), P3(t), z(t), v(t))T . Le sys-

tème (5.16)-(5.20) est réécrit de façon compacte

Ż(t) = AZ(t) +H(Z(t)) + f(t) (5.21)

Z(0) = Z0 (5.22)

avec
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A =



0 1 0 0 0 0 0 0

∂xx −λ 0 0 0 0 0 0

k1 0 0 0 0 0 0 0

0 0 0 0 c1 −c1 0 0

0 0 0 −c 0 0 0 0

0 0 0 0 0 0 −β3q3 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



,

H(Z(t)) =



0

0

aF (ut(t, 0))

−c1R(qoutil) + h(z)

0

β3qoutilz − β3Szv + β3εzut(t, 0)

−Sz2v

0



, et f(t) =



0

δ(x− 1)τ1(t)

0

0

cτ2

0

0

τ3


où k1 = −a < δ′0(x), . > et tel que δ désigne la fonction de Dirac, 〈δ′1(x), u(t, x)〉 =

−ux(t, 1) et 〈δ′0(x), u(t, x)〉 = −ux(t, 0).

Tout d'abord, considérons la partie linéaire du problème (5.21)-(5.22), nous proposons le

théorème suivant.

Théorème 5.2.1 L'opérateur A génère un C0 semi-groupe de contractions eAt, t ≥ 0.

Preuve Soit X = {Z : u ∈ K, ut ∈ L2([0, 1]), ut(t, 0) ∈ R, qoutil ∈ R, P1 ∈ R, P3 ∈

R, z ∈ R, v ∈ R}.

Pour montrer que A génère un C0 semi-groupe des contractions sur X, il est équivalent à

prouver que l'opérateur A est dissipatif et (I − A) est surjectif. Nous dé�nissons

Z1 = (u1(t, x), u1
t (t, x), u1

t (t, 0), q1
outil(t), P

1
1 (t), P 1

3 (t), z1(t), v1(t))T
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et

Z2 = (u2(t, x), u2
t (t, x), u2

t (t, 0), q2
outil(t), P

2
1 (t), P 2

3 (t), z2(t), v2(t))T

L'espace vectoriel X est muni du produit scalaire suivant

〈
Z1, Z2〉X = a〈u1, u2〉K + a〈u1

t , u
2
t 〉L2[0,1] + 〈u1

t (t, 0), u2
t (t, 0)〉R

+ 〈q1
outil, q

2
outil(t)〉R + 〈P 1

1 (t), P 2
1 (t)〉R + 〈P 1

3 (t), P 2
3 (t)〉R + 〈z1

1(t), z2
1(t)〉R.

Notons par ‖ . ‖ la norme dans X associée au produit scalaire.

SoitA : D(A) ⊂ X → X l'opérateur linéaire dé�ni parD(A) = {Z ∈ X, u ∈ H2(0, 1), ut ∈

K, ux(t, 1) = 0, ut(t, 0) ∈ R, qoutil ∈ R, P1 ∈ R, P3 ∈ R, z ∈ R, v ∈ R}

Nous avons

A



u(t, x)

ut(t, x)

ut(t, 0)

q1
outil(t)

P 1
1 (t)

P 1
3 (t)

z1(t)

v1(t)



=



ut(t, x)

∂xxu(t, x)− λut(t, x)

aux(t, 0)

c1P1(t)− c1P3

−cqoutil
−β3q3(t)z(t)

0

0



, ∀ Z ∈ D(A)

L'opérateur A satisfait

< AZ,Z >X = −aλ
∫ 1

0

u2
tdx+ (c1 − c)P1(t)qoutil − c1P3qoutil − β3q3(t)z(t)P3

Physiquement c1 ≤ c, alors < AZ,Z >X≤ 0. Cela implique que A est dissipatif.

Il est facile de véri�er que pour tout m = (m1,m2,m3,m4,m5,m6,m7,m8) ∈ X, il existe

w = (w1, w2, w3, w4, w5, w6, w7, w8) ∈ D(A) tel que w − Aw = m. Alors, D(A) est dense

dans X et A est fermé. Par conséquent, en utilisant le théorème de Lumer-Phillips, A

est le générateur in�nitésimal d'un semi-groupe de contractions S(t), t ∈ [0,+∞), sur X.
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�

Remarque Dans ce cas, pour chaque Z0 ∈ D(A), le problème de Cauchy

Ż(t) = AZ(t), Z(0) = Z0

admet une unique solution

Z ∈ C1([0, T ], X)
⋂

C0([0, T ], D(A))

Maintenant, nous allons prouver l'existence et l'unicité du système (5.21)-(5.22) en tenant

en compte la partie non linéaire.

Théorème 5.2.2 Pour toute condition initiale Z0 ∈ D(A), le problème Ż(t) = AZ(t) +

H(Z) + f(t) admet une unique solution

Z ∈ C1([0, T ], X)
⋂

C0([0, T ], D(A))

Pour prouver le théorème 5.2.2, nous avons besoin du lemme suivant :

Lemme 5.2.1 l'opérateur non linéaire H(Z) est dissipatif et localement Lipschitzien.

Preuve Au début, il est évident que H(Z) est localement Lipschitzien. Par la suite, nous

allons prouver que H(Z) est dissipatif. Nous avons

〈H(Z(t))), Z(t)〉X = aF (ut(t, 0))ut(t, 0)− c1R(qoutil)qoutil + h(z)qoutil + β3qoutilzP3

− β3szvP3 + β3εzut(t, 0)P3 − Sz3v

= F (ut(t, 0))ut(t, 0)− qoutil(c1R(qoutil)− h(z)− β3zP3)− Sz3v

− β3zP3(Sv − εut(t, 0)) (5.23)
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Rappelons que la fonction non linéaire F résultante de l'interaction entre l'outil et le sol

est donnée par (Chapitre 3, [10])

F
(
∂tu(t, 0)

)
= − L

GJ
T
( 1

L

√
GJ

I
∂tu(t, 0)

)
,

= − L

GJ

k 1
L

√
GJ
I
∂tu(t, 0)

1
L

√
GJ
I
∂tu(t, 0)2 + k2

avec k > 0. Nous avons

F (ut(t, 0))ut(t, 0) = − L

GJ

k 1
L

√
GJ
I
∂tu(t, 0)2

1
L

√
GJ
I
∂tu(t, 0)2 + k2

Ainsi, F (∂tu(t, 0))∂tu(t, 0) ≤ 0.

Comme v ∈ [vmin, vmax], nous choisissons v tel que svmin

ε
≥ ut(t, 0) pour garantir la né-

gativité du dernier terme dans (5.23). De plus, la pression au niveau de l'espace annu-

laire au fond du trou véri�e P3 ≤ 1
β3z

[c1R(qoutil) − h(z)]. Selon ces hypothèses, pour une

vitesse de pénétration minimum et un comportement connu de la pression de l'espace

annulaire P3 par rapport au débit qoutil et le déplacement de l'outil z(t), nous pouvons

garantir que l'opérateur H(Z) est dissipatif. De plus, H(Z) est localement Lipschitzien.

�

Preuve du Théorème 5.2.2 En appliquant le lemme ci-dessus et à partir des résultats

donnés dans (Théorème 4.2 [47], [77, 6, 30]), on montre que notre système (5.21)-(5.22) ad-

met une unique solution. �

5.3 Stabilisation du système couplé

Dans cette section, on va proposer deux manières di�érentes d'aborder le problème de

stabilité d'une équation aux dérivées partielles hyperbolique de second ordre sans et avec

coe�cient d'amortissement couplé à un système d'équations di�érentielles ordinaires.
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5.3.1 Cas où λ = 0 : système à retard du type neutre couplé

Il est très di�cile de transformer un système d'équations aux dérivés partielles hyperbo-

liques avec coe�cient d'amortissement en un système d'équations di�érentielles ordinaires.

Pour cela, nous supposons que le terme d'amortissement λ est égal à zéro dans l'équation

(5.12). Par conséquent, on peut utiliser la transformation d'Alembert pour transformer

le modèle de paramètre distribué (5.12)-(5.14) en un modèle d'équations di�érentielles à

retard du type neutre. Le résultat de stabilité a été établi en se basant sur la théorie de

Lyapunov et la technique du backstepping.

5.3.2 Techniques classiques résolvant les équations des ondes à

coe�cients constants non amortis

Il est facile de véri�er que u(t, x) = µ(σ) + ν(γ) est la solution générale de l'équation

d'onde unidimensionnelle (5.12) avec σ = t+ x et γ = t− x. Nous dé�nissons

Ḣ(t) = ∂tu(t, 0) = µ̇(t) + ν̇(t), (5.24)

comme étant la vitesse angulaire à l'extrémité inférieure du train de tiges de forage. Nous

introduisons cette vitesse dans les conditions aux limites (5.13)-(5.14), cela implique

µ̇(t+ 1)− ν̇(t− 1) = τ4(t) (5.25)

µ̈(t) + ν̈(t) = a(µ̇(t)− ν̇(t)) + ab(µ̇(t) + ν̇(t) (5.26)

Nous pouvons écrire (5.24) sous cette forme

µ̇(t) = Ḣ(t)− ν̇(t). (5.27)

Nous injectons (5.27) dans (5.26), nous obtenons

ν̇(t) =
1 + b

2
Ḣ(t)− 1

2a
Ḧ(t). (5.28)
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Nous introduisons (5.28) dans (5.27), nous trouvons

µ̇(t) =
1− b

2
Ḣ(t) +

1

2a
Ḧ(t). (5.29)

Nous présentons à la fois les deux expressions de µ et ν dans (5.25), nous obtenons une

équation du type neutre du modèle du train de tiges :

1− b
2

Ḣ(t+ 1) +
1

2a
Ḧ(t+ 1)− 1 + b

2
Ḣ(t− 1) +

1

2a
Ḧ(t− 1) = τ4(t).

Par conséquent, nous trouvons une expression de type neutre avec retard pour le compor-

tement du train de tiges en bas :

Ḧ(t) = a(b− 1)Ḣ(t) + a(1 + b)Ḣ(t− 2)− Ḧ(t− 2) + 2aτ4(t− 1).

Ainsi, l'étude de stabilité du système de torsion-boue couplé du type neutre avec retard

est l'objectif de cette section :

Ḧ(t) = a(b− 1)Ḣ(t) + a(1 + b)Ḣ(t− 2)− Ḧ(t− 2) + 2aτ4(t− 1)

q̇outil(t) = c1P1(t)− c1P3(t)− c1F (qoutil) + h(z)

Ṗ1(t) = cτ5(t)− cqoutil(t)

Ṗ3(t) = β3(qoutil(t)− q3(t))z(t) + εβ3Ḣ(t)z(t)− β3Sz(t)v(t)

ż(t) = −Sz2(t)v(t)

v̇(t) = τ6(t).
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Nous introduisons x1 = H, x2 = Ḣ. Ensuite, nous avons :

ẋ1(t) = x2(t) (5.30)

ẋ2(t) = a(b− 1)x2(t) + a(1 + b)x2(t− 2)− ẋ2(t− 2) + 2aτ4(t− 1) (5.31)

q̇outil(t) = c1P1(t)− c1P3(t)− c1F (qoutil) + h(z) (5.32)

Ṗ1(t) = cτ5(t)− cqoutil(t) (5.33)

Ṗ3(t) = β3(qoutil(t)− q3(t))z(t) + εβ3x2(t)z(t)− β3Sz(t)v(t) (5.34)

ż(t) = −Sz2(t)v(t) (5.35)

v̇(t) = τ6(t). (5.36)

Il est facile de véri�er que (0, 0, 0, 0, 0, ρ3
ρ3V0+ρ1SL

, 0) est un point d'équilibre du système

(5.30)-(5.36). Pour éviter une augmentation forte de pression qui peut conduire à un

phénomène branchant, le problème de stabilisation du modèle torsion-boue couplé est

résumé en contrôlant simultanément la pression au fond du puits, la vitesse de pénétration

de l'outil et la vitesse de rotation du train de tiges.

