
University of Évry
Laboratory IBISC

PhD Thesis

in Computer Science

Modelling and Analysing

Open Recon�gurable Systems

Defended by:

Viet Van PHAM

Supervisors:

Hanna KLAUDEL

Frédéric PÉSCHANSKI

Jury:

Reviewers: Laure PETRUCCI

Fabrice MOURLIN

Examinators: Romain DEMANGEON

Franck POMMEREAU

Cinzia DI GIUSTO

Supervisors: Hanna KLAUDEL

Frédéric PÉSCHANSKI

September 26, 2014

2

Abstract

Today we witness the rapid spread of highly dynamic recon�gurable and distributed

infrastructures that we group under the common name of open recon�gurable systems.

The communication topology of those systems can dynamically change � or recon�gure �

as a consequence of an internal or external concurrent activity. Labelled transition seman-

tics for open systems allow to take into account the external activities in an implicit way.

Open recon�gurable systems are commonly modeled using formalisms inspired by the

π-calculus. Name passing makes it possible to model dynamic communication topolo-

gies. In this thesis, we introduce the π-graphs, a variant of the π-calculus that among

other things enjoys a natural graphical interpretation. Moreover, the formalism has been

designed to serve as an intermediate language between the abstract π-calculus and more

concrete realizations, especially in the realm of high-level Petri nets.

We �rst propose a faithful encoding of π-graphs into high-level Petri nets that are

supported by common modelling and veri�cation tools. We show that the translation

can be lifted to an isomorphism between the two formalisms. Hence, the prototype tools

that are developed speci�cally for π-graphs can be used in conjunction with more mature

and general tools for Petri nets.

Based on this bidirectional encoding, we develop a high-level variant of the linear

temporal logic � namely the open system logic � to specify properties about the dy-

namic evolution of systems taking into account interactions within open environments.

The atomic propositions of the logic precisely capture the state properties of π-graphs

processes.

The whole framework has been implemented during the course of this thesis. Our

prototype tool provides a simulator for π-graphs models. These models can also be

compiled into high-level Petri nets and then manipulated using the SNAKES framework.

Finally, we provide an encoding of open system logic into linear temporal logic with

state properties to be used with the NECO model checker for the automated veri�cation

of properties. Thanks to the bidirectional encoding from-and-to high-level Petri nets,

counterexamples provided by the model checker for Petri nets can be easily reconstructed

in terms of the original π-graphs.

Keywords: Recon�gurable systems, Petri nets, π-calculus, temporal logic.

2

Résumé

Les systèmes ouverts recon�gurables sont aujourd'hui omniprésents dans le paysage

informatique : réseaux mobiles, calculs et données dans �le nuage�, etc. Une particu-

larité de ces systèmes est que leur topologie de communication évolue dynamiquement �

nous parlerons de recon�guration � en conséquence d'activités concurrentes internes ou

externes. Les systèmes de transitions étiquetées pour les systèmes ouverts permettent de

prendre en considération l'environnement extérieur de façon implicite.

Les systèmes ouverts recon�gurables sont souvent modélisés par des formalismes in-

spirés ou dérivés du π-calcul. Le passage de nom permet de modéliser la dynamique

des topologies de communication. Dans cette thèse, nous introduisons les π-graphs, une

variante du π-calcul qui possède, entre autre, une interprétation graphique naturelle. De

plus, le formalisme a été conçu pour servir de langage intermédiaire entre le π-calcul

abstrait et des formalismes plus concrets, en particulier dans la famille des réseaux de

Petri de haut-niveau.

Nous proposons tout d'abord une traduction formelle et prouvée des π-graphes vers des

réseaux de Petri de haut niveau supportés par des outils de modélisation et de véri�cation

courants. Nous montrons que cette traduction peut-être élevée au rang d'isomorphisme

entre les deux formalismes. Ainsi, les outils prototypes que nous avons développés dans

le cadre des π-graphes peuvent travailler de concert avec des outils plus stables et plus

généraux basés sur les réseaux de Petri.

En se basant sur cette traduction bi-directionnelle, nous développons une extension

de la logique temporelle linéaire (LTL) � la logique des systèmes ouverts recon�gurables �

permettant de spéci�er des propriétés portant sur la dynamique d'évolution de la topolo-

gie de communication dans le cadre d'environnements ouverts. Les propositions atom-

iques de cette logique caractérisent précisément les propriétés d'état des π-graphs.

Un prototype d'outil a été développé dans le cadre de cette thèse pour valider ex-

périmentalement l'approche proposée. Cet outil fournit un simulateur pour les modèles

exprimés dans le formalisme des π-graphes. Ces modèles peuvent être compilés en réseaux

de Petri de haut niveau et manipulés dans le cadre de l'outil SNAKES. En�n, nous pro-

posons une traduction de la logique des systèmes ouverts recon�gurables vers la logique

de plus bas niveau supportée par le véri�cateur de modèle NECO. Grâce à notre preuve

constructive d'isomorphisme entre les π-graphes et leur traduction en réseaux de Petri,

les contre-exemples générés pour les réseaux de Petri en cas d'invalidation de proposition

par NECO peuvent être réinterprétées et expliquées dans les termes des π-graphes.

Mots-clés: Systèmes recon�gurables, Réseaux de Petri, π-calcul, logique temporelle.

4

Acknowledgments

First and foremost, I would like to thank my PhD supervisors, Hanna Klaudel and

Frédéric Péschanski, for supporting me during the past three years. They patiently

provided the vision, encouragement and advise necessary for me to proceed through the

doctoral program and complete my thesis.

I also wish to thank the reviewers, Laure Petrucci and Fabrice Mourlin, for their

valuable comments and suggestions to improve the quality of the thesis.

I would like to express my sincere thanks to Franck Pommereau for answers to my

technical questions about the tool SNAKES, to Lukasz Fonc for answers about the tool

NECO. In addition, I would like to thank Aurelien Deharbe for his survey of the π-calculus

tools.

To my colleagues at laboratory IBISC � University of Évry, I am grateful for the

chance to become a member of the lab. Thank you for welcoming me as a PhD student

and also as a friend.

I would like to acknowledge the Ministry of Education and Training � Vietnam for

providing the scholarships for my doctoral studies.

Finally, I sincerely thank to my parents for their encouragement through these years.

Special thanks to my wife for her great support, patience and understanding.

6

Contents

1 Introduction 15

1.1 Contributions . 16

1.2 Structure of the thesis . 17

2 Background and related work 19

2.1 Open recon�gurable systems in the π-calculus 19

2.2 Petri nets . 22

2.2.1 Place/transition Petri nets . 22

2.2.2 High-level Petri nets . 24

2.2.3 Petri nets vs. process algebras . 26

2.3 Translation of π-calculus variants into Petri nets 27

2.3.1 Open systems vs. closed systems 28

2.3.1.1 Translation only for closed systems 28

2.3.1.2 Translation for open systems 29

2.3.1.3 Discussion . 30

2.3.2 Syntactic vs. semantic translation 30

2.3.2.1 Syntactic translation . 30

2.3.2.2 Semantic translation . 31

2.3.2.3 Discussion . 31

2.3.3 The π-calculus variants . 32

2.3.3.1 Repetitive behaviour . 32

2.3.3.2 Name comparison . 32

2.3.3.3 Discussion . 33

2.3.4 Veri�cation and tool support . 33

7

8 CONTENTS

2.4 Synthesis . 34

3 Modelling open recon�gurable systems 37

3.1 An example of open recon�gurable system 37

3.1.1 Overview of the system . 38

3.1.2 Functionality of components . 38

3.1.3 Describing the communication using ports 39

3.2 Modelling the system using π-graphs . 41

3.2.1 Modelling the system . 41

3.2.2 A scenario of the π-graphs evolution 42

3.3 A prototype tool for π-graphs . 47

3.4 Synthesis . 49

4 The π-graphs formalism 51

4.1 Syntax of π-graphs . 51

4.1.1 Diagrams Dia . 51

4.1.2 Replicators Rep . 52

4.1.3 Processes Proc . 52

4.1.4 Guarded actions φα . 53

4.2 Operational semantics of π-graphs . 54

4.2.1 Static part: Graph model of a π-graph 55

4.2.2 Dynamic part: Global context of a π-graph 56

4.2.2.1 Control �ow context . 56

4.2.2.2 Name context . 58

4.2.2.3 Logical clocks . 62

4.2.3 Operators on a name context . 63

4.2.3.1 Removing instantiations 63

4.2.3.2 Instantiating a name . 65

4.2.3.3 Exchanging instantiations 66

4.2.3.4 Re�ning dynamic partition 67

4.2.3.5 Initial name context . 69

CONTENTS 9

4.2.4 The evolution of a global context 70

4.2.4.1 Evaluating guards . 70

4.2.4.2 Commitment of actions 72

4.2.4.3 Graph rewrite rules . 75

4.3 Synthesis . 82

5 Translating a π-graph into Petri nets 83

5.1 Translation of π-graphs into Petri nets 83

5.1.1 An example of the translation . 84

5.1.1.1 Part I: Obtaining the Petri net structure 84

5.1.1.2 Part II: Translating the context 87

5.1.2 Formal de�nition of the translation 88

5.2 Conformance of the translation . 95

5.2.1 Local conformance . 96

5.2.1.1 Soundness for atomic actions 96

5.2.1.2 Soundness for synchronizations 103

5.2.1.3 Completeness for atomic actions 109

5.2.1.4 Completeness for synchronizations 113

5.2.2 Global conformance . 116

5.3 Synthesis . 117

6 Veri�cation 119

6.1 Context properties of π-graphs . 119

6.1.1 Classi�cation of context properties 119

6.1.2 Atomic context properties . 121

6.1.2.1 Atomic RI properties . 122

6.1.2.2 Atomic RIN properties 122

6.1.2.3 Atomic RIV properties 123

6.1.2.4 Atomic RIVN properties 125

6.1.2.5 Atomic RIN-RIN properties 126

6.1.2.6 Atomic RIV-RIV properties 127

10 CONTENTS

6.1.3 The logic of context properties . 128

6.1.3.1 Syntax of context properties 128

6.1.3.2 Well-formedness constraints 129

6.1.3.3 Derivation of context properties 132

6.1.3.4 Semantics of context properties 136

6.2 Temporal properties of π-graphs . 136

6.2.1 Kripke structure for π-graphs . 137

6.2.2 Syntax of π-graphs temporal properties 138

6.2.3 Semantics of temporal properties 139

6.2.4 Examples of π-graphs temporal properties 140

6.2.4.1 Safety properties . 140

6.2.4.2 Liveness properties . 141

6.2.4.3 Other properties . 141

6.3 Model checking with the NECO framework 142

6.3.1 Specifying properties in NECO 143

6.3.2 Translating properties of π-graphs 145

6.3.2.1 Translation of thread properties 145

6.3.2.2 Translation of name context properties 146

6.3.3 Processing counterexamples . 146

6.4 Experimental results . 147

6.4.1 Checking results for the original model 148

6.4.2 Checking results for the improved model 150

6.5 Synthesis . 151

7 Conclusion and Perspectives 153

7.1 Summary . 153

7.2 Future works . 154

List of Tables

2.1 Summary of translation from π-calculus into Petri nets 34

4.1 Derived synchronization rules . 80

5.1 Guards of atomic-transitions . 91

5.2 Guards of sync-transitions . 92

5.3 Arc labels of atomic-transitions . 93

5.4 Arc labels of sync-transitions . 118

6.1 Syntax of context properties . 129

6.2 Well-formedness rules for unary compound properties 130

6.3 Well-formedness rules for left parameters of binary compound properties 131

6.4 Well-formedness rules for right parameters of binary compound properties 131

6.5 Well-formedness proof of property ?r:Repl *i:Thrd active(r : Repl, i : Thrd, 1) 132

6.6 Results of checking on the original model 150

6.7 Results of checking on the improved model 150

11

12 LIST OF TABLES

List of Figures

2.1 A Petri net model of the tra�c light system 23

2.2 P/T nets with inhibitor and read arcs . 24

2.3 High-level Petri nets and transition rule 26

3.1 An overview of a RDP system . 38

3.2 Modelling the communication of the RDP system 40

3.3 The π-graphs model of the RDP system 42

3.4 A simpli�ed version of the RDP system 48

3.5 Semantics of the π-graphs of the simpli�ed model 48

3.6 The LTS of the simpli�ed model with modi�cations 49

4.1 A threads distribution of replicator R . 57

4.2 An example of name context . 60

4.3 Generating input name ?2 (and a new name environment) 63

4.4 Removing instantiations of two syntactic names a and d 64

4.5 Instantiating a name a with !2 . 66

4.6 Exchanging private fresh name ν1 with new fresh output name !2 67

4.7 Re�ning with an equality ΓC?1=!1. 68

4.8 Re�ning with an inequality ΓC?16=!1. 69

4.9 Evaluation of the guard [c 6= a][c = d] . 72

4.10 A bound output action [c = d]c〈a〉 . 74

4.11 The communication between [c = d]a〈c〉 and b(e) 78

5.1 A simple π-graph with one replicator . 84

5.2 Places of the translated net structure S. 84

13

14 LIST OF FIGURES

5.3 Adding atomic transitions . 85

5.4 Adding sync-transitions . 86

5.5 Adding the name context place pΓ . 86

5.6 Translation of the context producing a marking. 88

5.7 Dependence graph of soundness for an atomic action 97

5.8 Dependence graph of the soundness for a synchronization 103

5.9 Dependence graph of the completeness for an atomic action 110

5.10 Dependence graph of the completeness for a synchronization 114

5.11 Dependence graph of global conformance 116

6.1 Possible signatures of unary context properties 121

6.2 A sub part of the RDP system . 135

6.3 The LTS and the corresponding Kripke structure of π-graph π 138

6.4 Intuitive meaning of temporal modalities 139

6.5 An example of Petri net model . 144

6.6 The original π-graph model of the RDP system 149

6.7 The modi�ed π-graph model of the RDP system 152

Chapter 1

Introduction

Today we witness the rapid spread of highly dynamic recon�gurable and distributed in-

frastructures that we group under the common name of open recon�gurable systems. The

communication topology of those systems can dynamically change � or recon�gure � as

a consequence of an internal or external concurrent activity. We can �nd out many ex-

amples of this type of system in the real life, such as in ad-hoc networks where nodes can

dynamically appear or disappear or in the context of cloud computing where resources

such as computation tasks or virtual machines are spawned and destroyed dynamically.

Indeed, the overall structure of such systems is highly �exible and involves many dy-

namic recon�gurations. Another example is in banking systems where the server must

establish secure channels before performing money transfer transactions, and then close

these channels in a secure way. The dynamics of the structure in such systems play a

fundamental role to enforce the security of the transactions.

These kinds of large-scale distributed systems are of a very complex nature. Hence,

the design phase of these systems is a very di�cult part of the development process,

and it exhibits a very high level of risks. To support this design phase, modelling tools

represent a very important requirement. At the other end of the development process,

it is unavoidable that even in high-assurance systems some de�ciency will occur during

the maintenance phase. To understand the cause of such a de�ciency and the ways the

system could be corrected, modelling tools can also play a signi�cant role. Indeed, they

can be used to reproduce the de�ciency in the models and examine how these models

could be corrected. Correcting the models probably represents the best starting point for

the correction of the system itself.

Given the extreme complexity of the designs, one speci�c modelling tool cannot ful�ll

all the design requirements: the tools must be able to let engineers focus on speci�c

aspects of the systems. In this thesis, we discuss the tool requirements focusing on the

aspects related to dynamic recon�gurations.

There are two di�erent and complementary ways to approach the modelling of systems.

15

16 CHAPTER 1. INTRODUCTION

In the closed system approach, the objective is to describe the system itself together with

the environment in which it is supposed to operate. In the open system approach, the

objective is instead to model the system and the ways it can interact with its environment.

The important di�erence here is that the environment is kept as general as possible.

Closed systems are in general easier to formalize and it is also more likely to be supported

by modelling tools. However, as the interactions within the system and its environment

grow in complexity, the closed systems approach becomes less and less adapted. Indeed,

one must describe explicitly the system, the environment and the complex interactions

between the two. In general, we must consider some speci�c instances of the environment

so that the approach remains feasible but then we loose generality. Comparatively, in

open systems we focus on the complexity of the model exclusively. The complexity of

the environment must be taken into account by the formalism itself. This makes the

models simpler at the price of more complex formalisms. It is thus more di�cult to

develop modelling tools in this setting. It is clear that dynamic recon�gurations represent

quite complex interactions between the systems in which they occur and their external

environment.

Another argument in favor of the open systems approach is defended by the creator

of the π-calculus Robin Milner in [9]:

You can't do behavioural analysis with the chemical semantics [. . .] I think

the strength of labels is that you get the chance of congruential behaviours.

This says, in a way, that only the open systems approach allows to decompose the models

into sub-components, analyze the behaviors of these sub-components separately while

still understanding the behavior of the whole composition. Put in other terms, the open

systems can be modelled in a compositional way.

In this thesis, our starting point is the formalism of π-graphs [47], a variant of the π-

calculus that among other things both enjoys a traditional process algebra representation

as well as a visual representation in the spirit of Petri-nets [53] and the Petri-box calculus

[11]. Moreover, the formalism has been designed to serve as an intermediate language

between the abstract π-calculus and more concrete realizations in terms of high-level

Petri nets [31]. Our main objective in this thesis is to develop enough the theory of π-

graphs so that modelling and veri�cation tools based on this formalism can be developed

in practice.

1.1 Contributions

Our �rst contribution is to propose a faithful encoding of π-graphs into high-level Petri

nets that are supported by common modelling and veri�cation tools, especially the

1.2. STRUCTURE OF THE THESIS 17

SNAKES framework [52] (but also HELENA [25], Maria [36], etc.). Unlike previous

attempts, we show that this translation can be lifted to an isomorphism between the two

formalisms. Hence, we can go back-and-forth between the π-graphs and the translated

net. Compared to other translations of π-calculi into Petri nets, the proposed transla-

tion is the only one to support both the open systems approach of modelling and the

automated veri�cation of behavioural properties.

Based on this bidirectional encoding, we also develop a high-level variant of the linear

temporal logic � namely the open system logic � to specify properties about the dynamic

evolution of systems taking into account an open environment. The atomic propositions

of the logic precisely capture the state properties of π-graphs processes. This logic is much

more concrete than the usual logics developed in the realm of the π-calculus [18, 58, 16].

As such, we think it contributes to the general question of what it is to reason about open

recon�gurable systems. Moreover, thanks to our isomorphism, the logic is at the same

time a logic about the π-graphs and a logic about the translated Petri nets. This way, a

counterexample for a property that fails on the Petri nets side can be easily reinterpreted

on the initial π-graph model. This also means that the tools that are developed speci�cally

for π-graphs can be used in conjunction with more mature and general tools for Petri

nets.

As a �nal contribution, the whole framework has been implemented during the course

of this thesis. Our prototype tool provides a simulator for π-graph models. This model

can also be compiled into high-level Petri nets and then manipulated using the SNAKES

framework [52, 51]. Finally, we provide an encoding of open system logic into linear

temporal logic with state properties to be used with the NECO model checker [28, 27]

for the automated veri�cation of properties.

1.2 Structure of the thesis

The structure of the thesis is as follows.

In chapter 2, we discuss the scienti�c context of the thesis. We present some back-

ground about open recon�gurable systems and how the π-calculus can be used to model

such systems. We also recall the main Petri nets feature on which our translation is based.

Most importantly, we survey the related work concerning translations of π-calculus vari-

ants into Petri nets. Finally, in a synthesis we discuss the scienti�c positioning of this

thesis.

In chapter 3, we present at an informal level the formalism of π-graphs and how to use

it to model open recon�gurable systems. We illustrate this with a simple but non-trivial

example of an open client/server system. We also describe some user-level interactions

with our prototype tool.

18 CHAPTER 1. INTRODUCTION

In chapter 4, we present formally the syntax and the operational semantics of π-graphs.

In chapter 5, we present the translation of π-graphs into high-level Petri nets, and

prove that the translation is an isomorphism.

In chapter 6, we introduce the open system logic (OSL) which is used to specify

properties of open recon�gurable systems. We show how to translate π-graphs properties

into equivalent ones on the translated Petri nets, and then how to check these properties

using the model checker NECO. Some experimental results are presented at the end of

the chapter.

Finally, the conclusion and perspectives for this research work are presented in chap-

ter 7.

Chapter 2

Background and related work

The goal of this chapter is to describe the scienti�c context of this thesis. First, in

Section 2.1 we see how the notion of open recon�gurable systems is presented, especially

in connection with the π-calculus. Then, in Section 2.2, we provide some background

information about Petri nets, especially the high-level Petri net features that we require

in this thesis. Section 2.3 surveys the main related work concerning translations of π-

calculus variants intro Petri nets. Finally, in Section 2.4, we synthesize our scienti�c

positioning and provide an overview of our approach.

2.1 Open recon�gurable systems in the π-calculus

As mentioned in the introduction, open recon�gurable systems are systems whose commu-

nication topologies can dynamically change (recon�gure) as a consequence of an internal

or external concurrent activity.

The π-calculus [41, 55, 44], developed by Robin Milner, is a process algebra that can

be considered as the continuation of the calculus of communication systems (CCS) [40].

The main di�erence is that in π-calculus, channels can be transferred along channels �

this is called channel passing � which is quite useful to describe dynamic recon�gurations

in systems.

Let us consider the two simple de�nitions of π-calculus processes below:

Recp
def
= c(x).d〈x〉.Recp and Proc

def
= d(y).τ.y〈a〉.P roc,

The de�nition Recp is for a receptionist of requests from external clients, and the Proc

is a processor for such requests. In the receptionist, the action pre�x c(x) represents an

input on channel c bound to a variable x, and d〈x〉 emits the value bound to x along

channel d. The τ pre�x allows as in CCS to describe that �something happened� in the

process without precisely describing the nature of this internal event. The two de�nitions

19

20 CHAPTER 2. BACKGROUND AND RELATED WORK

are recursive which means that the receptionist and processor always accept/handle new

requests from the clients.

The system consists in making these two processes run in parallel, which is simply

denoted by:

Recp | Proc. (2.1)

which through unfolding yields:

c(x).d〈x〉.Recp | d(y).τ.y〈a〉.P roc

There are two basic operational semantic settings for the π-calculus: the reduction

semantics and the labelled transition semantics.

In the reduction semantics, the transitions are unlabelled and of the form P → Q

with P a process and Q its continuation after a single action. The possible actions in

reduction semantics are either silent steps (explicit τ 's) as in the following example:

τ.P → P

or through synchronization, which only occur when two processes communicate on the

same channel, as in the following example:

c〈a〉.P | c(x).Q→ P | Q{a/x}

The latter example illustrates the evolution of processes after a communication between

an output c〈a〉 and an input c(x), where Q{a/x} denotes the substitution of x by a in

process Q. To illustrate channel passing, consider the following system:

(νa) [c〈a〉.P | c(x).x〈b〉.Q | a(y).R]

The name a is restricted to the three processes P , Q and R, which means the external

environment cannot interact using the channel a. Note also that the process Q in the

middle has no reference to a. The only possible reduction is a synchronization between

processes P and Q, yielding :

→ (νa) [P | a〈b〉.Q | a(y).R]

Now the channel a has been passed from P to Q, which means now Q and R can com-

municate, as follows:

→ (νa) [P | Q | R{b/y}]

The system has been recon�gured so that the processes Q and R can interact.

This reduction semantics is only suitable for capturing the internal behavior of a

system. Put in other terms, it is only suitable for closed systems modelling. For example,

there is no possible reduction from the following processes:

(νa)c〈a〉.P 9 and d(x).Q9 and c〈a〉.P | d(x).Q9

2.1. OPEN RECONFIGURABLE SYSTEMS IN THE π-CALCULUS 21

From the point of view of reductions, the three processes above are identi�ed with the

deadlock process 0. This is also the case for the system speci�ed in (2.1). We may say

that from the point of view of analyzing process behaviours this is not satisfactory.

In labelled transition semantics, on the contrary, all the �deadlocked� processes above

have an interpretation that distinguish them from 0. Compared to reduction semantics,

each transition in the labelled case is of the form P
µ−→ Q, where µ is an action label (i.e.,

input, output, bound output or silent). Our �rst example yields:

(νa)c〈a〉.P cνa−−→ P

The action cνa is called a bound output and represents some di�culty in analyzing π-

calculus behaviors. The idea is that the channel a was private before being sent to the

external environment. Clearly it cannot be considered private anymore since it is known

externally. The second example is an input from the environment, which also represents

some di�culty. A �rst interpretation is called the early semantics consists in replacing

the name received from the environment by �all the possible names�:

d(x).Q
du−→ Q{u/x} for any name u

In the late semantics the idea is to keep the variable x bound in the transition labels:

d(x).Q
d(x)−−→ Q

There are many implications for this choice, and we will see that it is a non-trivial issue

when translating to Petri nets.

The �rst transition is :

d〈k〉.Recp | d(y).τ.y〈a〉.P roc

in the case that process Recp receives the input k on channel c. Now, both processes can

communicate on the same channel d, and the system may evolve to

Recp | τ.k〈a〉.P roc

Finally in:

c〈a〉.P | d(x).Q

the processes are deadlocked in both the early and late case since they try to synchronize

on a distinct channel. The symbolic semantics would trigger the following transition:

c〈a〉.P | d(x).Q
c=d,τ−−−→ P | Q{a/x}

which means the transitions is under the condition that the names d and c are equal after

the synchronization between c〈a〉 and d(x).

22 CHAPTER 2. BACKGROUND AND RELATED WORK

The early, late and symbolic semantics are all suitable to reason about open sys-

tems in that they all consider implicitly the most general external environment possible.

The de�nition for open recon�gurable systems that we will thus follow in this thesis is

roughly the class of systems that can be modelled by π-calculus variants in late symbolic

semantics, i.e., the interpretation that is the �most open� of all.

2.2 Petri nets

Petri nets [42, 53, 54, 49] are a mathematical and graphical model invented by Carl Adam

Petri and introduced in his doctoral dissertation �Communication with automata� [50].

It is suitable for modelling and veri�cation of distributed systems, in particular, thanks

to several decidability results [24, 29]. Moreover, many support tools [4] are developed

for Petri nets for the purpose of veri�cation. In this section we present place/transition

Petri nets and their extensions (with read arcs and inhibitor arcs [14]), which are used

for the translation of π-calculus in [39, 38, 15], high-level Petri nets, which are used in

our translation and the framework SNAKES+NECO [51, 27] which allows us to specify

and verify high-level Petri nets.

2.2.1 Place/transition Petri nets

Place/transition Petri nets (or P/T Petri nets for short) are a widely used formalism for

modelling and analyzing distributed systems and provided with many support tools. We

consider �rst an example of modelling using P/T Petri nets, and then give their formal

de�nition.

Consider the tra�c light system modelled by a Petri net depicted in Figure 2.1. The

system has three states which are represented by three circles with labels red, green and

yellow, called places. Initially, suppose that the light is red, represented by a bullet, called

a token, inside the place red. The action of changing states of the system is represented

by rectangles, called transitions, with labels rg, gy and yr. The transition with label rg

changes the system from red to green, gy changes the system from green to yellow and

yr changes the system from yellow to red. These transitions are connected to places by

arcs that represent the �ow of changing states.

Transition rg is enabled if the system is in state red, i.e., the token is present at place

red. If the transition is enabled then the system may change to state green represented by

�consuming� the token from place red and �produce� a token to place green. The �ring

of transition rg changes the system state from red to green, depicted in Figure 2.1b.

Similarly, the transition gy is enabled if the system is in state green, yr is enabled if the

system is in state yellow.

2.2. PETRI NETS 23

red
rg

green
gy

yellow

yr

(a) Initial state (red)

red
rg

green
gy

yellow

yr

(b) Next state (green)

Figure 2.1: A Petri net model of the tra�c light system

More generally, a place may contain several tokens and a transition may consume

and produce several tokens. A P/T net is composed of a static and a dynamic part.

The static part is de�ned by a bipartite directed graph, called a net structure, while the

dynamic part is given by a mapping from the set of places to natural numbers, called a

marking.

De�nition 2.1. A P/T net is a 5-tuple, PN = (P, T, F,W,M0) where:

• P and T are �nite sets of places and transitions, such that P ∩ T = ∅;

• F ⊆ (P × T) ∪ (T × P) is a set of arcs (�ow relation);

• W : F → N+ is a weight function;

• M0 : P → N is the initial marking which associates with each place the number of

tokens that it carries.

The system behaviour can be described in terms of markings (system states) and their

changes. In order to simulate the dynamic behaviour of a system, a markingM of a Petri

net evolves according to the following transition (�ring) rule:

1. A transition t is said to be enabled if each input place p is marked with at least

W (p, t) tokens, where W (p, t) is the weight of the arc from p to t, i.e., W (p, t) ≤
M(p).

2. If transition t is enabled, then it may �re (depending on whether or not the event

actually takes place).

3. A �ring of an enabled transition t at a marking M removes W (p, t) tokens from

each input place p and adds W (t, p) tokens to each output place p, where W (t, p)

is the weight of the arc from t to p, i.e., for each place p the new marking M ′ is

M ′(p) = M(p)−W (p, t) +W (t, p).

A �ring of t at a marking M is denoted by M [t〉M ′.

These notations may also be extended to occurrence sequences de�ned as follows:

24 CHAPTER 2. BACKGROUND AND RELATED WORK

De�nition 2.2 (Interleaving semantics of Petri nets). Let PN = (P, T, F,W,M0) be a

P/T net, t1, t2, · · · ∈ T be transitions of PN , and M1,M2, . . . be markings.

• σ = M0t1M1 . . . tnMn is a �nite occurrence sequence of PN if and only if ∀i, 1 ≤
i ≤ n : Mi−1[ti〉Mi;

• σ = M0t1M1 . . . is an in�nite occurrence sequence of PN if and only if ∀i, 1 ≤ i :

Mi−1[ti〉Mi.

A marking M is said to be reachable in a P/T net PN = (P, T, F,W,M0) if there is

a �nite occurrence sequence M0t1M1 . . . tnMn such that Mn = M .

t2

p1

p2

p3

t1

(a) Inhibitor

t2

p1

p2

p3

t1

(b) Read arc

Figure 2.2: P/T nets with inhibitor and read arcs

P/T nets can be extended by inhibitors or read-arcs which are illustrated in Figure 2.2.

An inhibitor permits to test the absence of tokens in an input place of a transition. In

Figure 2.2a, transition t2 is enabled if place p1 has no token (which is the case in the

given marking). On the contrary, read arcs permit to check for presence of tokens in

input places of a transition. In Figure 2.2b, transition t2 is enabled if place p1 has at

least one token (which is not the case in the given marking). The �ring of a transition in

both variants may produce a new marking like in P/T nets.

De�nition 2.3. A P/T Petri net is said to be k-safe for some k > 1 if and only if in

any reachable marking M , the number of tokens in each place p is M(p) ≤ k. It is called

just safe if it is 1-safe.

2.2.2 High-level Petri nets

In P/T Petri nets tokens are not distinguishable, they are considered as �black tokens�.

In our translation, we use high-level Petri nets in which tokens are distinguishable and

structured, arcs are annotated with multisets of expressions, and transitions have �ring

conditions, called the guards. High-level Petri nets used in this thesis are de�ned as

follows.

De�nition 2.4. A high-level Petri net is a tuple N = (P,T,U,G; M), where:

2.2. PETRI NETS 25

• P and T are sets of places and transitions, such that P ∩ T = ∅;

• (P× T) ∪ (T× P) is the set of arcs;

• U is a labelling mapping for each element of P ∪ T ∪ (P× T) ∪ (T× P), such that

� for each place p ∈ P, U(p) gives its type (the set of admissible tokens);

� for each transition t ∈ T, U(t) is its (possibly empty) label;

� for each arc in (P×T), U((p, t)) is a (possibly structured or empty) expression

with variables compatible with U(p), and analogously for arcs in (T× P);

• G is a mapping associating a guard (decidable Boolean formula) with each t ∈ T;

• M is a marking associating with each place p ∈ P a set of (possibly structured)

tokens in U(p).

As usual in high-level Petri nets [32, 31, 34], a transition t in T is enabled at a marking

M if the following two conditions are true:

1. There exists a binding ρ for the variables in its guard and in the arc inscriptions

adjacent to t such that ρ is compatible with the type of each place p adjacent to t,

and makes the guard G(t) true.

2. For each input place p of t, there are enough tokens to satisfy the �ow, i.e., M(p) ⊇
ρ(U(p, t)).

The occurrence of t under ρ has the label ρ(U(t)) and produces a new marking M′ by

consuming the tokens in all input places of t and producing the new ones according to

the arc annotations and conditions expressed in the guard on the output places. More

precisely, for each p ∈ P, the �ring of t removes tokens in ρ(U(p, t)) from p and put tokens

in ρ(U(t, p)) on p. Such an occurrence of t is denoted M[t:ρ〉M′, or M[t:ρ(U(t))〉M′ if we
are only interested in the e�ect of the occurrence.

Let us consider an example of transition rule for high-level Petri nets. Suppose that

we have a high-level Petri net with its initial marking M0 as in Figure 2.3a. The net

consists of places p1
1, p

1
2 and pΓ, and a unique transition t. The type of both places pru and

prv is a Cartesian product of sets of identi�ers, which means the tokens in those places

are tuples of the form (j, k), denoted j.k. We deliberately use structured tokens, for

example, the token �1.2� may be understood as a thread 2 in replicator 1. So, the arc

labels connecting p1
1 and p2

1 to t are also of the form r.i, where r and i are variables.

Place pΓ contains only one structured token Γ0 (which may be the whole name context of

π-graphs we will see in the next chapter) and the adjacent arcs are labelled with variables

Γ and Γ′. Transition t represents the action τ and it is enabled at marking M0 if there

exists a binding for variables r, i,Γ and Γ′ such that its guard [Γ = Γ′] is true.

26 CHAPTER 2. BACKGROUND AND RELATED WORK

t

[Γ = Γ′].τ

1.1 1.2

pru

r.i
prv

r.i

Γ0

pΓ

Γ Γ′

(a) A high-level Petri net

with its initial marking M0

t

[Γ = Γ′].τ

1.2

pru

r.i
1.1

prv

r.i

Γ0

pΓ

Γ Γ′

(b) Marking M1 after �ring t

with binding ρ1 from M0

t

[Γ = Γ′].τ

pru

r.i
1.1 1.2

prv

r.i

Γ0

pΓ

Γ Γ′

(c) Marking M2 after �ring t

with binding ρ2 from M1

Figure 2.3: High-level Petri nets and transition rule

The high-level Petri net and its initial marking is given in Figure 2.3a. There are two

possibilities for �ring transition t corresponding to two bindings ρ1 = [r = 1, i = 1,Γ =

Γ0,Γ
′ = Γ0] and ρ2 = [r = 1, i = 2,Γ = Γ0,Γ

′ = Γ0]. Suppose that we choose to �re the

transition with binding ρ1, then the marking M0 evolves to M1, as shown in Figure 2.3b.

After �ring the transition with binding ρ1, there is only one possibility for the next

�ring, which is with binding ρ2 (actually, recomputed at marking M1). Similarly, if t �res

with ρ2, then the marking M1 evolves to M2 as shown in Figure 2.3c.

The notions of reachability and occurrence sequence naturally extend to high-level

nets. Similarly, a high-level Petri net is said to be k-safe (k ∈ N+ is a natural number not

zero) if and only if for any reachable marking M , the number of tokens in each place p is

less or equal than k. For example, it can be checked that the net in Figure 2.3 is 2-safe.

2.2.3 Petri nets vs. process algebras

Petri nets and process algebras are two widely known and well studied formalisms dealing

with concurrency. However, their advantages are rather di�erent and sometimes comple-

mentary.

The advantages of Petri nets include the following:

• they make a natural distinction between states and activities, this corresponds to

the distinction between net places (local states) and transitions (local activities);

• they are well suited to express distributed systems as their global states and global

activities are derived from the local ones;

• they are easy to understand and manipulate thanks to their graphical representa-

tions;

• they are also formally de�ned making them usable for veri�cation purposes.

2.3. TRANSLATION OF π-CALCULUS VARIANTS INTO PETRI NETS 27

On the other hand, the advantages of process algebras are the following:

• they are directly related to programming languages;

• they are compositional, meaning that they make it possible to construct in a struc-

tural way larger systems from smaller ones;

• they facilitate reasoning about important properties of systems using related logics;

• they are often provided with a variety of algebraic laws making it possible to ma-

nipulate systems or to prove them correct with respect to some speci�cations.

The idea of combining the advantages of both formalisms in a uni�ed way is not new

and several works have been published in this �eld [35, 43, 30, 57]. Petri Box Calculus

(PBC) [10] (and Petri Net Algebra (PNA) [11], which is its generalisation) appears in

this context as perhaps one of the most original. Like a process algebra, it is composed of

a syntax in terms of box expressions and has a semantics in terms of safe low-level Petri

nets. The main operators of PBC are on one hand those allowing to model control �ow,

i.e., the sequential composition, the parallel composition, the nondeterministic choice,

the recursion or an asynchronous link, and of the other hand those dedicated to model

communications, i.e., a synchronization and a restriction, which have the particularity to

be separated from the parallel composition. These operators have their counterparts in

the semantic domain of boxes, i.e., safe low-level nets provided with composition interfaces

on places and transitions. Actually, a composition operation on boxes is de�ned for each

operator of the syntax.

PBC and PNA have been used to give the semantics of CCS process algebra [40, 6]

and many dedicated speci�cation languages. High-level variants of PBC, the family of

M-nets [34, 12] have been used to give the semantics of complex programming constructs,

such as procedures, exceptions or threads in the context of distributed systems. They

have also been used in [19, 20] to give one of the �rst syntactic non-reduction semantics

to mobile systems, such as a variant of π-calculus. However, the net class used for these

approaches are di�erent, and often signi�cantly more complex, than the class of high-level

nets used in this thesis.

2.3 Translation of π-calculus variants into Petri nets

In the literature, there are several works related to the translation of π-calculus variants

into Petri nets. We survey the most signi�cant of such works and classify them according

to the following criteria:

1. Modelling approach: Open systems vs. closed systems.

28 CHAPTER 2. BACKGROUND AND RELATED WORK

2. Nature of the translation: Syntactic vs. semantic.

3. Expressivity: supported π-calculus features.

4. Tool support: no support, ad-hoc tools or reuse of existing tools.

2.3.1 Open systems vs. closed systems

The existing translations of π-calculus into Petri nets are almost equally divided between

the ones that support the open systems approach of modelling and the ones that only

support the closed systems approach.

2.3.1.1 Translation only for closed systems

There are two main works concerning the translation of variants of the π-calculus with

reduction semantics into Petri nets:

In paper [38], the author presents the semantic translation of a π-calculus variant into

P/T nets. The translation is proved isomorphic and the π-calculus states can be retrieved

from the Petri net up to an adapted notion of structural congruence. This translation

may under some conditions � either syntactic and decidable (in�nite handler process) or

semantic and undecidable (structural stationarity) � provide �nite representations for dy-

namically recon�gurable systems with potentially an unbounded number of components

and connections. This way behavioural properties of some in�nite-state systems can be

veri�ed automatically. To that end, a modelling and veri�cation tool PETRUCHIO [5]

has been implemented. For the veri�cation part, the model checker LoLA [2, 56] can be

reused thanks to the target language of the P/T nets.

In paper [39], the author presents a translation of �nite control processes (FCP) to

safe low-level Petri nets with read arcs. The translation can be performed in three main

steps:

1. model the substitution σ that maps the bound names and formal parameters oc-

curring in the FCP and active at the current π-calculus state to their value, as a

set of Petri nets places (called the substitution net).

2. translate the control of each thread by adding transitions into the substitution

net. Each subterm t of the thread, which may be a stop process 0, a call Kbãc, a
restriction νr.S or a sum, is translated into a subnet with a unique entry place.

3. synchronize the subnets corresponding to di�erent threads on communication ac-

tions. If t and t′ are two transitions labelled by a〈b〉 and x(y), respectively, between

two di�erent threads, a set of transitions implementing the communication is added.

2.3. TRANSLATION OF π-CALCULUS VARIANTS INTO PETRI NETS 29

Based on this translation, an ad-hoc veri�cation tool was developed.

2.3.1.2 Translation for open systems

There are three main works related to open systems:

In [15], the authors present the translation of early labelled semantics of a π-calculus

variant into place/transition Petri nets with inhibitor arcs. They consider a special feature

of con�ict names to ensure the mutual exclusion of actions. Each place of the translated

net corresponds to either a sequential process with its con�ict names, or a set of con�ict

names shared by parallel processes or �nally a set of restricted names. Transitions are

constructed using axioms which describe the behaviours of silent action, input, output,

bound output and synchronization. The authors present also some decidability results

(such as the satisfaction of linear time µ-calculus formulae or reachability) for a subset

of the π-calculus generating �nite nets.

In [21], the authors propose a structural translation of possibly recursive π-calculus

terms for late transition semantics into high-level Petri nets. First, the term is translated

into context-based representation in which restrictions are removed and the context is the

interpretation of names. Then, the context-based representation is used for constructing

the Petri net. Moreover, authors informally explain how to extend the translation for

match in relatively straightforward way (but not for the mismatch). Notice that even for

simple �nite π-calculus systems the state-space of the translation is in�nite.

Paper [48] presents a syntax-driven translation of the π-graphs with iterators based

on late semantics into �nite, one-safe coloured Petri nets. The translation is performed in

2 steps: translating the control �ow (which gives the net structure) and translating the

context (which gives the corresponding initial marking). First, the translation of control

�ow is synthesized from monadic nets, polyadic nets and iterator nets using operators of

relabelling, disjoint union and merge.

• Amonadic net is used to encode directly the constructs input/output and match/mis-

match (separate match/mismatch from input/output), each of them is translated

into a unique place with corresponding type. The place is connected to a set of con-

text transitions corresponding to semantics rules that are potentially enabled when

these constructs are in redex position, and is connected to a single predecessor

transition and a successor transition.

• A polyadic net is used to encode directly the constructs such as sum, parallel and

silent. Each of them is translated into a place which is connected to a single

corresponding context transition. The place has potentially multiple predecessors.

• An iterator net is used to encode directly iterator constructs.

30 CHAPTER 2. BACKGROUND AND RELATED WORK

Next, the context translation is performed as follows:

• The global context Γ is translated into a unique context place with a single token

Γ, it is connected to all context transitions.

• A unique observation place Ω is connected to all context transitions, it contains

information about the current observation.

• Finally, a reset transition is connected to the observation place allowing to discharge

the previous observation, and the guards are de�ned for all context transitions.

2.3.1.3 Discussion

It is clear that the translation of closed systems is simpler than the one of open systems.

For example in [48], in the same framework both approaches are compared and quoting

the authors:

�... considering the reduction semantics only, our translation can be greatly

simpli�ed ...�

Moreover, we can also observe that the only veri�cation tools based on Petri net trans-

lations are for closed systems only. However, the translation of open systems is more

faithful to the traditional π-calculus semantics. It is even required when reduction se-

mantics is not enough. For example, with reduction semantics we cannot observe an

input action. Let us reproduce once more the quote of Robin Milner[9]:

You can't do behavioural analysis with the chemical semantics [. . .] I think

the strength of labels is that you get the chance of congruential behaviours.

We can also observe that late transitions require higher-level Petri nets if compared to

early transitions. This can be explained because the bound names appearing in the tran-

sition labels involve a notion of data structure and related computations in the translated

nets. This is especially obvious in paper [48].

2.3.2 Syntactic vs. semantic translation

2.3.2.1 Syntactic translation

In a syntactic translation, the structure of the translated Petri net corresponds directly

to the syntactic structure of the initial π-calculus term.

2.3. TRANSLATION OF π-CALCULUS VARIANTS INTO PETRI NETS 31

In [21] the structural translation is for late semantics and results in high-level Petri

nets with a �nite net structure but possibly having in�nite state-space even for some

�nite control processes.

In [39] the translation is for reduction semantics and results in low-level Petri nets with

read arcs which has �nite net structure and �nite state-space. The language supports

only �nite control processes.

In [48], the translation is for late semantics and results in high-level Petri nets with

a �nite structure and �nite state-space. The language supports �nite control processes

using iterators. In all three approaches, the size of the translated net is polynomial.

2.3.2.2 Semantic translation

The semantic translation of a π-calculus term is performed by building the abstract

state-space of the term, then translating this state-space into Petri nets.

In [38], the translation is for reduction semantics and results in P/T nets. The ob-

tained net is �nite for �nite behaviours and potentially in�nite for some in�nite control

processes. However, in�nite handler processes and the more general class of structural

stationary processes � which has in�nite state-space� are also translated to �nite P/T

nets.

In [15], the translation is for early labelled causal semantics and results in low-level

Petri nets with inhibitor arcs. The obtained net is potentially in�nite.

In both cases, the size of the translated net, when �nite, is potentially exponential.

2.3.2.3 Discussion

Semantic translations require simpler classes of Petri nets and are thus more easily sup-

ported by veri�cation tools. However, the structural translations are conceptually simpler

because they are closer to the input language. Moreover, it is easier to be modular. If

the source language is modular then we can apply compositional translation of π-calculus

term, e.g., in the case of [21], the authors introduce a compositional translation where the

construction of a resulting net is driven by the syntactic structure of a π-calculus term,

with net composition operators corresponding to the process algebra operators. Finally,

the translated nets are of a polynomial size while it is potentially exponential in the case

of semantics translations. It seems likely that for the quite high-level late semantics the

only reasonable approach is a structural translation. The �nite translation of in�nite

control processes seems on the other hand restricted to semantic approaches.

32 CHAPTER 2. BACKGROUND AND RELATED WORK

2.3.3 The π-calculus variants

Almost all the π-calculus variants considered in the translations have common features,

such as a pre�x α.P , where α can be an input c(x), an output c〈a〉 or a silent action

τ , parallel composition P | Q, a non-deterministic choice P + Q. The variation mostly

concerns the expression of repetitive behaviours and the support for name comparison

through match and mismatch.

2.3.3.1 Repetitive behaviour

General recursion In languages that support general recursion we can de�ne processes

with parameters, like D(x1, . . . , xn)
def
= P , where xi are formal parameters and P is a π-

calculus process possibly containing calls of the form α.D(v1, . . . , vn). In particular, one

may de�ne processes having a parallel composition inside the recursion, like

E
def
= a〈b〉.E | a(x).E.

Languages with general recursion are the most general languages in the sense of ex-

pressivity, however, most non-trivial properties are undecidable for them, for example

state-space computation, reachability. The languages translated in [15, 38, 21] support

general recursion.

Limited recursion Languages with limited recursion do not support parallel operators

within recursion (it is equivalent to �nite control processes). For example, they accept

the process de�nition like D
def
= a〈b〉.D, but not E

def
= a〈b〉.E | a(x).D. The language in

[39] is such a case.

Iterators Repetitive behaviours can be also speci�ed using iterators, like in [48]. For

example, I : (νk)∗a(c).c〈k〉.0 is the de�nition of an iterator with label I. It is structurally

equivalent to �nite control processes.

2.3.3.2 Name comparison

Usually, in π-calculus languages, name comparison can be a match or a mismatch. A

match between two names a and b, denoted by [a = b], is a comparison between these

two names, which is evaluated to true if they are equal. In contrast, a mismatch between

a and b, denoted by [a 6= b], is evaluated to true if they are distinct.

Match and mismatch have non-trivial labelled semantics. Match is essential because

synchronization requires an implicit match (at least in late transition semantics). It

is sometimes argued (e.g., in [44] or [55]) that mismatch is less important. But works

2.3. TRANSLATION OF π-CALCULUS VARIANTS INTO PETRI NETS 33

about testing equivalence for π-calculus [13] argue the contrary. In most cases, mismatch

semantics is complex. The languages in [38, 15] do not provide match and mismatch,

while in [21], the authors informally explain how to extend the translation for match

in a relatively straightforward way (but not for mismatch), and in [39] the the authors

discuss only informally the integration of match and mismatch. The main argument is

that mismatch cannot be added in a simple way because to test if [x 6= y] we need to

test x = a and y 6= a, or [x 6= a] and [y = a], where [x 6= a] complements [x = a]. In

recent paper [48] both match and mismatch are supported thanks to the introduction of

an explicit equivalence of names and distinctions.

2.3.3.3 Discussion

Match and mismatch are complex and formally taken into account only in [48] despite

their importance, especially for match. Although mismatch is less fundamental outside

late transition semantics (not in the cases of [39, 38, 15]). The challenge is how to allow

full expressivity similar to general recursion but with simple criteria for decidability.

For example, in [38], the criterion of structural stationarity is complex and only semi-

decidable.

2.3.4 Veri�cation and tool support

There are many existing support tools for Petri nets, which can be classi�ed along the

classes of Petri nets that they support: from low-level P/T nets to higher-level nets.

In the related work, the translation of [38] uses LoLA [2, 56], a model checker for

P/T nets. The properties are speci�ed using computational tree logic (CTL). Moreover,

this tool uses reduction techniques and supports simple properties such as deadlocks or

reachability checking. The tool MPSat [3, 33] used in [39] is an ad-hoc tool.

For high-level nets, there is no existing approach with tool support.

Discussion

In general, the motivation of translating π-calculus into Petri nets is to reuse existing

veri�cation tools for Petri nets. For example, [38] translates π-calculus into P/T net so it

can reuse tools. However, in [39], the translated net is beyond P/T net, the author must

develop an ad-hoc tool. Other translations face both theoretical and practical problems.

The work [15] translates π-calculus into in�nite net structure, [21] translates into in�nite

state space, thus they cannot reuse existing tools (theoretical problem). Moreover, the

class of translated nets does not match an existing tool (practical problem).

34 CHAPTER 2. BACKGROUND AND RELATED WORK

Paper Open/

Closed

Syntactic/

Semantic

Petri nets

class

Expr. Match Mismatch Tool

existing

[39] Closed Syntactic Low-level

+ read-arcs

FCP Informal Informal Ad-hoc

[48] Open Syntactic High-level FCP Yes Yes No

[38] Closed Semantic P/T Full No No Existing

[15] Open Semantic Low-level

+ inhibitors

Full No No No

[21] Open Syntactic High-level Full Informal No No

Table 2.1: Summary of translation from π-calculus into Petri nets

2.4 Synthesis

The main objective of the thesis is to automate the veri�cation of recon�gurable systems.

Our approach is to translate the π-calculus, in which the systems are modelled, into

Petri nets and then use existing tools for Petri nets to analyze the translated net. The

summary of our investigation about translations of π-calculus variants into Petri nets is

provided in Table 2.1.

In the case of closed systems, the semantic translation of [38] can target place/tran-

sition Petri nets, and there are existing e�cient tool in this cases, LoLA [2, 56] in this

case is such an example. The problem of semantic translations is that the obtained Petri

nets are potentially (and in all but the simpler cases) of an exponential size. It seems

that for this reason only syntactic translations are more appropriate. The translation

of [39] supports �nite control processes and requires only slightly higher-level (but still

low-level) Petri nets. Thus, an ad-hoc tool was developed in this case. In summary, we

can say that for closed systems, the problem we address in this thesis is already solved.

However, the situation is less ideal in the case of open systems. As the matter of fact,

there is no existing approach with any form of tool support, without talking about the

reuse of an existing tool. This is somewhat unsatisfying since e�cient veri�cation tools

exist even for (not too) high-level Petri nets. The challenge is to �nd a class of high-level

Petri nets that is expressive enough for the translation and has a direct support in an

existing tool. One problem we face is the very large gap between the very abstract π-

calculus formalisms on the one side, and the much more concrete Petri nets on the other

side. Instead aiming for a direct translation, that we think is very hard, we rely on an

intermediate model � the π-graphs [46, 45, 47] � that proves very useful to reduce this

abstraction gap. The π-graphs variant we consider in this thesis provides all the features

of the π-calculus (plus some more such as an explicit representation of threads). Unlike

the variant that is translated to Petri nets in [47], it supports a more general form of

repetitive behaviors through the notion of replicators. Meanwhile, the π-graphs are much

2.4. SYNTHESIS 35

closer � both in spirit and technically � to the Petri nets than the more classical π-calculi.

36 CHAPTER 2. BACKGROUND AND RELATED WORK

Chapter 3

Modelling open recon�gurable systems

using π-graphs

This chapter introduces the π-graphs formalism from a modelling perspective. The dis-

cussion remains mostly informal. First, we describe a π-graphs model for a small but

non-trivial example of an open client/server system. Based on this example, we can

illustrate most of the modelling features of the proposed formalism. Then we also pro-

vide some example of interactions with the prototype tool we developed to support the

modelling and veri�cation activities using π-graphs.

3.1 An example of open recon�gurable system

We mostly follow the same notion of open recon�gurable system as the one of the π-

calculus and related formalisms, especially [37]. However, there are several speci�cities in

the π-graphs that we intend to illustrate based on a simple although non-trivial example.

This is a model of a simple client/server system that exhibits the main properties of

recon�gurable systems :

• they involve multiple concurrent activities,

• these activities can communicate with each others, and

• most importantly, they have dynamic connections.

The fundamental characteristic of such systems is thus that their structure evolves

dynamically. In the example, this is illustrated by the connections between the clients

and the server that are created and destroyed dynamically.

Moreover, the example is a model of an open system in that the number and exact

behavior of the clients are abstracted away, only the interface between the server part

37

38 CHAPTER 3. MODELLING OPEN RECONFIGURABLE SYSTEMS

and the clients is modelled. Put in other terms, the clients are part of the environment

and we focus on the server part only.

Last but not least, the example also illustrates one of the most important speci�city

in compared to most of other π-calculus variants: the visual nature of the formalism.

3.1.1 Overview of the system

The server part of the system comprises three components: A receptionist, a dispatcher

and a processor, which are represented by three circles with labels Recp, Disp, and Proc,

respectively. The relationships between components are illustrated in Figure 3.1. From

now on, we call this system a RDP system for short.

Recp Disp

Proc

request

answer

request

reject

requestresult

Figure 3.1: An overview of a RDP system

The components are connected by labelled directed arcs representing the communi-

cations between them. The label of an arc represents the information that is sent out or

received from a component. The direction of an arcs determines which component is the

sender and which one is the receiver. The receptionist can also communicate with the

clients outside the system boundary which is represented by a dotted rectangle.

3.1.2 Functionality of components

In general, each component can perform two kinds of actions: sending (resp. receiving)

information to (resp. from) the clients or the other components. The functionality of

each component is described as follows:

• The receptionist receives requests from clients, transfers them to the dispatcher,

3.1. AN EXAMPLE OF OPEN RECONFIGURABLE SYSTEM 39

gets feedback (i.e., rejects in case the request is not correct) from the dispatcher or

results form the processor, and answers the clients.

• The dispatcher receives requests from the receptionist, determines the kind of re-

quests and dispatches them to the corresponding sub-component in the processor,

or sends a reject back to the receptionist.

• The processor receives requests from the dispatcher, processes them and sends the

result to the receptionist.

Moreover, we assume that each component can perform several actions, and even

concurrently which means that each component, e.g the receptionist, may be thought as

a department in an o�ce which has responsibility for receiving and answering requests

from clients. Suppose that the department has two o�cers. At a moment, there may

be a situation in which one person is waiting for requests and another one is answering

clients. These two persons can work concurrently.

3.1.3 Describing the communication using ports

We present the communication between components, and between the receptionist and

clients in more details in Figure 3.2. The components of the system communicate with

the others via ports. We denote by a a sending port and by a itself a receiving port. If

one component sends information via port a and the other one is waiting for receiving

information via port a, then the two components can communicate. Ports can be classi�ed

into two main groups:

• Public ports: used for communicating with both clients and components, i.e., both

outside and inside the system. For example, port a in the �gure is a public one.

The communication with clients must be performed via public ports.

• Restricted ports: used for communication between components inside the system in

order to deny clients sending information to the system via these ports. However,

a restricted port will become public as it is sent outside.

In Figure 3.2, ports are illustrated by small coloured circles with labels, the arc la-

belled r from outside to the system is the request of a client. Port a is public used

for communication with clients, and ports b, c, d, e, f, g are restricted ones used for com-

munication only between components. Moreover, the port k is a restricted one of the

receptionist used for communication with a speci�c client after it is sent out to him. Port

r is public, that is created after request r is received from a client. The functionality of

components are given in more details as follows.

40 CHAPTER 3. MODELLING OPEN RECONFIGURABLE SYSTEMS

Recp Disp

Proc

a

k/k

b

c

f

g

r
c

b
d

e

f

b
d

eg

k

r

r

c

r

r r
d/e

r

kans

Figure 3.2: Modelling the communication of the RDP system

The receptionist: To receive requests from clients (from outside the system) via

port k, the receptionist �rst let the clients know this port by sending k to the clients via

the public port a. At this moment, k becomes a public port, thus clients use it to send

requests to the receptionist. The receptionist then waits for requests from the clients via

port k. When a request r is received, it is forwarded to the dispatcher via port c.

Similarly, to send an answer to a client whose request is r, the receptionist sends out

its restricted port k to the client �rst via port r, and then it sends out the answer via

port k. The client receives the answer via k. After each session of communication with

clients, port k is reset to ensure that it is fresh for potential next clients.

The dispatcher: First, the dispatcher receives a request from the receptionist via

port c. Then, it checks if the request is correct. If this is the case, then it dispatches the

request to the processor. Otherwise, the request is refused, it is sent back to the recep-

tionist via port f . Before sending back a reject, the dispatcher informs the receptionist

about this by sending a signal c via the port b. Moreover, depending on the kinds of

request r, it may be dispatched to the processor via either port d or e.

The processor: First, the processor receives requests from the dispatcher via ports

d and e. Then, it processes the requests and sends the results to the receptionist via port

g. Similarly to the dispatcher, it sends a signal d or e to the receptionist before sending

the result of the request to inform the receptionist about the kinds of the corresponding

one.

Summing up, the considered system has the following properties (which are those of

open recon�gurable system):

• Components of the system can communicate together, and communicate with the

3.2. MODELLING THE SYSTEM USING π-GRAPHS 41

environment outside the system,

• The actions of the system can perform concurrently,

• The connections can be created and destroyed dynamically,

• Finally, the environment is open, in the sense that the system does not know in

advance what it will receive.

3.2 Modelling the system using π-graphs

Based on the description of the system as so far, we now model it using π-graphs. More-

over, we also give an illustration for the evolution of the system.

3.2.1 Modelling the system

Suppose that each component can perform actions concurrently in two threads (can be

thought of as there are two persons in each corresponding department as explained above);

we call this number the capacity of the component. A π-graph model of the system is

given in Figure 3.3.

Each component is modelled by a replicator. A replicator is represented by an identi�er

together with its capacity, and all actions that it performs. In this case, the receptionist is

represented by a replicatorR with capacity of two threads, denoted byR[2], the dispatcher

is represented by replicator D with capacity two, and the processor is represented by

replicator P with capacity two. The actions of a replicator are organized in a hierarchical

structure in the form of tree, in which each node represents an action. Each action may

have some successors which are connected to their parent node by a directed dashed

arc representing the precedence. If a node has multiple children, then after the action

at parent node, there are multiple possibilities for the next action. The choice is non-

deterministic, and it depends on the condition (called the guard) of the actions. A guard

can be a match, such as [x = c], which is true if two names x and c are compatible, or a

mismatch, such as [x 6= c], which is true if the two names are not compatible.

Besides two kinds of actions that a component can perform, i.e., sending and receiving

information via a given port, we use silent action, to model internal actions which are

abstracted from the observation. From now on, we use channel names (or just names) to

indicate ports and information that is sent or received via ports. In general, actions of a

replicator can be classi�ed into three groups:

• Output c〈a〉: a name a is sent out to the environment (to clients) via a channel c,

42 CHAPTER 3. MODELLING OPEN RECONFIGURABLE SYSTEMS

Restricted: b, c, d, e, f, g

R[2] : (νk)

a〈k〉 k(x) c〈x〉

b(x)

y〈k〉 k〈reject〉

y〈k〉 k〈y〉

[k 6= a]τ

[x = c]f(y)

[x 6= c]g(y)

D[2]:

c(x)

e〈x〉

d〈x〉

b〈c〉 f〈x〉

P [2]:

d(x) τ b〈d〉 g〈x〉

e(x) τ b〈e〉 g〈x〉

Figure 3.3: The π-graphs model of the RDP system

• Input c(x): receives information from clients via channel c and puts it in place of

x,

• Silent action τ : the internal action.

Moreover, the scope of names used in the system must be speci�ed. Names b, c, d, e, f, g

which are restricted channels, are indicated by a keyword Restricted. These restricted

channels disallow external interferences. The name k is a restricted channel used for the

receptionist replicator only, it is indicated by νk, meaning local to replicator R. Each

replicator has a set of variable names used for input actions, like x. Other names are

public.

3.2.2 A scenario of the π-graphs evolution

We consider the evolution of the π-graph in a scenario step by step.

Initially, each replicator has two threads that are available for performing actions.

The receptionist is ready for sending its restricted channel k to clients via the public

3.2. MODELLING THE SYSTEM USING π-GRAPHS 43

channel a. The dispatcher is ready for receiving requests from the receptionist, and the

processor is ready for receiving requests from the dispatcher. The only one action can be

performed is sending k to a client.

1,2R : (νk)

a〈νk〉 k(x) c〈x〉

b(x)

y〈k〉 k〈reject〉

y〈k〉 k〈y〉

[k 6= a]τ

[x = c]f(y)

[x 6= c]g(y)

D : 1,2

c(x)

e〈x〉

d〈x〉

b〈c〉 f〈x〉

P : 1,2

d(x) τ b〈d〉 g〈x〉

e(x) τ b〈e〉 g〈x〉

Step 1: The receptionist sends channel k to clients using thread 1. This illustrates

the feature of channel passing that is the main way of describing dynamic connections in

the π-calculus and its variants.

2R : (νk)

a〈k′〉
1

k′(x) c〈x〉

b(x)

y〈k〉 k〈reject〉

y〈k〉 k〈y〉

[k′ 6= a]τ

[x = c]f(y)

[x 6= c]g(y)

In terms of control, this is indicated by moving thread 1 at action a〈k〉 in replicator R.

This means that from now on thread 1 is running. Remark that thread 2 is still available

in replicator R. So, the Private channel k is sent to the client through the public channel

a. In the π-graph, we say that channel k escapes the system. On the example, we use

identi�er k′ to represent the new shared identity of the escaped channel (that cannot

44 CHAPTER 3. MODELLING OPEN RECONFIGURABLE SYSTEMS

be considered private anymore). We call such dynamically created name a fresh output

name. We will see in the next chapter the precise nature of fresh output names.

Step 2: The replicator R continues performing the next action which is a silent action

with a mismatch condition [k′ 6= a].

2R : (νk)

a〈k′〉
1

k′(x) c〈x〉

b(x)

y〈k〉 k〈reject〉

y〈k〉 k〈y〉

[k′ 6= a]τ

[x = c]f(y)

[x 6= c]g(y)

The objective of the match is to make sure that the two channels k′ and a di�erent.

This is for example to avoid the communication between the next input k′(x) and the

output a〈k〉. In terms of control, the thread 1 is moved to action τ .

Step 3: Replicator R waits for requests from clients via the new channel k′ by

performing an input k′(x).

2R : (νk)

a〈k′〉 k′(x← r)

1

c〈r〉

b(x)

y〈k〉 k〈reject〉

y〈k〉 k〈y〉

[k′ 6= a]τ

[x = c]f(y)

[x 6= c]g(y)

Suppose that a client sends a request r to R, r will substitute x, as the action is

performed, which is denoted by x ← r. Thereby, the next action will become c〈r〉, i.e.,
sending r via channel c. Notice that r is also a new identi�er that is created dynamically.

This is a fresh input name whose precise nature will be described in the next chapter.

Step 4: Replicator R sends out the request via channel c.

3.2. MODELLING THE SYSTEM USING π-GRAPHS 45

2R : (νk)

a〈k′〉 k′(x← r) c〈r〉
1

b(x)

y〈k〉 k〈reject〉

y〈k〉 k〈y〉

[k′ 6= a]τ

[x = c]f(y)

[x 6= c]g(y)

D : 2

c(x← r)

1 e〈r〉

d〈r〉

b〈c〉 f〈r〉

Because c is a restricted channel, it is used for communicating inside the system,

thus only replicator D can receive r by performing an input c(x). Similarly, thread 1 in

replicator D is used for performing the action, and the variable name x is substituted by

r after the communication. The next action that D can perform is either sending r via

channel d or e, or sending it back to R if the request r is not correct. In this scenario we

suppose that r is correct and it will be sent to replicator P via channel e.

Step 5: Because action c〈r〉 is �nal in R, the session of thread 1 is completed, and

the thread is released.

1,2R : (k)

a〈k〉 k(x) c〈x〉

b(x)

y〈k〉 k〈reject〉

y〈k〉 k〈y〉

[k 6= a]τ

[x = c]f(y)

[x 6= c]g(y)

D : 2

c(x← r)

e〈r〉1

d〈r〉

b〈c〉 f〈r〉

P : 2

d(x) τ b〈d〉 g〈x〉

e(x← r)

1

τ b〈e〉 g〈r〉

46 CHAPTER 3. MODELLING OPEN RECONFIGURABLE SYSTEMS

The replicator R goes to the initial state. Similarly to what happened in the previous

step, there is a communication between replicators D and P by performing an output

e〈r〉 in D and an input e(x) in P .

Step 6: Replicator P continues with a silent action τ . Doing this action means that

P processes the request r.

P : 2

d(x) τ b〈d〉 g〈x〉

e(x← r) τ
1

b〈e〉 g〈r〉

Step 7: The replicator P informs R that it will send the result. P sends a signal e

via channel b, and R is ready for receiving on channel b.

2R : (νk)

a〈k〉 k(x) c〈x〉

b(x← e)

1

y〈k〉 k〈reject〉

y〈k〉 k〈y〉

[k 6= a]τ

[e = c]f(y)

[e 6= c]g(y)

P : 2

d(x) τ b〈d〉 g〈x〉

e(x← r) τ b〈e〉
1

g〈r〉

Action b(x) has two successors: [x = c]f(y) and [x 6= c]g(y). However, after the

communication, only the action [x 6= c]g(y) can be performed as the condition [e = c]

does not hold in this case.

Step 8: The replicator P does a communication with R via channel g. After the

communication, R receives the result r.

3.3. A PROTOTYPE TOOL FOR π-GRAPHS 47

2R : (νk)

a〈k〉 k(x) c〈x〉

b(x← e)

y〈k〉 k〈reject〉

1

r〈k〉 k〈r〉

[k 6= a]τ

[e = c]f(y)

[e 6= c]g(y ← r)

P : 2

d(x) τ b〈d〉 g〈x〉

e(x← r) τ b〈e〉 g〈r〉
1

Finally, R sends the result r to the client by sending �rst its restricted channel k to

the client, then sending the result via the new channel.

3.3 A prototype tool for π-graphs

To study the semantics of π-graphs, we developed a π-graphs simulator PiSimilator, which

supports the following main functionalities:

• it encodes a π-graphs model in a textual form,

• it explores the state-space of the model and simulate transitions, and

• it exports the transitions of a system in the form of a labelled transitions system into

a textual representation, which can be used by external tools such as GRAPHVIZ

[1] in order to visualize the evolution of the system.

PiSimilator's input language supports all the π-graphs constructs. As an illustration,

we show in Figure 3.4b the textual representation of the π-graphs model represented in

Figure 3.4a, which is a fragment of our running example from Figure 3.3 on page 42. The

keywords restricted and new are used for indicating global restricted and local restricted

names, respectively. As expected, symbols ‖ and + are used for the operators of parallel

composition and non-deterministic choice.

Figure 3.5 shows the labelled transition system (LTS) of the model from Figure 3.4.

It comprises 16 states represented by numbered circles with 0 being the initial one, and

transitions represented by arcs with the following labels:

• tau meaning that the transition is a silent action or a communication,

48 CHAPTER 3. MODELLING OPEN RECONFIGURABLE SYSTEMS

Restricted: c, d

R[1] : (νk)

a〈k〉 k(x) [c 6= d]c〈x〉

d(x)

P [1]:

c(x)

x〈b〉

τ d〈x〉

(a) A simpli�ed RDP system

Restricted c , d

[

R[1] : ! new(k) {

a<k>.{k (x) . { [c<>d] c<x>.{}}} +

d(x) . { }

} | |

P [1] : ! {

c (x) . {

tau . { d<x>.{}} +

x.{}

}

}

]

(b) Encoding of the simpli�ed RDP system

Figure 3.4: A simpli�ed version of the RDP system given in Figure 3.3

• a(b) meaning that the transition is an input b on channel a, or

• a < b > meaning that the transition is an output b on channel a.

In both last cases, a and b may be of the form of ?k or !k, with k ∈ N+, representing

fresh names (i.e., generated during the evolution of the system).

0

1a<!1>

2!1(?1)

3

tau

?1

4

tau

5a<!1>

tau 6a<!1>

?1

tau
7!1(?2)

8!1(?2)

tau
9?1

10
tau

?2

11
tau

12a<!1>

tau

13
a<!1>

?2

tau

14!1(?1)

15!1(?1)

?2

tau

Figure 3.5: Semantics of the π-graphs of the simpli�ed model in Figure 3.4

From the LTS in Figure 3.5 we can assert some properties of the system, such as for

example that states 8 and 15 are deadlocks, while all the other states are not. Indeed,

there is always a possible successor state for them. We may also observe that if we make

a small modi�cation on the model, such as changing the action [c 6= d]c〈x〉 in replicator

R to [c = d]c〈x〉 and increasing the bound of R to 3, then the LTS of the obtained model

(depicted in Figure 3.6) becomes much di�erent: �rst, the number of states of the LTS

increases from 16 to 55, and second, every path leads to a deadlock.

PiSimulator computes the LTS of a (textual) π-graphs speci�cation in two steps:

3.4. SYNTHESIS 49

0

1

a<!1>

2

a<!2>

3

!1(?1)

4

tau

8

tau

9

tau

5

a<!3>

6

!1(?1)

7

!2(?1)

10

a<!2>

11

a<!2>

20

!2(?1)

17

!1(?1)

12

!1(?1)

13

!2(?1)

14

!3(?1)

16

!2(?2)tau

15

a<!3>

18

a<!3>

19

!1(?2)tau

21

a<!3>

22

!2(?2)

23

tau

24

!2(?1)

25

!2(?2)

26

!3(?2)

27

!1(?2)

28

!3(?2)

29

!1(?2)

30

!2(?2)

33

a<!3>

32

!3(?2)

31

!2(?2)

34

!1(?2)

35

!3(?2)

36

a<!3>

37

!2(?2)

38

!3(?2)

39

a<!3>

40

!3(?3)

41

!2(?3)

42

!3(?3)

43

!1(?3)

44

!2(?3)

45

!1(?3)

47

!2(?3)

46

!3(?3)

48

!3(?3)

49

!3(?3)

50

!1(?3)

51

!3(?3)

52

!3(?3)

53

!2(?3)

54

!3(?3)

Figure 3.6: The LTS of the model in Figure 3.4 with two modi�cations: changing action

[c 6= d]c〈x〉 in replicator R to [c = d]c〈x〉 and increasing the bound of R to 3

.

1. First, it inputs the speci�cation by calling PiSimulator.input(spec),

2. Second, it builds the LTS by calling PiSimulator.build().

Moreover, PiSimulator provides the following additional functionalities:

• PiSimulator.reachable(C): checks if a context C (i.e., C contains all information

about a state) is reachable;

• PiSimulator.context(s): gets the corresponding context of a reachable state s. For

example, it may be useful for determining why state 8 in Figure 3.5 is a deadlock

by exploring its corresponding context;

• PiSimulator.enabled(s1,s2,l): checks if the system can evolve from state s1 to state

s2 by performing an action with label l.

3.4 Synthesis

This chapter introduces the π-graphs formalism in an informal way and from a modelling

perspective.

50 CHAPTER 3. MODELLING OPEN RECONFIGURABLE SYSTEMS

First, we describe a π-graphs model using a small example of an open client/server

system. Each component is modelled by a replicator which has a thread bound repre-

senting the maximum number of actions can be performed concurrently in it. Replicators

may use some names that are restricted to threads, and they may become public after

be sent out of the environment. These components (replicators) are assumed to work

in parallel. They can communicate with each other or perform internal communications

between threads inside themselves. Especially, the communication topology of the sys-

tem may change during the execution. In order to show the evolution of the system, a

scenario is illustrated step by step. Based on this example, we can demonstrate most

of the modelling features of the proposed formalism, such as interactions within open

environments, concurrency, name restrictions and recon�gurations.

Then, we present the prototype tool that provides a simulator for π-graphs models.

The tool, called PiSimulator, allows to encode π-graphs, explore the state space and

simulate transitions of the system. It also supports exporting the labelled transition

system into the input of a graph visualization tool, such as GRAPHVIZ, to visualize the

evolution of the system. Thus, using the PiSimulator, we also can illustrate some simple

properties of π-graphs models, such as deadlock or reversibility. Moreover, this tool may

be useful for demonstrating the isomorphism of the translation of π-graphs into Petri nets

(which will be done in Chapter 5) and interpreting the path counter-examples (which will

be done in Chapter 6).

Chapter 4

The π-graphs formalism

This chapter describes the formal syntax and operational semantics of the π-graphs for-

malism.

4.1 Syntax of π-graphs

In this section we de�ne the syntax of the process algebra of π-graphs. It is de�ned

in top-down style. The top level is a diagram which represents the system we want to

specify. Next levels are replicators, processes, and guarded actions. The syntax is de�ned

in both graphical and textual forms.

4.1.1 Diagrams Dia

An open recon�gurable system is speci�ed by a diagram. It speci�es which replicators

are part of the speci�cation, and which names in the system are global restricted.

Dia ::= ν̃A [Rep1 ‖ . . . ‖ Repm] with Rep1, . . . , Repm replicators

All replicators that the system comprises are put in parallel using ‖. The order of

replicators in the speci�cation of a diagram is not important. However, these replicators

must be inside a scope that is indicated by a pair of square brackets [and] which are

similar to keywords begin and end in some programming language. The global restricted

names are indicated by a sequence ν̃A. In Figure 3.3 on page 42, the restricted names

are b, c, d, e, f, g, this formally gives a list ν̃A = νb, . . . , νg.

51

52 CHAPTER 4. THE π-GRAPHS FORMALISM

4.1.2 Replicators Rep

Each component in a system is speci�ed by a replicator. It has a name, called replicator

identi�er, and a bound number of threads which is the maximum number of threads that

can run simultaneously. A replicator speci�es also processes in which threads run, and

all names that are local to the replicator. Consider the following graphical and textual

de�nition of a replicator,

r: [1; k] ...

Proc1

Procn

Rep ::= r[k] :! ν̃a {Proc1 + . . .+ Procn}

where

• r is the replicator identi�er,

• k is its number of threads,

• ν̃a is the list of its local restricted names, and

• Proc1, P roc2, . . . are processes.

For example, replicator Recp in Figure 3.3 has only one local restricted name k, so

ν̃a = νk. Moreover, a replicator may have more than one processes. At a moment, a

thread can run on only one process. The choice of process on which a thread run is

non-deterministic, which is speci�ed by operator �+� as in π-calculus.

Intuitively, a replicator consists of a �pool of threads� from which threads are spawned

for running processes. A replicator with maximum k threads has a set of threads with ids

in [1..k], which is denoted by [1; k]. A thread will disappear from the �pool of threads�

as it is spawned, and it appears again as it ends a process. A process cannot start if all

threads are spawned, i.e., if there is no thread in the �pool of threads�.

4.1.3 Processes Proc

In Def. 4.1, each replicator has a corresponding static graph whose nodes are guarded

actions. In fact, the static graph of a replicator is a forest which consists of several possible

trees. The root of each such tree represents the guarded action that will be performed

at �rst for a given thread. After the guarded action is performed, if it is not �nal, one

of its successors may be chosen for continuation performing. Each successor becomes the

4.1. SYNTAX OF π-GRAPHS 53

root of a sub-tree, and the next guarded action is chosen in a same way up to a �nal one.

The performance of a �nal action stops the process and the thread identi�er returns to

the �pool of threads�. A tree can be regarded as a process which speci�es how actions of

a replicator are performed, i.e., in which order of precedence the actions are performed.

It is suitable to be de�ned recursively, as in the following:

φα
...

Proc1

Procn

φα

Proc ::= φα.{Proc1 + . . .+ Procn} | φα.{}

In the above, operator + denotes the non-deterministic choice, while operator . denotes

the precedence. By convention, if a process has only one successor, e.g., φα.{P}, we can
omit brackets, φα.P . Similarly, if a process has no successor, e.g., φα.{}, we write only
the guarded action, φα.

For example, the replicator D (for Dispatcher) in Figure 3.3 has only one process. It

can de�ned as follows:

c(x).{d〈x〉+ e〈x〉+ b〈c〉.{f〈x〉}}

4.1.4 Guarded actions φα

A guarded action is a conditional one. It is a combination between a guard and an

action. An action can be a silent action, an output, or an input. A guard is a sequence

of comparisons of names (match or mismatch).

φα (guard) φ ::= true | mφ
(match/mismatch) m ::= [a = b] | [a 6= b]

(action) α ::= (silent) τ | (output) c〈a〉 | (input) c(x)

where a, b, c are names and x is a variable. A match is a comparison of two names that

is true if these two names are compatible, otherwise it is false. Similarly, a mismatch is

true if these names are not compatible, otherwise it is false. If a guard comprises many

comparisons, then it is interpreted as a conjunction of all comparisons. For example, the

guard [a = b][b 6= c]true is interpreted as a conjunction [a = b] ∧ [b 6= c]. We can omit

true if the sequence of name comparisons in a guard is not empty.

Using the syntax of π-graphs, the textual speci�cation of the illustrative example in

Figure 3.3 is provided in Listing 4.1, where restricted and new are keywords used for

indicating global restricted and local restricted names, respectively. The symbols ‖ and
+ denote the parallel composition and non-deterministic choice operators.

54 CHAPTER 4. THE π-GRAPHS FORMALISM

Listing 4.1: The π-graphs speci�cation of the system RDP in Figure 3.3

Restricted b , c , d , e , f , g

[

R[2] : ! new(k) {

a<k>.{[a<>k] tau . { k (x) . { c<x>.{}}}} +

b(x) . {

[x=c] f (y) . { y<k>.{k<r e j e c t >.{}}} +

[x<>c] g (y) . { y<k>.{k<y>.{}}}

}

} | |

D[2] : ! {

c (x) . {

d<x>.{} +

e<x>.{} +

b<c>.{ f<x>.{}}

}

} | |

P [2] : ! {

d(x) . { tau . { b<d>.{g<x>.{}}}} +

e (x) . { tau . { b<e>.{g<x>.{}}}} +

}

]

4.2 Operational semantics of π-graphs

The semantics of a π-graphs diagram is de�ned as a labelled transition system in which the

states are con�gurations the system may reach and the labelled transitions indicate under

which conditions the change of the states may occur. Unlike classical process algebras,

like π-calculus where the states correspond to reached terms, the states in π-graphs are

composed of two parts:

• A static part, which corresponds to the structure of the π-graphs diagram that does

not change during the evolution, and

• A dynamic part, which is composed of threads and name contexts, called together

a global context, which are interpreted on the diagram structure.

These two parts are similar to what happens in models like Petri-nets where there are

also a static part (a Petri-net structure) and a dynamic part (tokens). This division will

make easier the translation from π-graphs to Petri-nets that we will present in the next

chapter.

4.2. OPERATIONAL SEMANTICS OF π-GRAPHS 55

4.2.1 Static part: Graph model of a π-graph

In this section we formalize the concept of a π-graph. A π-graph comprises some repli-

cators. Each replicator owns a set of threads that can run simultaneously, and a set of

actions that the replicator can perform. As the actions of a replicator are performed in

order of precedence, they can be represented as a directed graph whose nodes are guarded

actions, e.g., input [x = c]f(y) or output a〈k〉. A replicator also owns names that are

used only locally, called local restricted names. We also have global restricted names at

the π-graph level. All the other names are considered as free. Formally, a π-graph is

de�ned as follows.

De�nition 4.1. A π-graph π is a tuple 〈R,K,G,N〉 with

• R a �nite set of replicator identi�ers,

• K ∈ R → N the thread bounds (maximum number of simultaneously running

threads),

• G is a function from R such that each G(r) is a static graph 〈Vr, Lr, Er〉 with

� Vr the set of vertices of the graph,

� Lr ∈ Vr → {φα guarded action} the labelling of each vertex with a guarded

action,

� Er ⊂ Vr × Vr the set of directed edges of the graph

• N = 〈Ngres,Nfree,Ntres,Nvar〉 are syntactic names, where

� Ngres ