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Chapitre 1

Introduction générale

Introduction

L’étude de la stabilisation et de la stabilité des systémes a fait 'objet au cours des
derniers siécles d’un trés large développement dans la qualité des résultats ainsi que leurs
applications [77, 31, 9, 71, 78]. Plusieurs de ces résultats concernent les systémes a pa-
rameétres localisés : systémes décrits mathématiquement par des équations différentielles
ordinaires (EDO) linéaires ou non linéaires. En réalité, un grand nombre de systémes sont
tels que les variables caractéristiques sont des fonctions de la variable d’espace : ce sont
les systémes a paramétres répartis ou distribués. Sur le plan mathématique, ce type de
systémes est régi par des équations aux dérivées partielles (EDP) ou intégrales ou inté-
grodifférentielles. L’étude méme de I'existence et de 1'unicité des solutions de ces systémes
pose de nombreux problémes. Par ailleurs, I’étude de la stabilité des systémes est basée
sur leur comportement asymptotique au voisinage de l'infini. D’autre part, la stabilisa-
tion est une notion qui consiste a assurer, en boucle fermée, des objectifs de stabilité, de
régulation, ... etc.
Dans la littérature, plusieurs chercheurs ont étudié la stabilité et la stabilisation de sys-
témes linéaires et non linéaires. En ce qui concerne les systémes linéaires, de nombreuses
approches performantes permettent de construire un tel controle. En effet, la stabilité
au sens de Lyapunov est bien développée pour les systémes linéaires. Par contre, la sta-

bilisation des systémes dynamiques non linéaires reste encore largement inconnue dans

11



12 Chapitre 1. Introduction générale

I'industrie, bien que des méthodes de linéarisation permettent d’obtenir dans certains cas
de bons résultats. Dans le domaine des systémes non linéaires, les outils d’analyse de
la stabilité sont relativement peu nombreux. Le plus fameux d’entre eux est la fonction
de Lyapunov introduite par le mathématicien russe Alexander Lyapunov au dix-huitiéme
siécle. Autour de cette technique, s’est développée une théorie qui porte aujourd’hui le
nom de son illustre fondateur "Théorie de Lyapunov". C’est grace a ces fonctions de
Lyapunov que nous allons mener 1’étude de la stabilisation des systémes non linéaires.
Historiquement, les problémes associés a des systémes controlés n’étaient abordés que
sous un aspect asymptotique, c’est-a-dire au bout d’un temps suffisamment important.
Nous pouvons également étudier le cas de la convergence exponentielle garantissant un
"taux de convergence". Cependant, les conditions d’obtention de la convergence exponen-
tielle sont, en général, difficiles & obtenir pour des systémes non linéaires. Au vue d’une
application, il est important de pouvoir préciser des performances de convergence, c¢’est
a-dire de faire en sorte que le processus physique considéré rejoigne en un temps spécifié
une consigne ou une trajectoire souhaitée.

Le présent manuscrit a pour objectif d’étudier le systéme de forage rotary. En effet, dans
le cas du forage pétrolier, la tige du forage est soumise a une forte torsion (représentée
par une EDP). Par conséquent, des vibrations type "stick-slip" peuvent étre ressenties
sur la tige et sur le porteur de la téte. Celles-ci engendrent, si elles ne sont pas controlées,
la perte de la téte et la détérioration de I'ensemble du systéme. Cette thése aborde les
défis de contréle au sein du forage pour l'industrie. Le forage comporte certains risques et
erreurs qui peuvent avoir des conséquences désastreuses pour les personnes et sur le plan
économique. L’automatisation des systémes de forage permet de percer des trous difficiles
(puits) et d’améliorer Pefficacité du forage et de sécurité globale. Les systémes de forage
ont traditionnellement été abordés manuellement. Néanmoins, le potentiel de gain écono-
mique incite a 'introduction du contréle automatique fournissant une ameélioration des
performances et une réduction du temps de forage. Un exemple de forage automatisé est
le controle automatique de la pression au fond du trou. Gérer la pression via une glissiére

est une méthode relative pour le forage nécessitant une régularisation de pression précise.
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Contribution de la thése

Le but de cette thése est d’apporter une contribution dans les domaines suivants :
stabilisation des équations aux dérivées partielles (EDP), stabilisation des équations dif-
férentielles ordinaires (EDO), connexion entre les EDO et les EDP, et enfin stabilisation
d’observateur du systéme EDP. Nous nous intéressons particuliérement au systéme de
forage rotary comme application et & 'interconnexion entre ce systéme et le systéme
de fluide injecté. La dynamique du premier systéme est régie par une équation aux déri-
vées partielles. Le deuxiéme systéme est décrit par une équation différentielle ordinaire du
premier ordre fortement non linéaire. Le travail réalisé a pour but d’étudier le probléme
généré par la présence des frottements secs connus et que 'on appelle plus fréquemment
le phénomeéne de "stick-slip" ou encore la "collé-glissé". Pour cela, une modélisation, puis
des propositions de lois de controle atténuant cet effet sont données. La contribution de

la thése comporte alors trois parties importantes :

i) Partie I : Vibrations de torsion : modéle de dimension infinie (EDP) : stabiliser le
phénoméne dit ’stick-slip’ en présence d’'un phénomeéne largement négligé lié a la
dynamique du lubrifiant. Le lubrifiant peut entrainer le bouchage au fond du trou
par conséquent a ’accroissement des vibrations.

ii) Partie II : Modeéle couplé décrivant les vibrations de torsion et la dynamique de
la boue : élaborer une commande qui couple le modéle de vibration de torsion et
celui du déplacement des trains de tiges.

iii) Partie I1I : Vibrations de torsion : estimateur de dimension infinie d’observation :
construire une loi de controle pour l'observateur du systéme de forage rotary avec
une seule mesure aux limites dans le haut de la colonne pour estimer les paramétres

de 'outil de forage qui ne sont pas accessibles pour étre mesurés.

Organisation de la thése

Cette thése est subdivisée en trois parties. Outre la premiére partie, le présent chapitre
d’introduction générale, les autres chapitres sont organisés de la maniére suivante :
Le chapitre 2 présente, d'un point de vue général, les différentes caractéristiques du sys-

téeme de forage rotary. Nous présentons tous les principes fondamentaux sur lesquels
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reposent la synthése de forage rotary, la modélisation et les paramétres du systéme de
forage, la réduction des vibrations, les différents types de vibrations existantes et précisé-
ment les vibrations de torsions étant décrites.

Le chapitre 3 est consacré a I’étude de la stabilisation d’équations aux dérivées partielles
de type ondes avec terme d’amortissement. La synthése de controle permettant d’étudier
la stabilité du systéme de forage rotary par deux méthodes différentes, dont une construite
a 'aide de la transformation backstepping et la théorie de Lyapunov.

Le chapitre 4 présente la modélisation du systéme de forage, a savoir, la partie hydraulique
et la partie mécanique et ’étude de la stabilité du systéme obtenu. Il s’agit de trouver des
lois de controle qui résolvent le probléme de stabilisation posé. D’une part, si la vitesse
de rotation est constante, le modéle obtenu est un systéme d’équations différentielles non
linéaires de dimension cing. D’autre part, si la vitesse de rotation n’est pas constante, le
modéle obtenu est un systéme d’équations différentielles non linéaires de dimension six.
En plus du résultat théorique, nous présentons a la fin de ce chapitre une illustration
numérique, de I'un de ces deux modéles.

Nous traitons, dans le chapitre 5, une connexion entre le systéme de forage rotary et le
systéme du fluide. Nous obtenons un systéme couplé sous la forme Equation aux Dérivées
Partielles- Equation Différentielles Ordinaires (EDP-EDO). L’idée principale dans ce cha-
pitre est d’étudier la stabilité. Egalement nous avons transformé le systéme couplé a un
systéme neutre avec retard. Nous achevons ce chapitre par le résultat de simulation pour
le systéme de type neutre.

Dans le chapitre 6, nous présentons un modéle d’observateur adaptatif pour une équation
au dérivées partielles de second ordre avec le terme d’amortissement généralement négligé.
La conception repose sur la construction d’une fonction de Lyapunov et & I'aide de la tech-
nique du backstepping, nous développons un controle basé observateur pour cette EDP.
Nous montrons la stabilité exponentielle des vibrations du puits partiellement équipé du
systéme de forage. Les résultats de la simulation confirment l'efficacité de controle basé
observateur de I’'EDP proposé.

Une conclusion, les perspectives et quelques annexes contenant des compléments de défi-

nitions, et une bibliographie complétent ce document.
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Chapitre 2

Principe et modélisation d’un systéme

de forage rotary

Au cours des cinquante derniéres années, des recherches approfondies ont été menées
sur le sujet de vibrations de torsion pour les systémes de forage pétrolier. Ces vibrations de
torsion entrainent une détérioration des performances de la tige de forage. Elles peuvent
conduire & une défaillance prématurée des outils, des moteurs et des autres composants
cotliteux utilisés dans les opérations de forage.

Une des principales raisons des vibrations de torsion est le phénoméne de "stick-slip". Le
phénoméne est caractérisé par des phases baton "stick", ot la rotation vient a un arrét
complet, et des phases de glissement "slip" ou la vitesse angulaire de I'outil augmente
jusqu’a trois fois sa valeur nominale. Ce mouvement indésirable de I'outil entrainera non
seulement une usure indésirable, mais il réduit aussi le taux de pénétration (ROP), ce

constitue est une considération financiére importante pour les opérations de forage.
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FIGURE 2.1 — Forage pétrolier en mer

2.1 Systéme de forage rotary

Les puits de production de gaz et de pétrole sont réalisés a l'aide d’un systéme de
forage rotary. La rotation, générée depuis la surface par la table de rotation, est transmise
jusqu’au fond du puits (pétrole ou gaz) par U'intermédiaire des trains de tiges. Les copeaux
générés lors de la destruction de la roche par loutil sont évacués a la surface par la
circulation d’un fluide de forage (boue ou air comprimé).
Les différents types de vibrations des garnitures de forage jouent un réle important dans les
dysfonctionnements des opérations de forage car elles conduisent & la rupture prématurée
du train de tige, & Pendommagement de certains de leurs composants (par exemple le
trépan) et a la baisse globale des performances de forage. Les vibrations des trains de tiges
sont décrites en termes de déplacement entre I'outil (le trépan) et la table de rotation. Il
existe trois types de vibrations : vibrations de torsion, vibrations latérales ou de flexion

et vibrations axiales.

2.1.1 Principe de forage rotary

Afin d’accéder directement a la poche contenant les hydrocarbures tels que le pétrole
ou le gaz naturel, les foreurs vont devoir réaliser un trou de forage. Il y a plus de 4000

ans, les Chinois foraient déja les premiers puits a 'aide d’une tige de bambou : la pointe
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cognait la terre et percait le sol. Cette technique consiste a soulever un outil trés lourd
et le laisser retomber sur la roche & perforer en chute libre. Elle est utilisée pendant des

siécles avec quelques modifications sur les outils (Fig. 2.2).

FIGURE 2.2 — Forage a la terre manuel

Actuellement, la méthode de forage utilisée est celle du Rotary, bien plus rapide et efficace.
Cette méthode consiste tout d’abord & mettre en place un appareil de forage. Celui-ci est
trés cher, cotitant trois millions d’euros en moyenne.

Les procédés de forage rotary sont des mécanismes qui jouent un role important dans
I'extraction de pétrole ou du gaz. La technique de forage rotary consiste a mettre en
rotation un outil (appelé trépan) sur lequel on applique une force orientée dans le sens
d’avancement souhaité. Une pompe hydraulique assure la circulation du fluide qui transite
par le train de tige, et remonte par ’espace annulaire qui permet ’évacuation des déblais

vers la surface.

2.1.2 Extraction des hydrocarbures

L’extraction pétroliére ou gaziére, que ce soit en mer ou sur terre, nécessite un pro-
cessus de forage pour extraire la matiére et parvenir aux réservoirs d’hydrocarbures. La
production pétroliére dans un bassin d’hydrocarbures impose de connecter les réservoirs

a la surface par des canaux reliés a des systémes de pompage comme le montre la figure
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Transfert des hydrocarbures Systéme de pompage

FI1GURE 2.3 — Différentes phases pour I'extraction des hydrocarbures

I’acheminement de l’exploration des hydrocarbures passe par le fonctionnement d’un
processus de forage dont le plus connu dans I'industrie pétroliére ou gaziére, s’intitule :
"systéme de forage rotary".

Le systéeme rotary comprend une téte d’injection, une tige d’entrainement qui passe a
travers une table de rotation et qui est reliée & un train de tige (ou une colonne de forage)
et en bout de colonne un outil de forage (trépan) creusant le sol. La tige d’entrainement,
et de fait la colonne de forage, et 'outil de forage, tous subissent une rotation via la table
de rotation et une section angulaire de la colonne qui se trouve au niveau de la table,
ou bien si la table n’est pas le moyen de rotation de la machine de forage, via la téte
d’injection qui sert également a 'entrainement de la colonne (Fig.2.4).

La progression de forage requiert la circulation continue et en boucle fermée d’un fluide
dont le but consiste a évacuer les déblais vers la surface. La nécessité de rechercher des

gisements d’hydrocarbures dans des milieux de plus en plus profonds conduit a forer des
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Installation de forage

derrick
raserve de tiges de forage

tige carrée
table de rotation

Garniture de jomge

tige de forage

frépan — |

FIGURE 2.4 — Plateforme de forage [1]

puits qui s’étalent sur plus de cinq kilométres dans le sol. Cela rend graduel le forage
durant lequel plusieurs phases, séparées par la remontée a la surface de la garniture, sont
nécessaires. Ces étapes ont pour but de favoriser la maintenance du processus et d’ef-
fectuer le tubage et la cimentation de la partie forée. Lorsque les poches contenant les
hydrocarbures sont atteintes, les gazoducs sont installés afin d’extraire le pétrole ou le

gaz vers la surface.

2.2 Phénoméne "stick-slip" en forage

Stick-slip est un phénoméne qui apparait lorsque deux surfaces glissent en contact
I'une avec l'autre, et les surfaces alternent entre collage et glissement. Cela entrainera
un changement de la force de frottement, puisque le frottement statique est généralement
plus grand que le cinétique. A titre d’exemple, il peut étre considéré comme un objet situé
sur une surface plane. Si la force appliquée a 1'objet est suffisamment grande du fait du

frottement statique, la réduction du frottement cinétique peut provoquer un saut brusque
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de la vitesse depuis 1'arrét. S’il existe une certaine élasticité entre la source de la force et
le point ou le frottement agit, le systéme peut avoir une fréquence spécifique et alterner
entre les phénoménes de collage et de glissement.

Le phénoméne du stick-slip est présent dans de nombreux différents contextes de notre

vie quotidienne ; certains d’entre eux seront présentés ici.

2.2.1 Exemple 1 : la langouste

Le phénomeéne du stick-slip est également présent dans la nature, et la langouste
(Panulirus Argus) peut-étre un tel exemple [64]. Le homard profite du phénoméne de
stick-slip quand il produit un son fort et un abrasif pour effrayer les prédateurs. En
frottant un plectre (une extension basale sur 'antenne du tissu élastique souple) sur des
bardeaux microscopiques sur un fichier (situé sous ses yeux), le homard produit des sons
a haute fréquence a l'aide du mécanisme de stick-slip. L’énergie est stockée dans le tissu
souple et élastique du plectre pendant la phase baton "stick", puis libérée pendant la phase
de glissement, une impulsion sonore est ensuite générée chaque fois que les deux surfaces
glissent. Le homard peut efficacement effrayer les prédateurs en utilisant le phénoméne

du stick-slip pendant le cycle de la mue quand leur exo-squelette est doux.

FIGURE 2.5 — Le homard épineux
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2.2.2 Exemple 2 : séismes tectoniques

Une autre situation dans la nature ou les vibrations de stick-slip peuvent étre remar-
quables quand il existe des tremblements de terre. La dure enveloppe externe de la terre
est actuellement divisée en huit plaques majeures, et de nombreuses plaques mineures.
Un tremblement de terre tectonique est causé par une libération soudaine d’énergie dans
la crotite terrestre qui crée des ondes sismiques. L’énergie est libérée a la suite d’un glisse-
ment soudain lors d’un contact entre deux plaques. Comme les plaques ont des aspérités
le long de leurs limites, elles auront tendance a coller out se bloquer I'un a ’autre comme
ils se déplacent. Le mouvement relatif continu entre les plaques entrainera une contrainte
croissante et une force accumulée lorsque les plaques se déforment élastiquement. Lorsque
la force est suffisante pour que les plaques se détachent, I’énergie stockée est libérée sous
forme d’ondes sismiques qui font vibrer le sol. Les plaques finiront par se coller et se blo-
quer a nouveau dans un comportement stick-slip et encore plus de tremblements de terre

se produiront au fil du temps.

FIGURE 2.6 — Stick-slip peut causer de grands dégats lors de la génération de tremblements
de terre

2.3 Parameétres de forage
Les paramétres de forage sont les différents facteurs mécaniques et hydrauliques (les
grandeurs physiques) agissant sur la vitesse de progression «Rate of Penetration» (Le

ROP correspond a la profondeur forée par heure (métres /heures). ). L’optimisation de la
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vitesse de progression est un aspect trés important dans I’analyse du processus de forage
car c’est directement lié¢ au temps passé sur une installation sur terre ou marine.
Contraimte axiale
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FIGURE 2.7 — Schéma d’une structure de forage rotary [20].

2.3.1 Facteurs mécaniques

Les principaux paramétres mécaniques sont : la vitesse de rotation, le poids sur I'outil
et le couple exercé sur 'outil.
La vitesse de rotation. Le choix de la vitesse de rotation dépend de celle du poids
sur 'outil (WOB). En surface, elle peut étre controlée mais elle peut étre différente de la
vitesse de rotation de 'outil (trépan).
Les vitesses de rotation usuelles s’étendent entre 60 et 250 (tours/min).
Le poids sur ’outil WOB (Weight on Bit). Le WOB désigne la force appliquée par
la garniture de forage sur ’outil suivant son axe de rotation. Cette force dépend du poids

de la garniture de forage, et de la tension du cable de soutien de la garniture.
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Les grandeurs usuelles de WOB s’¢tendent entre 10kN et 103kN.

Le couple exercé sur 'outil Trpop (Torque On Bit). Le couple exercé sur 'outil
correspond au couple transmis par la garniture au trépan suivant la révolution de son axe
de rotation. Compte tenu des frottements des trains de tiges contre la paroi du puits de
gaz ou du pétrole, ce couple est nettement inférieur a celui mesuré en surface. Le couple
Trop représente les effets combinés du couple réactif et des forces des frottement non
linéaires sur la longueur du BHA (Bottom Hole Assembly).

La valeur du couple en surface varie typiquement entre 200 et 3000 Kg.m.

2.3.2 Facteurs hydrauliques

L’opération de forage se réalise en présence d’'un systéme de la lubrification se trouvant
a la surface et gérer par un systéme hydraulique.
Fluide de forage. Le type de boue de forage est choisi en fonction des performances
recherchées et désigne les propriétés physico-chimiques du fluide de forage. Trois types
de boues sont souvent employés : la boue a base d’eau, (Water Based Mud), la boue a
base d’huile (Oil Based Mud) et la boue synthétique (Synthetic Based Mud). Une boue
synthétique est constituée d’un mélange d’additifs chimiques et d’eau. -
Pression et débit hydraulique. Le probléme d’évacuation des déblais ne dépend pas
uniquement des propriétés du fluide et du débit qui lui sont imposés, mais la surface de
la colonne d’évacuation et les pertes sont d’autres facteurs a prendre en compte. Le fluide
(boues ayant une densité et une composition affectée au forage) dans un forage est un
élément clé, car il évacue les déblais qui s’accumulent au fond du trou, il stabilise les
parois du trou lorsque ce dernier est encore sans cuvelage (protection des constructions
situées en sous sol contre les pressions hydrostatiques horizontales) et enfin il peut aussi
lubrifier et refroidir l'outil en activité [22].
La perte du fluide méne habituellement a une diminution de la pression, ce qui peut poser
des problémes majeurs au foreur. Nous nous intéressons au fluide en "circulation directe",
celui qui descend par les train de tiges. Le fluide en "circulation inverse" est celui qui
monte par ’espace annulaire.

La pression et le débit hydraulique représentent les variables physiques qui doivent favo-
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riser une bonne évacuation des déblais et éviter des problémes d’encrassement du trépan
ou du puits.

Densité de la boue p. L’obtention des informations relatives au puits et particuliére-
ment le controle de la pression dans le puits s’effectue a travers la densité de la boue.
La boue de forage rameéne a la surface les déblais, mais aussi du gaz contenu dans les
roches. Cela fournit des indications sur la nature des fluides se situant dans le réservoir

et représente un élément important dans le pilotage de la garniture.

2.3.3 Caractéristiques d’un outil de forage

L’élément destructeur de la roche (outil de forage) est trés important dans la conduite
d’un forage. Le choix de I'outil de forage est dicté par les caractéristiques de la formation
rocheuse (dureté, nature) et par les conditions économiques de puits.

Une variété des outils (trépans) présentant des géométries spécifiques existent. Les trépans
sont concus pour forer une certaine gamme de roches et sont choisis en fonction des
puits & réaliser. Ils se catégorisent en deux grandes familles : les outils tricones et les
outils monobloc de type PDC (Polycristallin Diamond Compact). Les outils tricones sont
principalement composés d’acier ou de carbure de tungsténe. Tandis que les monoblocs de
type PDC sont composés de diamants, ou de diamants synthétiques. La grande différence

entre ces deux familles de trépans réside dans leurs fagons d’arracher la roche.

Outils tricones. Les outils tricones disposent de trois cones rotatifs qui embarquent des
plaquettes de coupe congues en fonction de la roche a forer. Ils peuvent étre en carbure
de tungsténe, en acier ou en diamant. L’arrachage de la roche s’effectue lorsque les cones
effectuent des rotations autour de 'outil. Le principal mode de destruction de la roche, par
les taillant fixés sur les molettes, est le poinconnement. Il se déroule par la progression
verticale du taillant dans la roche sous l'effet d’un effort normal créant un champ de
contraintes au voisinage du taillant. Lorsque les limites & la rupture sont atteintes un
déblai se produit. Ce type d’outil est particuliérement adapté lorsque les roches a forer

présentent une forte dureté.
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FIGURE 2.8 — Trépan tricone et monobloc

Outils monobloc. La rotation du train de tiges entraine celle de Poutil (trépan). Ces
outils se composent de diamant naturel ou synthétique brasé sur du carbure de tungsténe.
Ils sont connus sous le nom PDC et détruisent la roche par cisaillement. Le cisaillement
caractérise 'opération durant laquelle les taillant pénétrent la roche dans un mouvement
paralléle a la surface de la roche et un déblai est obtenu dés que les limites a la rupture
sont atteintes. ’emplacement des pastilles dans ce type d’outil est primordial pour son
optimisation et présente une influence considérable sur I’équilibre de I'outil, sur la vitesse

de pénétration de la garniture ainsi que ’évacuation des déblais.

2.4 Vibrations lors d’un forage
Les vibrations d’un train de tiges peuvent étre classées en trois catégories : axiales,

latérales et de torsion.

2.4.1 Vibration type latérale

Ce sont des vibrations pour lesquelles le mouvement se fait perpendiculairement a
’axe des trains de tiges. Le phénoméne de "précession" (whirl) peut se déclencher lorsque
I’amplitude de ces vibrations devient considérable. Le "whirl" se produit lorsque les tiges
voient leur centre s’écarter de ’axe du puits, et qu’en plus de tourner sur elles mémes

(rotation propre), elles tournent autour du puits (précession).
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2.4.2 Vibration type axiale

Le mouvement se fait selon I'axe des train de tiges. Ces vibrations peuvent dégénérer
dans certaines conditions en "rebond de 1'outil" (bit bounce). 1l s’agit d’un phénoméne de
rebonds successifs de 'outil de forage avec séparation périodique a l'interface outil-roche.
Le phénomeéne de bit bounce se manifeste préférentiellement lorsqu’il y a accord entre la
vitesse de rotation des trains de tiges et une fréquence propre axiale du train de tiges.
Le bit bounce peut engendrer le bouncing de surface, c’est & dire, 'entrée en résonance
du systéme de suspension de la garniture en surface provoquant ainsi un mouvement

alternatif en translation de forte amplitude.

2.4.3 Vibration type torsion

Les vibrations de torsion se manifestent sous la forme d’un phénomeéne d’adhérence
glissement s’appelle "stick-slip”. Le phénoméne de stick slip associé aux vibrations de tor-
sion provoque des arréts cycliques de l'outil sur des périodes pouvant représenter jusqu’a
cinquante pour cent du temps de forage. Pendant ces périodes d’arrét, les tiges, entrai-
nées en rotation depuis la surface, sont mises en torsion grace a leur élasticité propre.
L’outil ne redémarrera que lorsque le couple au fond sera supérieur au couple de frotte-
ment statique. La détente des tiges provoque alors une forte accélération favorisée par le
fait que le couple de frottement dynamique est inférieur au couple statique. La vitesse
de rotation instantanée peut atteindre le triple, voire plus, de la vitesse de surface. Ceci
permet une relaxation de la garniture. Le couple au fond passe alors en dessous du couple

de frottement dynamique, ce qui arréte & nouveau la rotation de 'outil.

2.4.4 EDP hyperbolique retenue pour modéliser la torsion

Les équations différentielles régissant le mouvement pour le forage rotary sont dérivées
par ’analyse du bilan des forces. Le train de tige de longueur L est mis en rotation a partir
de la partie supérieure (¢ = 0) et le trépan est situé au fond (partie inférieure) du trou de
forage (¢ = L). L’angle de torsion du train de tiges a la distance ¢ a U'instant ¢ est noté

par Y(t,<). Ainsi, la dynamique de la variable de torsion est décrite par I’équation aux
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dérivées partielles hyperbolique a coefficients constants suivante [11] :

2 2
GJ@(t,g) - [@(t,g) - dg—f

02 o (t,s) =0, <e(0,L),te (0,+x)

a laquelle est associée des conditions aux limites.

On suppose que toutes les conditions aux limites sont situées sur les extrémités du train de
tiges et de ce fait, toutes les conditions se calculent a partir des forces qui s’exercent aux
frontiéres. L’assemblage au fond (BHA) représente la partie inférieure de la structure de
garniture de forage. Le BHA a I'extrémité inférieure du train de tiges est habituellement
modélisé comme une simple inertie I,. D’une part, autour de 'axe du train de tiges le

BHA est soumis & un couple noté T,,; di au train de tiges. D’autre part, le BHA est

9

5. (t, L)) qui tient compte du frottement causé par I'interaction de

soumis & un couple T'(
l'outil avec le sol. Nous obtenons alors la condition aux limites inférieure traduisant la

dynamique de l'outil en ¢ = L

0% oY
[b—(t, L) = _Toutil - T(E(

Comme T = GJ%(t, L), alors on obtient :

09 o o

Le frottement dans le systéme de forage rotary constitue un phénomeéne trés important.
Différentes expressions mathématiques sont présentées dans la littérature pour modéliser
ce phénoméne qui peut s’avérer complexe [11, 10]. Par exemple, I'expression du modéle

T(2%(t, L)) peut prendre la forme suivante :

(01, 1) = e (1, L) + (o (1, 1)

avec R(%2(t, L)) représente le couple de frottement qui modélise I'interaction entre I'outil

et le sol.

On sait que les frottements entre 1'outil et le sol dans un systéme de forage rotary s’ex-
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priment par une relation non linéaire entre le couple exercé par 'outil 71,,,; du a la table
en rotation et la réaction du sol. Alors, il existe une variété de conditions aux limites
de surface qui différent suivant la complexité du probléme et le degré de rigidité du sol.

Comme exemples, on peut présenter les deux cas récemment étudiés :

e Saldivar dans [11], étudie le cas on la vitesse non constante (2 de la table tournante
et le train de forage ne tournent pas exactement a la méme vitesse. Par conséquent,

le couple est exprimé comme suit :

o o

G5 (1.0) = ea( o (1.0) = (1) (2.1)

e Fridman dans [17], suppose que la variable de torsion J(¢,0) a la surface peut étre

controlée directement, soit
¥(t,0) = U(t)

ou U(t) est la commande.
Dans cette thése, nous nous sommes intéressés a la condition aux limites donnée par (2.1).
Le modéle d’étude dont la dynamique du train de tiges s’écrit :

%9 0% o

- = —d— = L
Gjag2 (t,s) 52 (t,5) d@t (t,) =0, <€ (0,L),t€e (0,+00)

dont les conditions aux limites sont de la forme

o o
Gja—<(t,0) —CG(E(ZZO) —Q(t)) §—O
o 0% oY
GJa—g(t L)+ Ibw(@ L) = —T(E(t L)) ¢=1L

C’est une équation aux dérivées partielles hyperbolique de second ordre linéaire. Les condi-
tions aux limites sont du types dynamiques. Notre étude sert a trouver la bonne vitesse
de rotation de la tige pour que le systéeme soit stable a ’équilibre et supprimer les vi-

brations de torsion. En fait, I’instabilité provoquée par les vibrations de torsion provoque
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des imprécisions dimensionnelles des trous et peut endommager le systéme de forage, par

conséquent écrouler le puits.

2.5 Conclusion

Dans ce chapitre, nous avons présenté le systéme de forage rotary : son principe,
les éléments qui le composent ainsi que les différentes types de vibrations pouvant se
produire lors de la phase de forage. L’étude des instabilités vibratoires est complexe, en
particulier dans le cas du phénoméne "stick-slip", qui peut se présenter sous plusieurs
formes, se produire dans de nombreux contextes de forage et entrer en interaction avec
d’autres modes vibratoires. L’ensemble des travaux présenté dans cette thése ont pour
objet d’étudier ce phénomeéne et ses interactions. Au cours des chapitres suivants nous
nous attacherons & :

— la suppression des vibrations de torsion, avec le développement d’une commande
qui annule les vibrations de torsion, et permet par conséquent de stabiliser le
systéme.

— D’étudie de 'impact du fluide injecté sur le phénomeéne des vibrations de torsion :
le fluide de forage sert a stabiliser la pression au fond de puits pour leur éviter de
s’écrouler, et également lubrifier et refroidir les outils.

— lanalyse de paramétres mesurables et non mesurables (probléme d’observateur) :
dans le modéle du systéme de forage rotary, il y a certains paramétres qui ne sont
pas mesurables. Donc il est utile de construire un observateur de dimension infinie

a I'image de dimension du systéme.
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Chapitre 3

Contribution a la suppression du

phénomeéne dit "stick-slip"

3.1 Introduction

Pour étudier la stabilité des équations aux dérivées partielles (EDP), il existe deux
techniques principales : la premiére est celle de la solution exacte si cette solution est
facile d’étre établie, la deuxiéme, qui est beaucoup plus générale, est celle de la théorie de
Lyapunov. Une solution exacte peut étre obtenue en utilisant la méthode de séparation
de variable ou la technique de la transformée de Laplace. Dans la littérature, ’étude
de stabilité exponentielle des systémes hyperboliques est bien décrite. En effet, en dépit
du travail fait par Krstic et Smyshlyaev [40], Coron et d’autres [36, 60, 61, 12, 4, 3, 5,
14, 21, 24, 48], I'étude de stabilité des EDP demeure un champ d’investigation ouvert.
Dans [60], Coron et ses collaborateurs se sont intéressés au probléme de la stabilité aux
frontiéres et a I'estimation d’états pour un systéme linéaire d’équations hyperboliques 2 x 2
de premier ordre avec coefficients variables. Dans [35], les auteurs ont utilisé ’évolution
explicite des invariants de Riemann le long de la courbe caractéristique pour transformer
les équations d’ondes en un systéme quasi linéaire des équations 2 X2 et aussi pour les
systémes quasi linéaires nxn [76]. Nous pouvons nous référer aussi a |18, 19|, dans laquelle,
existe une étude bien développée concernant le probléme de la stabilisation aux frontiéres

et Pestimation d’état pour n + 1 systémes de premier ordre d’équations hyperboliques

35
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linéaires avec des coefficients variables; 1'étude est similaire & celle qui se trouve dans
[60]. Dans le présent chapitre on se restreindra a 1'étude de la stabilité de 1'équation
hyperbolique décrivant la dynamique de torsion.

Au cours du dernier siécle, de nombreuses recherches sur la modélisation et le controle des
systémes de forages ont été réalisées. En 1960, Bailey et Finnie, de Shell Développement
Company sont les premiers qui ont développé une étude expérimentale et analytique sur
les vibrations axiales et celles des torsions [31]. Depuis lors, de nombreuses approches pour
la modélisation et le controle ont été proposées. La plupart des techniques de controles sont
les suivantes : systéme de direction de réaction du couple, systéme de rotation a couple
doux (DOD). Le procédé de forage des puits de pétrole consiste a la création d’un forage
de plus de cing milles métres de profondeur dans le sol jusqu’a ce qu’on atteigne ’huile et
le gaz. Le train de tiges se constitue de ’ensemble de tiges de forage, masses-tiges, et I'outil
taille de pierre visée comme outil de forage tourne autour de son axe vertical, pénétrant
a travers la roche. Dans la partie supérieure du train de tiges, la table de rotation fournit
le couple nécessaire pour mettre le systéme en mouvement de rotation. Le train de tige
est soumis & trois principaux types des vibrations [10, 37, 54, 50| : vibrations verticales,
vibrations axiales et vibrations de torsion qui sont distinguées par le nom "oscillation de
stick slip". Une description détaillée de chaque mode de vibration est présentée dans le
(chapitre 8, [10]).

Dans [11], Saldivar et d’autres ont proposé une fonction d’énergie pour le modéle distribué
permettant de trouver une loi de commande qui assure la dissipation d’énergie pendant
le forage. Les auteurs de [13] proposent une loi de commande pour éviter les oscillations
de torsions indésirables du train de tiges pertinents dans les forages des puits de pétrole.
Dans ce chapitre, nous nous préparons a I'étude de stabilité de 1’équation décrivant le
systéeme de forage rotary.

Notre chapitre est constitué de cinq parties. Dans la Section 3.2 nous allons montrer
Pexistence et I'unicité de la solution. La Section 3.3 est une premiére méthode pour étudier
la stabilité d’un systéme d’équations aux dérivées partielles hyperboliques 2 x 2 du premier
ordre. Comme technique, nous allons utiliser les invariants de Riemann, la transformation

backstepping et la théorie de Lyapunov. Le principal résultat de cette section est de
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trouver la commande qui prouve la stabilité localement exponentielle du systéme original.

La Section 3.4 comporte une deuxiéme approche sur I’é¢tude de la stabilité d’un systéme

d’EDP de second ordre. Nous utilisons la technique du backstepping et la théorie de

Lyapunov pour déterminer la loi de contréle. Nous testons 'efficacité des lois de controle

numériquement dans la Section 3.5. L’étude de I'existence et de 'unicité des noyaux est

traitée dans ’appendice.

3.2 Existence et unicité de la solution

Considérons le systéme mécanique suivant :

T+ dr

(7-]I((.L)TI[;W R 5
,Kf;::—,/;)\
. S

F1GURE 3.1 — Modéle de forage rotary

Ce systéme est décrit par I’équation aux dérivées partielles suivante :

0% 0% ov

Gja_gz(t7<) - IW(@Q - da(tx) =0, <€ (0,L),te(0,+00)

(3.1)
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ol les conditions aux limites sont données par :

00 a9
G 5(1.0) = (G (1,0) = (). (3.2)
ng—f(t, L)+ Ibz%?(t, L) = —T(g—f(t, L)), (3.3)

avec

e ¢ : angle de torsion

e [ :inertie par unité de longueur

e (G : module de cisaillement

e [, : inertie de la tige de forage

e J : moment géométrique d’inertie

e d : amortissement de la garniture de forage

o ()(t) € R : loi de controle.

Nous utilisons le changement de variable suivant :

u(t,z) = ﬁ(L\/gt, L(1—x)),x€(0,1) (3.4)

nous obtenons

Opu(t,z) = Oppu(t,x) — Nowu(t,z),z € (0,1) (3.5)
Opu(t,1) = U(t) (3.6)
Opu(t,0) = adyu(t,0)+ aF(0ul(t,0)), (3.7)

tel que :

U(t) = <L (Q(t) — 11/ % owu(t, 1)), A = dLy/ 745,

F(Bu(t,0)) = &5 T (31/%0u(t,0)), a = .

En raison de la présence d’une relation non linéaire complexe résultant de l'interaction
entre 'outil et le sol, I'étude de I'existence et 'unicité de la solution du systéme décrivant
la dynamique de torsion deviennent plus complexes. Par conséquent, dans ce qui suit,

nous traitons cette question en utilisant la théorie de semi-groupe [6].
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Soit T" > 0, la solution naturelle du probléme de Cauchy est donnée par

Owu(t,z) = Opult,z) — Adul(t, z) (3.8)
dyut,1) = U(t) (3.9)
Auu(t,0) = adyu(t,0) + aF(du(t,0)) (3.10)
u(0,7) = o), u(0,7) = p%) (3.11)

oz € (0,1),t€(0,T),a e K, 3% L*0,1), K := {u € H'(0,1);u(t,0) = 0} et U(t)
la loi de controle.

L’espace vectoriel K est muni du produit scalaire suivant
1
(', a?) g = a/ ataldr
0

Soit Z(t) = (u(t,.), us(t,.),u(t,0))”. Le systéme (3.8)-(3.11) peut s’écrire de cette fagon

compacte
Z(t) = AZ(t)+ H(Z(t)) + BU(t)
( ) )) + BU( 12
0 1 0 0
ou A = Oz - 0 [, H<Z<t)) = 0 ’
—a(dy(x),.y 0 0 aF (u(t,0))
0
et B=| §(x—1) | tel que 0 désigne la fonction de Dirac pour laquelle
0

(01 (2), ult, v)) = —ux(t, 1) et (Fp(x), ut, )) = —ua(t,0)

Tout d’abord, nous considérons la partie linéaire. Soit le Théoréme suivant.

Théoréme 3.2.1 L’opérateur A génére un Cy semi-groupe de contractions S(t), t > 0.
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Preuve Soit X = K x L*([0,1]) x R

Cet espace vectoriel X est muni du produit scalaire suivant :

u'(t, ) uw(t,)
(| e || s |y = ettt ofudadi
uy (¢,0) u?(t,0)
+ (uf(t,0),u(t,0))g.
Notons que || . || est la norme dans X associé au produit scalaire.

Soit A: D(A) C X — X lopérateur linéaire définit par
D(A)={Z:ue€ H*0,1),u; € K,u(t,0) € R,u,(t,1) =0}

Nous avons

u(t,x) ut(tax> U(t,l’)
Al w(t,z) | = | Owult,r) —du(t,z) |,V | w(t,z) | € D(A)
ut(t> 0) Qg (tv O) ut(ta O)
De plus
1
(AZ, Z)x = —a)\/ urdr <0, VZ € D(A)
0
Z1
Il reste & montrer que pour tout Z = | 2, | € X, ilexiste y € D(A) tel que y— Ay = Z.
Z3

A Taide de I’approche variationnelle nous démontrons I'existence et 'unicité de la solution.

Soit Z € X, nous avons

Yy—Uy =z
y_Ay:Z<:> (1—)\>y—yx$222—)\21

y(t,0) — ay,(t,0) = z3

\
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Nous multiplions I’équation vérifiée par y par une fonction test f € K, puis nous intégrons

par partie, nous obtenons alors que

1 1 1
/ Yo fodr — yo (6, 1) f(t, 1) + y.(¢,0) f(¢,0) + (1 —)\)/ yfdx = / (20 — A21) fdx
0 0 0

alors

1 1 1
o fad 11—\ dx = - A d K
/Oyf ot ( )/0 yfda /0<22 2 fdecar f €

Le probléme variationnel associé consiste donc & déterminer y € K tel que :

S(y, fo Yo frodr + (1 — fo yfdx et I(f fo 29 — Az1) fdx
La continuité de S(.,.) et I(.) est évidente de méme que la coercivité de la forme bilinéaire
S(.,.). En effet,

1

1
Sly,y) = YoYodz + (1 — X) / yydx
0

Iy II%

Les hypothéses du Théoréme de Lax-Milgram sont réunies. Il existe donc une solution
unique au probléme variationnel. Nous vérifions enfin en effectuant les méme intégrations

par partie que

/ _ymnfdx + (1 - )‘)/ yfdx + ym(tﬂ 1)f<t7 1) - yw(tv O)f(t7 0) = / (ZQ - )\Zl)fdx
0 0 0

d’ou

—Yaz + (1 = Ny = (22 = Az1) pop

ya:(ta ]-)f(t7 1) - yw(t7 O)f(tv O) = 0, pour tout f
Alors, D(A) est dense dans X et A est fermé. Ainsi, en utilisant le Théoréme du Lumer-
Phillips (Théoréme A.4 dans [30]), A est un générateur infinitésimal d’un semi-groupe de

contractions S(t), t € [0, +00), dans X.

Maintenant, nous allons prouver I'existence et 'unicité du systéme non linéaire

Théoréme 3.2.2 Pour toute condition initiale Zy € D(A), le probleme
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Z(t) = AZ(t) + H(Z) admet une unique solution Z € C'([0,T],X) (N C°([0,T], D(A)).
De plus la solution est donnée par : Z(t) = S(t)Z(0) + fot S(t—s)H(Z(s))ds

Pour prouver le Théoréme 3.2.2, nous avons besoin du lemme suivant :

Lemme 3.2.1 L’opérateur non linéaire H(Z) est dissipatif et localement lipschitzien.

Preuve Rappelons que la fonction non linéaire F' résultante de 'interaction entre I'outil

et la roche est donnée par (Chapitre 3, [10])

F(Opu(t,0)) = —%T(%\/g&fu(t,o)),

G L[S au(t, 002 + k2

avec k > 0. Aprés avoir calculé

(H(Z(1))), Z(t))x = F(u(t,0))u(t,0)
I ky/SLowu(t,0)?

GT 1, [S,u(t,00 + &

nous obtenons

(H(Z(1)), Z(t))x <0

Cela implique que l'opérateur H(Z) est dissipatif.

Il est facile de vérifier que H(Z) est localement lipschitzien. En conséquence, 'opérateur
H(Z) est dissipatif et localement lipschitzien.

Preuve du Théoréme 3.2.2 En appliquant le lemme ci-dessus et & partir des résultats
donnés dans (Théoréme 4.2 [47], [77, 6, 30]), il est évident de prouver que notre systéme

(3.12) admet une unique solution.
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3.3 Prémiére approche : systéme 2 x 2 d’EDP du pre-

mier ordre
Dans ce paragraphe, en se basant sur la théorie de Lyapunov et la transformation
backstepping, nous étudions la stabilité d’un systéme d’équations hyperboliques du pre-
mier ordre. Tout d’abord, nous commencons par linéariser le systéme d’EDP autour d’une
trajectoire de référence puis, nous utilisons les invariants de Riemann pour transformer
un EDP de second ordre en deux équations hyperboliques du premier ordre. Finalement,

nous montrons la stabilité de ’'EDP transformé.

3.3.1 Formulation du probléme

Pour linéariser la condition aux limites (3.7), nous utilisons la forme suivante [13] :
u(t,r) = —a° — F(w,)x + wt + ug (3.13)
comme trajectoire de référence, avec

U(t) = \w, — F(w,) (3.14)

représente Uentrée de la commande de référence et w, = (¢, z). Donc le systéme (3.5)-

(3.7) devient

Opu(t,x) = Opu(t,x) — Nowu(t, x), (3.15)
deu(t,1) = U(t) (3.16)
Ouu(t,0) = adyu(t,0)+ abdyu(t,0), (3.17)

tel que b= %5 (w,) et w(t) = w(t, 1).

On peut écrire (3.15) sous cette forme
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avec (r, s) = (Ou(t, x), Oul(t, x)).

Nous introduisons les invariants de Riemann :

Yy=r—S8,z=1r+Ss

qui résolvent le systéme suivant :

Oy +0sy = F(z—y). (3.18)

Oz — Opz = —%(2 — ), (3.19)
2(t,1) = 2U(t) —y(t, 1), (3.20)

Oz —y)(t,0) = a(2(t,0) +y(t,0)) + ab(2(t,0) — y(t,0)), (3.21)

Nous introduisons les notations

8(r) = exp(5), ¥(a) = ep(—5)

et les deux nouvelles cordonnées

i (t,z) = o(x)y(t,z), wya(t,x) =P(x)z(t, x).

Alors le systéme (3.18)-(3.21) est transformé au systéme suivant :

0 = Oun+ Opth — ;\—fzyz, (3.22)

0 = atyg — &Cyg — 55 <323>

yo(t, 1) = 2()U(t) — E )) 1(t, 1), (3.24)

Oe(y2 — 1) (t,0) = a(ya(t,0) +3:(t,0)) + ab(y2 — 11)(2, 0). (3.25)
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3.3.2 Construction d’un systéme cible

Notre but est de trouver une application qui transforme (3.22)-(3.25) au systéme

suivant :

Balt,z) = —da(t,x), (3.26)
Bt x) = 0.8(t ), (3.27)
B(t,1) = 0, (3.28)
(B —a)(t,0) = a(B(t,0)+ alt,0)) —ab®(B(t,0) — a(t,0)). (3.29)

Lemme 3.3.1 Considérons le systéme (3.26)-(3.29) avec les conditions initiales (ap, Bo) €
L2([0,1]). Alors léquilibre (o, B) = (0,0) est localement exponentiellement stable dans L.

En outre, B tend vers zéro en temps fini.

Preuve Nous proposons la fonction de Lyapunov suivante :
1 a )
V() = / (a B) P | (t2)de+[5(2,0) - a(t,0)f,
0 g

Ae Fr 0
tel que P = . A, B et usont des constantes positives tel que B > 2a > A.
0 Bet®

Nous dérivons V' par rapport au temps, nous intégrons par parties et nous utilisons les

conditions aux limites (3.28)-(3.29), nous trouvons

1
V(t) = /0 2Aa0,ce™ " + 2BpO et dr + 2(0: 8 — Owr)(t,0) (8 — «)(t,0)

= —[Ae ™™ a?(t, x)]s — /0 pAe Mo (t, x)dx + [Be! B2 (t, )]y — ,u/o Bet* 32 (t, x)dx
+ 2{alB(t.0) + a(t,0)) — ab*(3 — a)(t,0)| (8 ~ @) (+,0)
= —Ae"a®(t,1) — (2a — A)a*(t,0) — (B — 2a)5%(t,0) — 2ab*(B — )?(t,0) — pV (t)

< —min(p, 2ab*)V (1).

Cela montre que le systéme (3.26)-(3.29) est localement exponentiellement stable. En
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outre, nous calculons par la méthode de la caractéristique la fonction S telle que la condi-
tion initiale 5(0,x) = fo(x) |voir [40], chapitre 9], nous obtenons

Bolt+z) 0<t<1-—uz,
Bt x) =
0 t>1—nx.

Ainsi, nous montrons la stabilité en temps fini de la fonction .

3.3.3 Transformation backstepping et équations des noyaux

Pour convertir le systéme original (3.22)-(3.25) au systéme cible (3.26)-(3.29), nous

considérons la transformation backstepping suivante :
atta) = mit.o)— [ KOt~ [ K@ Ol )¢
b4 ) (1,0) — i (t,0)) (3.30)
plt,x) = yz(tfﬂ)—/ K”“(Lﬁ)yl(tf)df—/ K (x, €)ya(t, €)dg
0 0

bSO+ ) (a(t,0) — 1a(t,0) (3.31)

Counsidérons les notations :

1(t, ) a(t, )
() = 29 ey(a) = 34wt ) = | 3t 7) = ,
€ w(@) © 5@ ol 1) B(t. )
K(l‘,g) _ Kuu(x7€> Kuv(xvé) ’ T(t,.il?) _ %(b + b2)6_abx<y2(t70) - yl(tao))
K"(z,§) K"(z,§) 5 (b4 0%)e™™ (y5(t,0) — y1(t, 0))

Nous écrivons (3.30)-(3.31) sous cette forme

5(t,2) = w(t, z) — /0 " K (@, Ow(t, £)de + T (1, ). (3.32)
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Nous injectons (3.30)-(3.31) dans (3.26)-(3.27), nous intégrons par parties et nous utilisons

les conditions aux limites, nous obtenons le systéme suivant :

_Kgu($7§> - Kgu(x7§> - (
_K:lcw(x7£) + ng(x7€> - 51<€>Kuu(x7£) =Y
K, €) — K(x, ) — e (

K3 (@, €) + K¢ (2, &) —e(§ K" (z,§) =0,
dont les conditions aux limites sont données par :

1
—K7(2,0) = K"™(2,0) = 5(b+F)ae",
1

K"(x,x) = 581(:15),
K"(z,2) — —%52(1’),

1
-K"(z,0) = K"(z,0)= §(b+ b?)ae™™.

@
o
=

©o
o
&

(3.37)
(3.38)
(3.39)

(3.40)

Ces équations sont définies dans le domaine triangulaire A = {(z,¢) : 0 < ¢ <z < 1}

Par le Théoréme 6.1.1, nous montrons l’existence, 'unicité et la continuité de la solution

du systéme (3.33)-(3.36) ot les conditions aux limites sont données dans (3.37)-(3.40).

3.3.4 Transformation backstepping inverse

Maintenant, nous étudions 'inverse de la transformation (3.30) et (3.31). Nous recher-

chons une transformation du systéme cible (3.26)-(3.27) au systéme original (3.22)-(3.25)

comme suit :

n(tr) = 04(75:96)+/0xLa°‘(:U>£)Oé(t,€)d€+/oxL“B(w‘,é‘)ﬁ(tjﬁ)df

b+ b?
—E€

e (5(1,0) — a(t,0))

) = Blta)+ / "L, )t €)d + / "L (0, €)8(t, ) de

0
b+ b?
—E€

e (5(1,0) — a(,0)

(3.41)

(3.42)
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Notons que

L(z,&) = (‘C’? —3(b+b%)e " (53(t,0) — aft,0))

Laa( ) Loeﬁ
, At x) =
Lﬁa( ) LBIB( ) ) _%(b + b2>eabx<6(t7 0) - Oé(t7 0))
Nous écrivons (3.41)-(3.42) sous cette forme

x’é-
x7§
w(t,x) =0(t,r) + /OI L(z,£)0(t,&)dE + A(t, ). (3.43)

Nous injectons (3.41)-(3.42) dans (3.22)-(3.25). Nous intégrons par parties et nous utilisons

les conditions aux limites, nous obtenons les noyaux satisfaisants le systéme suivant :

Lg¥(x,€) 4+ L3 (2,€) — ea(x) L7(x,€) = 0, (3.44)

— L7 (,8) + LY (2,€) — &1 (2) L7 (,€) = 0, (3.43)

L (x,€) — L2*(2,€) — ea(@) L (2, €) = 0, (3.46)

_Lgﬁ(xa 5) - Lgﬁ(xv 5) - 52(x)Laﬁ(xa 5) =0, (347)

les conditions aux limites sont données par :

L**(x,0) = L*(z,0) + a(b+ b*)e ", (3.48)

LB(z,2) = 51;3”), (3.49)

LPo(z,z) = —52;“"), (3.50)

LPP(x2,0) = LPx,0) — a(b+ b?)e®, (3.51)

Pour prouver I'existence, I'unicité et la continuité du systéme d’équations (3.44)-(3.47),

avec les conditions aux limites (3.48)-(3.51), nous utilisons le Théoréme 6.1.1.
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3.3.5 Stabilité du systéme original et identification d’'une com-

mande stabilisante

Dans cette partie, nous étudions le résultat principale de contréle. Nous introduisons

(3.31) dans (3.28) et nous utilisons (3.24) ; nous trouvons

B(t1) = yalt 1) — / KU (L, )y (8, €)de — / K (1, €)yalt, €)de

£ ) n(t,0) 1 (1,0)) = 0

Ainsi

¥(1)
(1)

S0+ ) (4a(1,0) — 11(2,0)) = 0.

2p(UE) -

yi(t1) — /0 KU (L, €y (t,€)ds — /0 KU(L, &)y (1, €)de

+

Cela implique que la loi de controle est donnée par :

v = glsmmen+ g ( [ Kraoneods [ Kraome o
) (1,0) — (1,0)] (3.52)

Théoréme 3.3.1 Considérons le systeme (3.22)-(3.25), avec les conditions initiales (9, v9),
la loi de controle (3.52) et tels que les noyauzr K'™ et K" vérifient (3.33)-(5.40) ou A,
T e L*([0,1]). Alors ’équilibre (y1,y2) = (0,0) est localement exponentiellement stable

dans L?. En outre, I’équilibre yo = 0 est stable en temps fini.

Preuve Rappellons que
witx) = 8(t.0) + [ L. €)5(0.dE +Alt.),
0
et

ét,z) = w(t,xr)— /090 K(z,8)w(t,&)dE + Y(t,x).
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Par le Théoréeme 6.3.5 les deux noyaux K et L sont continus.

IN

fw(t, )l z2 (0,1

10, 2oy + IAE )l 2oy + H/ BERAIE dg) 12

] ([0.1)
< 0@ lzzqo.p + IAG Ilezqo,) + Lol 16(2, ) 22(0,1)
< Ci@®lo(t, )2 o)

tel que C(t)

—~

1A 20, }
{||5 gy T 1T e g
De plus

IN

[0t ) z2(j0,1))

w(t, )|z + 1T 2o,y + H/ K(.,&w(t, & d&‘
0 £2([0,1))
w(t, 2o,y + 1T 20,7y + ool [, )] £2(0,17)

< Gy(®)fw(t; 2o

IN

”T(t )”L2([O 1])
[lw(t, )HLQ( 0,1])

tel que Cy(t) = {
Sit =0 alors

1+ (11Kl |-

11000, )l z2(0,17) < Ca(0)[w(0, ) z2(f0,17)

€0, L2 10,1))

tel que Cy(0) = {|

[w (022 0,11)

1+ 1K oo
Par le lemme 3.3.1, il existe ¢g > 0 et k£ > 0 tel que

[0(t, )lz2o,1)) < colld(0, )| z2(o,pe™

Ainsi, il existe C' > 0 et k > 0 tel que

[t 2o < Cllw(0,)|z2gope ™.

Finalement, nous savons que (3 tend vers zéro en temps fini, alors ¢, tend vers zéro en temps

fini.

3.4 Deuxiéme approche : modéle d’EDP du second ordre

Dans cette section, nous étudions la stabilité exponentielle de I’équation aux dérivées

partielles du second ordre décrivant la dynamique des vibrations de torsion. Nous construi-
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sons une nouvelle approche pour la résolution de la stabilité du systéme dynamique.

3.4.1 Transformation backstepping et systéme cible

Rappelons que la dynamique de torsion transformée s’écrit sous cette forme :

U (t, ) = Uge(t, ) — Auy(t, ) (3.53)
w(t,1) = Ut (3.54)
uw(t,0) = auy(t,0) + abu(t,0) (3.55)

La plupart de recherches et d’analyses des équations qui décrivent le systéme de forage sont
traitées en négligeant le terme d’amortissement en dynamique (3.53). Dans notre étude
nous allons tenir compte de ce terme d’amortissement négligé. Notons que les tiges de
forage se comportent classiquement de maniére élastique sans amortissement interne. Les
termes d’amortissement proviennent généralement d’interactions extérieures (frottement
visqueux tiges-boue) ou de sous composants destinés a amortir les vibrations (amortis-
seurs de chocs). Fondamentalement, cela rend notre probléme de stabilisation différent.
Le principale défi dans cette section, est de trouver une loi de controle U(t) de fagon
que notre systéme (3.53)-(3.55) soit exponentiellement stable a I’équilibre. Cette section
montre 'importance d’un systéme cible, la technique du backstepping et les équations du
noyau comme outils d’analyse de stabilité. A partir de la transformation backstepping,
nous proposons une loi de controle qui transforme le systéme (3.53)-(3.55) au systéme

cible suivant (u(t,x) — w(t, x)),

wy(t, 1) = wWe(t,x) — Awy(t, ) (3.56)
we(t,1) = 0 (3.57)
wy(t,0) = ae “w,(t,0) — (2ae + 1)w(t,0) (3.58)

Les deux paramétres « et € seront définis par la suite.
La technique du backstepping est une approche élégante pour la conception de la loi de

controle pour le systéme des EDP. Par conséquent, nous allons construire une application
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n

qui transforme notre systéme original au systéme cible (3.56)-(3.58).

Lemme 3.4.1 Définissons la fonction

L(t) = %[/01 <€7a(wx)2 + e (wy)* + ee (1 — a:)wth)dx} + 2(wt(t, 0))?

avec L > € >0, a < -2 tel que x € [0,1] et la norme © ou
2 e(l1—zx)

O%(t) = [l w72, + Il we 2o,y + | welt, 0) |
Alors
m102(t) < L(t) < my©%(t)
avec
) {e*a ee” @ 1} ; {e*“ n ee” @ 1}
— _ — a - —_
mq min 9 1 €l Mo — IMax 9 1 ,a

Preuve En utilisant les inégalités de Cauchy-Schwarz et de Young, nous obtenons

1 1
L(t) = 5[/ (e’a(ww)2—|—e*°‘(wt)2+ee’°‘x(1—x)wth>d:c} —|——(wt(t,0))2
> Sl P4 e 7 4 s, 0) |
- 2 2
e @ ee @
> (0w ) H2>+5|wt<t,o> -
o .
> O2(t
> e
D’autre part,
1 ! —a 2 —a 2 —ax 1 2
L(t) = 5[ (e (wg)” 4+ e (wy)” + €e (1—x)wth>dx+a(wt(t,0))
0
< CulP S ||2+1|w<to>|2+€”/l|ww | do
=~ 2 t 2 x a t\by 2 0 tWx
e e @ 1
< D W P+ e )+ L wi(t,0)
—a —a ]
< max{—- + ——,~}O(t).

2 4

Alors m©%(t) < L(t) < mo©?(t) avec m; = min{%~ — <=, 1} et my = max{

’a

—Q
62 +
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ce”* 1

4 Y al”

Théoréme 3.4.1 (Stabilité du systéme cible) Considérons le systéeme (3.56)-(3.58),
avec la condition initiale wy = w(0,x) € L*([0,1]). Alors le systéeme (3.56)-(5.58) est

exponentiellement stable a [’équilibre au sens de cette norme
O2(t) =l we |20,y + | wa [ F20,17) + | w2 (2, 0) |2

Preuve Pour prouver la stabilité du systéme cible, nous introduisons L(t) comme une

fonction de Lyapunov

L(t) = [/01 (e‘"‘(wm)2 + e *(w;)? + ee” (1 — x)wth> d:z:] + 2(wt(t, 0))?

N | —

Sa dérivation par rapport au temps donne :

1

) 1 1

L(t) = / (e‘o‘wmwm + e” “wywy + 566_0‘“’(1 — T)wyw, + 566_0‘”3(1 — x)wmwt> dx
0

1
+ —wtt(t O wt(t 0
1
= / w? / T W Wy + e W wy + €€ (1 = T)Wepwy
Aeé ! —ax
+ 5 (1—x)wmwt>dx+ (walt, 0w (t,0)) = 5 [ (1 = @)w,da
0

1 2
€ € —e—ae(l —z) _  w;
Z—wa@, 0)2 — Zwt(t, 0)2 — /0 2( )6 7(11’

1 1— 9
w?(t; 0) + e_awt(t, O)wx(t, 0) — / € O{;( iC) e—am%
0

2
1 1
/ ee” (1 — x)wyw,dx — A/ e~ “widx
0 0

LT S| e !
—eo‘/ e —Ldr — ~w(t,0) — —/ ee” (1 — x)wyw,dr — /\/ e~ “widx
< —min(e®, A\, 1)L(¢).

= —e “wy(t,0)w,(t,0) —

2 1
ae + da

A
2

IN

Par le Lemme 3.4.1, nous avons

m10%(t) < L(t) < mo©?(t).
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Par conséquent, il existe ¢ > 0 et k > 0 tel que

O(t) < ce *0(0).

Ceci implique que le systéme cible (3.56)-(3.58) est exponentiellement stable a ’équilibre

au sens de la norme ©.

O

Afin de convertir le systéme original au systéme cible, nous proposons la transformation

backstepping suivante

wlt,z) = ult, z) - / "k, ©)u(t, €)de — o(x)ult,0)
_ /0 o ©)unlt, €)de — /0 U, €, €)de

(3.59)

Nous introduisons la transformation backstepping (3.59) dans le systéme cible (3.56)-

(3.58). Nous faisons une intégration par parties, nous utilisons les conditions aux limites,

nous obtenons les noyaux suivants :

l§§(x7§) = lm(xaf)7
]ng(x,f) = ku(,§),

pEf(aj) 5) = px:c(ma g))

avec les conditions aux limites suivantes

= 0, kylz,z)=0, p(x,2)=0

= Q(I),Z(0,0) = 07p<0) =1,

)
)
z,0) = 0, pe(x,0)=0
)
) = ae “k(0,0) + ae*0'(0) = ¢”(0)

= k(x,0), ke(z,0)=0"(x),k(0,0) = —ae™®

(3.60)
(3.61)
(3.62)
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Notons que le noyau de la transformation backstepping satisfait un systéme intéressant des
EDP d’onde qui est facilement solvable. Ce systéme est défini sur un domaine triangulaire
A={(r,§) eR?*:0< <z <1}

A cette étape, nous injectons la transformation (3.59) dans (3.57), nous déduisons la loi
de controle suivante

U0 = kD) + [kl e

1
P (e )+ [ et e
1
[ L9t g+ (a0 (3.68)
Remarque Il est noter que [(1,1) # 1, en effet :

Pour trouver une solution de 1’équation I(z, y), nous la transformons d’abord en équation

intégrale. Soit le changement de variables suivant y =z 4+ £ et n = x — £, nous avons

lz,§) = Gly,n) (3.69)
l. = G,+G, (3.70)
liw = Gyy+2G,, + Gy, (3.71)
e = G,—G, (3.72)
le = Gyy—2Gyy + Gy (3.73)
Ainsi, le noyau [ devient
Gyy(y,m) = 0 (3.74)
Gy(y,0) = —Gy(y.0) (3.75)
Gly.y) = py) (3.76)
K(y,0) = Gy(y.y) — Gy(y,y) (3.77)
G(0,0) = 0, p0)=1 (3.78)
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En intégrant (3.74) par rapport a n de 0 a 7, nous obtenons

Gyy,n) = —Gy(y,0) (3.79)

Ensuite, nous intégrons (3.79) par rapport & y de n & y pour obtenir

G(y,n) = G(n,n)+G(n,0)—G(y,0)

or [(1,1) = G(2,0) = G(0,0) + G(0,0) — G(2,0) donc {(1,1) = G(0,0) =0
Il reste a étudier le comportement du systéme original a partir de la transformation
inverse (w(t,z) — u(t, x)). Laissez-nous définir la transformation backstepping inverse du

systéme cible au systéme original comme suit
u(t,z) = w(t,z)+ / e(x,&w(t, &)dE + / h(x, &)we(t, €)dE
0 0
= [ @ ouiod - mwu(t.0), (3.80)

Nous injectons la transformation backstepping inverse (3.80) dans le systéme original

(3.53)-(3.55), nous trouvons le systéme de noyaux suivant

th ('Tv 5) = hl‘x (.QT, 5)7
eff(l‘af) = 6$$<x7§)7
fs&(xaﬁ) = fu(7,6),

avec les conditions aux limites suivantes

ho(z,2) = 0, ey(x,2)=0, folz,2)=0
e(r,0) = he(x,0), ee(x,0)=n"(z), 7(0)=0
f(x,0) = 0, h(=z,0)=n(z), [fe(z,0)=0
e(0,0) = he(0,0)=0, h(0,0)=n(0)=—1,
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Il est facile a vérifier que ces équations sont définies sur un domaine triangulaire A =
{(z,) € R? : 0 < ¢ < z < 1}. Pour obtenir une solution de ce dernier des systémes
des EDP d’onde, nous commencons par le convertir en une équation intégrale et nous
introduisons le changement des variables y = £ + 2z et n = x — £ et finalement nous
utilisons la méthode des approximations successives (plus de détails dans [40], chapitre

1),

3.4.2 Etude de la stabilité et construction de la loi de controle

Maintenant, nous nous intéressons a stabiliser le systéme (3.53)-(3.55).

Théoréme 3.4.2 (Stabilité du systéme original) Considérons le systéme (3.53)-(5.55)
avec la condition initiale ug € L*([0,1]) et la loi de controle (3.68) ot les noyauz k, p, et |
sont obtenus de (3.60)-(3.67). Alors le systeme (3.53)-(3.55) est exponentiellement stable

a l’équilibre au sens de la norme suivante
S2(t) =l ult, ) 12200 + Il welt, ) 2oy + I walts ) 1220y + | welt,0) 2.

Preuve Tout d’abord, notons que L? = L?([0,1]) et laissons introduire les normes sui-
vantes (par exemple) comme suit : 9o, = SUD,c(0,1] lo(z)], koo = max epea |||k(z, I3,
et ainsi de suite pour ls, (Pec)oos Poos OU |||k(z, E)|||3 désigne la norme de l'opérateur

classique. Nous allons prouver qu’il existe p; > 0 et ps > 0 tel que
p16(t) < 3(t) < p:011).

Rappelons que pe(z,0) = 0, p(x,0) = 0, p,(z,z) =0, [(x,0) = po(x). Par conséquent, w,

est réécrit sous cette forme

wi(t,x) = w(t,z)— /Ox k(x,&)u(t, &)dé — p(x, x)u,(t, x) — /Oxpgg(x,f)u(t,ﬁ)dﬁ
+ /Ufﬂ Ap(z, &) uy(t, £)dE — 1z, x)uy(t, x) + /Off le(x, &)u(t, £)dE — o(x)us(t, 0).
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En utilisant I'inégalité de Cauchy-Schwarz, nous pouvons montrer que :

Fwe(t, ) 72 < (14 koo + loo + (le)oo + APoo) | uelt, ) 172

+ Poo | wa(t,) 172 +(Pee)oc Il ult, ) 172 +0so | ue(t,0) [*)
S 0122

tel que ¢; = max{l + koo + loo + (lg)oo + )‘pooa (pff)ooapooa Qoo}

Comme u(t,0) = u(t,z) — fow u,(t,y)dy , nous trouvons

lwa(t, MZe < lua(t, )ITe + Foollult, Iz + (ha)oollult, )72 + poollue(t, Iz
+ (Pa)oollue(t, T2 + loollua(t, )72
+ (l)oollua(t, L2 + esollult, )7z + ohollua(t, )z
<

ea(llua(t, M7z + lludt, IIZe + llue(t, IlZ2)

avec ¢z = max{l +loo + (lo)oo + 0, koo + (Ka)oo + 0o Poo + (D)oo}
En outre, | w(t,0) |>< 4 | u(¢,0 |*. Par conséquent, il existe p; > 0 tel que p;O(¢) < 3(t).

Rappelons que la transformation backstepping inverse est donnée par

u(t,x) = w(t, z) +/0$ e(z, &w(t, £)dé + m(x)w(t,0)
[t ut i [ e uee e

Comme w(t,0) = w(t, z) — [ wy(t,y)dy, nous utlisons I'inégalité de Poincaré, nous obte-

Fult, )2 < lwlt ) 2 +es [w(t ) 1122 +foo [l welt, ) 172 +hoo || wa(t, ) |72
+ oo [ walt ) 172 +7eo [ w(t, ) IIZ2
< (o(1+ €x) + Too (1 + o)) | walt, ) 72 +foc [ wilt, ) 122 +hoo [ walt, ) II72
< cs(fwolt,) 172 + [ welt, ) [1Z2),
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29

ol c3

En outre, comme f(z,0) =0,

) 1122

IN

| (2,

A+ + +

IN -+

tel que cq4

Aussi, comme w(t,0) = w(t, x)

| ()

tel que c5

= max{l + o + hoo

= max{l + Cpeoso + CD(ex)oo

= max{co(l + ex) + Too(1 + o) + oo, foo} > 0, co > 0.
=0, fz(x,x)

h(z,0) = 7(z), fe(x,0)

) Nz
) Nz +(fee)oo [l w2,
Moo | wi(t, ) 172 +hoo [| we(t,
(he)oo || welt, ) |I7:
(1+ eoo + hoo + (he)
(foo + colfee)oo) Il we(t,

) 122)+ 1l walt,

[ we(t, ) 172 +eso I wilt,
foo [l (2,
=

+ Moo) [ wi(t,
) 11z
) 1IZ2),

ca(| wi(t,

+ (he)oo

— fogC wy(t,y)dy, nous trouvons

A

) 11z
) N2z +foo | welt, )
) 22 hoo || wa(t,

D lze + lw(t ) NZ2)

(he)oo || walt, ) 1|72

)12 + 1wt

Fwalt, ) 122 +eoo || wiz,

(€z)

(fa)oo [l wi(t,
ol

I w2,

oo |l w(t,

A+ + +

) 1IZ2).

¢s (|| wa(t,

+7ré>o(1+00)7foo+

) 11z

= 0, nous aurons

) 11z

+ AMoos foo + Co(fee)so} > 0.

172

) 112

(f

»)oo }- Enfin, nous

avons | ug(t,0) |2°< 4 | wy(t,0) |* . Par conséquent, il existe ps > 0 tel que X(t) < p.O(1).

Ceci implique que le systéme (3.53)-(3.55) est exponentiellement stable au sens de la norme

.

3.5 Reésultat de simulation

Suite a I'analyse ultérieure, le programme numérique de simulation intégre aussi bien

le comportement du systéme cible que le comportement des vibrations de torsion. La loi de
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controle en vitesse angulaire assure la stabilité du systéme, par conséquent, la suppression
des vibrations de torsion. Les paramétres physiques utilisés dans la simulation sont donnés

dans le tableau suivant

Variable | Valeur | Unité Description

L 2000 m Longueur de la chaine de forage

1 0.095 kg.m Inertie par unité de longueur

I, 311 kg.m? Inertie au fond du train de tiges,
J 1.19.10° | m* Moment d’inertie géométrique

G 79.3.10° | N.m~2 Module de cisaillement

Ca 2000 Nm.s.rad | Coefficient de couple de glissement
d 0.009 Coefficient d’amortissement

TABLE 3.1 — Paramétres physiques

Dans la pratique, afin d’optimiser les opérations de forage, 'opérateur de foreur controle
généralement les paramétres de forage a la surface, tels que la vitesse de rotation du train
de tige, le poids sur le trépan et la viscosité du fluide de forage. Nous avons montré que
le systéme de forage (3.1) - (3.3) est équivalent au systéme (3.22) - (3.25). Il est donc
important de tester Pefficacité de la loi de controle pour le systéme (3.22) - (3.25). Les
figures (Fig 3.2) et (Fig 3.3), montrent la convergence des états y(t,z) et yo(t, x) vers

zéro. Comme prévu par les Théorémes 3.4.1 et 3.4.2, les vibrations de torsion (stick-slip)

FIGURE 3.2 — Evolution en fonction du temps de I'état y, (¢, 7).

(Fig 3.5 - 3.6) sont réduites par 'application de la loi de controle suivante (Fig. 3.4)

GJ 1 /GJ
Q(t) = c LU(t)ﬂLz\/TUt(t’l),
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¥2(tx)

FIGURE 3.3 — Evolution en fonction du temps de I'état y(t, ).

ou U(t) est une commande : donnée par (3.68).

Loi de contrdle Q) [tr/rmn]

[rad/s]

100 i L i i i i
u} 10 20 30 40 50 B0 70
time[sec]

FIGURE 3.5 — Stabilisation de la vitesse angulaire en termes de u(t,0) et w(¢,0).

La figure (Fig. 3.5) montre le comportement de la vitesse & 'extrémité inférieure des
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systémes respectivement, original et cible. De deux figures (Fig 3.4) et (3.6), nous remar-
quons que les vibrations stick-slip sont réduites au moyen de la loi de controle €2 selon le

comportement de la vitesse angulaire a I'extrémité inférieure.

FIGURE 3.6 — Evolution de la variable de torsion u(t,z) le long du systéme de tige de
forage.

3.6 Conclusion

Deux axes principaux sont abordés dans ce chapitre. Le premier axe concerne la
stabilité d’un systéme hyperbolique 2x2 du premier ordre en temps et en espace. Le second
axe concerne la stabilité d’un systéme d’équation hyperbolique du second ordre. Comme
technique, nous avons utilisé la théorie de Lyapunov et la transformation backstepping.
On a élaboré deux commandes qui servent & supprimer le phénoméne dit "stick-slip" qui
peut se produire dans le systéme durant toute la phase de forage. Ce phénoméne a des

effets important sur la durée de vie de ’outil.



Partie II : Modeéle couplé décrivant les

vibrations de torsion et la dynamique

de la boue (EDP-EDO)
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Chapitre 4

Dynamique de la boue et avance du

train de tiges : modéle fini (EDO)

4.1 Introduction

Au cours des derniers siécles, I'exploration de gaz et de pétrole a fait de grands progrés
dans le développement des techniques de forage. Pour la modélisation et le controéle des sys-
témes de forage, de nombreuses études de recherche ont été proposées |53, 69, 11, 49, 74|.
En outre, dans la littérature, de nombreux auteurs se sont intéressés a la stabilisation du
systéme avec différentes méthodes : backstepping, platitude, etc.

Dans ce travail, nous utilisons la technique du backstepping et la théorie de Lyapunov
pour étudier le MPD. La technique du backstepping est développée en 1990 par Kokotovic
et al. [55, 57| pour analyser la stabilité des systémes dynamiques non linéaires. Diverses
recherches ont utilisé cette technique et la théorie de Lyapunov pour prouver la stabilité
des équations différentielles non linéaires |42, 25, 26, 45, 7|. En ajoutant que, Kristick et
al. [42] ont introduit une nouvelle méthode pour les systémes non linéaires munis d’une loi
de controle. Puis, dans [58], Roger et al. ont fourni une analyse des différentes techniques :
deux méthodes pour trouver la loi de controle sont proposées.

Au cours des opérations des forages, les déblais de fond doivent étre transportés hors du
trou de forage a travers la couronne. Cela se fait 4 ’aide d’un systéme dit "pression géré"

(Managed Pressure Drilling, MPD). Un MPD est utilisé pour contréler la pression annu-

65
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laire & travers le controle de la pression au fond du puits et supprimer les afflux continus
de formation des fluides a la surface. Par conséquent, les principaux objectifs d'un MPD
consistent & controler la pression au fond, réguler la pression autour de ’espace annulaire
ainsi la vitesse de pénétration (ROP). C’est une nouvelle technique qui a la capacité d’at-
ténuer les risques de débouchage dans un forage, 'augmentation des taux de production
et 'amélioration des performances de forages. Dans la littérature, différents aspects de la
modélisation d’'un MPD ont été proposés |72, 22, 51, 79|. L’estimation et la conception de
controle MPD a été étudiée par [22]. Divers défis de modélisation des systémes de forage
et d’automatisation sont discutés dans [23, 56]. Dans [51], les auteurs ont proposé un
modéle de dimension finie qui décrit les phénoménes du fluide entre la pompe principale
jusqu’a la sortie du fluide dans I'espace annulaire. Un systéme d’observateur réduit, qui
adapte a la friction, a la densité, et aux estimations de la pression au fond du trou dans

un puits, est présenté dans [52].

Dans ce chapitre nous présentons un modéle hydraulique (MPD) basé sur la loi de
masse et la loi de mouvement qui fournit les équations gouvernantes décrivant un MPD.
Nous élaborons des commandes qui servent a controler : la pression de la pompe au niveau
de 'outil, la vitesse de pénétration et également la vitesse de rotation du train de tiges.
Les lois de controle sont explicitement construites a ’aide de la méthode du backstepping

et la théorie de Lyapunov.

4.2 Stabilisation de la pression aux différents niveaux

d’un puits
Pour tout systéme controlé, la connaissance des points de fonctionnement autour
desquels la régulation peut étre effectuée, est essentielle. Dans ce manuscrit, on n’entre
pas dans les détails de dérivation de la dynamique de la boue, le calcul se base sur les
équations fondamentales :
e viscosité : la viscosité d’un fluide est en fonction de la pression et la température
e densité : la densité dépend de la pression et de la température

e conservation de la masse : le bilan des masses appliqué dans la tige et la couronne
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e conservation du moment : le bilan des forces selon une direction d’écoulement, ou
la deuxiéme loi de Newton

La dynamique de la boue, qui est aussi un mélange d’un fluide injecté et de déblais
dégagé par loutil, peut étre décrite par un modéle de dimension infinie. Or, dans la
pratique, I'étude de la pression en tout point n’est pas utile. La localisation de cette
pression répond aux critéres MPD, par conséquent, un modéle fini est suffisant pour
I’analyse de stabilité (Fig. 4.1). Trois points sont essentiels dans 1’étude en question. Il
s’agit de la pression/débit injectée & la surface, pression/débit au fond et pression/débit
a la sortie de la couronne. Le probléme posé par un point de controle en matiére de
stabilité entrainera l'instabilité de ’ensemble avec une pression de grandeur entrainant
la destruction du systéme et/ou une mauvaise direction de forage, opération qui peuvent

étre couteuse pour un industriel.

4.2.1 Modéle de la boue et avance du train de tiges

FIGURE 4.1 — Schéma d’un systéme MPD

Le modéle décrivant le comportement du fluide injecté pour faciliter I'extraction de la
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boue est le suivant :

MGouta(t) = Pi(t) — Ps(t) — F(qouwar) + 9(p1 L — p3y(t)) (4.1)

%R(w — us(t) — Goura(t) (42)

Vot SYUPA) = B aoaalt) + (8. 2) — s(t) — 2 (1.3
~~
Sv(t)

I = w(t) (4.4)

gt) = o) (45)

o(t) = ua(t) (4.6)

avec les notations suivantes :

e y(t) € [0,L] : la coordonnée spatiale le long de la trajectoire d’écoulement, (g
direction de la gravité)

e Vj : volume initiale de la couronne

o V3 =15+ Sy(t) : volume de la couronne (dépend de 'avancement de 1’outil)

e v : vitesse pénétration de outil (ROP)

e ¢ : débit injecté par la pompe

® (> : débit di a ’enlévement de la terre par 'outil

e S : surface de I'espace annulaire

e 3 : débit sortant de la couronne (mélange)

e 1/ : volume traversant le train de tiges

e (31 et O3 : modules de compressibilité de la boue

® (oui - taux d’écoulement a partir de I'outil

e M : densité intégrée par section,

e P, : la pression fournie par la pompe a la surface

e P; : pression au fond du trou

e [ :inertie du train de tiges par unité de longueur

e u, : couple appliqué au train de tiges par la table de rotation

e 1w, : vitesse de pénétration
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e u3 : commande virtuelle
e p; : densité de la boue de forage dans le train de tiges
e p3 : densité d'un mélange boue-déblais
La chute de pression totale due au frottement entre le train de tiges et ’espace annulaire

est représentée par F(qou). En outre

F(Qoutil) = Fa(QoutiZ) + Fd(qoutil)

avec le frottement dans le train de forage (Fy(qourir)) et Pannulaire (F,(qou)) sont ap-

proximés par les polyndomes suivants [28] :

Fo(qouit) = 061Qoutil+51qgutil

Fd(Qoutil) = Q2Qoutil T 52qgutil

avec aq, i, B1 et Py sont des constantes.

Les équations (4.1)- (4.3) représentent la dynamique de la pression dans la partie hy-
draulique. Concernant cette partie, nous utilisons les lois fondamentales de la mécanique
des fluides : le principe de la conservation de la masse, le principe de conservation des
moments et la relation de Bernoulli. La dynamique liée a la vitesse de rotation est donnée
par (4.4). Les équations (4.5)-(4.6) décrivent la dynamique de déplacement de I'outil. Pour
modéliser cette partie mécanique nous utilisons la Loi de Newton.

Pour la détermination du débit ¢, deux cas de figure se présentent.

Hypothése. Le débit ¢, ne dépend pas de la vitesse de pénétration, par conséquent
de I'état v. Ainsi, on considére dans un premier temps que le phénoméne de vibration de

torsion n’est pas affecté par le systéme d’injection fluidique.

4.2.2 Cas ot le débit ¢, = ¢o(t)

Ce cas se présente sous une vitesse de rotation constante () de 'ensemble train-trépan.

Ainsi, le débit ¢o (interaction outil/sol) ne dépend pas de I’état du systéme. Alors le
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systéme (4.1)-(4.6) est transformé au suivant :

Miguia(t) = Pilt) = Palt) = F(qoust) + 9(p1 L = psy(1))
SR = () - gt

(Vo+ Sy o) = Bsdoua(t) + a:() — s(t) — Sv(t)]

i) = o)

0(t) = ua(t)

g

1
Vo + Sy(t)’

A partir du changement de variable suivant z(t) = le systéme donné ci-dessous

peut se mettre sous cette forme

) = aPi(t) — aPs(t) = c1F (qowa) + h(z) (4.7)
) = cus(t) = cGoualt) (4.8)
) = [(Gouit, t)2(t) — Bs2(t)Sv(t) (4.9)
) = —SZ(t)(t) (4.10)
) = ua(t) (4.11)

otc= ’%; h(z) = C19(P1L—p§3($—vo)), 1 = 17 et f(Qoutits 1) = B3| Qourit (t) +q2(t) —qs(t) |-

Il est facile de vérifier que (0, 0,0 0) est 'équilibre du systéme (4.7)-(4.11).

’ pfsVo+Sp L

L’idée principale de cette partie est ’étude de stabilité de I’équation différentielle ordinaire
décrivant le MPD avec (ug, uz) est le vecteur commande. Rappelons que 1'objectif est de

controler la pression/débit injectée par la pompe et la vitesse de pénétration de l'outil.

Théoréme 4.2.1 Soit A < 0 telle que la quantité 53133(75)52(75)"‘522(75)(Z(t)—m)"‘

A est différente de zéro et le vecteur commande décrit par :

_ 2 P3
ux(t) = S2°(t)(2(t) — m) — v(t) + PoGoutit; Ps, 2)
+ Dy(Ps, 2) + BsS2(t) Ps(t)

Py — @ (qoutit; P3,2)  c—a

1.
t = - ouit - oui7p7
us3(t) p + - q tl<)+c 1(Qoutit, Ps, 2)
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ou

1 1
(I)l(QOutila P37 Z) = P3 - (C_QOutil - F<QOutil)) - C_h(Z)
1 1

et

Pot))? + (2(8) — =)+ (B 4 f(Gousits )2(1))?

BPDSE0 + SO — ) + A

(I)Z(QOutila P37 Z) = (

satisfaisant I'équilibre ®5(0,0 =0et (0,0 =0, alors apreés avoir

’ PSV0+5P1L) ’ P3V0+SP1L)

injecté les commandes, le systéme (4.7)-(4.11) en boucle fermé est asymptotiquement

stable.

Preuve Considérons d’abord le sous-systéme

Goutit(t) = a1 Pi(t) — a1 Ps(t) — c1 F(qoutir) + h(2) (4.12)

ol la variable d’état P; est traitée comme étant une commande. On remplace P; par la

loi de controle virtuelle suivante dans (4.12)

1 h(z
(I)l(CIoutih P3> Z) = P3 - (_qoutil - F(QOutil)) - ( )
(&1 C1
avec ®1(0,0, m) = 0. On obtient alors Goutii(t) = —qoursr pour lequel on peut associer

la fonction de Lyapunov Ly (t) = %qgum et montrer que (4.7) est asymptotiquement stable
a I’équilibre.

Maintenant, considérons la nouvelle variable d’état

G =P — cI)l(QOutihPS;Z)

Alors nous obtenons

Goutit(t) = c1Gi(t) — Qourar(t)

G = =i (qousis, Ps, 2) + cus(t) — cqoua(t)
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Nous prenons la fonction de Lyapunov

Lalt) = L) + 562 = 5 (Gt + )

La dérivé par rapport au temps de Ly est donnée par

L, = GoutitQoutil + élCl
QOutil<ClCl - qoutil) + Cl(_(i)l(QOutila PSa Z) + CU3(t) — Cqoutil (t))

= —Qua— G + GG+ (a1 = ) outit — P1(Goutits Ps, 2) + cus(t))

Ainsi, la loi de controle s’écrit

c—c 1.
U,3(t) = _é + —1(]0util<t) + _(pl(QOutila P37 Z)
c c c
cela implique que Ly(t) = —2Ly(t). D’out (4.7)-(4.8) est asymptotiquement stable & équi-
libre (CZoutila Pl) = (07 O)

Dans cette étape, nous considérons les dynamiques restantes dans (4.7)-(4.11)

Py(t) = f(qoun, 1)z(t) — Baz(t)Sv(t) (4.13)
Ht) = —=S22(t)v(t) (4.14)
o) = us(t) (4.15)

Commencons par

P3(t) = f(QOutiht)z(t)_BSSZ(t)U(t)
z o= —Svu(t)22(t)

ou f(qoutits t) = B3(Goutit(t) + q2(t) — q3(t)), et nous introduisons la loi de controle virtuelle

qui satisfait

Py(t) + (2(t) = soifeorp)? + (G P5(8) + f(Qoutts 1) 2(t))?
BsP3(1)S2(1) + S2(0) (2(t) — —2— )+ A

p3Vo+Sp1L

q)Q(QOutila P37 Z) -
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vérifiant @2(0 0, /B_Vom) 0.

Alors nous obtenons le systéme suivant :

P3<t> = f<QOutzl7 ) ( ) 632( )S®2<Q¢mtila P37 Z) (416)
z = _522(t)q)2<QOuti17 Pg, Z) (417)
Soit la fonction de Lyapunov associée a cette écriture :

1 P3
Ls(t) = = (P} - )2
(1) = (P + (e = ey

Sa dérivation par rapport au temps, donne

P3

Pot) = PPyt i(s— —P5
() Bt s L)
= f(QOutilat)Z(t) ( ) ﬁgSZ( ) ( )(1)2(QOutzl7P3> )
— S2(t)(2 — —L )0y (qoutat, Ps,
2(t) (2 ,03V0+S,01L) 2(Qoutit, 3, 2)

Maintenant, & partir de ’hypothése donnée dans le Théoréme 4.2.1 et on remplace

Do (Goutit, P3, 2) par son expression, nous obtenons

. 1
Balt) < flama 02()P(0) = [P0+ (2 = o 4 (G0 - e, D2(0)°
2 P3 2
< _P3(t)_(z_—p3v0+sp1L)
< —2L3(1)

Ce qui montre que (4.13)-(4.14) est asymptotiquement stable a 'équilibre (P, 2) = (0, -55-—).

A présent, nous proposons 1'état virtuel suivant, (5(t) = v(t) — ®2(qoutir, P, z) pour trans-

former le systéme (4.13)-(4.15) sous cette forme

Py(t) = T (Qoutit, ) 2(t) — B3Sz(t)(a(t) — B32(t) SPa(Goutit, Ps, 2)
i) = =S2%(t)¢(t) — S2%(t)Pa(qoutit, Ps, 2)
Gt) = us(t) — Do(Ps, 2)
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Le sous-systeme (4.16)-(4.17) est asymptotiquement stable a Péquilibre (P, 2) = (0, 8%——).
Ainsi, nous proposons la fonction de Lyapunov Ly(t) = Ls(t) + 3¢3. Cette derniére a pour
dérivée,

. . . . _ pS .

Ly(t) = Ps(t)P3(t) + 2(t)(=(1) Vot Sl SplL) + C2(t)G (1)
—2Ly + Ga(1)Ga(t) — BaSz()Ga(t) Py(t) — S2°(t) (=(1) —
—2L3(t) — G (1) + (o) + ua(t) — Da(Ps, 2))Ca(t)

— B3S2(t)Ga(t) P(t) — S2%(t)(=(t) — m)@( )
—2L4(t) + (Go(t) + ua(t) — Do(Py, 2) — B3Sz(t) P3(t)

— OS2 () — — o)

p3Vo + Sp1L

IA

V(H——SM)CZ( )

IN

IN

Maintenant, on peut proposer la loi de controle en

us(t) = S22(t)((t) — pg%ﬁ—SSPIL) — Co(t) + Do(Py, 2) + B5S2(t) Ps(t)

traduisant

Ly(t) < —2L4(t)
A ce stade, nous introduisons la fonction de Lyapunov globale pour le systéme (4.7)-(4.11)

(qgutil + (Pl — Dy (qoutit, Ps, Z)>2> + %(P??(t) + (Z(t) - LY)

psVo + Sp1L
2
(0() = @a(gousits P 2))

N — N =

Il est trivial de vérifier que
E=Lo+ Ly <—2(Ly+ Ly) < —22

Ce qui assure la stabilité asymptotique de (4.7)-(4.11) a 'équilibre.
O
Remarque On considére que le phénoméne des vibrations de torsion est indépendant

du systéme d’injection, ceci implique que la vitesse de pénétration de 'outil n’est pas
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impactée par la pression du fluide injecté. En effet, dans le cas contraire, on aura affaire
a un modéle couplant la dynamique de torsion ainsi que le comportement fluide injecté

par le systéme hydraulique a la surface.

4.2.3 Cas ot le débit ¢, £ ¢o(,0)

Ce cas se présente sous une vitesse de rotation ) non constante de I’ensemble train-
tiges. Alors, le débit ¢y (interaction outil/sol) dépend de I’état du systéme. Ainsi, on peut

exprimer :

@(t,Q) = p3Sr(Q(t) +d(t))

ou [ I'inertie du train de tiges par unité de longueur, r le rayon de I'espace annulaire et
uy le couple appliqué au train de tiges par la table de rotation. Comme le débit ¢, ne
peut résulter uniquement de la vitesse de rotation €(¢) du train-trépan, c’est-a-dire, que
d’autres facteurs peuvent contribuer a la forme de ¢y selon la nature du sol, on procéde
par le prise en compte un terme de perturbation borné. D’ou d(t) dans I'expression du
débit regroupe tout ce qui est identifiable et entrainant une vitesse (t) différente de celle
développée a la surface. Aux objectifs, traduisant le controle du systéme de pression, se
rajoute la vitesse de rotation de tiges. Par conséquent (uq,us,us) se présente comme le

vecteur de controle associé a I'état (2, v, P;). L’étude se base sur le systéme suivant

Ht) = —=SZ22(t)v(t)

L
B
N

Pi(t) = cus(t) — cqoualt) (4.18)
outit(t) = c1Pi(t) — 1 Ps(t) — c1 F(qoutar) + h(2) (4.19)
Py(t) = T(outu, 1)z (t) + BapsSr(Qt) + d(t))z(t) — Baz()Sv(t)  (4.20)
Q = %ul(t) (4.21)
(4.22)

(4.23)

o(t) = us(t)
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avec T(Goutit, t) = Ps [qoutil — Q3i|, us est entrée de commande, u; est le couple appliqué
au train de tiges par la table de rotation et us agit sur la vitesse de pénétration.

Nos résultat de stabilité sont évoqués dans le théoréme suivant.

Théoréme 4.2.2 Soient les trois lois de controles sutvantes

P3 :
Uy = —v+P+ 52— )+ D
’ S ) T
P -2 oui>P>Z c—=cC 1.
US(t) = - ! 1<qc i ’ ) + c 1(]0util(t) + E(I)l(QOutihPSaZ)

avec

1 h(z
(I)l(QOutila P37 Z) - P3 - (_qoutil - F(qoutil)) - ( )7
C1 (&1

—P3 — T(qoutir, t)2(t) — p3SrPsd(t)z(t) + B3Sz(t)v(t)

DO,( P = 4.24
o 3’2’0) 0357’532@) ( )
sy __P3

Bi(z) = g

satisfaisant Uéquilibre ®1(0,0, ) = ®5(0, -857,0) = 0, et 0 = Py( -2 7).
Alors le systeme (4.18)-(4.23) est asymptotiquement stable a I'équilibre (qoutir, P1, P3, 2, 2,v) =
(0,0,0,0, —2_— ().

> p3Vo+Sp1 L

Preuve Rappelons que le sous-systéme (4.18)-(4.19) est asymptotiquement stable a 1’équi-
libre (qoutit, P1) = (0,0) (voir Théoréme 4.2.1), par conséquent le sous-systéme (4.18)-
(4.19) est asymptotiquement stable & 1’équilibre.

Maintenant, considérons le sous-systéme

Py(t) = T(qourits t)2(t) + BapsSr(Qt) + d(t))z(t) — Ps=(t)Sv(t)

1
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Nous introduisons la loi de controle virtuelle donnée par (4.24) . Nous proposons Ls(t) =
1P2, alors, nous trouvons Ls(t) < —P2. Soit &(t) = Q(t) — ®3 I'état de controle virtuel,

alors nous obtenons le sous-systéme

Pg(t) = T(Gouti, t)2(t) + B3p3Sr(&(t) + P34+ d(t))z(t) — Bsz(t)Sv(t)

53 = —<I>3+fu1(t)

A présent, nous introduisons la fonction de Lyapunov Lg(t) = %(sz(t) + §§(t)> Nous

dérivons Lg

Le(t) = PyP3+ &6
= P3(T(qoutit, t)z(t) + Bap3Srz(t)Ps + B3p3Srd(t)=(t)

~ BSEO() + &) (Py(E)psSrsa(t) — by + ()

Nous sélectionnons la loi de controle

ut) = I = psSrBsPa0)a(t) + &5 — &(1))
D’ou Lg(t) < —2Lg(t). Finalement, soit le dernier sous-systéme

t) = —S22(t)v(t)

o(t) = ua(t)

g P3
p3Vote1SL
sz2(t)

Lyapunov Lq(t) = 1(z — ~Vitssz)’, nous obtenons L(t) < —2L;. Soit & = v — &4 Détat

Nous considérons &, = comme une loi de controéle virtuelle et la fonction de

virtuel. Ainsi nous obtenons le sous-systéme

it) = —S22(t)&(t) — S22y

Gt) = —d4+ us(t)
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Nous introduisons la fonction de Lyapunov Ls(t) = Lz(t) + &3 (t). Nous Dérivons Ls(t)

par rapport au temps, nous trouvons

Ls(t) = La(t) + &)
; 2 P3
< —2L7(t) + 54(—52 (Z — m
P3

" psVo + mSL

) — Dy + us(t))

< —2Lg(t) + &4(&4 — S22 (2 ) — &4+ us(t))

Alors la loi de controle us est donnée par

P3

I Y
Vot pron) T

uy = —&+S2(2—

Par conséquent, soit la fonction de Lyapunov

P3

1
e = Z[g* .. P —®)2 4+ P24+ (Q— Ps)? . m
[qoutzl_l_( 1 1) + 3+( 3) +(Z p3%+plsL)

2

Alors

2 = L2+L6+L8

< —2(La+ Lg+ Lg) < —28

En conclusion la démarche proposée et détaillée ci-dessus prouve que le systéme (4.18)-

(4.23) est asymptotiquement stable a I’équilibre.

4.3 Simulation

Les parameétres physiques utilisés dans la simulation sont donnés dans la table 4.1.
Le fluide dans un forage est un élément clé, car il évacue les déblais qui s’accumulent au
fond du trou, il stabilise les parois du trou lorsque ce dernier est encore sans cuvelage et
enfin il peut aussi lubrifier et refroidir 'outil en activité. Une "perte de fluide" indique
habituellement la présence des fractures ou autres vides dans les terrains traversés. La
perte de fluide méne habituellement & une diminution de la pression, ce qui peut poser

des problémes majeurs durant 'opération. On s’intéresse au fluide en "circulation directe"
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Variable | Valeur Unité Description

L 2000 m Longueur de la chaine de forage
I 0.095 kg.m Inertie par unité de longueur
p1=ps3 | 1250 kg.m™3 Densité de la boue de forage

03 1250 kg.m=3 Densité annulaire

M 8300 kg.m=* Densité intégrée par section

b1 = Pz | 24750 bar Module de la compressibilité de la boue
Vo 110 m? Volume initial dans la couronne
g 9.81 m.s2 Gravité

S 7 x (0.25)% | m? Surface annulaire

Cq 0.61

F, 0.003.10° bar.s>.m=% | Coefficient de frottement

d(t) sin(t) Perturbation

TABLE 4.1 — Paramétres physiques [52]

(celui qui descend par le train de tiges) et au fluide en "circulation inverse" (celui qui monte

par Pespace annulaire). En ’absence d’un systéme de mesure autour de la couronne, on

peut reconstituer le débit di a la boue sortant & partir des autres dynamiques, données

par (4.18)- (4.23)

0.018

2 1
g3 = Cds\/p_<Pfond - P3 +P32(— — V)

3

Sz

ooz

0.04

0.008 -

débit [m? 5]

0.004 -

.

0oa

0.me

001

commande virtuells 1 [m? s

(a) Débit a travers 'outil de forage qouti

8 10
temps[sac]

12

L i i
14 16 18

i i i ] i
g8 10 12 14 18
temps[sec]

20

(b) Débit injecté par la pompe q;(t) = us(t)

FIGURE 4.2 — Evolution temporelle des débits

Comme prévu par les théorémes 4.2.1 et 4.2.2, les lois de controle proposées stabilisent

toutes les variables de forage y compris la pression au fond du puits (Fig. 4.2- 4.4).



80 Chapitre 4. Dynamique de la boue et avance du train de tiges : modéle fini (EDO)

Le déplacement de 'outil permet de construire la pression au fond du trou. La pression
au fond du trou peut étre décrite par la pression Ps a travers ’espace de la couronne. En
appliquant la relation de Bernoulli & travers ’espace annulaire, on peut reconstituer la

pression au fond du puits :

1
Pfond = PS - pisg(; - %) + Faqgutil

ot F, désigne le coefficient de frottement dans 'espace annulaire. Nous remarquons que
toutes les simulations impliquent une convergence suffisante des variables du systéme
a leurs valeurs attendues (Fig. 4.2- 4.4). Par exemple, notons que la hauteur du puits
Y converge vers p;—BL = 2000m (Fig. 4.4, (a)). En appliquant les deux lois de controle

(agissant par la vitesse de rotation du train de tiges 2(t) et la vitesse de pénétration v(t),

Fig. 4.3), Péquilibre est montré asymptotiquement stable.

70

vitesse de pénétration [pied/h]

vitesse de rotation de train de tiges [tr/mn |

i ; i I i i 150 i I i i
g 10 12 14 16 18 20 0 50 100 150 200 250
termps[h] temps[sac]

(a) Vitesse de pénétration v(t) (b) Vitesse de rotation du train de tiges Q(t)

FIGURE 4.3 — Présentation du comportement de deux vitesses
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FIGURE 4.4 — Evolution temporelle de la longueur du puits y(¢) et de la pression au
fond du trou Ps(t)

4.4 Conclusion

Ce chapitre a été consacré au développement d’un modéle MPD qui sert a étudier le
processus de lubrification au cours du forage. En effet, ce procédé consiste a injecter un
fluide (boue, eau, ....) par le derrick le long du train de tiges. Ceci permet de remonter les
déblais en surface et de refroidir outil. A savoir aussi que la vitesse optimale de remontée
des déblais augmente avec 'augmentation de la taille des cuttings et de ROP. Comme
perspective, il existe certains parameétres qui ne sont pas mesurables dans notre modéle.
Donc il est utile de construire un observateur de dimension finie & 'image de dimension

du systéme.
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Chapitre 5

Suppression de vibration en présence
d’une injection fluidique : couplage

EDP-EDO

5.1 Introduction

L’extraction du pétrole consiste a la création d’un forage de plusieurs centaines de
métres de profondeur dans le sol jusqu’a ce qu’on atteint le pétrole et le gaz. Le systéme
de forage rotary comprend une téte d’injection, une tige d’entrainement qui passe a travers
une table de rotation et qui est reliée au train de tiges et en bout de la colonne un outil
de forage (appelé trépan) creusant le sol. La tige d’entrainement et 'outil de forage, tous,
subissent une rotation via la table de rotation. Au dernier siécle, de nombreux efforts
de recherches sur la modélisation et le controle des systémes forages ont été proposés.
Malgré le développement d’une vaste approche pour éliminer les vibrations de forage :
axiales, latérales et de torsions, de nos jours de nombreux problémes restent ouverts (plus
de détails dans [37]).

La dynamique de torsion du train de tiges est décrite par une équation d’onde avec un
terme d’amortissement. Au cours des opérations de forages, la tige de forage dépend d’un
systéme de boue liquide qui doit étre injecté. Il est nommé la pression de forage géré

(Managed Pressure Drilling, MPD) [52]. En fait, la raison principale de ce systéme est de

83
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réguler la pression au-dessus des pores du réservoir. Plusieurs chercheurs se sont intéressés
a stabiliser le MPD de différentes fagons [51, 22]. La dérivation d’un modéle hydraulique
est décrite par les lois fondamentales suivantes [27] : la viscosité du fluide, la conservation
de la masse, la conservation du moment et la conservation de I’énergie. Le défi principal
de ce travail, est d’étudier le systéme MPD dans l'industrie de pétrole couplé avec la
dynamique de vibration de torsion.

La théorie de Lyapunov et 'approche du backstepping sont 'une des plus connues tech-
niques utilisées pour trouver la stabilité des équations différentielles ordinaires et des
équations aux dérivées partielles [78, 71, 59, 33, 34, 39, 41, 55, 40, 58| ... etc. Par consé-
quent, ces derniéres techniques sont utilisées pour prouver la stabilité du systéme couplé

torsion-boue.

Ce chapitre est structuré comme suit : dans la section 5.2, nous rappelons ’équation
aux dérivées partielles avec les conditions aux limites qui permettent de décrire la dy-
namique de vibration de torsion (EDP) et nous présentons la dynamique de la boue et
avance du train de tiges (EDO). On commence par introduire le systéme couplé pour
lequel on étudiera, en détails, 'existence et I'unicité de la solution puis, on montre la
stabilité du systéme couplé a I’aide de théorie de Lyapunov. Dans la section 5.3, a I'aide
de la transformation d’Alembert, le modéle de torsion-boue couplé est transformé en un
systéme d’équations différentielles ordinaires & retard du type neutre. Les résultats de

simulation, la conclusion et les perspectives font I’objectif de la section 5.4.

5.2 Couplage du systéme de torsion avec le modéle

hydraulique

Le probléme de I'endommagement des réservoirs par les fluides de forage et de son
impact sur la production des puits pétroliers est souvent évoqué par différents interve-
nants. Depuis 1990, des dizaines du puits horizontaux ont été forés, avec comme objectifs
la caractérisation compléte du réservoir d’une part, et d’autre part, le développement des
interzones et des autres niveaux réservoir. Cependant, l'inconvénient des puits horizon-

taux est li¢ au déclin rapide de production, enregistré avec un taux annuel plus de 15
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% [8]. L’endommagement des drains traversés par filtration du fluide de forage ne peut
étre totalement évité a cause de la surpression nécessaire que doit exercer la colonne de
boue sur le réservoir. Notre approche tentera non seulement d’appréhender 'impact des
fluides de forage et des méthodes d’étude des processus d’endommagement des roches ré-
servoirs, mais également l'incidence de cet endommagement sur la production pétroliére.
Ce phénoméne est étroitement lié & la nature de la roche et aux interactions fluides de
forage-roche.

Rappelons que la propagation des ondes de torsion ¥(¢, <) le long d’une tige de longueur
L est décrite par I’équation hyperbolique suivante :

0?0 0% oY

GJ—(t,¢) — I—(t,s) — da

S 1)~ 155 (t:5) =0 5.1

¢€ (0,L),t € (0,400), dans laquelle les conditions aux limites sont données par :

o0 o
Gja_g<t’ 0) = ca(a(t, 0) — Q(t)) (5.2)

ov 0% oY

ou l'inertie et le module de cisaillement sont désignés par I et G. L'extrémité (¢ = L)

est soumis a un couple sur 'outil T(%—f(t, L)) qui tient compte du frottement causé par

Iinteraction de I'outil avec le sol, I, I'inertie de 'outil, J le moment d’inertie, d "amor-

tissement du train de tiges, et {2 I'entrée de controle (vitesse angulaire due a la table de

rotation). On propose le changement de variable suivant [13] :

u(t,z) = (L %t,L(l —2)), z e (0,1), (5.4)

nous obtenons
Opu(t,z) = Opeu(t,x) — Nou(t,z),z € (0,1) (5.5)
du(t,1) = 7(¢) (5.6)

Opu(t,0) = adyu(t,0)+ aF(Oul(t,0)) (5.7)
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ol

F(0pu(t,0)) = =& T (+1/%L0u(t,0)) et a = %
Il est possible de linéariser la condition aux limites (5.7) autour de la trajectoire de

référence comme dans [13]

u(t,z) = z° — F(w,)r 4+ w,t + ug (5.8)

tel que w, = dyu(t, z). Nous obtenons un nouveau systéme

Opu(t,z) = Oppu(t,x) — Nowu(t, ) (5.9)
Opu(t,1) = 7(t) (5.10)
Onu(t,0) = adyu(t,0) + abou(t,0) (5.11)

tel que b = 2E(w,) et w(t) = du(t, 1).

Au cours du forage, les déblais "cuttings" doivent étre enlevés rapidement que possible
pour empécher 'obstruction annulaire. Cela peut devenir plus compliqué dans le cas du
puits dévié ou les déblais ont tendance a former un lit de copeaux sur le coté bas du trou.
Plus loin, les copeaux produits dans quelques formations ont tendance & étre réactifs dans
les fluides a base d’eau. Ils peuvent se dégrader chimiquement, mécaniquement ou s’y
disperser en fonction du temps et font changer par conséquent les propriétés de la boue.
Les fluides de forage sont composés de matiéres solides en suspension dans une solution.
Il est impératif que ces particules qui composent la phase solide restent suspendues pour
que la boue ne perde pas ses caractéristiques. Si les particules se déposent, plusieurs
problémes peuvent se produire et les conséquences peuvent étre cotiteuses. La stabilité de
la garniture de forage dépend d’un systéme de boue du fluide qui doit injecté. La pression
du fluide au fond peut endommager I’ensemble du systéme. Il est important d’intégrer la
dynamique de la pression dans cette étude sous la forme : EDP-EDO.

Rappelons que le modéle de la dynamique de la boue et avance de train de tiges est décrit
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par :
MQOutil(t) = Pl(t> - P3(t) - F(Qoutil) + g(plL - p33/(t))
Vi .
_lpl (t) = 0 (t) - qoutil(t)
A
(Vo + Sy)Ps(t) = Bs|qouta(t) + a2(t) — qs(t) — Sv(t)
y(t) = ()
o(t) = (1)
R 1
A partir du changement de variable suivant z(t) = VO+—Sy(t)’ le systéme donné ci-dessous

s’écrit sous cette forme

) = abi(t) —aPs(t) — et F(qouri) + h(2)

) = cnat) = CGouru(t)

) = B toaa(t) + aa(t) — as(D)|2(8) = Baz(t)Sw (1)
) = —S2(()

)

= Tg(t)

avec ¢; = £, ¢ = 8L h(z) = c19(p1 L — %(% —Vo))-
Le flux ¢y décrivant la quantité d’écoulement & travers la surface de controéle (outil/sol)

dans le systéme de forage rotary s’écrit comme suit

I
q2 = p3STOI(LA/ el t,L) = edyu(t,0)

avec € = p‘”’TST@ /€ et r le rayon de D'espace annulaire (Fig. 5.1). Il est & noter que ce flux

dépend de la variation du ’angle de torsion en fonction du temps, ce qui assure le couplage

entre le deux systémes. Alors, nous obtenons le systéme couplé EDP-EDO suivant :
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FIGURE 5.1 — Circulation du fluide

= B3(qoutit(t) — q3)2(t) + Bzeduu(t, 0)z(t) — B3z (t)sv(t)
= —S22(t)v(t)

Ouult,z) = Opul(t,z) — Nu(t, ) (5.12)
dpu(t,1) = 7(t) (5.13)
Buu(t,0) = adyult,0) + abdu(t,0) (5.14)
Goutit(t) = c1Pi(t) — 1 Ps(t) — 1 F (qousit) + h(2)
Pi(t) = em(t) — coui(t)

)

)

)

= n(t). (5.15)

Le chalenge dans cette section, est I'étude de stabilité des équations couplées EDP-EDO
obtenues en considérant (71, 72, 73) comme étant le vecteur commande. Il s’agit par consé-
quent d’élaborer les entrées de commande adéquates permettant d’atténuer/ supprimer
les vibrations de torsion en agissant sur les pressions aux différents niveaux du systéme.
La premiére question qui se pose : le probléme, mathématiquement décrit ci-dessus est-il

bien posé?



5.2.  Couplage du systéme de torsion avec le modéle hydraulique 89

5.2.1 Existence et unicité de la solution

Le but de cette section est de prouver ’existence et 'unicité de la solution du systéme
couplé de torsion-boue controlé a I'aide du théoréme de Lumer-Phillips’ et de la théorie
des opérateurs (voir [6], [30]). Soit T" > 0, la solution du probléme de Cauchy est écrite

comme suit

) = Ouult, ) — Ault, ) (5.16)
— (5.17)
) = aduu(t,0) + aF (Qu(t,0)) (5.18)
outit(t) = c1Pi(t) — e1Ps(t) — e R(qoutur) + h(2)

) = cma(t) — cqouwi(t)

) = B3(qoua(t) — q3)z(t) + BseOu(t, 0)z(t) — B3Sz(t)v(t)

) = —SZ(t)(t)

) = 73() (5.19)
) = a(@), w(0,2)=B(x), douit(0) = Gouras

)

= P, P(0) = P§,2(0) = 2, v(0) = ° (5.20)

tel que z € (0,1),t € (0,7), « € K := {u € H*0,1), u(t,0) = 0}, 8 € L*0,1). 7,(t)
pour i = 1,2, 3 sont les lois de controles. Les variables ¢° ... PP, P 2% 40 sont les valeurs
imposées a la solution a t = 0. Considérons ’espace vectoriel K qui est muni du produit
scalaire < u!,u? >g= afol ulu?dz. Tl est évident que K est un espace de Hilbert.

Nous introduisons Z = (u(t, ), u,(t, z), us(t,0), qourir(t), Pi(t), P3(t), z(t),v(t))T. Le sys-

téme (5.16)-(5.20) est réécrit de fagon compacte

Z(t) = AZ(t)+ H(Z(t) + f(t) (5.21)
Z(0) = Z (5.22)

avec
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0 1 0 0 0 0 0 0
Oz —A 0 0 0 O 0 0
kv 0 0 0 0O O 0 0
Ao 0 0 0 0 a —a 0 0 7
0 0 0 — 0 O 0 0
0 0 0 0 0 0 —Bsqs O
0o 0 0 0 0 O 0 0
0O o0 0 0 0 O 0 0
0 0
0 d(x — 1) (t)
aF (u(t,0)) 0
H(Z(1)) = —c1R(Goutat) + h(2) et f(t) = 0
0 CTo
Baoutiz — PaSzv + Baezuy(t, 0) 0
—Sz% 0
0 T3
ou k1 = —a < §)(x),. > et tel que ¢ désigne la fonction de Dirac, (0)(z),u(t,x)) =

—ug(t, 1) et (0f(x), u(t,x)) = —u,(t,0).
Tout d’abord, considérons la partie linéaire du probléme (5.21)-(5.22), nous proposons le

théoréme suivant.

Théoréme 5.2.1 Lopérateur A génére un Cy semi-groupe de contractions e, t > 0.

Preuve Soit X = {7 : v € K, u; € L*([0,1]), u(t,0) € R, qouras € R, P, € R, P3 €
R, z € R, v € R}.
Pour montrer que A génére un Cy semi-groupe des contractions sur X, il est équivalent a

prouver que l'opérateur A est dissipatif et (I — A) est surjectif. Nous définissons

Zl = (ul(t,m),utl(t,x),u%(t,()),qgml(t), Pll(t)>P31(t)7Zl(t)avl<t>>T
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et
7% = (uP(t, @), up (t, 2), uf (t,0), Gua(t), PLE(E), P (1), 2°(1), v (1)) "
L’espace vectoriel X est muni du produit scalaire suivant

<Zlu ZQ>X = CL<'U,1, u2>K + a<ut17 u?)LQ[O,l] + <U% (ta 0)7 U?(t, O)>R

+ {outit: Goutat () + (Pl (1), PE(t))r + (P5 (8), P3(t)z + (21 (1), 21 (1))=.

Notons par || . || la norme dans X associée au produit scalaire.
Soit A : D(A) C X — X l'opérateur linéaire défini par D(A) = {Z € X,u € H*(0,1),u; €
K ug(t,1) = 0,u(t,0) E R, qourst E R, P € R, P; € R, 2 € R,v € R}

Nous avons

U(t,l’) ut<t7$)
w(t, ) Oppti(t, ) — Auy(t, )
u(t,0) aug(t,0)

Lot c1Pi(t) —c P

P 11 (t) —Cloutil

Py (t) —B3q3(1)z(1)
21(t) 0

vi(t) 0

L’opérateur A satisfait
1
<AZ Z >x = —a)\/ ufdl‘ + (c1 — ) Pi(t)qoutit — c1P3qouta — P3q3(t)2(t) Ps
0

Physiquement ¢; < ¢, alors < AZ, Z >x< 0. Cela implique que A est dissipatif.

Il est facile de vérifier que pour tout m = (my, mg, mg, mg, ms, mg, my, mg) € X, il existe
w = (wy, W, W3, Wq, W5, We, Wy, ws) € D(A) tel que w — Aw = m. Alors, D(A) est dense
dans X et A est fermé. Par conséquent, en utilisant le théoréme de Lumer-Phillips, A

est le générateur infinitésimal d’un semi-groupe de contractions S(t), t € [0, +00), sur X.
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O

Remarque Dans ce cas, pour chaque Zy € D(A), le probléme de Cauchy
Z(t)=AZ(t), Z(0) = Z,
admet une unique solution
Z € C([0,T],X)()C°([0.T), D(A))

Maintenant, nous allons prouver l’existence et 'unicité du systéme (5.21)-(5.22) en tenant

en compte la partie non linéaire.

Théoréme 5.2.2 Pour toute condition initiale Zy € D(A), le probleme Z(t) = AZ(t) +
H(Z)+ f(t) admet une unique solution

Z € C'([0,T], X)(C°([0,T], D(A))

Pour prouver le théoréme 5.2.2, nous avons besoin du lemme suivant :

Lemme 5.2.1 ['opérateur non linéaire H(Z) est dissipatif et localement Lipschitzien.

Preuve Au début, il est évident que H(Z) est localement Lipschitzien. Par la suite, nous

allons prouver que H(Z) est dissipatif. Nous avons

(H(Z(1))), Z(t)x = aF(u(t,0))u(t,0) = c1 R(qoutit) Goutit + h(2)qoutit + B3douritzP3
— ByssuPs + Baezun(t,0) Py — S2*
= F(u(t,0))u(t,0) — gourit(c1 R(qoutit) — h(2) — B32Ps) — S2°v
— PszPs(Sv — ewy(t, 0)) (5.23)
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Rappelons que la fonction non linéaire F' résultante de I'interaction entre 1’outil et le sol

est donnée par (Chapitre 3, [10])

L 1 /GJ
F(@tu(t,())) = _ET(E Tatu(tao))a

G L[S au(t, 02 + k2

avec k > 0. Nous avons

kL\/<Lowul(t,0)?
Flu(t,0)us(t,0) = — LV T

G L[S au(t, 002 + k2

Ainsi, F(0u(t,0))0u(t,0) <0.
Comme v € [Unin, Umax), DOUS choisissons v tel que = > ,(¢,0) pour garantir la né-
gativité du dernier terme dans (5.23). De plus, la pression au niveau de I'espace annu-
laire au fond du trou vérifie Py < ﬁ[clR(qoml) — h(z)]. Selon ces hypothéses, pour une
vitesse de pénétration minimum et un comportement connu de la pression de l'espace
annulaire P3 par rapport au débit g, et le déplacement de l'outil z(¢), nous pouvons
garantir que l'opérateur H(Z) est dissipatif. De plus, H(Z) est localement Lipschitzien.
O
Preuve du Théoréme 5.2.2 En appliquant le lemme ci-dessus et a partir des résultats

donnés dans (Théoréme 4.2 [47], |77, 6, 30]), on montre que notre systéme (5.21)-(5.22) ad-

met une unique solution.

5.3 Stabilisation du systéme couplé

Dans cette section, on va proposer deux maniéres différentes d’aborder le probléme de
stabilité d’une équation aux dérivées partielles hyperbolique de second ordre sans et avec

coefficient d’amortissement couplé a un systéme d’équations différentielles ordinaires.
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5.3.1 Cas ou A =0 : systéme a retard du type neutre couplé

Il est trés difficile de transformer un systéme d’équations aux dérivés partielles hyperbo-
liques avec coefficient d’amortissement en un systéme d’équations différentielles ordinaires.
Pour cela, nous supposons que le terme d’amortissement A est égal a zéro dans I’équation
(5.12). Par conséquent, on peut utiliser la transformation d’Alembert pour transformer
le modéle de paramétre distribué (5.12)-(5.14) en un modéle d’équations différentielles a
retard du type neutre. Le résultat de stabilité a été établi en se basant sur la théorie de

Lyapunov et la technique du backstepping.

5.3.2 Techniques classiques résolvant les équations des ondes a

coefficients constants non amortis

Il est facile de vérifier que u(t,z) = p(o) + v(y) est la solution générale de 1'équation

d’onde unidimensionnelle (5.12) avec 0 =t + x et v =t — . Nous définissons
H(t) = dpu(t,0) = ji(t) + &(t), (5.24)

comme étant la vitesse angulaire a 'extrémité inférieure du train de tiges de forage. Nous

introduisons cette vitesse dans les conditions aux limites (5.13)-(5.14), cela implique

Lt +1)—v(t—1) = mu(t) (5.25)

) +o(t) = a(p(t) —v(t) + ab(i(t) + (1) (5.26)
Nous pouvons écrire (5.24) sous cette forme

(t) = H(t) — o(t). (5.27)

v(t) = ——H(t) — —H(t). (5.28)
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Nous introduisons (5.28) dans (5.27), nous trouvons

() = 1T_bH(t) b o H (D) (5.29)

Nous présentons a la fois les deux expressions de p et v dans (5.25), nous obtenons une

équation du type neutre du modéle du train de tiges :

1—0.. 1 . 1+5b . 1 .
TH(H—l)—l—ZH(t—l—l)—TH(t—l)Jr%H(t—l)—m(t).

Par conséquent, nous trouvons une expression de type neutre avec retard pour le compor-

tement du train de tiges en bas :

H(t) = a(b— 1)H(t) + a(l + DY H(t — 2) — H(t — 2) + 2ary(t — 1).

Ainsi, I’étude de stabilité du systéme de torsion-boue couplé du type neutre avec retard

est I'objectif de cette section :

H(t) = a(b—1)H(t)+a(l +b)H(t —2) — H(t —2) + 2ar,(t — 1)
Gouta(t) = c1Pi(t) — a1 P3(t) — 1 F'(qoutar) + h(2)
P(t) = cT5(t) — Cqoutit ()

)
)
)
) = BslGoun(t) — as(t))2(t) + €B3H (1)2(t) — B3Sz(t)u(t)
) = =S2(t)(t)

)

= Tﬁ(t).
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Nous introduisons z; = H, x9 = H. Ensuite, nous avons :

) = @t (5.30)
) = a(b—1)za(t) + a(l + b)aa(t — 2) — day(t — 2) + 2am4(t — 1)  (5.31)
) = abi(t) —aPs(t) — ctF(qouta) + h(2) (5.32)
) = c75(t) = Cqouta(t) (5.33)
) = Bs(Goutir(t) — q3(t))2(t) + efs2(t)2(t) — F3Sz(t)v(t) (5.34)
) = —SZ(t)u(t) (5.35)
) (5.36)

= TG(t).

Il est facile de vérifier que (0,0,0,0,0, m,()) est un point d’équilibre du systéme
(5.30)-(5.36). Pour éviter une augmentation forte de pression qui peut conduire & un
phénoméne branchant, le probléme de stabilisation du modéle torsion-boue couplé est
résumé en controlant simultanément la pression au fond du puits, la vitesse de pénétration

de T'outil et la vitesse de rotation du train de tiges.

5.3.3 Elaboration d’une commande stabilisante

Les motivations envers les choix des modéles ont déja été clarifiées. Nous nous intéressons
ainsi aux systémes dynamiques controlés décrits par une équation différentielle a retard

du type neutre.

Théoréme 5.3.1 Considérons le systéme (5.30)-(5.36) et les trois lois de controle don-

nées par :
nt—1) = % () — By Py(8)2(t) + aK + K — abas(t)
— a(l+ b)aa(t — 2) + d(t — 2) (5.37)
TS(t) = _%(I'Q(t) - Kl(QOutily P37 Z)) + ﬂ‘hutil(t) + %KI(QOutila P37 Z)
() = SA)(2(t) — — ) + Ky — (t) + Ko

~ psVo+ p1SL

dans lequel, pour x = 0, nous avons cette condition
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u(t,0) = u(0,0) — z1(0) — €83 P5(t)2(t) + B, avec

! (—soa3(t) —
(@) + BaPr)=()) L 07
= ROG a6 = (1)) = (1)
h(2)
) -

K(beOutil;P?nZa/U) SlPSZ(t)

Kl (QOutila P3a 2) = (t ( QOutzl(t) F(QOutil>) - C_l
K (2) _ (Z(t) B PsVoiSmSL)
? 522(t)
avec K(O 0 O,m,()) 0 K1(0 07m) O K2(m) = O, B est une

constante différente de zéro et s; est une constante positive pour i = 0,1. Alors (5.80)-

(5.86) est asymptotiquement stable.

Preuve Pour démontrer ce théoréme, nous utilisons la technique du backstepping. D’abord,

considérons le sous-systéme suivant

t1(t) = wo(t) (5.38)
Psy(t) = Bs(qoualt) — qs(t))z(t) + eBsxo(t)2(t) — B3Sz(t)v(t) (5.39)
To(t) = a(b—1)xa(t) + a(l +b)xo(t —2) — &o(t — 2) + 2am4(t — 1).  (5.40)

Nous définissons K (1, qoutir, P3, z,v) comme une loi de contrdle virtuelle pour le systéme
(5.38)-(5.39). Puis, nous proposons la fonction de Lyapunov V = £(z1 + P§). Sa dérivée

par rapport au temps est donnée

V = l:l.Tl + P3P3
< —soxf — 31P32 + soxf + (21 + €03 P3z)zo + 51P32

+ P3(63(qoutzl )Z - 6325’1))

Par conséquent, soit la loi de controle virtuelle

1 -
(w1(t) + €B3Ps(t)2(1)) [ = soxi(t) — s1P5(t)
—  P3(t)(Bs(qourar(t) — q3(t))2(t) — ﬁgsz(t)v(t))]

K =
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Maintenant, nous introduisons la variable d’état virtuelle y = 25 — K dans (5.38)-(5.40),

nous obtenons

T = (X + K)
Py(t) = Bs(qoun(t) — qs(t))z(t) + eBs(x + K)z(t) — BsSz(t)v(t)
X(t) = —K+ab—1)(x+ K)+a(l+b)za(t — 2)

— ZEQ(t — 2) + 2&7’4(t — 1)

Ici, nous proposons la fonction de Lyapunov suivante V; = V + %Xz, ou la dérivée par

rapport au temps est comme suite :

Vi = V4xx
< —min(sg,s1)V —ax® + X(Il +€B3Pz — K
+ abx +alb— 1)K +a(l+b)za(t —2)

— ot —2) + 2am(t — 1))).
Ainsi, la loi de controle s’écrit

1
T4(t—1> = % —ﬁ36P32—a(b—1)K—a,b(372—K)

+ K —a(l+b)zy(t —2) 4 a9t — 2) —xl].

Ensuite, nous obtenons V; < —min(so, s1,a)V}.

Par ailleurs, considérons le deuxiéme sous-systéme

Goutit(t) = 1 Pi(t) — c1P3(t) — 1 F (qowtir) + h(2) (5.41)

Pi(t) = crs(t) = couta(t). (5.42)
Comme précédemment, commencons par 1’équation suivante

doutit(t) = a1Pi(t) — a1 Ps(t) — a1 F (qourir) + h(2)
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et nous introduisons une loi de controle virtuelle qui satisfait Ki(qousi, P3,2) = P3 —

(éQOutil — F(Gowta)) — hc(lz) vérifiant K (0, O,Mﬁ) = 0. Egalement, nous obtenons
Goutiit = —Qoutii- Nous proposons la fonction de Lyapunov V, = %qﬁutil, alors Vy = —2V5.
Cela prouve que (5.41) est asymptotiquement stable & 1’équilibre gy = 0.

Maintenant, soit la variable d’état virtuelle x;(t) = Pi(t) — K1(qoutir, Ps, z). Alors nous

obtenons

QOutil (t) = (X1 (t) - qoutil(t)

X1(t) = =K1 (qoutits Ps, 2) + c75(t) — cqourar(t).

Nous choisissons la fonction de Lyapunov suivante V3 = Vo + $x3 = 1(¢2,; + x1). Sa

dérivations par rapport au temps est donnée par

‘./3 = Cjoutz'ZQOutil + Xle
= _qgutil - X% + Xl(Xl + (Cl - C)Qcmtil - KI(QOutih P37 Z) + 07'5).
Ainsi, prenons

1 c—c
(1) = —xa(t) + <

1.
QOutil(t) + EKI <QOutil> P37 Z)

Cela implique que Vs = —2V3. Alors le systéme (5.41)-(5.42) est asymptotiquement stable
a léquilibre (qouei, P1) = (0,0).

Finalement, nous considérons le dernier sous-systéme

2t) = —=SZ2(t)v(t) (5.43)
b(t) = T76(t). (5.44)

Nous définissons une loi de controle virtuelle pour le systéme d’équations (5.43), donnée

(Z(t)_pi?’g) ;
par Ky(z) = % pour lequel Kg(mvoiﬁ) = 0.



100  Chapitre 5. Suppression de vibration en présence d’une injection fluidique : couplage EDP-EDQ

Nous introduisons xs = v — Ky comme état de controle virtuel. Alors nous obtenons

i(t) = —S2(t)xa(t) — S27(t) Ka(z)

Xg(t) = Tﬁ(t)_K2<Z).

Nous considérons la fonction de Lyapunov suivante

VilPaz) = 506+ (2 = L)
Sa dérivation donne
Vi = #(z-— ,@,%iﬁ) + X2X2
= =S - o () (Ko )
< —(z— my — X3
+ xo(—=822(z — Ps )+ x2 — Ko + 7%).

p3Vo + p1SL

Maintenant, on peut définir la loi de controle

P3

= Sz — P y_ K
76 S e s et e
P3 .
= 92z - —"—-)+ Ky — v+ Ko.
( p3Vo+plSL) ? ?

Alors V, < —2V,.

Ici, nous introduisons la fonction de Lyapunov global suivante

1
L = §($%+P32+($2—K)2+Q§um+(P1—K1)2

P3 2
+ (0= Ko) 4 (2 — ————=2)2).
(v=F)" 4+ (2 05V + plSL) )

Alors L < —2(V1+V5+V;) < —2L. Cela prouve que le systéme (5.30)-(5.36) est asymptoti-

T o
quement stable a I’équilibre (0, 0, 0,0, 0, Vs 0).
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5.3.4 Cas ou A # 0 : couplage EDP-EDO

Cette partie sert a étudier la stabilité d’'un systéme couplé formulé par deux modéles non
linéaires traduisant les comportements de la dynamique des vibrations de torsion et celle

de la boue et avance du train de tiges.

Proposition 5.3.1 Considérons le systéeme (5.12)-(5.15) et les trois lois de controles

suivantes

nt) = m[(l—a)atu(t,())@xu(t, 0) — abdyu(t, 0)?

—  P3(Bs(qouta(t) — q3(t))2(t) + €B30,u(t, 0)z(t))
—  Gowa(—c1P5(t) — c1F (qoutit) + h(2))]

T2 (t) = c Goutil (t)

T3(t) = BSP3(t)z(t) + S2*(t)(2(t)

_ L)
p3Vo + p1sL”

Alors le systéme (5.12)-(5.15) est stable o Uéquilibre (0,0,0,0, —=Eer, 0).

Preuve Pour prouver la stabilité du systéme couplé, nous introduisons la fonction de

Lyapunov suivante :

P3

N it 2 2
Vot psl) U

-5/ (000 + Q) o + (D0 + o+ PR+ PR+

Nous dérivons L par rapport au temps et nous utilisons les conditions aux limites (5.13)-

(5.14), nous obtenons

1
L(t) = / Orru0pu 4 Opudyudr + Oyu(t, 0)0uu(t, 0) + GoutitGouti + PrP1 + PsPs
0

P
p3Vo + p1SL

1
= / Oy 0yt + Opu(Opz — NOyu)dx + Oyu(t, 0)Oyu(t, 0) + GoutitGoutit
0

+ Z(z )+ v

I o
p3Vo + p1SL

= -\ /1(8tu)2d:t + Opu(t, 1)1 (t) — (1 — a)dyu(t, 0)du(t,0) + abdyu(t,0)?

+ P1P1—|—P3P3+Z(Z— )"—U/U
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+ Qoutat(t)(c1 Pi(t) — c1P3(t) — c1 F(Qoutat) + h(2)) + Pi(t)(cTa(t) — couta(t)) + P3(t)(Bs(qoutir(t)

— 3(t)2(t) + €B30,u(t, 0)2(t) — Bsz(t)sv(t)) — S22(t)(2(t) — %%iﬁ)v(t)) + v(t)7s(t)

= —A/l(ﬁtu)de + Opu(t, 1) (t) — (1 — a)dyu(t, 0)0,u(t,0) + abdyu(t,0)?
+ Goutil (t)(_clp?) (t) - ClF<QOutiZ) + h(Z)) + Pl <t> (CIQOutil(t) + CTy <t> - CQOutil(t>> + PS(t) (BS(qoutil (t)

= a3(t)2(t) + eBsOpult, 0)2()) + v(t)(—B3S Pyx(t) — S2*(t)(x(t) — %%iﬁ)) +73(1))-

Pour assurer la stabilité du systéme (5.12)-(5.15), nous choisissons les trois lois de controle

suivantes

n(t) = 8tu(1t, D [(1 — a)dyu(t,0)0,u(t,0) — abdu(t,0)* — Ps(Bs(qousir(t) — q3)z(t)

+  €B30,u(t,0)2(t)) — Goutit(—c1P3(t) — c1F (qowta) + h(2))]

T2 (t) = (C _C Cl) QOutil(t)

nlt) = BeSPat) + 820 — o),

Alors, nous trouvons

L(t) < —A/l(atu)%lx

Ceci a établi la stabilité du systéme (5.12)-(5.15).

5.4 Simulation : cas ou A =0

Les parameétres physiques utilisés dans la simulation sont donnés dans la table 5.4. Le
controle de la dynamique du fluide joue un rdle important dans la suppression /atténuation
des vibrations de torsion. En effet, si on considére que le systéme du fluide n’est pas
controlé (on prend, par exemple, 75 = constante et 7 = 0), on remarque que 1’état de la
dynamique de torsion se déstabilise et par suite on ne peut pas supprimer les vibrations
de torsion. Donc, il est utile de controler la pression injectée par la pompe dans le derrick.
Ici, nous présentons des stratégies efficaces pour réduire le phénoméne du stick slip et
étudier I'impact du systéme du fluide injecté (Fig. 5.2-5.4). Pour éviter que le trou ne

se rebouche au fur et & mesure du forage, il faut nettoyer le fond du puits et enlever les
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Variable | Valeur Unité Description

L 2000 m Longueur de la chaine de forage

1 0.095 kg.m Inertie par unité de longueur

I 311 kg.m? Inertie au fond des train de tiges
J 1.19.10° m* Moment d’inertie géométrique

G 79.3.10° N.m™? Module de cisaillement

Cq 2000 N.m.s.rad | Coefficient de couple de glissement
p1 1250 kg.m Densité de la boue de forage

03 1250 kg.m Densité annulaire

M 8300 kg.m Densité intégrée par section

By = P3| 24750 bar Module de la compressibilité de la boue
Vo 110 m3 Volume initial dans la couronne

g 9.81 m.s=> Gravité

S 7 x (0.25)% | m? Surface annulaire

d 0.009 Coefficient d’amortissement

TABLE 5.1 — Parameétres physique

rad

(a) Evolution temporelle de débit goyq(t)

FIGURE 5.2 — Comportement de déplacement angulaire au fond et de débit au
niveau de Poutil gy (t)

tirne[sec)

%% R (S S SO D N
12 o 0.2 0.4 06 0.8 1 12 1.4

iempe(sec|

trou x1(t)

i i
168 18 2

(b) Evolution de déplacement angulaire au fond du

débris de roche. Pour cela, des fluides de forage sont injectés en continu dans le trépan

afin d’emporter les débris de roche, de refroidir et lubrifier le trépan et de stabiliser la

pression sur les bords du puits pour leur éviter de s’écrouler. La composition des boues de

forage varie selon la nature de la roche forée, la pression, la profondeur et la température.
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Dans [70], le débit du a la boue sortant par ’anneau ouvert est donné par :

2 g, 1
- Z (P — P+ L= V).
qs3 Cds\/pg( dh 3+S(Z 0))

La pression au fond du puits est donnée par :

1
Py, = P — %(; — Vo) + Faou

ou F, désigne le coefficient de frottement dans I’espace annulaire. Les résultats de stabi-

aF I S T S I S S N E N T S S N S S
0 i 10 14 20 25 aa ] 40 45 a0 0 0z 04 06 06 1 12 14 16 14
ternps[sec] termps[sec]

(a) Schéma de la loi de controle 74 (t — 1) (b) Evolution temporelle de 1’état z(t)

FIGURE 5.3 — Evolution en fonction du temps de 74(t — 1) et z(t)

lisation sont représentés par les figures 5.2, 5.3 et 5.4.

Il est clair que toutes les simulations impliquent une convergence vers l'équilibre des
variables du systéme. En effet, les deux courbes (Fig. 5.2, (a)) et (Fig. 5.2, (b)) représentent
le comportement de déplacement angulaire au fond du trou ainsi que le comportement
de débit au niveau de loutil guuy. En outre, les courbes (Fig. 5.4, (a)) et (Fig. 5.4,
(b)) montrent la stabilité de la pression. Durant l'opération de forage, le dispositif de
soulévement artificiel de 'outil au fond du trou crée une pression négative de telle sorte
que des fluides de puits de forage sont transportés de la zone inférieure a la zone supérieure
(Fig. 5.4). De plus, la pression de la boue a I'intérieur de la garniture de forage atténue la

propagation des vibrations provenant de l’outil (trépan). Il en de méme quand la viscosité

2
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(a) Evolution temporelle de la pression Ps(t) (b) Stabilisation de la pression au fond Py, (t)

FIGURE 5.4 — Stabilisation des pressions

et la densité sont élevées ou quand le trou est mal nettoyé. Ainsi, la boue joue le role
d’un amortisseur. Ajoutons aussi, que les auteurs de [75] ont observé que la présence du
fluide change la réponse dynamique du systéme, en particulier la vibration latérale de
la structure. L’amplitude des vibrations axiales et de torsion est peu affectée, mais mais
la fréquence auto-excitée du systéme (qui est liée aux premiéres fréquences naturelles de

torsion) change lorsque le fluide est pris en compte.

5.5 Conclusion

Dans ce chapitre nous nous sommes intéressés a 1’étude d’un systéme couplé entre la dy-
namique de la boue et avance de trépan du train de tiges (EDO) et celle de torsion (EDP)
au cours du forage des puits de pétrole. Nous avons présenté des résultats théoriques pour
les systémes bouclés avec et sans coefficients d’amortissement. Puisque on s’attaque a un
modéle complexe, couplé et non linéaires, le probléme de stabilité qu’on a pu résoudre
dans ce travail est complétement différent de celui posé dans la littérature. A partir de la
théorie de Lyapunov et ’approche du backstepping, nous avons trouvé les lois de controle
pour la vitesse de rotation du train de tiges, la vitesse de pénétration de l'outil et la
pression/débit injecté par la pompe. En outre, pour la performance des applications de
forage automatique, il est nécessaire de connaitre certaines variables telle que la pression

au fond doit étre estimée.
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Chapitre 6

Synthése d’observateur pour un

systéme de forage rotary

6.1 Introduction

Dans ce chapitre, I'objectif principal est de controler la vitesse de 1'outil, seulement
cette grandeur n’est pas mesurable. On construit alors un observateur pour ’estimation
de cette vitesse. Fondamentalement, dans nos conceptions de la loi de controle, nous
utilisons la technique du backstepping (plus de détails dans [40, 62, 63]) et la théorie de
Lyapunov pour étudier la stabilité. Historiquement, en 1990, ’approche du backstepping
est bien connue pour I'étude de stabilité des équations différentielles ordinaires (EDO).
Elle est développée par Petar V. Kokotovic et al. [55, 57| pour analyser la stabilité des
systémes dynamiques non linéaires. Puis, autour de 2000, cette technique devient un outil
utile pour étudier la stabilité des EDP controlées [40]. En ajoutant que la contribution
principale, dans ce chapitre, est I'investigation de stabilité d’observateur pour une équation
hyperbolique du second ordre avec une mesure dans le sommet c’est-a-dire la téte de la
tige. Ainsi, le principal défi est de construire une commande pour ’observateur du systéme
d’EDP avec une mesure au frontiére dans le haut de la colonne de forage (i.e u(t,1) est
mesurable) pour estimer la vitesse de l'outil au fond du trou.

Ce chapitre est organis comme suit, dans la Section 6.2, nous rappelons 'EDP avec les

conditions aux limites décrivant le probléme des vibrations de torsion. Afin d’apporter une

109
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étude de stabilité, nous utilisons la transformation backstepping et la théorie de Lyapunov.
La section 6.3 est consacrée a I’é¢tude de convergence du l'erreur d’observateur du systéme
vers I’équilibre. Dans cette partie, nous proposons un gain dit "par injection de sortie"
qui permet d’assurer une solution convergente du systéme. A la section 6.4, on procéde

par une analyse des résultats obtenus en simulation.

6.2 Etat non mesurable : conception d’une commande

basée observateur

En terme d’application pratique, la mise en oeuvre des commandes proposées sur la
machine peuvent étre impraticables. En effet, les variables au fond ne sont pas disponibles
a la mesure durant 'opération du forage. A noter qu’'un observateur pour un systéme
donné est un systéme dynamique qui produit une estimation de I’état actuel du systéme
donné en fonction des états mesurables.

Rappelons que le systéme linéarisé de la dynamique de torsion s’écrit comme suit

u(t, ) = uge(t, z) — Muy(t, )
ug(t,1) = U(t)

u(t,0) = aug(t,0) + abu(t,0)

avec b = % et w(t) = w(t,1).

[’automatisation des processus de forage de puits de pétrole augmente avec la nécessité
d’atteindre des puits plus profonds et moins accessibles et d’ameéliorer la sécurité et 1'effi-
cacité des opérations de forage. Une des principales contributions au cours de 'opération
de forage réside dans la mauvaise connaissance des conditions au fond de puits (conditions
de pression et de température, le gaz et les ratios de pétrole). En fait, dans ce travail,
nous proposons une méthode pour estimer les paramétres inconnus lors de forage de puits
de pétrole. Le principal défi dans cette étude, est 'analyse de stabilité de 'EDP basée

observateur qui décrit la dynamique de torsion. Ainsi, nous partons du fait que la mesure

u(t,z) a la condition au limite x = 1. Considérons par la suite la notation ‘A’ associée a
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I’état estimé, et nous proposons d’étudier la stabilité de I'observateur suivant :

Uu(t, 1) = Tea(t, ) — Ns(t, 7) (6.1)
G(t1) = U®)+Gut,1) —at1) (6.2)
Tn(t,0) = atiy(t,0) + abliy(t, 0) (6.3)

ol GG est le gain d’injection de sortie.

Dans la suite on s’intéresse a I'importance de 'observateur du systéme cible, la technique
du backstepping et la théorie de Lyapunov, fournissant ainsi une analyse utile pour la
stabilité du systéme de forage de puits de pétrole. A 'aide de la technique du backstepping
basée observateur, nous construisons une loi de controle qui transforme 'observateur du

systéme original (6.1)-(6.3) vers I'observateur du systéme cible,

Wy (t, ) = We(t,x) — ANW(¢, x) (6.4)
w,(t,1) = 0 (6.5)
Wy (t,0) = ae” W, (t,0) — (2ae + 1)w(t,0) (6.6)

Les deux paramétres « et € seront définis par le lemme suivant.

Lemme 6.2.1 Introduisons la fonction suivante

L) = [ /O 1 (e—a(@)‘é’ T (@)? + ee (1 — x)ﬁ?t@v>dx} + Y@t 002,

a

N | —

avec 3 > € >0, a < —e(rf:;), tel que x € [0, 1], et la norme O ou

O%(t) = @ 2000 + | We 7200 + | @e(£,0) .
Alors
mi©%(t) < L(t) < my©3(t)
ol
. {e*a ee” @ 1} y {e*a . ee” ™ 1}
mq = My —— — —r €My = MaxXy —— —
! 2 4 "a 2 2 4 "a
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Preuve En utilisant les inégalités de Cauchy-Schwarz et Young, nous obtenons

1r [t R R R 1
L{t) = 5[ / (e’a(wx)Q+e’°‘(wt)2+ee’°‘x(1—x)wth>dx}—i—a(wt(t,O))Q
0
e e e oy 1 , e [t
> THth +7wa” +a|wt(t70)| 3 ; | Wyw, | dx
e @ ce @ . - 1, .
> (=S @I+ @ 1)+ | @t 0) P
e @ ece™® 1.~
> min{— — —10%(t
> min 5 1 ,a} (1)

D’autre part,

17 /! R . R 1.
L = / (7 (@22 + (@) + e (1 — 2) @, ) da + - (@(1,0))?
0
< @ P @ P L e 0) 2+ / iy | do
= 2 2 a ’ 2 J,
e e @ . N 1
< (-75— + Yl @ |1” + [ @2 |1?) + o | wy(t,0) |?
e ee”® 1.~
< - 210%(4).
— ma‘X{ 2 + 4 7a} ( )
Alors

mi©%(t) < L(t) < ma©(t)

—Q

4

ee”* 1

4 ralt”

€e

. —a @
avec my = min{-—“—, =} et my = max{5-+

Théoréme 6.2.1 (Stabilité de l’observateur du systéme cible) Considérons le systéme
(6.4)-(6.6), avec la condition initiale Wy = w(0,z) € L*([0,1]). Alors, I'équilibre du sys-

teme (6.4)-(6.6) est L? exponentiellement stable au sens de la norme suivante
6%(t) =| @ 1720,y + 1| @a 120,07y + | @e(t,0) |

Preuve Pour prouver la stabilité de I'observateur du systéme cible, nous proposons L(t)

comme une fonction de Lyapunov,

Lt) = [ /0 1 (e—a@,)? + e (@) + e (1 — x)@t@z>dx] + X@t,0))2

N —
Q
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Nous dérivons L par rapport au temps,

L(t)

IN

1
PO o~ ~ 1 . 1 PN
/ (e’o‘wmwx + e" Wy W, + 566 (1 — z)Wyw, + éee (1 - :c)wtxwt) dx
0
1 .
awtt(t7 0)we(t,0)
1 1 1
e / @2+ / (e—a@m@+e—a@m@t+566—%(1—@@“@
0 0
1

o L " Ae [ .
56(1 - x)wmwt>dx + —(wy(t,0)w(t,0)) — 36 / e (1 — x)wyw,dx
a 0

1 | .
—e @1, 0)@, (1, 0) — 1@ (1, 0)° — J@(t,0)” — /0 o)
2ae + 1 L Ny
L {l}? (t’ 0) + eia@t@a O>@w(t7 0) B / 6 a;( x) e*az%dx
0

A 1 1
—/ ee” (1 — x)wyw,dr — )\/ e~ “Widx
2 Jo 0

v w? 1 A1 !
—eo‘/ e —Ldr — ~wi(t,0) — —/ ee” (1 — x)wyw,de — /\/ e~ “wrdx
0 a 2 Jo 0

—min(e*, A\, 1)L(t)

Par le Lemme 6.2.1, nous avons

m10%(t) < L(t) < ma©2(2).

Par conséquent, il existe ¢ > 0 et k£ > 0 tel que

O(t) < ce ™0(0).

Ceci implique que le systéme (6.4)-(6.6) est L? exponentiellement stable a I'équilibre au

sens de la norme O.

Pour convertir 'observateur du systéme original a 1’observateur du systéme cible, nous

proposons 'observateur de la transformation backstepping suivante

Dt,x) = Altz)— / " K (o, €00, €)dé — o(a)a(t,0)
- /0 " Pla, )it €)d — /0 L €t €)de (6.7)
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Nous injectons 'observateur de la transformation backstepping (6.7) dans I'observateur
du systéme cible (6.4)-(6.6). En intégrant par parties et en utilisant les conditions aux

limites, nous obtenons les noyaux sous la forme EDP suivante :

Lfg(l‘,g) = wa(l“,g), (68)
KE&(I7§) = sz(*’%f% (69)
P§£<x7£) = Pm:(x7£>7 (610)

dont les conditions aux limites sont

= 0, Ky(z,x)=0, Py(z,x)=0

8
o

= K(x70)’ K£<x>0) = Q//<$)

s
)

) (6.11)
) (6.12)
) = 0, Pe(z,0)=0 (6.13)
) = o(x), L(0,0)=0, 00)=1 (6.14)
) (6.15)

= ae “K(0,0) + ae ' (0) = 07 (0)

Notons que le noyau d’observateur de la transformation backstepping satisfait un systéme
intéressant des EDP d’onde qui est facilement solvable. Ce systéme d’équations est définie
sur un domaine triangulaire A = {(z,§) e R?: 0 < ¢ < x < 1}

A cette étape, nous introduisons 1'observateur de la transformation backstepping (6.7)

dans (6.5), nous déduisons la loi de controle suivante

Ut) = K(1,1)u(t,1) —|—/01 K, (1,8)u(t,&)de + P(1,1)u,(t, 1)

i /0 (L, €)an(t, €)de + /O Lo (1, €)T(t, €)dé + ¢ (1)a(t, 0)
— Glult,1) — Gt 1)) (6.16)

Il reste & étudier le comportement de ’observateur du systéme original a partir de ’obser-
vateur de la transformation backstepping inverse (w(t,z) — u(t,x)) et les conditions de

stabilité en vertu de la loi de controle (6.16). Définissons 'observateur de la transformation
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backstepping inverse de la maniére suivante
ita) = Olta) + [ B OTOOE+ [ Fla.Oni(t
0 0
+ / H(z,&)we(t, &)dE + m(z)w(t,0) (6.17)
0

Nous introduisons (6.17) dans (6.1)-(6.3), nous trouvons les noyaux suivants

Hgg(f,g) = wa(xag)a
E&([L’, 5) - Efﬂm(xa 5)7
Fee(2,8) = Ful(z,§),

avec les conditions aux limites suivantes

Hy(z,z) = 0, E,(x,z)=0, Fy(x,z)=0
E(x,0) = He(z,0), E¢(z,0)=x"(x), #'(0)=0
F(z,0) = 0, H(z,0) =7(z), Fe(z,0)=0
E(0,0) = H0,0)=0, H(0,0)=n(0)=—1,

Il est facile de vérifier que ces équations sont définies sur le domaine triangulaire A =
{(x,£) € R?: 0 < ¢ < x < 1}. Pour obtenir une solution de 'une de ce derniéres équations
des EDP d’onde, nous commencons par le convertir en une équation intégrale puis nous
introduisons le changement de variables y = £ +x et n = x —¢ et finalement nous utilisons

la méthode des approximations successives (plus en détail dans [40], chapitre 4).

Théoréme 6.2.2 (Stabilité de l'observateur du systéme original) Considérons le systéme
(6.1)-(6.3) avec la condition initiale uy € L*([0,1]) et la loi de controle (6.16) ou les
noyauz K, P, et L sont obtenus de (6.8)-(6.15). Alors le systéme (6.1)-(6.3) est exponen-

tiellement stable a [’équilibre au sens de la norme suivante

S Ht) = |at,.) ||%2([o,1]) + || (¢, ) ||%2([o,1]) + | (2, ) ||2L2([o,1]) + | Ue(t,0) |2
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Preuve Tout d’abord, nous introduisons les normes suivantes (par exemple) comme suit :
Ose = SUP,efo,1) [0(2)], Koo = maxggea [||K (2, ]I de méme pour Loo, (Pee)oc: Pooy 011
11K (z,€)]||3 désigne la norme de I'opérateur classique. Nous allons prouver qu’il existe
p1 >0 et po > 0 tel que

pO(t) < S(1) < pO(1).

Rappelons que P¢(z,0) = 0, P(z,0) = 0, P,(z,z) = 0, L(x,0) = o(z). Par conséquent,
W, est rééerit sous cette forme
0 0
+ /0 AP(z,&)u(t,&)dE — L(x, x)uy(t, v) +/0 Le(x,&)u(t, §)dE — o(x)u(t, 0)

En utilisant les inégalités de Cauchy-Schwarz, nous pouvons montrer

~

[ @e(t, ) 7 < (14 Koo+ Lo + (Le)oo + APx) || Gt ) |17

+ Poo [Tt ) (122 +((Pee)oo || 6t ) (172 +000 | Te(t,0) %)

< 0122

olt ¢; = max{l + K + Loo + (L)oo + APro; (Pee)oos Pros 00 }

Comme @(t,0) = u(t,z) — [y Uy(t,y)dy , nous aurons

1@(t, Iz < ca(llda(t, )T + L + 1E(t,II7:)

o co = max{1l + Lo + (Lz)oo + 0, Koo + (K2)oo + 0y Poo + (Pi)oo -
En outre, nous avons | wy(,0) [>< 4 | U(¢,0 |* . Par conséquent, il existe p; > 0 tel que
p1O(t) < ().

Rappelons que 'observateur de la transformation backstepping inverse est donné par

atr) = o >+/ B, ©)@(t,€)dé + n(x)@(t,0)
—i—/ $§wtt§d§+/Hx§w5(tf)f
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Comme @(t,0) = w(t,z)— [

o Wy(t,y)dy, en utilisant I'inégalité de Poincaré, nous obtenons

Il ) 12 < es(ll @a(t, ) 72 + | @it ) 1172),
ol 3 = max{cy(l + Fuw) + Too(1 + o) + Hoo, Fo} > 0, co > 0. En outre, comme
F(z,0) = 0, H(z,0) =n(z), Fe(x,0) =0, Fy(z,z) =0
nous avons

It ) 22 < ealll @t ) [172)+ [ @t -) [122),

ot ¢g = max{l + Ex + Hoo + (He)oo + Mo, Fio + co(Fee)oo} > 0. De plus, comme
w(t,0) = w(t,x) — [, W,(t,y)dy nous trouvons

la(t, ) 12 < esll @o(t, ) 72 + | Delt, ) [IZ2),

ot ¢ = max{1l+ coFo + co(Er)oo + Hoo + (Hy)oo + T (1 + ¢0), Foo + (F)oo - Enfin, nous
avons

| @(t,0) [P< 4| @i(t,0) |

Par conséquent, il existe po > 0 tel que
£(t) < p26(t)

Ceci implique que le systéme (6.1) - (6.3) est exponentiellement stable au sens de la norme

-~

.

6.3 Gain d’injection de sortie
Ayant & notre disposition, la loi de controle trouvée dans la section précédente im-
plique la convergence exponentielle du systéme d’observateur. Maintenant, nous pouvons

combiner les résultats de la section 6.2 et cette section pour assurer la convergence du
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I’erreur d’observateur du systéme.

6.3.1 Systéme cible
Rappelons le systéme d’observateur suivant

~

U (t, ) = Upe(t,z) — ANug(t, )
u(t,1) = U(t)+ G(u(t, 1) —u(t, 1))

ﬂtt(t, O) = aﬂm (t, 0) + abﬂt (t, 0)

Pour féconder le contrdle basé observateur (6.16), il est important de déterminer le gain

d’injection de sortie G. L’analyse prend en compte Perreur estimée u = u — u tel que

U(t, ) = Uge(t,z) — MNug(t, ) (6.18)
u.(t,1) = —Gu(t,1) (6.19)
U (t,0) = aug(t,0) + abu(t,0) (6.20)

Afin d’obtenir le gain d’injection de sortie G qui assure la convergence du systéme d’erreur
& zéro, nous considérons un estimateur d’erreur de la transformation backstepping pour

transformer le systéme d’erreur & celui d’erreur cible suivant

Wi (t, ) = Wee(t,x) — Awe(t, x) (6.21)
T(t,1) = 0 (6.22)
Wy (t,0) = ae” “w,(t,0) — (2ae + 1)wy(t,0) (6.23)

L’estimation d’erreur de la transformation backstepping est donné par

i) = @) — / Az, €)ib(t, €)de

- [ Broueoic - [ cwoudeo (6.24)
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Lemme 6.3.1 Définissons la fonction

L = % [/01 (e*‘l(wm)2 + e (wy)? + ee (1 — :c)u?tu?x> dr + é(@t(t, 0))?

avec % >e>0,a< _5(2;:;)7 dans lequel x € [0,1], et la norme O ou

O*(t) = | W 1720y + Il @a 7200y + | @i(t,0) |2
Alors
m©%(t) < L(t) < my©2(t)
ol
. {e_a ee”® 1} ; {e_o‘ L ee” @ 1}
mqp =miny—— — ———, — 1 €Ll Mo = Maxy — -
! 2 4 ' 2a 2 2 4 ' 2a

Preuve Cette preuve est la méme que celle du lemme 6.2.1.

Théoréme 6.3.1 (Stabilité du systéeme d’erreur cible) Considérons le systéme (6.21)-
(6.23), avec la condition initiale wy = w(0,x) € L*([0,1]). Alors I’équilibre du systéme

(6.21) - (6.23)) est exponentiellement stable au sens de la norme suivante
O%(t) =| w, ||2L2([o,1]) + || w, ||%2([o,1]) + [ @i(t,0) |2

Preuve La preuve est similaire a celle du Théoréme 6.2.1.

6.3.2 Technique du backstepping et loi de controle

Pour obtenir le gain d’injection de sortie G' qui garantit que l'erreur d’observateur
du systéme converge & zéro, nous utilisons un estimateur d’erreur de la transformation

backstepping. Alors, nous injectons (6.24) dans (6.18)-(6.20), nous obtenons les noyaux
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satisfaisants les équations aux dérivées partielles suivantes

Cx:p = C&&a
Aaca: = A{E?
Bacz* = B{{v

avec les conditions aux limites

Co(w,x) = 0 Ay(z,2)=0, Bu(z,z)=0
Ac(x,1) = Be(w,1) = Ca,1) = 0
B(1,1) = B(0,0) = A(0,0) =0,

Age(0,€) = (A+ab)Be(0,€) + aA,(0,€)
Cee(0,6) = aCy(0,§), C(0,0) =1
Bee(0,6) = (A+ab)A(0,8) — (A+ ab)Ce(0,€)

+ aB,(0,€) — (A 4 Aab) B(0,€)

Nous introduisons (6.24) dans (6.19), nous trouvons le gain d’injection de sortie G =
—A(1,1). I est facile de vérifier que C(z,€), A(x, &) et B(x, ) satisfait, chacune, une EDP
d’onde dans laquelle la solution générale est donnée par F(x,§) = VU(x — &) + ®(z — §).
Ensuite, ces équations sont définies sur un domaine triangulaire A = {(z,£) € R? : 0 <
¢<a<1).

L’estimation d’erreur backstepping devrait étre inversible. Par conséquent, pour conver-
tir (6.18)-(6.20) dans (6.21)-(6.23), nous introduisons 'estimation d’erreur backstepping

inverse suivante :

w(t,z) = ﬂ(t,:c)+/ M (z,&)ul(t, &)dE

s [ NGt [ oo (6.25)
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Nous injectons (6.25) dans (6.21)-(6.23), nous obtenons les noyaux suivants

Méé(%f) = M. (z,§),
Ngg(ﬂf,f) = er($7€)>
Jgg(x,f) = Jm(%f%

avec les conditions aux limites suivantes

0 = My(2,2), Jo(z,2)=0 Ny(z,2)=0

0 = M(z,1) = Je(z,1), 0=N(z,1) = J(z,1)

0 = M(z,1), Ne(x,1)=0

1 = J(0,0),M(0,0) =0,N(0,0)=0

0 = (2ae+1—=A)Nee(0,8) + Mee(0,€) — ae™M(0,€)

0 = —ae N, (0,&) + (N — (2ae + 1)) Je(0, &) + Nee(0,€) + (2ae + 1 — A\)M(0,§)
+ (W = (2ae + 1)A)N(0,&)

0 = —ae”Jy(0,8) + Je(0,)

Pour l'existence et 1'unicité de la solution des noyaux, nous pouvons trouver explicite-
ment la solution parce que la solution de toute EDP d’onde est donnée sous la forme
suivante k(z, &) = ¢(x + &)+ (z —&). Ensuite, ces équations sont définies sur un domaine

triangulaire A = {(x,£) e R?: 0 < ¢ <z < 1}.

Théoréme 6.3.2 (Stabilité du systéme d’erreur original) Considérons le systéeme (6.18)-
(6.20) dont le gain d’injection de sortie est donné par G. Alors Uéquilibre 4 = 0 est

exponentiellement stable au sens de la norme suivante
$*Ht) = |alt,.) ||%2([0,1]) + | (2, ) ||%2([0,1]) + || wa(t,.) ||%2([0,1}) + | (t,0) |2

Preuve Nous allons prouver qu'il existe p; > 0 et py > 0 tel que p,O(t) < B(t) < p2O(2).

La preuve de ce théoréme est similaire au cas de la conception d’observateur (Théoréme
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6.2.2).
En combinant les résultats de deux sections, nous proposons la loi de contréle basée ob-

servateur suivante :

+ /O Lo(1, €)e(t, €)dé + o' (1)a(t, 0) + AL, 1)(u(t, 1) — a(t, 1)). (6.26)

C’est une équation intégrale de Volterra. En pratique, il est impossible d’utiliser cette loi
de controle pour un systéme de forage. Le calcul des grandeurs de controle implique le
calcul de l'intégrale des états angulaires le long de toute la forét qui n’est pas possible
dans la pratique. Afin de 'implémenter sur une chaine de forage réel, il faut concevoir un
observateur en utilisant uniquement des mesures dans ’assemblage au fond (BHA). Les

observateurs pour des systémes similaires sont dérivés dans Smyshlyaev et Krstic |43, 44|

6.4 Simulation

Pour procéder au rejet de la vibration de torsion dans un systéme de forage rotary, l'idée
o A . . o ,

principale est de controler la vitesse de rotation de I'outil (trépan), seulement cette gran-

deur est difficilement mesurable voir non mesurable. Pour la mise en place de la loi de

controle, une estimation de la vitesse angulaire est nécessaire moyennant un observa-

teur/constructeur d’état non mesurable. Nos simulations numériques prennent en consi-

dération les paramétres physiques suivants :

Variable | Valeur | Unité Description

L 2000 m Longueur de la chaine de forage

1 0.095 kg.m Inertie par unité de longueur

1 311 kg.m? Inertie au fond du train de tiges,
J 1.19.10° | m* Moment d’inertie géométrique

G 79.3.10° | N.m ™2 Module de cisaillement

Ca 2000 Nm.s.rad™! | Coefficient de couple de glissement
d 0.009 Coefficient d’amortissement

G -A(1, 1) Gain d’injection de sortie

TABLE 6.1 — Paramétres physiques
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6.4. Simulation

Les résultats de simulation sont représentés graphiquement sur (Fig. 6.1). Deux obser-
vateurs sont construits et tendent vers zéro (convergence exponentielle) quand le temps

tend vers l'infini (Fig. 6.1). Le résultat de stabilisation a travers la loi de controle basée

2501

100

%(t,0)[rad/s]
(t, 0)[rad/s]

o

inl s

=0k

i ; ; i 1 i 100 | | i i 1 i
10 20 a0 40 a0 60 70 0 10 20 a0 40 a0 G0 70
t 1

(a) Evolution en fonction du temps de 1’état u,(t,0) (b) Evolution en fonction du temps de 1’état @, (¢, 0)

FIGURE 6.1 — Stabilisation de ’observateur a 'extrémité inférieure

[rad/s]

t[sec]

FIGURE 6.2 — Evolution en fonction du temps de I’état w,(t, 0)

observateur est présenté dans les figures (Fig. 6.1-6.2). Il est clair que les simulations im-
pliquent une convergence suffisante des variables du systéme et leurs estimés (Fig. 6.1, (a)-
Fig. 6.2)). Par conséquent, I'équilibre est atteint exponentiellement. La figure (Fig. 6.1)

montre le comportement de la vitesse & 'extrémité inférieure respectivement, de ['obser-
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vateur du systéme original et ’observateur du systéme cible. L.’observation de la variation
des paramétres de fonctionnement des machines de forage permet souvent d’avoir une idée
assez précise de la position des transitions des couches de sols ou de roches de natures

différentes.

6.5 Conclusion

Dans ce chapitre, nous avons présenté un observateur de dimension infinie, sous la
forme d’EDP, pour un systéme décrivant la dynamique de torsion. Nous avons montré la
convergence exponentielle de 'observateur. En effet, la loi de controle basée observateur
est construite de telle sorte que 'observateur du systéme cible soit exponentiellement
stable, par conséquent la stabilité exponentielle du systéme original. En outre, le gain
d’injection de sortie conduit & une stabilité exponentielle de I’estimation d’erreur. Il reste
a intégrer d’autres facteurs de forage telle que I'estimation de l'interaction entre le train

de tiges et le systéme du fluide.



Conclusion générale

Depuis plusieurs années, la recherche dans le domaine du controle des systémes a
paramétres distribués représente un champ d’investigation ouvert. Les systémes & para-
métres distribués sont des systémes décrits par des équations aux dérivées partielles (EDP)
linéaires ou non linéaires, éventuellement couplées avec des équations différentielles ordi-
naires (EDQO). D’autre part, depuis plusieurs décennies, la technologie des systémes de
forage pétrolier ne cesse d’évoluer a tel point qu’il devient accessible de développer des
solutions de systémes complexes issus de la mécanique des fluides. D’un point de vue ma-
thématique, ce sont des systémes gouvernés par un ensemble d’EDP, d’EDO ou d’EDP
couplés avec des EDO.

Les vibrations dans la garniture influent le fonctionnement des opérations de forage et
peuvent conduire, a la rupture prématurée du train de tiges, & 'endommagement de cer-
tains de leurs composants (par exemple le trépan) et la diminution de la performance
de forage et donc, au cout de forage. L’apparition des vibrations de torsion en présence
du frottement non linéaire entre la garniture et le puits donnent le phénoméne dite de
"stick-slip". 1l se traduit par des phases d’accélération intenses de ’outil alternant avec
des phases de blocage complet. En plus de son role de lubrification et refroidissement de
I'outil, la boue influe le coefficient de frottement entre le trépan et la roche. Le phéno-
méne du "stick-slip" peut conduire & des conséquences majeures et a I’endommagement
ou l'usure prématurée de I'outil.

Le travail réalisé dans cette thése a donc pour but d’apporter une réponse générée par la
présence du phénoméne dite "stick-slip" lors d’une opération de forage de type rotary. Par
conséquent, une modélisation puis des propositions des lois de controles sont suggérées.

En outre, la boue de forage est pompée dans la colonne et s’est écoulée a travers le trépan
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au fond des puits de pétrole. La boue coule jusqu’a 'annulaire portant des boutures en
haut de puits. Pendant le processus de forage une quantité d’argent est dépensée pour les
problémes techniques de la machine de forage, y compris la perte de circulation et le cofit
de la boue excessive. Par conséquent, pour supprimer 'effondrement des puits de forage,
les fracturation, ou les afflux de fluides entourant le puit, il est important de controler la
pression dans la partie ouverte de 'espace annulaire.

Le manuscrit de cette thése est fondé autour de trois grandes idées :

— suppression des vibrations de torsion
— interaction entre le systéme de forage et le systéme de fluide

— étude de 'observation pour le phénoméne de vibrations de torsion.

Il contient six chapitres. Une introduction générale et les outils mathématiques qui re-
présentent la fondation et une conclusion générale matérialisant la toiture de cette contri-
bution scientifique. Pour la réussite de 'ccuvre, la modélisation, la loi de controle , et
I’étude de stabilité sont requises.

Cette thése a été alors pour nous I'occasion de découvrir le monde de la théorie de controle.
De la modélisation physique, I’étude théorique et au traitement des résultats numeériques,
ce travail nous a permis de comprendre et de saisir toute la complexité tant théorique
que numérique que ce type de probléme revét. La résolution d’équations aux dérivées
partielles (EDP) nécessite a la fois un bagage mathématique théorique solide conséquent
mais aussi de bonnes connaissances algorithmiques. Nous avons bien stir rencontré divers
difficultés, en particulier au niveau de I’étude théorique et la programmation du systéme
trouvé et surtout pour le couplage entre EDP et EDO. Une compréhension plus profonde
du systéme couplé a été nécessaire pour résoudre ces difficultés. De méme, un tel tra-
vail nécessite, de par sa taille, une architecture et une organisation mathématique que
nous n’avions pas ’habitude de rencontrer. Il nous a donc fallu apprendre a évoluer dans
une telle complexité et, plus d’une fois, il nous a fallu se plonger en profondeur dans la
théorie des opérateurs, la théorie de Lyapunov, les algorithmes et dans le fonctionnement
de Matlab pour résoudre les problémes rencontrés. Les contributions de cette thése ont
donc été nombreux et riches. Par exemple, il nous a permis de faire le lien entre les équa-

tions aux dérivées partielles EDP que nous avions abordée au troisiéme chapitre et les
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équations différentielles ordinaires sous la forme d’un couplage EDP-EDO. Physiquement,
nous avons étudié le couplage entre les vibrations de torsion, le déplacement de I'outil, la
pression/débit injectée a la surface, pression/débit au fond et pression/débit a la sortie
de la couronne. La conception consiste a connecter un systéme d’équations différentielles
ordinaires décrivant le comportement de fluide et le modéle de vibration de torsion du
train de tiges de forage qui est décrit par une équation aux dérivées partielles (EDP).
D’ailleurs en présence d’amortissement dans I’équation d’onde, nous montrons seulement
la stabilité d’un systéme sous la forme EDP-EDO. Bien que sans amortissement, 1’équa-
tion d’onde soit réduite a un modéle d’équation différentielles ordinaires & retard et les
lois de controles conduisent & une stabilité asymptotique de la variable de torsion, de la
pression au fond du trou et de la pression de 'espace annulaire. D’un point de vue in-
formatique, ce travail nous a permis d’acquérir une connaissance assez globale du logiciel
Matlab et d’approfondir notre pratique de la méthodes des différences finis qui nous avons
découverte tout au long due ces trois années de recherche.

Bien siir, le monde de la résolution des EDP étant tellement trés vaste et complexe, nous
n’avons qu’effleuré ce dernier et bien d’autres aspects auraient pu se révéler intéressants
a développer. Par exemple, nous avons choisi de nous restreindre plus a la résolution ef-
fective théorique et numérique du systéme plutot que de se pencher sur 'implémentation
pour ce probléme.

Nous visons, dans les futures recherches, a traiter les points suivants :

— En pratique, il est impossible d’utiliser un tel controleur pour un systéme de fo-
rage. Le calcul des grandeurs de controle implique le calcul de I'intégrale des états
angulaires le long de toute la forét qui n’est pas possible dans la pratique. Donc, il
est important d’étudier la robustesse des lois de commande élaborées.

— Etudier le phénoméne d’impulsion au bord (non étudié dans la littérature), car une
telle étude s’aveére utile traduisant I’impact impulsif de I'outil avec le sol. Donc, c’est
une condition qui apparait au bord et de point de vu mathématique, la stabilité
d’une EDP excitée par une condition dite impulsive au bord est un challenge.

— Pour la performance des applications de forage automatique, il est nécessaire de

connaitre certaines variables telles que la pression au fond qui doit étre estimée.
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Enfin, en terme de résultats, le travail effectué tout au long de ces trois années de recherche
a pu favoriser notre présence et celle du laboratoire dans des conférences internationales
renommeées (CDC, ECC, IFAC WC, ...) et dans trois revues scientifiques de grande qualité
(IJC, EJCON et AMC).



Annexe : Outil mathématiques et

théorie de Lyapunov

Nous allons donner dans ce chapitre tous les résultats mathématiques utilisés dans ce
mémoire.
1 Espaces fonctionnel
1.1 Espace LP()

Nous désignons par L'(€) I'espace des fonctions intégrables sur €.

Posons

|4

Ll(g)z/ﬂ)f(x)‘dm.

Définition 6.1.1 Soit p € [1,400[, on pose

LP(Q)) = {f : Q — R tel que f est mesurable et /Q|f(x)|pdm < +oo}.

@ (/Q ’f(x)

Nous vérifions que :

Hf pdx>; (1)

est une norme dans LP ().

Proposition 6.1.1 L’espace LP(§2) avec 1 < p < 400 muni de la norme (1) est complet.

Dans le cas particulier pour p = 2, la relation

< fig>= / f(2)g(x)de.Vf,g € L3(9) 2)
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définit un produit scalaire dans L*(S)), tel que la norme associée n'est autre que la norme
. définit d 2).
H HL2(Q) éfinit dans (2)
Définition 6.1.2 Pour p = co; [’espace de Banach L>(2) tel que
L>*(Q) = {f : Q0 — R tel que [ est mesurable et 3 C >0 : )f(:v)‘ <C p.p}

est muni de la norme

. = oefe

f@)| < C v}

Définition 6.1.3 L’espace des fonctions C'*° a support compact inclus dans un ouvert §2
de R™ est noté D(QY) (espace des fonctions test). Nous dirons qu’une suite de fonctions

(un)n converge vers u dans D(Q) si :

1. 1l existe un compact K C R™ contenant les supports de toutes les fonctions pour

tout n € N,

2. lim, oo SUp, e | D%up(x) — D*u(z) |= 0 pour tout p € N et a tout a multi-indice.

1.2 Espace de Sobolev

Définition 6.1.4 Soit Q un ouvert de R™. Nous posons

0
HY(Q) = {u e L*(Q) : a—“ € L*Q), Vi=12 ...n}
x
Bien entendu, la dérivation est a comprendre au sens des distributions. En d’autres

termes, une fonction u € L*() est dans H'(Q) s’il existe des fonctions vy, v, .......... ,Up

dans L*(Y) telles que

dp
8@- N

u
Q
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L’espace H'()) est muni de la norme :

& Ou(x)
ul|?1 = / —de+/ u(z) |* dx
ey = 3 [ 1550 P [ uco)

_ iz:;/Q|Vu(x) |2da:+/ﬂ|u(a7) 2 da

Pour la topologie induite par cette norme, une suite (u,), de H'(Q) converge vers u €
H'(Q) si u, — u dans L*(Q) et g2 — 2% dans L*(Q) pour tout i = 1,....,n. La norme

de H'(Q) est issue d’un produit scalaire noté (u, v)yi(q) et défini par :

< u,v >§{1(Q) = Zl/ﬂaggj) 8gif)dx+/ﬂu(x)v(x)dx
= Z/QVu(x)Vv(aj)da:—i-/Qu(x)v(a:)dx

Proposition 6.1.2 (Inégalité de Poincaré) Soit Q2 un ouvert borné dans une direc-

tion. Alors il existe une constante C' > 0 ne dépendant que de §2 telle que
Yue HY(Q), lullr2@) < Ol Vaull 2@

2 Théorie des opérateurs

2.1 Opérateur dissipatif

Définition 6.2.1 Soient H un espace de Hilbert et A : D(A) C H — H un opérateur.

On dit que A est dissipatif sur H si
Ve € D(A) Re <z, Az ><0

on dit que A est mazximal dissipatif si I — A est surjectif de D(A) dans H.

Proposition 6.2.1 Soit A: D(A) C H — H. Les propriétés suivantes sont équivalentes

i) A est dissipatif
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ii) A satisfait
Vo€ D(A), VA0, | zllpw< % | e — Az ||
iii) A satisfait
VreD(A) VA>0eC, |zllpw< Re(%) | Az — Az [,

tel que C = {\ € C Re(\) > 0}.

Cette proposition donne une caractérisation des opérateurs dissipatifs qui est utilisée pour

démontrer de nombreux résultats concernant les opérateurs maximaux dissipatifs.

Proposition 6.2.2 S A est un opérateur dissipatif alors les assertions suivantes sont
équivalentes.
i) Uopérateur A est maximal dissipatif.
ii) I existe Ao > 0 tel que (Aol — A) = H.
ii) Pour tout A > 0, A\l — A est inversible, d’inverse borné dans L(H) et || (Aol —
A < AT
iv) Pour tout A > 0 € C, A\ — A est inversible, d’inverse borné dans L(H) et ||
(Aol = A)7H loan< R(ATH).

On établit maintenant une propriété importante des opérateurs maximaux dissipatifs.

Proposition 6.2.3 Si A: D(A) C H — H est un opérateur mazximal dissipatif alors
i) D(A) est dense dans H
i) A est fermé c’est a dire gr(A) = {(z, Ax),x € D(A)} est fermé dans H x H.

2.2 Semi-groupes de contractions

Soit (H, ||.]|z) un espace de Hilbert.

Définition 6.2.2 Une famille d’opérateurs S(t)i>o linéaires bornés définit sur H est dit

semsi groupe Si :
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1. S(0) =1 (I est lopérateur d’identité).
2. S(t+s)=5(t)S(s), Vs, t >0.
avec la propriété

lim S(t)x =z, Vo € H, t > 0. (3)
t—0

Le semi-groupe est fortement continu (ou de classe C°), ou plus simplement C°-semi-
groupes.
Si en remplace (3) par :

lim ||S(t)—I|| =0, t >0,
t—0

il s’agit d’un semi-groupe uniformément continu.
On appelle générateur d’un semi-groupe de contractions (S(t)) lopérateur A : D(A) C
H — H défini par :

i) D(A) = {z € H,tel que lim; g S(t)tx_x existe dans H}

ii) Yo € D(A), Az = lim,_,, S02==

t

L’importance des opérateurs maximaux dissipatifs se mesure dans le théoréme suivant.

Théoréme 6.2.1 (Lumer-Phillips) Soit A: D(A) C H — H un opérateur alors

i) A est mazimal dissipatif si, et seulement si, A est le générateur d’un semi-groupe
de contractions (S(t))i>o

ii) Dans ce cas, pour tout fo € D(A), le probléme de Cauchy

Yty=Af)
£(0) = fo.

(4)

admet une unique solution f € C(|0,+oo[, D(A)) (N C' ([0, +oo|, H). De plus f(t) =
S(t)fo, Vt € [O, +OO[

3 Théorie de Lyapunov et stabilité
Dans cette section, nous rappelons quelques résultats généraux pour que ce manuscrit

puisse étre lu avec une certaine autonomie et qui sont utilisé dans cette thése.
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Un systéme controlé (ou commandé) est un systéme différentiel de la forme :

w(t) =f(x(t),u(t)), 2(t) €U, u(.) €V, (5)

En général le vecteur des états x(t) appartient & un ouvert U de R™ de dimension n, et les
controles u(t) appartiennent a un ensemble de controle admissibles V,, qui est un ensemble

de fonctions localement intégrable définies sur [0, +oo[ & valeur dans V,, C R™.

De nombreuses méthodes ont été développées pour étudier la notion de stabilité au sens
de Lyapunov. Il existe différents critéres pour décider si un systéme non commandé est
asymptotiquement stable (linéarisation, formes normales de Poincaré, variété centre, ...).
L’ouvrage de Khalil [29] présente des panoramas complets de ces méthodes.

Considérons le systéme non commandé

T = f<t7 x)? (6)

oux €R"et f:R xR" — R" une application continue telle que

ViteR, f(t0) =0.

Si application f ne dépend pas explicitement du temps, c’est-a-dire pour les systémes
de la forme,

i = f(x), (7)

ou f:R" — R" et f(0) =0, le systéme est dit stationnaire.

Définition 6.3.1 (Stabilité uniforme au sens de Lyapunov) Le point d’équilibre x.

0 du systéme (6) est dit uniformément stable (au sens de Lyapunov) si :

Ve>0,dn>0,Vtg>0,VaxeR",

lzo| <=V x(.,20,t0), V t > to, |x(t,x0,t0)| < €.
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3.1 Théoréme d’existence et d’unicité

Soit U un ouvert non vide de R™ contenant 0 et [ un intervalle non vide de R.
Soit f : U — R™ une fonction continue. On lui associe le systéme indépendant du temps

dit autonome

i = f(x). (8)

Pour f : I xU — R"™ une application continue, on lui associe le systéme dit non autonome

&= [f(t,x(t)). (9)

On désigne par x(t, to, zo) la solution x(t) du systéme (8), ou bien du systéme (9) telle
que z(tg) = .
Le théoréme suivant, connu sous le nom de théoréme de Peano, donne une condition suf-

fisante pour I'existence d’une solution de (8) ou (9).

Théoréme 6.3.1 (Peano [15]) Considérons le systéme (9). Alors, par tout point (ty, xo) €
IxU passe au moins une solution mazimale x(t, to, xo) définie sur un intervalle J contenu

dans I.

Dans la suite, nous donnons le théoréme de Cauchy-Lipschitz. Nous commencons d’abord

par rappeler les fonctions localement lipschitziennes.

Définition 6.3.2 Soit f : I xU — R", on dit que f € Lip,(I x U) si pour tout (to, xo) €

I x U, il existe un voisinage V de (to, xo) dans I x U et une constante ¢ > 0 tels que

(¢, ), (t, 2") € VE [f(t @) = f(t, 2))] < clo —2|.

3.2 Théorémes de stabilité

Théoréme 6.3.2 (Théoréme de Lyapunov autonome [38]) Soit 0 un point d’équi-

libre de (8). S’il existe un voisignage V de 0 et une fonction

V:Y—-R'
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de classe C! telles que :
1. 'V soit définie positive (i.e. V() >0 Vex eV et V(z)=0<z=0).
2. La dérivée V pour (8) soit négative alors 0 est stable. La fonction V' est dite fonction
de Lyapunov.

Si de plus la dérivée V. pour (8) est définie négative alors 0 est asymptotiquement stable

(dans ce cas la fonction V' est dite fonction stricte de Lyapunov).

Théoréme 6.3.3 (Théoréme de Lyapunov non autonome [38]) Soit 0 un point d’équi-

libre de (9), s’il existe un voisinage Vy, et une fonction
| Vto — R+

de classe O telle que
1. 'V soit définie positive.
2. La dérivée V pour (9) soit négative (respectivement définie négative).
Alors 0 est stable. Si de plus, on a :

3. V est décrescente’ alors I'équilibre O est uniformément stable (respectivement uni-

formément asymptotiquement stable).

4. Si U = R" et V est radialement non bornée? alors I’équilibre 0 est globalement

uniformément stable (respectivement globalement uniformément asymptotiquement

stable).

Maintenant, nous allons introduire la notion de la stabilité exponentielle et quelques pro-
priétés.
Définition 6.3.3 ([2]) L’origine du systéme dynamique (8) est dit localement exponen-
tiellement stable sil existe des constantes w < 0, M > 0 et r > 0 telles que pour
o € B(0, 1), la solution x(.) de (8) issue de xog en t = 0 est définie sur [0, +oo[ et
vérifie :

lz(t)| < M |zo|e?.

1. Une fonction v : I x R™ — R est décrescente si limy,_ov(t, y) = 0.
2. v: I xR™ — R est radialement non bornée si lim,|_, o, v(t, y) = +00
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Le réel w < 0 est dit vitesse de la convergence ou exposant de la stabilisation.
L’origine du systéme dynamique (8) est dit globalement exponentiellement stable, si l'in-

égalité précédente est vraie pour tout xo € R™.

3 alors, l'origine du systéme linéaire

Rappelons que, si A est une matrice de Hurwitz,
& = Ax est asymptotiquement stable et le systéme non linéaire (8) est localement asymp-

totiquement stable. Méme, la solution décroit avec le temps de facon exponentielle.

Le théoréme suivant donne un résultat de stabilité asymptotique si le systéme est expo-

nentiellement stable.

Théoréme 6.3.4 ([2]) Sile systéme (8) est exponentiellement stable, alors il est asymp-

totiquement stable.

La réciproque de ce théoréme est fausse.

Exemple : © = —2° est asymptotiquement stable mais n’est pas exponentiellement stable.

3.3 Existence et unicité du systéme de noyaux

L’étude de existence, de I'unicité et de la continuité de la solution du systéme (3.33)-
(3.36) ( respectivement (3.44)-(3.47)), avec les conditions aux limites (3.37)-(3.40) ( res-
pectivement (3.48)-(3.51)), est similaire.

Considérons le "probléme de Goursat généralisé" dont les équations de noyau direct et

inverse sont un cas particulier. Nous définissons pour ¢ = 1,..,4 le systéme d’équations

3. c’est a dire les valeurs propres A de la matrice A, solutions de det(A I — A) = 0 sont & partie réelle
strictement négatives
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suivant :
ar(x)Fy (2, €) + a(§) Fe (2,6) = gffu(x,f)Fi(fc,f)+91(9€,€); (10)
a1 () Fy(2,€) — ea§) Fe(2,6) = gé‘m(w,i)f’i(%f)+92($>€), (11)
ca(2)F(2,8) — c1(§)F(2,6) = ifiai(fﬁ,ﬁ)l’i(w7£)+gg($,€) (12)
o () Fy (2, €) + o) F (2,6) = 2;84i(93,€)Fi(93,£)+94(93,§), (13)

avec les conditions aux limites suivantes

1

FYz,0) = q(z)F*(z,0) + q(z)F*(z,0) + hy (), (14)
F?(z,2) = hy(x), (15)
F3(z,2) = hs(a), (16)
FYz,0) = q3(2)F*(x,0) 4 qu(z)F?(z,0) + hy(z). (17)

Ce systéme est défini dans le domaine triangulaire A = {(z,£) : 0 < ¢ <ax < 1}.
Nous utilisons la méthode de la caractéristique pour montrer I’existence et I'unicité de ce

systéme d’équations. Ainsi, nous préférons d’utiliser ce théoréme :

Théoréme 6.3.5 ([36]) Considérons le systéme (10)-(13), avec les conditions aux li-
mites (14)-(17) tel que h;,q; € CN([0,1]), giei; € CN(A), 4,5 = 1,2,3,4 et c1,c9 €
CN([0,1]) avec ci(x),ca(x) > 0. Alors il existe une unique solution F* € CN(A) pour

i=1,2,3,4.
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Titre : Contribution a la suppression du phénomeéne stick slip et a la construction d’un observateur

de dimension infinie en forage pétrolier
Mots clefs :

Résumé : Les différents types de vibrations des garni-
tures de forage jouent un role important dans le dys-
fonctionnement des opérations de forage car celles-ci
conduisent & la rupture prématurée des trains de tiges,
par conséquent, & la perte de l'outil au fond du trou et
aussi & 'endommagement de la machine. En s’intéressant
au forage de type rotary, cette thése étudie le phénomeéne
des vibrations de torsion de point de vu, modélisation par
une EDP (modéle distribué) dont on établi les conditions
aux limites adéquats. Une large partie de notre analyse
dans ce mémoire concerne la commande du phénomeéne de
vibration de torsion conduisant & une vitesse de rotation
controlée sur le bord. La modélisation du phénoméne de
torsion affectant le train de tiges lors d’un forage pétrolier
a été représentée par une équation aux dérivées partielles
(1D) d’ordre deux: type linéaire intégrant le phénoméne
de frottement. Deux entrées apparaissent dans les condi-

Stabilisation, équation aux dérvées partielles, systéme rotary, équation différentielle ordinaire

tions aux limites en termes de vitesse de rotation du train
et de la réaction avec le sol. Il s’agit donc de désigner
la commande en vitesse qui assure la rotation adéquate
pour le forage et qui n’excite pas le phénoméne du torsion
en tenant en compte l'interaction de la formation avec le
sol. La stabilité de la garniture de forage dépend d’un sys-
téme de boue du fluide qui doit injecté. Nous traitons une
connexion entre le systéme de forage rotary et le systéme
du fluide. Nous obtenons un systéme couplé sous la forme
EDP-EDO. Egalement nous avons transformé le systéme
couplé & un systéme neutre avec retard. Nous achevons
ce mémoire par la construction d’une une loi de controle
pour lobservateur du systéme de forage rotary avec une
seule mesure aux limites dans le haut de la colonne pour
estimer les paramétres de ’outil de forage qui ne sont pas
accessibles & mesurer.

Title : Control of torsional vibrations in an oil platform

Keywords :

Abstract : The different types of drilling vibrations play
an important role in the malfunctioning of the drilling
operations because they lead to the premature rupture
of the trains, consequently, to the Loss of the tool at the
bottom hole and also damage to the machine. Much of
our analysis in this specification relates to the control
of the phenomenon of vibration of twisting leading to a
controlled rotational speed on the edge. The mathemati-
cal aspects and simulation results will be detailed. The
modeling of the torsion phenomenon affecting the drill
string during was represented by a second order partial
differential equation: linear type integrating the pheno-
menon of friction. Two entries appear in the boundary
conditions in terms of the speed of the train and the reac-
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tion with the soil. It is therefore a matter of designating
the speed which ensures adequate rotation for drilling and
which avoid the torsional phenomenon of twist taking into
account the interaction of formation with the soil. The
dynamic of the drill string stability depends on a system
of fluid which should be injected to bring cuttings out of
the well bore and amplify the torsional vibrations pheno-
mena. To suppress fracturing collapse or influx of fluids
surrounding the well, it is important to integrate the dy-
namic of the pressure in this study: PDE-ODE control
problem. Finally, we are concerned with the problem of
boundary observer stabilization for a system of hyperbo-
lic PDEs which describes the drilling systems. The design
relies on the top boundary measurements only.
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