5.3.3 Élaboration d'une commande stabilisante

Les motivations envers les choix des modèles ont déjà été clari�ées. Nous nous intéressons

ainsi aux systèmes dynamiques contrôlés décrits par une équation di�érentielle à retard

du type neutre.

Théorème 5.3.1 Considérons le système (5.30)-(5.36) et les trois lois de contrôle don-

nées par :

τ4(t− 1) =
1

2a

[
− x1(t)− εβ3P3(t)z(t) + aK + K̇ − abx2(t)

− a(1 + b)x2(t− 2) + ẋ2(t− 2)
]

(5.37)

τ5(t) = −1

c
(x2(t)−K1(qoutil, P3, z)) +

c− c1

c
qoutil(t) +

1

c
K̇1(qoutil, P3, z)

τ6(t) = Sz2(t)(z(t)− ρ3

ρ3V0 + ρ1SL
) +K2 − v(t) + K̇2

dans lequel, pour x = 0, nous avons cette condition
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u(t, 0) = u(0, 0)− x1(0)− εβ3P3(t)z(t) +B, avec

K(x1, qoutil, P3, z, v) =
1

(x1(t) + εβ3P3(t)z(t))
[−s0x

2
1(t)− s1P

2
3 (t)

− P3(t)(β3(qoutil(t)− q3(t))z(t)− β3z(t)sv(t))]

K1(qoutil, P3, z) = P3(t)− (
1

c1

qoutil(t)− F (qoutil))−
h(z)

c1

K2(z) =
(z(t)− ρ3

ρ3V0+ρ1SL
)

Sz2(t)

avec K(0, 0, 0, ρ3
ρ3V0+ρ1SL

, 0) = 0, K1(0, 0, ρ3
ρ3V0+ρ1SL

) = 0, K2( ρ3
ρ3V0+ρ1SL

) = 0, B est une

constante di�érente de zéro et si est une constante positive pour i = 0, 1. Alors (5.30)-

(5.36) est asymptotiquement stable.

Preuve Pour démontrer ce théorème, nous utilisons la technique du backstepping. D'abord,

considérons le sous-système suivant

ẋ1(t) = x2(t) (5.38)

Ṗ3(t) = β3(qoutil(t)− q3(t))z(t) + εβ3x2(t)z(t)− β3Sz(t)v(t) (5.39)

ẋ2(t) = a(b− 1)x2(t) + a(1 + b)x2(t− 2)− ẋ2(t− 2) + 2aτ4(t− 1). (5.40)

Nous dé�nissons K(x1, qoutil, P3, z, v) comme une loi de contrôle virtuelle pour le système

(5.38)-(5.39). Puis, nous proposons la fonction de Lyapunov V = 1
2
(x2

1 + P 2
3 ). Sa dérivée

par rapport au temps est donnée

V̇ = ẋ1x1 + Ṗ3P3

≤ −s0x
2
1 − s1P

2
3 + s0x

2
1 + (x1 + εβ3P3z)x2 + s1P

2
3

+ P3(β3(qoutil − q3)z − β3zSv).

Par conséquent, soit la loi de contrôle virtuelle

K =
1

(x1(t) + εβ3P3(t)z(t))

[
− s0x

2
1(t)− s1P

2
3 (t)

− P3(t)(β3(qoutil(t)− q3(t))z(t)− β3Sz(t)v(t))
]
.
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Maintenant, nous introduisons la variable d'état virtuelle χ = x2 −K dans (5.38)-(5.40),

nous obtenons

ẋ1 = (χ+K)

Ṗ3(t) = β3(qoutil(t)− q3(t))z(t) + εβ3(χ+K)z(t)− β3Sz(t)v(t)

χ̇(t) = −K̇ + a(b− 1)(χ+K) + a(1 + b)x2(t− 2)

− ẋ2(t− 2) + 2aτ4(t− 1).

Ici, nous proposons la fonction de Lyapunov suivante V1 = V + 1
2
χ2, où la dérivée par

rapport au temps est comme suite :

V̇1 = V̇ + χχ̇

≤ −min(s0, s1)V − aχ2 + χ
(
x1 + εβ3P3z − K̇

+ abχ+ a(b− 1)K + a(1 + b)x2(t− 2)

− ẋ2(t− 2) + 2aτ4(t− 1))
)
.

Ainsi, la loi de contrôle s'écrit

τ4(t− 1) =
1

2a

[
− β3εP3z − a(b− 1)K − ab(x2 −K)

+ K̇ − a(1 + b)x2(t− 2) + ẋ2(t− 2)− x1

]
.

Ensuite, nous obtenons V̇1 ≤ −min(s0, s1, a)V1.

Par ailleurs, considérons le deuxième sous-système

q̇outil(t) = c1P1(t)− c1P3(t)− c1F (qoutil) + h(z) (5.41)

Ṗ1(t) = cτ5(t)− cqoutil(t). (5.42)

Comme précédemment, commençons par l'équation suivante

q̇outil(t) = c1P1(t)− c1P3(t)− c1F (qoutil) + h(z)
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et nous introduisons une loi de contrôle virtuelle qui satisfait K1(qoutil, P3, z) = P3 −

( 1
c1
qoutil − F (qoutil)) − h(z)

c1
véri�ant K1(0, 0, ρ3

ρ3V0+ρ1SL
) = 0. Également, nous obtenons

q̇outil = −qoutil. Nous proposons la fonction de Lyapunov V2 = 1
2
q2
outil, alors V̇2 = −2V2.

Cela prouve que (5.41) est asymptotiquement stable à l'équilibre qoutil = 0.

Maintenant, soit la variable d'état virtuelle χ1(t) = P1(t) − K1(qoutil, P3, z). Alors nous

obtenons

q̇outil(t) = c1χ1(t)− qoutil(t)

χ̇1(t) = −K̇1(qoutil, P3, z) + cτ5(t)− cqoutil(t).

Nous choisissons la fonction de Lyapunov suivante V3 = V2 + 1
2
χ2

1 = 1
2
(q2
outil + χ2

1). Sa

dérivations par rapport au temps est donnée par

V̇3 = q̇outilqoutil + χ̇1χ1

= −q2
outil − χ2

1 + χ1(χ1 + (c1 − c)qoutil − K̇1(qoutil, P3, z) + cτ5).

Ainsi, prenons

τ5(t) = −1

c
χ1(t) +

c− c1

c
qoutil(t) +

1

c
K̇1(qoutil, P3, z).

Cela implique que V̇3 = −2V3. Alors le système (5.41)-(5.42) est asymptotiquement stable

à l'équilibre (qoutil, P1) = (0, 0).

Finalement, nous considérons le dernier sous-système

ż(t) = −Sz2(t)v(t) (5.43)

v̇(t) = τ6(t). (5.44)

Nous dé�nissons une loi de contrôle virtuelle pour le système d'équations (5.43), donnée

par K2(z) =
(z(t)− ρ3

ρ3V0+ρ1sL
)

Sz2(t)
pour lequel K2( ρ3

ρ3V0+ρ1SL
) = 0.
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Nous introduisons χ2 = v −K2 comme état de contrôle virtuel. Alors nous obtenons

ż(t) = −Sz2(t)χ2(t)− Sz2(t)K2(z)

χ̇2(t) = τ6(t)− K̇2(z).

Nous considérons la fonction de Lyapunov suivante

V4(P3, z) =
1

2
(χ2

2 + (z − ρ3

ρ3V0 + ρ1SL
)2).

Sa dérivation donne

V̇4 = ż(z − ρ3

ρ3V0 + ρ1SL
) + χ̇2χ2

= −Sz2(z − ρ3

ρ3V0 + ρ1SL
)K2(z) + χ2(−K̇2 + τ6)

≤ −(z − ρ3

ρ3V0 + ρ1SL
)2 − χ2

2

+ χ2(−Sz2(z − ρ3

ρ3V0 + ρ1SL
) + χ2 − K̇2 + τ6).

Maintenant, on peut dé�nir la loi de contrôle

τ6 = Sz2(z − ρ3

ρ3V0 + ρ1SL
)− χ2 + K̇2

= Sz2(z − ρ3

ρ3V0 + ρ1SL
) +K2 − v + K̇2.

Alors V̇4 ≤ −2V4.

Ici, nous introduisons la fonction de Lyapunov global suivante

L =
1

2
(x2

1 + P 2
3 + (x2 −K)2 + q2

outil + (P1 −K1)2

+ (v −K2)2 + (z − ρ3

ρ3V0 + ρ1SL
)2).

Alors L̇ ≤ −2(V1+V3+V4) ≤ −2L. Cela prouve que le système (5.30)-(5.36) est asymptoti-

quement stable à l'équilibre (0, 0, 0, 0, 0, ρ3
ρ3V0+ρ1sL

, 0). �



5.3. Stabilisation du système couplé 101

5.3.4 Cas où λ 6= 0 : couplage EDP-EDO

Cette partie sert à étudier la stabilité d'un système couplé formulé par deux modèles non

linéaires traduisant les comportements de la dynamique des vibrations de torsion et celle

de la boue et avance du train de tiges.

Proposition 5.3.1 Considérons le système (5.12)-(5.15) et les trois lois de contrôles

suivantes

τ1(t) =
1

∂tu(t, 1)
[(1− a)∂tu(t, 0)∂xu(t, 0)− ab∂tu(t, 0)2

− P3(β3(qoutil(t)− q3(t))z(t) + εβ3∂tu(t, 0)z(t))

− qoutil(−c1P3(t)− c1F (qoutil) + h(z))]

τ2(t) =
c− c1

c
qoutil(t)

τ3(t) = β3SP3(t)z(t) + Sz2(t)(z(t)− ρ3

ρ3V0 + ρ1sL
).

Alors le système (5.12)-(5.15) est stable à l'équilibre (0, 0, 0, 0, ρ3
ρ3V0+ρ1SL

, 0).

Preuve Pour prouver la stabilité du système couplé, nous introduisons la fonction de

Lyapunov suivante :

L(t) =
1

2

[ ∫ 1

0

(
(∂xu)2 + (∂tu)2

)
dx+ (∂tu(t, 0))2 + q2

outil + P 2
1 + P 2

3 + (z − ρ3

ρ3V0 + ρ1sL
)2 + v2

]
Nous dérivons L par rapport au temps et nous utilisons les conditions aux limites (5.13)-

(5.14), nous obtenons

L̇(t) =

∫ 1

0

∂txu∂xu+ ∂tu∂ttudx+ ∂tu(t, 0)∂ttu(t, 0) + q̇outilqoutil + Ṗ1P1 + Ṗ3P3

+ ż(z − ρ3

ρ3V0 + ρ1SL
) + v̇v

=

∫ 1

0

∂txu∂xu+ ∂tu(∂xxu− λ∂tu)dx+ ∂tu(t, 0)∂ttu(t, 0) + q̇outilqoutil

+ Ṗ1P1 + Ṗ3P3 + ż(z − ρ3

ρ3V0 + ρ1SL
) + v̇v

= −λ
∫ 1

0

(∂tu)2dx+ ∂tu(t, 1)τ1(t)− (1− a)∂tu(t, 0)∂xu(t, 0) + ab∂tu(t, 0)2
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+ qoutil(t)(c1P1(t)− c1P3(t)− c1F (qoutil) + h(z)) + P1(t)(cτ2(t)− cqoutil(t)) + P3(t)(β3(qoutil(t)

− q3(t))z(t) + εβ3∂tu(t, 0)z(t)− β3z(t)sv(t))− Sz2(t)(z(t)− ρ3

ρ3V0 + ρ1SL
)v(t)) + v(t)τ3(t)

= −λ
∫ 1

0

(∂tu)2dx+ ∂tu(t, 1)τ1(t)− (1− a)∂tu(t, 0)∂xu(t, 0) + ab∂tu(t, 0)2

+ qoutil(t)(−c1P3(t)− c1F (qoutil) + h(z)) + P1(t)(c1qoutil(t) + cτ2(t)− cqoutil(t)) + P3(t)(β3(qoutil(t)

− q3(t))z(t) + εβ3∂tu(t, 0)z(t)) + v(t)(−β3SP3z(t)− Sz2(t)(z(t)− ρ3

ρ3V0 + ρ1SL
)) + τ3(t)).

Pour assurer la stabilité du système (5.12)-(5.15), nous choisissons les trois lois de contrôle

suivantes

τ1(t) =
1

∂tu(t, 1)
[(1− a)∂tu(t, 0)∂xu(t, 0)− ab∂tu(t, 0)2 − P3(β3(qoutil(t)− q3)z(t)

+ εβ3∂tu(t, 0)z(t))− qoutil(−c1P3(t)− c1F (qoutil) + h(z))]

τ2(t) =
(c− c1)

c
qoutil(t)

τ3(t) = β3SP3z(t) + Sz2(t)(z(t)− ρ3

ρ3V0 + ρ1SL
).

Alors, nous trouvons

L̇(t) ≤ −λ
∫ 1

0

(∂tu)2dx

Ceci a établi la stabilité du système (5.12)-(5.15).

�

5.4 Simulation : cas où λ = 0

Les paramètres physiques utilisés dans la simulation sont donnés dans la table 5.4. Le

contrôle de la dynamique du �uide joue un rôle important dans la suppression/atténuation

des vibrations de torsion. En e�et, si on considère que le système du �uide n'est pas

contrôlé (on prend, par exemple, τ5 = constante et τ6 = 0), on remarque que l'état de la

dynamique de torsion se déstabilise et par suite on ne peut pas supprimer les vibrations

de torsion. Donc, il est utile de contrôler la pression injectée par la pompe dans le derrick.

Ici, nous présentons des stratégies e�caces pour réduire le phénomène du stick slip et

étudier l'impact du système du �uide injecté (Fig. 5.2-5.4). Pour éviter que le trou ne

se rebouche au fur et à mesure du forage, il faut nettoyer le fond du puits et enlever les
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Variable Valeur Unité Description
L 2000 m Longueur de la chaîne de forage
I 0.095 kg.m Inertie par unité de longueur
Ib 311 kg.m2 Inertie au fond des train de tiges
J 1.19.105 m4 Moment d'inertie géométrique
G 79.3.109 N.m−2 Module de cisaillement
ca 2000 N.m.s.rad Coe�cient de couple de glissement
ρ1 1250 kg.m−3 Densité de la boue de forage
ρ3 1250 kg.m−3 Densité annulaire
M 8300 kg.m−4 Densité intégrée par section
β1 = β3 24750 bar Module de la compressibilité de la boue
V0 110 m3 Volume initial dans la couronne
g 9.81 m.s−2 Gravité
S π × (0.25)2 m2 Surface annulaire
d 0.009 Coe�cient d'amortissement

Table 5.1 � Paramètres physique

(a) Évolution temporelle de débit qoutil(t) (b) Évolution de déplacement angulaire au fond du
trou x1(t)

Figure 5.2 � Comportement de déplacement angulaire au fond et de débit au
niveau de l'outil qoutil(t)

débris de roche. Pour cela, des �uides de forage sont injectés en continu dans le trépan

a�n d'emporter les débris de roche, de refroidir et lubri�er le trépan et de stabiliser la

pression sur les bords du puits pour leur éviter de s'écrouler. La composition des boues de

forage varie selon la nature de la roche forée, la pression, la profondeur et la température.
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Dans [70], le débit du à la boue sortant par l'anneau ouvert est donné par :

q3 = cds

√
2

ρ3

(Pdh − P3 +
g

S
(
1

z
− V0)).

La pression au fond du puits est donnée par :

Pdh = P3 −
ρ3g

S
(
1

z
− V0) + Faq

2
outil

où Fa désigne le coe�cient de frottement dans l'espace annulaire. Les résultats de stabi-

(a) Schéma de la loi de contrôle τ4(t− 1) (b) Évolution temporelle de l'état z(t)

Figure 5.3 � Évolution en fonction du temps de τ4(t− 1) et z(t)

lisation sont représentés par les �gures 5.2, 5.3 et 5.4.

Il est clair que toutes les simulations impliquent une convergence vers l'équilibre des

variables du système. En e�et, les deux courbes (Fig. 5.2, (a)) et (Fig. 5.2, (b)) représentent

le comportement de déplacement angulaire au fond du trou ainsi que le comportement

de débit au niveau de l'outil qoutil. En outre, les courbes (Fig. 5.4, (a)) et (Fig. 5.4,

(b)) montrent la stabilité de la pression. Durant l'opération de forage, le dispositif de

soulèvement arti�ciel de l'outil au fond du trou crée une pression négative de telle sorte

que des �uides de puits de forage sont transportés de la zone inférieure à la zone supérieure

(Fig. 5.4). De plus, la pression de la boue à l'intérieur de la garniture de forage atténue la

propagation des vibrations provenant de l'outil (trépan). Il en de même quand la viscosité
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(a) Évolution temporelle de la pression P3(t) (b) Stabilisation de la pression au fond Pdh(t)

Figure 5.4 � Stabilisation des pressions

et la densité sont élevées ou quand le trou est mal nettoyé. Ainsi, la boue joue le rôle

d'un amortisseur. Ajoutons aussi, que les auteurs de [75] ont observé que la présence du

�uide change la réponse dynamique du système, en particulier la vibration latérale de

la structure. L'amplitude des vibrations axiales et de torsion est peu a�ectée, mais mais

la fréquence auto-excitée du système (qui est liée aux premières fréquences naturelles de

torsion) change lorsque le �uide est pris en compte.

5.5 Conclusion
Dans ce chapitre nous nous sommes intéressés à l'étude d'un système couplé entre la dy-

namique de la boue et avance de trépan du train de tiges (EDO) et celle de torsion (EDP)

au cours du forage des puits de pétrole. Nous avons présenté des résultats théoriques pour

les systèmes bouclés avec et sans coe�cients d'amortissement. Puisque on s'attaque à un

modèle complexe, couplé et non linéaires, le problème de stabilité qu'on a pu résoudre

dans ce travail est complètement di�érent de celui posé dans la littérature. À partir de la

théorie de Lyapunov et l'approche du backstepping, nous avons trouvé les lois de contrôle

pour la vitesse de rotation du train de tiges, la vitesse de pénétration de l'outil et la

pression/débit injecté par la pompe. En outre, pour la performance des applications de

forage automatique, il est nécessaire de connaître certaines variables telle que la pression

au fond doit être estimée.
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Chapitre 6

Synthèse d'observateur pour un

système de forage rotary

6.1 Introduction

Dans ce chapitre, l'objectif principal est de contrôler la vitesse de l'outil, seulement

cette grandeur n'est pas mesurable. On construit alors un observateur pour l'estimation

de cette vitesse. Fondamentalement, dans nos conceptions de la loi de contrôle, nous

utilisons la technique du backstepping (plus de détails dans [40, 62, 63]) et la théorie de

Lyapunov pour étudier la stabilité. Historiquement, en 1990, l'approche du backstepping

est bien connue pour l'étude de stabilité des équations di�érentielles ordinaires (EDO).

Elle est développée par Petar V. Kokotovic et al. [55, 57] pour analyser la stabilité des

systèmes dynamiques non linéaires. Puis, autour de 2000, cette technique devient un outil

utile pour étudier la stabilité des EDP contrôlées [40]. En ajoutant que la contribution

principale, dans ce chapitre, est l'investigation de stabilité d'observateur pour une équation

hyperbolique du second ordre avec une mesure dans le sommet c'est-à-dire la tête de la

tige. Ainsi, le principal dé� est de construire une commande pour l'observateur du système

d'EDP avec une mesure au frontière dans le haut de la colonne de forage (i.e u(t, 1) est

mesurable) pour estimer la vitesse de l'outil au fond du trou.

Ce chapitre est organis comme suit, dans la Section 6.2, nous rappelons l'EDP avec les

conditions aux limites décrivant le problème des vibrations de torsion. A�n d'apporter une

109



110 Chapitre 6. Synthèse d'observateur pour un système de forage rotary

étude de stabilité, nous utilisons la transformation backstepping et la théorie de Lyapunov.

La section 6.3 est consacrée à l'étude de convergence du l'erreur d'observateur du système

vers l'équilibre. Dans cette partie, nous proposons un gain dit "par injection de sortie"

qui permet d'assurer une solution convergente du système. A la section 6.4, on procède

par une analyse des résultats obtenus en simulation.

6.2 État non mesurable : conception d'une commande

basée observateur

En terme d'application pratique, la mise en oeuvre des commandes proposées sur la

machine peuvent être impraticables. En e�et, les variables au fond ne sont pas disponibles

à la mesure durant l'opération du forage. A noter qu'un observateur pour un système

donné est un système dynamique qui produit une estimation de l'état actuel du système

donné en fonction des états mesurables.

Rappelons que le système linéarisé de la dynamique de torsion s'écrit comme suit

utt(t, x) = uxx(t, x)− λut(t, x)

ux(t, 1) = U(t)

utt(t, 0) = aux(t, 0) + abut(t, 0)

avec b = ∂F (wr)
∂w

et w(t) = ut(t, 1).

L'automatisation des processus de forage de puits de pétrole augmente avec la nécessité

d'atteindre des puits plus profonds et moins accessibles et d'améliorer la sécurité et l'e�-

cacité des opérations de forage. Une des principales contributions au cours de l'opération

de forage réside dans la mauvaise connaissance des conditions au fond de puits (conditions

de pression et de température, le gaz et les ratios de pétrole). En fait, dans ce travail,

nous proposons une méthode pour estimer les paramètres inconnus lors de forage de puits

de pétrole. Le principal dé� dans cette étude, est l'analyse de stabilité de l'EDP basée

observateur qui décrit la dynamique de torsion. Ainsi, nous partons du fait que la mesure

u(t, x) à la condition au limite x = 1. Considérons par la suite la notation ′∧′ associée à
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l'état estimé, et nous proposons d'étudier la stabilité de l'observateur suivant :

ûtt(t, x) = ûxx(t, x)− λût(t, x) (6.1)

ûx(t, 1) = U(t) +G(u(t, 1)− û(t, 1)) (6.2)

ûtt(t, 0) = aûx(t, 0) + abût(t, 0) (6.3)

où G est le gain d'injection de sortie.

Dans la suite on s'intéresse à l'importance de l'observateur du système cible, la technique

du backstepping et la théorie de Lyapunov, fournissant ainsi une analyse utile pour la

stabilité du système de forage de puits de pétrole. A l'aide de la technique du backstepping

basée observateur, nous construisons une loi de contrôle qui transforme l'observateur du

système original (6.1)-(6.3) vers l'observateur du système cible,

ŵtt(t, x) = ŵxx(t, x)− λŵt(t, x) (6.4)

ŵx(t, 1) = 0 (6.5)

ŵtt(t, 0) = ae−αŵx(t, 0)− (2aε+ 1)ŵt(t, 0) (6.6)

Les deux paramètres α et ε seront dé�nis par le lemme suivant.

Lemme 6.2.1 Introduisons la fonction suivante

L(t) =
1

2

[ ∫ 1

0

(
e−α(ŵx)

2 + e−α(ŵt)
2 + εe−αx(1− x)ŵtŵx

)
dx
]

+
1

a
(ŵt(t, 0))2,

avec 1
2
> ε > 0, α ≤ − 2+ε

ε(1−x)
, tel que x ∈ [0, 1[, et la norme Θ̂ où

Θ̂2(t) = ‖ ŵt ‖2
L2([0,1]) + ‖ ŵx ‖2

L2([0,1]) + | ŵt(t, 0) |2 .

Alors

m1Θ̂2(t) ≤ L(t) ≤ m2Θ̂2(t)

où

m1 = min{e
−α

2
− εe−α

4
,

1

a
} etm2 = max{e

−α

2
+
εe−α

4
,

1

a
}



112 Chapitre 6. Synthèse d'observateur pour un système de forage rotary

Preuve En utilisant les inégalités de Cauchy-Schwarz et Young, nous obtenons

L(t) =
1

2

[ ∫ 1

0

(
e−α(ŵx)

2 + e−α(ŵt)
2 + εe−αx(1− x)ŵtŵx

)
dx
]

+
1

a
(ŵt(t, 0))2

≥ e−α

2
‖ ŵt ‖2 +

e−α

2
‖ ŵx ‖2 +

1

a
| ŵt(t, 0) |2 −εe

−α

2

∫ 1

0

| ŵtwx | dx

≥ (
e−α

2
− εe−α

4
)(‖ ŵt ‖2 + ‖ ŵx ‖2) +

1

a
| ŵt(t, 0) |2

≥ min{e
−α

2
− εe−α

4
,

1

a
}Θ̂2(t)

D'autre part,

L(t) =
1

2

[ ∫ 1

0

(
e−α(ŵx)

2 + e−α(ŵt)
2 + εe−αx(1− x)ŵtŵx

)
dx+

1

a
(ŵt(t, 0))2

]
≤ e−α

2
‖ ŵt ‖2 +

e−α

2
‖ ŵx ‖2 +

1

a
| wt(t, 0) |2 +

εe−α

2

∫ 1

0

| w̃tw̃x | dx

≤ (
e−α

2
+
εe−α

4
)(‖ ŵt ‖2 + ‖ ŵx ‖2) +

1

a
| wt(t, 0) |2

≤ max{e
−α

2
+
εe−α

4
,

1

a
}Θ̂2(t).

Alors

m1Θ̂2(t) ≤ L(t) ≤ m2Θ̂2(t)

avecm1 = min{ e−α
2
− εe−α

4
, 1
a
} etm2 = max{ e−α

2
+ εe−α

4
, 1
a
}. �

Théorème 6.2.1 (Stabilité de l'observateur du système cible) Considérons le système

(6.4)-(6.6), avec la condition initiale ŵ0 = ŵ(0, x) ∈ L2([0, 1]). Alors, l'équilibre du sys-

tème (6.4)-(6.6) est L2 exponentiellement stable au sens de la norme suivante

Θ̂2(t) =‖ ŵt ‖2
L2([0,1]) + ‖ ŵx ‖2

L2([0,1]) + | ŵt(t, 0) |2

Preuve Pour prouver la stabilité de l'observateur du système cible, nous proposons L(t)

comme une fonction de Lyapunov,

L(t) =
1

2

[ ∫ 1

0

(
e−α(ŵx)

2 + e−α(ŵt)
2 + εe−αx(1− x)ŵtŵx

)
dx
]

+
1

a
(ŵt(t, 0))2
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Nous dérivons L par rapport au temps,

L̇(t) =

∫ 1

0

(
e−αŵtxŵx + e−αŵttŵt +

1

2
εe−αx(1− x)ŵttŵx +

1

2
εe−αx(1− x)ŵtxŵt

)
dx

+
1

a
ŵtt(t, 0)ŵt(t, 0)

= −λe−α
∫ 1

0

ŵ2
t +

∫ 1

0

(
e−αŵtxŵx + e−αŵxxŵt +

1

2
εe−αx(1− x)ŵxxŵx

+
1

2
ε(1− x)ŵtxŵt

)
dx+

1

a
(ŵtt(t, 0)ŵt(t, 0))− λε

2

∫ 1

0

e−αx(1− x)ŵtŵxdx

= −e−αŵt(t, 0)ŵx(t, 0)− ε

4
ŵx(t, 0)2 − ε

4
ŵt(t, 0)2 −

∫ 1

0

−ε− αε(1− x)

2
e−αx

ŵ2
x

2
dx

− 2aε+ 1

a
ŵ2
t (t, 0) + e−αŵt(t, 0)ŵx(t, 0)−

∫ 1

0

−ε− αε(1− x)

2
e−αx

ŵ2
t

2
dx

− λ

2

∫ 1

0

εe−αx(1− x)ŵtŵxdx− λ
∫ 1

0

e−αŵ2
t dx

≤ −eα
∫ 1

0

e−α
ŵ2
x

2
dx− 1

a
ŵ2
t (t, 0)− λ

2

∫ 1

0

εe−αx(1− x)ŵtŵxdx− λ
∫ 1

0

e−αŵ2
t dx

≤ −min(eα, λ, 1)L(t)

Par le Lemme 6.2.1, nous avons

m1Θ̂2(t) ≤ L(t) ≤ m2Θ̂2(t).

Par conséquent, il existe c > 0 et k ≥ 0 tel que

Θ̂(t) ≤ c e−ktΘ̂(0).

Ceci implique que le système (6.4)-(6.6) est L2 exponentiellement stable à l'équilibre au

sens de la norme Θ̂. �

Pour convertir l'observateur du système original à l'observateur du système cible, nous

proposons l'observateur de la transformation backstepping suivante

ŵ(t, x) = û(t, x)−
∫ x

0

K(x, ξ)û(t, ξ)dξ − %(x)û(t, 0)

−
∫ x

0

P (x, ξ)ût(t, ξ)dξ −
∫ x

0

L(x, ξ)ûξ(t, ξ)dξ (6.7)
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Nous injectons l'observateur de la transformation backstepping (6.7) dans l'observateur

du système cible (6.4)-(6.6). En intégrant par parties et en utilisant les conditions aux

limites, nous obtenons les noyaux sous la forme EDP suivante :

Lξξ(x, ξ) = Lxx(x, ξ), (6.8)

Kξξ(x, ξ) = Kxx(x, ξ), (6.9)

Pξξ(x, ξ) = Pxx(x, ξ), (6.10)

dont les conditions aux limites sont

Lx(x, x) = 0, Kx(x, x) = 0, Px(x, x) = 0 (6.11)

Lξ(x, 0) = K(x, 0), Kξ(x, 0) = %′′(x) (6.12)

P (x, 0) = 0, Pξ(x, 0) = 0 (6.13)

L(x, 0) = %(x), L(0, 0) = 0, %(0) = 1 (6.14)

Kξ(0, 0) = ae−αK(0, 0) + ae−α%′(0) = %”(0) (6.15)

Notons que le noyau d'observateur de la transformation backstepping satisfait un système

intéressant des EDP d'onde qui est facilement solvable. Ce système d'équations est dé�nie

sur un domaine triangulaire ∆ = {(x, ξ) ∈ R2 : 0 ≤ ξ ≤ x ≤ 1}.

À cette étape, nous introduisons l'observateur de la transformation backstepping (6.7)

dans (6.5), nous déduisons la loi de contrôle suivante

U(t) = K(1, 1)û(t, 1) +

∫ 1

0

Kx(1, ξ)û(t, ξ)dξ + P (1, 1)ût(t, 1)

+

∫ 1

0

Px(1, ξ)ût(t, ξ)dξ +

∫ 1

0

Lx(1, ξ)ûξ(t, ξ)dξ + %′(1)û(t, 0)

− G(u(t, 1)− û(t, 1)) (6.16)

Il reste à étudier le comportement de l'observateur du système original à partir de l'obser-

vateur de la transformation backstepping inverse (ŵ(t, x) → û(t, x)) et les conditions de

stabilité en vertu de la loi de contrôle (6.16). Dé�nissons l'observateur de la transformation
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backstepping inverse de la manière suivante

û(t, x) = ŵ(t, x) +

∫ x

0

E(x, ξ)ŵ(t, ξ)dξ +

∫ x

0

F (x, ξ)ŵt(t, ξ)dξ

+

∫ x

0

H(x, ξ)ŵξ(t, ξ)dξ + π(x)ŵ(t, 0) (6.17)

Nous introduisons (6.17) dans (6.1)-(6.3), nous trouvons les noyaux suivants

Hξξ(x, ξ) = Hxx(x, ξ),

Eξξ(x, ξ) = Exx(x, ξ),

Fξξ(x, ξ) = Fxx(x, ξ),

avec les conditions aux limites suivantes

Hx(x, x) = 0, Ex(x, x) = 0, Fx(x, x) = 0

E(x, 0) = Hξ(x, 0), Eξ(x, 0) = π′′(x), π′(0) = 0

F (x, 0) = 0, H(x, 0) = π(x), Fξ(x, 0) = 0

E(0, 0) = Hξ(0, 0) = 0, H(0, 0) = π(0) = −1,

Il est facile de véri�er que ces équations sont dé�nies sur le domaine triangulaire ∆ =

{(x, ξ) ∈ R2 : 0 ≤ ξ ≤ x ≤ 1}. Pour obtenir une solution de l'une de ce dernières équations

des EDP d'onde, nous commençons par le convertir en une équation intégrale puis nous

introduisons le changement de variables y = ξ+x et η = x−ξ et �nalement nous utilisons

la méthode des approximations successives (plus en détail dans [40], chapitre 4).

Théorème 6.2.2 (Stabilité de l'observateur du système original) Considérons le système

(6.1)-(6.3) avec la condition initiale u0 ∈ L2([0, 1]) et la loi de contrôle (6.16) où les

noyaux K, P, et L sont obtenus de (6.8)-(6.15). Alors le système (6.1)-(6.3) est exponen-

tiellement stable à l'équilibre au sens de la norme suivante

Σ̂2(t) = ‖ û(t, .) ‖2
L2([0,1]) + ‖ ût(t, .) ‖2

L2([0,1]) + ‖ ûx(t, .) ‖2
L2([0,1]) + | ût(t, 0) |2
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Preuve Tout d'abord, nous introduisons les normes suivantes (par exemple) comme suit :

%∞ = supx∈[0,1] |%(x)|, K∞ = max(x,ξ)∈∆ ‖|K(x, ξ)|‖2
2 ; de même pour L∞, (Pξξ)∞, P∞, où

‖|K(x, ξ)|‖2
2 désigne la norme de l'opérateur classique. Nous allons prouver qu'il existe

ρ1 > 0 et ρ2 > 0 tel que

ρ1Θ̂(t) ≤ Σ̂(t) ≤ ρ2Θ̂(t).

Rappelons que Pξ(x, 0) = 0, P (x, 0) = 0, Px(x, x) = 0, L(x, 0) = %(x). Par conséquent,

ŵt est réécrit sous cette forme

ŵt(t, x) = ût(t, x)−
∫ x

0

K(x, ξ)ût(t, ξ)dξ − P (x, x)ûx(t, x)−
∫ x

0

Pξξ(x, ξ)û(t, ξ)dξ

+

∫ x

0

λP (x, ξ)ût(t, ξ)dξ − L(x, x)ût(t, x) +

∫ x

0

Lξ(x, ξ)ût(t, ξ)dξ − %(x)ût(t, 0)

En utilisant les inégalités de Cauchy-Schwarz, nous pouvons montrer

‖ ŵt(t, .) ‖2
L2 ≤ (1 +K∞ + L∞ + (Lξ)∞ + λP∞) ‖ ût(t, .) ‖2

L2

+ P∞ ‖ ûx(t, .) ‖2
L2 +((Pξξ)∞ ‖ û(t, .) ‖2

L2 +%∞ | ût(t, 0) |2)

≤ c1Σ̂2

où c1 = max{1 +K∞ + L∞ + (Lξ)∞ + λP∞, (Pξξ)∞, P∞, %∞}

Comme û(t, 0) = û(t, x)−
∫ x

0
ûy(t, y)dy , nous aurons

‖ŵx(t, .)‖2
L2 ≤ c2(‖ûx(t, .)‖2

L2 + ‖û(t, .)‖2
L2 + ‖ût(t, .)‖2

L2)

où c2 = max{1 + L∞ + (Lx)∞ + %′∞, K∞ + (Kx)∞ + %′∞, P∞ + (Px)∞}.

En outre, nous avons | ŵt(t, 0) |2≤ 4 | ût(t, 0 |2 . Par conséquent, il existe ρ1 > 0 tel que

ρ1Θ̂(t) ≤ Σ̂(t).

Rappelons que l'observateur de la transformation backstepping inverse est donné par

û(t, x) = ŵ(t, x) +

∫ x

0

E(x, ξ)ŵ(t, ξ)dξ + π(x)ŵ(t, 0)

+

∫ x

0

F (x, ξ)ŵt(t, ξ)dξ +

∫ x

0

H(x, ξ)ŵξ(t, ξ)dξ
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Comme ŵ(t, 0) = ŵ(t, x)−
∫ x

0
ŵy(t, y)dy, en utilisant l'inégalité de Poincaré, nous obtenons

‖ û(t, .) ‖2
L2 ≤ c3(‖ ŵx(t, .) ‖2

L2 + ‖ ŵt(t, .) ‖2
L2),

où c3 = max{c0(1 + E∞) + π∞(1 + c0) +H∞, F∞} > 0, c0 > 0. En outre, comme

F (x, 0) = 0, H(x, 0) = π(x), Fξ(x, 0) = 0, Fx(x, x) = 0

nous avons

‖ ût(t, .) ‖2
L2 ≤ c4(‖ ŵt(t, .) ‖2

L2)+ ‖ ŵx(t, .) ‖2
L2),

où c4 = max{1 + E∞ + H∞ + (Hξ)∞ + λF∞, F∞ + c0(Fξξ)∞} ≥ 0. De plus, comme

ŵ(t, 0) = ŵ(t, x)−
∫ x

0
ŵy(t, y)dy nous trouvons

‖ ûx(t, .) ‖2
L2 ≤ c5(‖ ŵx(t, .) ‖2

L2 + ‖ ŵt(t, .) ‖2
L2),

où c5 = max{1 + c0E∞+ c0(Ex)∞+H∞+ (Hx)∞+ π′∞(1 + c0), F∞+ (Fx)∞}. En�n, nous

avons

| ût(t, 0) |2≤ 4 | ŵt(t, 0) |2

Par conséquent, il existe ρ2 > 0 tel que

Σ̂(t) ≤ ρ2Θ̂(t)

Ceci implique que le système (6.1) - (6.3) est exponentiellement stable au sens de la norme

Θ̂.

�

6.3 Gain d'injection de sortie
Ayant à notre disposition, la loi de contrôle trouvée dans la section précédente im-

plique la convergence exponentielle du système d'observateur. Maintenant, nous pouvons

combiner les résultats de la section 6.2 et cette section pour assurer la convergence du
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l'erreur d'observateur du système.

6.3.1 Système cible

Rappelons le système d'observateur suivant

ûtt(t, x) = ûxx(t, x)− λût(t, x)

ûx(t, 1) = U(t) +G(u(t, 1)− û(t, 1))

ûtt(t, 0) = aûx(t, 0) + abût(t, 0)

Pour féconder le contrôle basé observateur (6.16), il est important de déterminer le gain

d'injection de sortie G. L'analyse prend en compte l'erreur estimée ũ = u− û tel que

ũtt(t, x) = ũxx(t, x)− λũt(t, x) (6.18)

ũx(t, 1) = −Gũ(t, 1) (6.19)

ũtt(t, 0) = aũx(t, 0) + abũt(t, 0) (6.20)

A�n d'obtenir le gain d'injection de sortie G qui assure la convergence du système d'erreur

à zéro, nous considérons un estimateur d'erreur de la transformation backstepping pour

transformer le système d'erreur à celui d'erreur cible suivant

w̃tt(t, x) = w̃xx(t, x)− λw̃t(t, x) (6.21)

w̃x(t, 1) = 0 (6.22)

w̃tt(t, 0) = ae−αw̃x(t, 0)− (2aε+ 1)w̃t(t, 0) (6.23)

L'estimation d'erreur de la transformation backstepping est donné par

ũ(t, x) = w̃(t, x)−
∫ 1

x

A(x, ξ)w̃(t, ξ)dξ

−
∫ 1

x

B(x, ξ)w̃t(t, ξ)dξ −
∫ 1

x

C(x, ξ)w̃ξ(t, ξ)dξ. (6.24)
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Lemme 6.3.1 Dé�nissons la fonction

L =
1

2

[ ∫ 1

0

(
e−α(w̃x)

2 + e−α(w̃t)
2 + εe−αx(1− x)w̃tw̃x

)
dx+

1

a
(w̃t(t, 0))2

]
avec 1

2
> ε > 0, α ≤ − 2+ε

ε(1−x)
, dans lequel x ∈ [0, 1[, et la norme Θ̃ où

Θ̃2(t) = ‖ w̃t ‖2
L2([0,1]) + ‖ w̃x ‖2

L2([0,1]) + | w̃t(t, 0) |2

Alors

m1Θ̃2(t) ≤ L(t) ≤ m2Θ̃2(t)

où

m1 = min{e
−α

2
− εe−α

4
,

1

2a
} etm2 = max{e

−α

2
+
εe−α

4
,

1

2a
}

Preuve Cette preuve est la même que celle du lemme 6.2.1.

�

Théorème 6.3.1 (Stabilité du système d'erreur cible) Considérons le système (6.21)-

(6.23), avec la condition initiale w̃0 = w̃(0, x) ∈ L2([0, 1]). Alors l'équilibre du système

(6.21) - (6.23)) est exponentiellement stable au sens de la norme suivante

Θ̃2(t) =‖ w̃t ‖2
L2([0,1]) + ‖ w̃x ‖2

L2([0,1]) + | w̃t(t, 0) |2

Preuve La preuve est similaire à celle du Théorème 6.2.1.

�

6.3.2 Technique du backstepping et loi de contrôle

Pour obtenir le gain d'injection de sortie G qui garantit que l'erreur d'observateur

du système converge à zéro, nous utilisons un estimateur d'erreur de la transformation

backstepping. Alors, nous injectons (6.24) dans (6.18)-(6.20), nous obtenons les noyaux
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satisfaisants les équations aux dérivées partielles suivantes

Cxx = Cξξ,

Axx = Aξξ,

Bxx = Bξξ,

avec les conditions aux limites

Cx(x, x) = 0 Ax(x, x) = 0, Bx(x, x) = 0

Aξ(x, 1) = Bξ(x, 1) = C(x, 1) = 0

B(1, 1) = B(0, 0) = A(0, 0) = 0,

Aξξ(0, ξ) = (λ+ ab)Bξξ(0, ξ) + aAx(0, ξ)

Cξξ(0, ξ) = aCx(0, ξ), C(0, 0) = −1

Bξξ(0, ξ) = (λ+ ab)A(0, ξ)− (λ+ ab)Cξ(0, ξ)

+ aBx(0, ξ)− (λ2 + λab)B(0, ξ)

Nous introduisons (6.24) dans (6.19), nous trouvons le gain d'injection de sortie G =

−A(1, 1). Il est facile de véri�er que C(x, ξ), A(x, ξ) et B(x, ξ) satisfait, chacune, une EDP

d'onde dans laquelle la solution générale est donnée par F (x, ξ) = Ψ(x − ξ) + Φ(x − ξ).

Ensuite, ces équations sont dé�nies sur un domaine triangulaire ∆ = {(x, ξ) ∈ R2 : 0 ≤

ξ ≤ x ≤ 1}.

L'estimation d'erreur backstepping devrait être inversible. Par conséquent, pour conver-

tir (6.18)-(6.20) dans (6.21)-(6.23), nous introduisons l'estimation d'erreur backstepping

inverse suivante :

w̃(t, x) = ũ(t, x) +

∫ 1

x

M(x, ξ)ũ(t, ξ)dξ

+

∫ 1

x

N(x, ξ)ũt(t, ξ)dξ +

∫ 1

x

J(x, ξ)ũξ(t, ξ)dξ. (6.25)
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Nous injectons (6.25) dans (6.21)-(6.23), nous obtenons les noyaux suivants

Mξξ(x, ξ) = Mxx(x, ξ),

Nξξ(x, ξ) = Nxx(x, ξ),

Jξξ(x, ξ) = Jxx(x, ξ),

avec les conditions aux limites suivantes

0 = Mx(x, x), Jx(x, x) = 0 Nx(x, x) = 0

0 = M(x, 1)− Jξ(x, 1), 0 = N(x, 1) = J(x, 1)

0 = Mξ(x, 1), Nξ(x, 1) = 0

1 = J(0, 0),M(0, 0) = 0, N(0, 0) = 0

0 = (2aε+ 1− λ)Nξξ(0, ξ) +Mξξ(0, ξ)− ae−αMx(0, ξ)

0 = −ae−αNx(0, ξ) + (λ− (2aε+ 1))Jξ(0, ξ) +Nξξ(0, ξ) + (2aε+ 1− λ)M(0, ξ)

+ (λ2 − (2aε+ 1)λ)N(0, ξ)

0 = −ae−αJx(0, ξ) + Jξξ(0, ξ)

Pour l'existence et l'unicité de la solution des noyaux, nous pouvons trouver explicite-

ment la solution parce que la solution de toute EDP d'onde est donnée sous la forme

suivante k(x, ξ) = φ(x+ξ)+ψ(x−ξ). Ensuite, ces équations sont dé�nies sur un domaine

triangulaire ∆ = {(x, ξ) ∈ R2 : 0 ≤ ξ ≤ x ≤ 1}.

Théorème 6.3.2 (Stabilité du système d'erreur original) Considérons le système (6.18)-

(6.20) dont le gain d'injection de sortie est donné par G. Alors l'équilibre ũ = 0 est

exponentiellement stable au sens de la norme suivante

Σ̃2(t) = ‖ ũ(t, .) ‖2
L2([0,1]) + ‖ ũt(t, .) ‖2

L2([0,1]) + ‖ ũx(t, .) ‖2
L2([0,1]) + | ũt(t, 0) |2

Preuve Nous allons prouver qu'il existe ρ1 > 0 et ρ2 > 0 tel que ρ1Θ̃(t) ≤ Σ̃(t) ≤ ρ2Θ̃(t).

La preuve de ce théorème est similaire au cas de la conception d'observateur (Théorème
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6.2.2). �

En combinant les résultats de deux sections, nous proposons la loi de contrôle basée ob-

servateur suivante :

U(t) = K(1, 1)û(t, 1) +

∫ 1

0

Kx(1, ξ)û(t, ξ)dξ + P (1, 1)ût(t, 1) +

∫ 1

0

Px(1, ξ)ût(t, ξ)dξ

+

∫ 1

0

Lx(1, ξ)ûξ(t, ξ)dξ + %′(1)û(t, 0) + A(1, 1)(u(t, 1)− û(t, 1)). (6.26)

C'est une équation intégrale de Volterra. En pratique, il est impossible d'utiliser cette loi

de contrôle pour un système de forage. Le calcul des grandeurs de contrôle implique le

calcul de l'intégrale des états angulaires le long de toute la forêt qui n'est pas possible

dans la pratique. A�n de l'implémenter sur une chaîne de forage réel, il faut concevoir un

observateur en utilisant uniquement des mesures dans l'assemblage au fond (BHA). Les

observateurs pour des systèmes similaires sont dérivés dans Smyshlyaev et Krstic [43, 44]

6.4 Simulation

Pour procéder au rejet de la vibration de torsion dans un système de forage rotary, l'idée

principale est de contrôler la vitesse de rotation de l'outil (trépan), seulement cette gran-

deur est di�cilement mesurable voir non mesurable. Pour la mise en place de la loi de

contrôle, une estimation de la vitesse angulaire est nécessaire moyennant un observa-

teur/constructeur d'état non mesurable. Nos simulations numériques prennent en consi-

dération les paramètres physiques suivants :

Variable Valeur Unité Description
L 2000 m Longueur de la chaîne de forage
I 0.095 kg.m Inertie par unité de longueur
Ib 311 kg.m2 Inertie au fond du train de tiges,
J 1.19.105 m4 Moment d'inertie géométrique
G 79.3.109 N.m−2 Module de cisaillement
ca 2000 Nm.s.rad−1 Coe�cient de couple de glissement
d 0.009 Coe�cient d'amortissement
G -A(1, 1) Gain d'injection de sortie

Table 6.1 � Paramètres physiques
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Les résultats de simulation sont représentés graphiquement sur (Fig. 6.1). Deux obser-

vateurs sont construits et tendent vers zéro (convergence exponentielle) quand le temps

tend vers l'in�ni (Fig. 6.1). Le résultat de stabilisation à travers la loi de contrôle basée

(a) Évolution en fonction du temps de l'état ût(t, 0) (b) Évolution en fonction du temps de l'état ŵt(t, 0)

Figure 6.1 � Stabilisation de l'observateur à l'extrémité inférieure

Figure 6.2 � Évolution en fonction du temps de l'état ut(t, 0)

observateur est présenté dans les �gures (Fig. 6.1-6.2). Il est clair que les simulations im-

pliquent une convergence su�sante des variables du système et leurs estimés (Fig. 6.1, (a)-

Fig. 6.2)). Par conséquent, l'équilibre est atteint exponentiellement. La �gure (Fig. 6.1)

montre le comportement de la vitesse à l'extrémité inférieure respectivement, de l'obser-
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vateur du système original et l'observateur du système cible. L'observation de la variation

des paramètres de fonctionnement des machines de forage permet souvent d'avoir une idée

assez précise de la position des transitions des couches de sols ou de roches de natures

di�érentes.

6.5 Conclusion
Dans ce chapitre, nous avons présenté un observateur de dimension in�nie, sous la

forme d'EDP, pour un système décrivant la dynamique de torsion. Nous avons montré la

convergence exponentielle de l'observateur. En e�et, la loi de contrôle basée observateur

est construite de telle sorte que l'observateur du système cible soit exponentiellement

stable, par conséquent la stabilité exponentielle du système original. En outre, le gain

d'injection de sortie conduit à une stabilité exponentielle de l'estimation d'erreur. Il reste

à intégrer d'autres facteurs de forage telle que l'estimation de l'interaction entre le train

de tiges et le système du �uide.
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Depuis plusieurs années, la recherche dans le domaine du contrôle des systèmes à

paramètres distribués représente un champ d'investigation ouvert. Les systèmes à para-

mètres distribués sont des systèmes décrits par des équations aux dérivées partielles (EDP)

linéaires ou non linéaires, éventuellement couplées avec des équations di�érentielles ordi-

naires (EDO). D'autre part, depuis plusieurs décennies, la technologie des systèmes de

forage pétrolier ne cesse d'évoluer à tel point qu'il devient accessible de développer des

solutions de systèmes complexes issus de la mécanique des �uides. D'un point de vue ma-

thématique, ce sont des systèmes gouvernés par un ensemble d'EDP, d'EDO ou d'EDP

couplés avec des EDO.

Les vibrations dans la garniture in�uent le fonctionnement des opérations de forage et

peuvent conduire, à la rupture prématurée du train de tiges, à l'endommagement de cer-

tains de leurs composants (par exemple le trépan) et la diminution de la performance

de forage et donc, au coût de forage. L'apparition des vibrations de torsion en présence

du frottement non linéaire entre la garniture et le puits donnent le phénomène dite de

"stick-slip". Il se traduit par des phases d'accélération intenses de l'outil alternant avec

des phases de blocage complet. En plus de son rôle de lubri�cation et refroidissement de

l'outil, la boue in�ue le coe�cient de frottement entre le trépan et la roche. Le phéno-

mène du "stick-slip" peut conduire à des conséquences majeures et à l'endommagement

ou l'usure prématurée de l'outil.

Le travail réalisé dans cette thèse a donc pour but d'apporter une réponse générée par la

présence du phénomène dite "stick-slîp" lors d'une opération de forage de type rotary. Par

conséquent, une modélisation puis des propositions des lois de contrôles sont suggérées.

En outre, la boue de forage est pompée dans la colonne et s'est écoulée à travers le trépan

125
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au fond des puits de pétrole. La boue coule jusqu'à l'annulaire portant des boutures en

haut de puits. Pendant le processus de forage une quantité d'argent est dépensée pour les

problèmes techniques de la machine de forage, y compris la perte de circulation et le coût

de la boue excessive. Par conséquent, pour supprimer l'e�ondrement des puits de forage,

les fracturation, ou les a�ux de �uides entourant le puit, il est important de contrôler la

pression dans la partie ouverte de l'espace annulaire.

Le manuscrit de cette thèse est fondé autour de trois grandes idées :

� suppression des vibrations de torsion

� interaction entre le système de forage et le système de �uide

� étude de l'observation pour le phénomène de vibrations de torsion.

Il contient six chapitres. Une introduction générale et les outils mathématiques qui re-

présentent la fondation et une conclusion générale matérialisant la toiture de cette contri-

bution scienti�que. Pour la réussite de l'÷uvre, la modélisation, la loi de contrôle , et

l'étude de stabilité sont requises.

Cette thèse a été alors pour nous l'occasion de découvrir le monde de la théorie de contrôle.

De la modélisation physique, l'étude théorique et au traitement des résultats numériques,

ce travail nous a permis de comprendre et de saisir toute la complexité tant théorique

que numérique que ce type de problème revêt. La résolution d'équations aux dérivées

partielles (EDP) nécessite à la fois un bagage mathématique théorique solide conséquent

mais aussi de bonnes connaissances algorithmiques. Nous avons bien sûr rencontré divers

di�cultés, en particulier au niveau de l'étude théorique et la programmation du système

trouvé et surtout pour le couplage entre EDP et EDO. Une compréhension plus profonde

du système couplé a été nécessaire pour résoudre ces di�cultés. De même, un tel tra-

vail nécessite, de par sa taille, une architecture et une organisation mathématique que

nous n'avions pas l'habitude de rencontrer. Il nous a donc fallu apprendre à évoluer dans

une telle complexité et, plus d'une fois, il nous a fallu se plonger en profondeur dans la

théorie des opérateurs, la théorie de Lyapunov, les algorithmes et dans le fonctionnement

de Matlab pour résoudre les problèmes rencontrés. Les contributions de cette thèse ont

donc été nombreux et riches. Par exemple, il nous a permis de faire le lien entre les équa-

tions aux dérivées partielles EDP que nous avions abordée au troisième chapitre et les
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équations di�érentielles ordinaires sous la forme d'un couplage EDP-EDO. Physiquement,

nous avons étudié le couplage entre les vibrations de torsion, le déplacement de l'outil, la

pression/débit injectée à la surface, pression/débit au fond et pression/débit à la sortie

de la couronne. La conception consiste à connecter un système d'équations di�érentielles

ordinaires décrivant le comportement de �uide et le modèle de vibration de torsion du

train de tiges de forage qui est décrit par une équation aux dérivées partielles (EDP).

D'ailleurs en présence d'amortissement dans l'équation d'onde, nous montrons seulement

la stabilité d'un système sous la forme EDP-EDO. Bien que sans amortissement, l'équa-

tion d'onde soit réduite à un modèle d'équation di�érentielles ordinaires à retard et les

lois de contrôles conduisent à une stabilité asymptotique de la variable de torsion, de la

pression au fond du trou et de la pression de l'espace annulaire. D'un point de vue in-

formatique, ce travail nous a permis d'acquérir une connaissance assez globale du logiciel

Matlab et d'approfondir notre pratique de la méthodes des di�érences �nis qui nous avons

découverte tout au long due ces trois années de recherche.

Bien sûr, le monde de la résolution des EDP étant tellement très vaste et complexe, nous

n'avons qu'e�euré ce dernier et bien d'autres aspects auraient pu se révéler intéressants

à développer. Par exemple, nous avons choisi de nous restreindre plus à la résolution ef-

fective théorique et numérique du système plutôt que de se pencher sur l'implémentation

pour ce problème.

Nous visons, dans les futures recherches, à traiter les points suivants :

� En pratique, il est impossible d'utiliser un tel contrôleur pour un système de fo-

rage. Le calcul des grandeurs de contrôle implique le calcul de l'intégrale des états

angulaires le long de toute la forêt qui n'est pas possible dans la pratique. Donc, il

est important d'étudier la robustesse des lois de commande élaborées.

� Étudier le phénomène d'impulsion au bord (non étudié dans la littérature), car une

telle étude s'avère utile traduisant l'impact impulsif de l'outil avec le sol. Donc, c'est

une condition qui apparaît au bord et de point de vu mathématique, la stabilité

d'une EDP excitée par une condition dite impulsive au bord est un challenge.

� Pour la performance des applications de forage automatique, il est nécessaire de

connaître certaines variables telles que la pression au fond qui doit être estimée.
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En�n, en terme de résultats, le travail e�ectué tout au long de ces trois années de recherche

a pu favoriser notre présence et celle du laboratoire dans des conférences internationales

renommées (CDC, ECC, IFAC WC, ...) et dans trois revues scienti�ques de grande qualité

(IJC, EJCON et AMC).



Annexe : Outil mathématiques et

théorie de Lyapunov

Nous allons donner dans ce chapitre tous les résultats mathématiques utilisés dans ce

mémoire.

1 Espaces fonctionnel

1.1 Espace Lp(Ω)

Nous désignons par L1(Ω) l'espace des fonctions intégrables sur Ω.

Posons ∥∥∥f∥∥∥
L1(Ω)

=

∫
Ω

∣∣∣f(x)
∣∣∣dx.

Dé�nition 6.1.1 Soit p ∈ [1,+∞[, on pose

Lp(Ω) =
{
f : Ω −→ R tel que f est mesurable et

∫
Ω

|f(x)|pdx < +∞
}
.

Nous véri�ons que : ∥∥∥f∥∥∥
Lp(Ω)

=
(∫

Ω

∣∣∣f(x)
∣∣∣pdx) 1

p
(1)

est une norme dans Lp(Ω).

Proposition 6.1.1 L'espace Lp(Ω) avec 1 ≤ p < +∞ muni de la norme (1) est complet.

Dans le cas particulier pour p = 2, la relation

< f, g >=

∫
Ω

f(x)g(x)dx,∀f, g ∈ L2(Ω) (2)

129
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dé�nit un produit scalaire dans L2(Ω), tel que la norme associée n'est autre que la norme∥∥∥.∥∥∥
L2(Ω)

dé�nit dans (2).

Dé�nition 6.1.2 Pour p =∞ ; l'espace de Banach L∞(Ω) tel que

L∞(Ω) =
{
f : Ω −→ R tel que f est mesurable et ∃ C > 0 :

∣∣∣f(x)
∣∣∣ ≤ C p.p

}
est muni de la norme ∥∥∥f∥∥∥

L∞
= inf

{
C,
∣∣∣f(x)

∣∣∣ ≤ C p.p
}
.

Dé�nition 6.1.3 L'espace des fonctions C∞ à support compact inclus dans un ouvert Ω

de Rn est noté D(Ω) (espace des fonctions test). Nous dirons qu'une suite de fonctions

(un)n converge vers u dans D(Ω) si :

1. Il existe un compact K ⊂ Rn contenant les supports de toutes les fonctions pour

tout n ∈ N,

2. limn→∞ supx∈K | Dαun(x)−Dαu(x) |= 0 pour tout p ∈ N et α tout a multi-indice.

1.2 Espace de Sobolev

Dé�nition 6.1.4 Soit Ω un ouvert de Rn. Nous posons

H1(Ω) = {u ∈ L2(Ω) :
∂u

∂x
∈ L2(Ω), ∀ i = 1, 2, .......n}

Bien entendu, la dérivation est à comprendre au sens des distributions. En d'autres

termes, une fonction u ∈ L2(Ω) est dans H1(Ω) s'il existe des fonctions v1, v2, .........., vn

dans L2(Ω) telles que

∫
Ω

u
∂φ

∂xi
= −

∫
Ω

viφdx ∀φ ∈ D(Ω), ∀i = 1, ....., n
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L'espace H1(Ω) est muni de la norme :

‖u‖2
H1(Ω) =

n∑
i=1

∫
Ω

| ∂u(x)

∂xi
|2 dx+

∫
Ω

| u(x) |2 dx

=
n∑
i=1

∫
Ω

| ∇u(x) |2 dx+

∫
Ω

| u(x) |2 dx

Pour la topologie induite par cette norme, une suite (un)n de H1(Ω) converge vers u ∈

H1(Ω) si un → u dans L2(Ω) et ∂un
∂xi
→ ∂u

∂xi
dans L2(Ω) pour tout i = 1, ...., n. La norme

de H1(Ω) est issue d'un produit scalaire noté (u, v)H1(Ω) et dé�ni par :

< u, v >2
H1(Ω) =

n∑
i=1

∫
Ω

∂u(x)

∂xi

∂v(x)

∂xi
dx+

∫
Ω

u(x)v(x)dx

=
n∑
i=1

∫
Ω

∇u(x)∇v(x)dx+

∫
Ω

u(x)v(x)dx

Proposition 6.1.2 (Inégalité de Poincaré) Soit Ω un ouvert borné dans une direc-

tion. Alors il existe une constante C > 0 ne dépendant que de Ω telle que

∀u ∈ H0
1 (Ω), ‖u‖L2(Ω) ≤ C‖∇u‖L2(Ω)

2 Théorie des opérateurs

2.1 Opérateur dissipatif

Dé�nition 6.2.1 Soient H un espace de Hilbert et A : D(A) ⊂ H → H un opérateur.

On dit que A est dissipatif sur H si

∀x ∈ D(A) Re < x,Ax >≤ 0

on dit que A est maximal dissipatif si I − A est surjectif de D(A) dans H.

Proposition 6.2.1 Soit A : D(A) ⊂ H → H. Les propriétés suivantes sont équivalentes

i) A est dissipatif
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ii) A satisfait

∀x ∈ D(A), ∀λ > 0, ‖ x ‖D(A)≤
1

λ
‖ λx− Ax ‖H

iii) A satisfait

∀x ∈ D(A) ∀λ > 0 ∈ C, ‖ x ‖D(A)≤ Re(
1

λ
) ‖ λx− Ax ‖H ,

tel que C = {λ ∈ C Re(λ) > 0}.

Cette proposition donne une caractérisation des opérateurs dissipatifs qui est utilisée pour

démontrer de nombreux résultats concernant les opérateurs maximaux dissipatifs.

Proposition 6.2.2 Si A est un opérateur dissipatif alors les assertions suivantes sont

équivalentes.

i) l'opérateur A est maximal dissipatif.

ii) Il existe λ0 > 0 tel que =(λ0I − A) = H.

iii) Pour tout λ > 0, λI − A est inversible, d'inverse borné dans L(H) et ‖ (λ0I −

A)−1 ‖L(H)≤ λ−1.

iv) Pour tout λ > 0 ∈ C, λI − A est inversible, d'inverse borné dans L(H) et ‖

(λ0I − A)−1 ‖L(H)≤ <(λ−1).

On établit maintenant une propriété importante des opérateurs maximaux dissipatifs.

Proposition 6.2.3 Si A : D(A) ⊂ H → H est un opérateur maximal dissipatif alors

i) D(A) est dense dans H

ii) A est fermé c'est à dire gr(A) = {(x,Ax), x ∈ D(A)} est fermé dans H ×H.

2.2 Semi-groupes de contractions

Soit (H, ‖.‖H) un espace de Hilbert.

Dé�nition 6.2.2 Une famille d'opérateurs S(t)t≥0 linéaires bornés dé�nit sur H est dit

semi groupe si :
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1. S(0) = I (I est l'opérateur d'identité).

2. S(t+ s) = S(t)S(s), ∀s, t ≥ 0.

avec la propriété

lim
t−→0

S(t)x = x, ∀x ∈ H, t ≥ 0. (3)

Le semi-groupe est fortement continu (ou de classe C0), ou plus simplement C0-semi-

groupes.

Si en remplace (3) par :

lim
t−→0
‖S(t)− I‖ = 0, t ≥ 0,

il s'agit d'un semi-groupe uniformément continu.

On appelle générateur d'un semi-groupe de contractions (S(t)) l'opérateur A : D(A) ⊂

H → H dé�ni par :

i) D(A) = {x ∈ H, tel que limt→0
S(t)x−x

t
existe dans H}

ii) ∀x ∈ D(A), Ax = limt→0
S(t)x−x

t

L'importance des opérateurs maximaux dissipatifs se mesure dans le théorème suivant.

Théorème 6.2.1 (Lumer-Phillips) Soit A : D(A) ⊂ H → H un opérateur alors

i) A est maximal dissipatif si, et seulement si, A est le générateur d'un semi-groupe

de contractions (S(t))t≥0

ii) Dans ce cas, pour tout f0 ∈ D(A), le problème de Cauchy


∂f
∂t

(t) = Af(t)

f(0) = f0.

(4)

admet une unique solution f ∈ C([0,+∞[, D(A))
⋂
C1([0,+∞[, H). De plus f(t) =

S(t)f0, ∀t ∈ [0,+∞[.

3 Théorie de Lyapunov et stabilité
Dans cette section, nous rappelons quelques résultats généraux pour que ce manuscrit

puisse être lu avec une certaine autonomie et qui sont utilisé dans cette thèse.
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Un système contrôlé (ou commandé) est un système di�érentiel de la forme :

ẋ(t) =f(x(t), u(t)), x(t) ∈ U, u(.) ∈ Vu (5)

En général le vecteur des états x(t) appartient à un ouvert U de Rn de dimension n, et les

contrôles u(t) appartiennent à un ensemble de contrôle admissibles Vu qui est un ensemble

de fonctions localement intégrable dé�nies sur [0,+∞[ à valeur dans Vu ⊂ Rn.

De nombreuses méthodes ont été développées pour étudier la notion de stabilité au sens

de Lyapunov. Il existe di�érents critères pour décider si un système non commandé est

asymptotiquement stable (linéarisation, formes normales de Poincaré, variété centre, ...).

L'ouvrage de Khalil [29] présente des panoramas complets de ces méthodes.

Considérons le système non commandé

ẋ = f(t, x), (6)

où x ∈ Rn et f : R× Rn −→ Rn une application continue telle que

∀ t ∈ R, f(t, 0) = 0.

Si l'application f ne dépend pas explicitement du temps, c'est-à-dire pour les systèmes

de la forme,

ẋ = f(x), (7)

où f : Rn → Rn et f(0) = 0, le système est dit stationnaire.

Dé�nition 6.3.1 (Stabilité uniforme au sens de Lyapunov) Le point d'équilibre xe =

0 du système (6) est dit uniformément stable (au sens de Lyapunov) si :

∀ ε > 0, ∃ η > 0, ∀ t0 ≥ 0, ∀ x0 ∈ Rn,

|x0| < η ⇒ ∀ x(., x0, t0), ∀ t ≥ t0, |x(t, x0, t0)| < ε.
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3.1 Théorème d'existence et d'unicité

Soit U un ouvert non vide de Rn contenant 0 et I un intervalle non vide de R.

Soit f : U → Rn une fonction continue. On lui associe le système indépendant du temps

dit autonome

ẋ = f(x). (8)

Pour f : I×U → Rn une application continue, on lui associe le système dit non autonome

ẋ = f(t, x(t)). (9)

On désigne par x(t, t0, x0) la solution x(t) du système (8), ou bien du système (9) telle

que x(t0) = x0.

Le théorème suivant, connu sous le nom de théorème de Peano, donne une condition suf-

�sante pour l'existence d'une solution de (8) ou (9).

Théorème 6.3.1 (Peano [15]) Considérons le système (9). Alors, par tout point (t0, x0) ∈

I×U passe au moins une solution maximale x(t, t0, x0) dé�nie sur un intervalle J contenu

dans I.

Dans la suite, nous donnons le théorème de Cauchy-Lipschitz. Nous commençons d'abord

par rappeler les fonctions localement lipschitziennes.

Dé�nition 6.3.2 Soit f : I×U → Rn, on dit que f ∈ Lipx(I×U) si pour tout (t0, x0) ∈

I × U, il existe un voisinage V de (t0, x0) dans I × U et une constante c > 0 tels que

∀((t, x), (t, x′)) ∈ V 2, |f(t, x)− f(t, x′)| ≤ c|x− x′|.

3.2 Théorèmes de stabilité

Théorème 6.3.2 (Théorème de Lyapunov autonome [38]) Soit 0 un point d'équi-

libre de (8). S'il existe un voisignage V de 0 et une fonction

V : V → R+
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de classe C1 telles que :

1. V soit dé�nie positive (i.e. V (x) ≥ 0 ∀x ∈ V et V (x) = 0⇔ x = 0).

2. La dérivée V̇ pour (8) soit négative alors 0 est stable. La fonction V est dite fonction

de Lyapunov.

Si de plus la dérivée V̇ pour (8) est dé�nie négative alors 0 est asymptotiquement stable

(dans ce cas la fonction V est dite fonction stricte de Lyapunov).

Théorème 6.3.3 (Théorème de Lyapunov non autonome [38]) Soit 0 un point d'équi-

libre de (9), s'il existe un voisinage Vt0 et une fonction

V : Vt0 → R+

de classe C1 telle que

1. V soit dé�nie positive.

2. La dérivée V̇ pour (9) soit négative (respectivement dé�nie négative).

Alors 0 est stable. Si de plus, on a :

3. V est décrescente 1 alors l'équilibre 0 est uniformément stable (respectivement uni-

formément asymptotiquement stable).

4. Si U = Rn et V est radialement non bornée 2 alors l'équilibre 0 est globalement

uniformément stable (respectivement globalement uniformément asymptotiquement

stable).

Maintenant, nous allons introduire la notion de la stabilité exponentielle et quelques pro-

priétés.

Dé�nition 6.3.3 ([2]) L'origine du système dynamique (8) est dit localement exponen-

tiellement stable s'il existe des constantes ω < 0, M > 0 et r > 0 telles que pour

x0 ∈ B(0, r), la solution x(.) de (8) issue de x0 en t = 0 est dé�nie sur [0, +∞[ et

véri�e :

|x(t)| ≤M |x0|eω t.

1. Une fonction v : I × Rn → R est décrescente si lim|y|→0 v(t, y) = 0.
2. v : I × Rn → R est radialement non bornée si lim|y|→+∞ v(t, y) = +∞
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Le réel ω < 0 est dit vitesse de la convergence ou exposant de la stabilisation.

L'origine du système dynamique (8) est dit globalement exponentiellement stable, si l'in-

égalité précédente est vraie pour tout x0 ∈ Rn.

Rappelons que, si A est une matrice de Hurwitz, 3 alors, l'origine du système linéaire

ẋ = Ax est asymptotiquement stable et le système non linéaire (8) est localement asymp-

totiquement stable. Même, la solution décroit avec le temps de façon exponentielle.

Le théorème suivant donne un résultat de stabilité asymptotique si le système est expo-

nentiellement stable.

Théorème 6.3.4 ([2]) Si le système (8) est exponentiellement stable, alors il est asymp-

totiquement stable.

La réciproque de ce théorème est fausse.

Exemple : ẋ = −x3 est asymptotiquement stable mais n'est pas exponentiellement stable.

3.3 Existence et unicité du système de noyaux

L'étude de l'existence, de l'unicité et de la continuité de la solution du système (3.33)-

(3.36) ( respectivement (3.44)-(3.47)), avec les conditions aux limites (3.37)-(3.40) ( res-

pectivement (3.48)-(3.51)), est similaire.

Considérons le "problème de Goursat généralisé" dont les équations de noyau direct et

inverse sont un cas particulier. Nous dé�nissons pour i = 1, .., 4 le système d'équations

3. c'est à dire les valeurs propres λ de la matrice A, solutions de det(λ I −A) = 0 sont à partie réelle
strictement négatives
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suivant :

c1(x)F 1
x (x, ξ) + c1(ξ)F 1

ξ (x, ξ) =
4∑
i=1

ε1i(x, ξ)F
i(x, ξ) + g1(x, ξ), (10)

c1(x)F 2
x (x, ξ)− c2(ξ)F 2

ξ (x, ξ) =
4∑
i=1

ε2i(x, ξ)F
i(x, ξ) + g2(x, ξ), (11)

c2(x)F 3
x (x, ξ)− c1(ξ)F 3

ξ (x, ξ) =
4∑
i=1

ε3i(x, ξ)F
i(x, ξ) + g3(x, ξ) (12)

c2(x)F 4
x (x, ξ) + c2(ξ)F 4

ξ (x, ξ) =
4∑
i=1

ε4i(x, ξ)F
i(x, ξ) + g4(x, ξ), (13)

avec les conditions aux limites suivantes

F 1(x, 0) = q1(x)F 2(x, 0) + q2(x)F 3(x, 0) + h1(x), (14)

F 2(x, x) = h2(x), (15)

F 3(x, x) = h3(x), (16)

F 4(x, 0) = q3(x)F 2(x, 0) + q4(x)F 3(x, 0) + h4(x). (17)

Ce système est dé�ni dans le domaine triangulaire ∆ = {(x, ξ) : 0 ≤ ξ ≤ x ≤ 1}.

Nous utilisons la méthode de la caractéristique pour montrer l'existence et l'unicité de ce

système d'équations. Ainsi, nous préférons d'utiliser ce théorème :

Théorème 6.3.5 ([36]) Considérons le système (10)-(13), avec les conditions aux li-

mites (14)-(17) tel que hi, qi ∈ CN([0, 1]), gi, εij ∈ CN(∆), i, j = 1, 2, 3, 4 et c1, c2 ∈

CN([0, 1]) avec c1(x), c2(x) > 0. Alors il existe une unique solution F i ∈ CN(∆) pour

i = 1, 2, 3, 4.
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Titre : Contribution à la suppression du phénomène stick slip et à la construction d'un observateur

de dimension in�nie en forage pétrolier

Mots clefs : Stabilisation, équation aux dérvées partielles, système rotary, équation di�érentielle ordinaire

Résumé : Les di�érents types de vibrations des garni-
tures de forage jouent un rôle important dans le dys-
fonctionnement des opérations de forage car celles-ci
conduisent à la rupture prématurée des trains de tiges,
par conséquent, à la perte de l'outil au fond du trou et
aussi à l'endommagement de la machine. En s'intéressant
au forage de type rotary, cette thèse étudie le phénomène
des vibrations de torsion de point de vu, modélisation par
une EDP (modèle distribué) dont on établi les conditions
aux limites adéquats. Une large partie de notre analyse
dans ce mémoire concerne la commande du phénomène de
vibration de torsion conduisant à une vitesse de rotation
contrôlée sur le bord. La modélisation du phénomène de
torsion a�ectant le train de tiges lors d'un forage pétrolier
a été représentée par une équation aux dérivées partielles
(1D) d'ordre deux: type linéaire intégrant le phénomène
de frottement. Deux entrées apparaissent dans les condi-

tions aux limites en termes de vitesse de rotation du train
et de la réaction avec le sol. Il s'agit donc de désigner
la commande en vitesse qui assure la rotation adéquate
pour le forage et qui n'excite pas le phénomène du torsion
en tenant en compte l'interaction de la formation avec le
sol. La stabilité de la garniture de forage dépend d'un sys-
tème de boue du �uide qui doit injecté. Nous traitons une
connexion entre le système de forage rotary et le système
du �uide. Nous obtenons un système couplé sous la forme
EDP-EDO. Également nous avons transformé le système
couplé à un système neutre avec retard. Nous achevons
ce mémoire par la construction d'une une loi de contrôle
pour l'observateur du système de forage rotary avec une
seule mesure aux limites dans le haut de la colonne pour
estimer les paramètres de l'outil de forage qui ne sont pas
accessibles à mesurer.

Title : Control of torsional vibrations in an oil platform

Keywords : Stabilization, partial di�erential equation, ordinary di�erential equation, drilling system

Abstract : The di�erent types of drilling vibrations play
an important role in the malfunctioning of the drilling
operations because they lead to the premature rupture
of the trains, consequently, to the Loss of the tool at the
bottom hole and also damage to the machine. Much of
our analysis in this speci�cation relates to the control
of the phenomenon of vibration of twisting leading to a
controlled rotational speed on the edge. The mathemati-
cal aspects and simulation results will be detailed. The
modeling of the torsion phenomenon a�ecting the drill
string during was represented by a second order partial
di�erential equation: linear type integrating the pheno-
menon of friction. Two entries appear in the boundary
conditions in terms of the speed of the train and the reac-

tion with the soil. It is therefore a matter of designating
the speed which ensures adequate rotation for drilling and
which avoid the torsional phenomenon of twist taking into
account the interaction of formation with the soil. The
dynamic of the drill string stability depends on a system
of �uid which should be injected to bring cuttings out of
the well bore and amplify the torsional vibrations pheno-
mena. To suppress fracturing collapse or in�ux of �uids
surrounding the well, it is important to integrate the dy-
namic of the pressure in this study: PDE-ODE control
problem. Finally, we are concerned with the problem of
boundary observer stabilization for a system of hyperbo-
lic PDEs which describes the drilling systems. The design
relies on the top boundary measurements only.
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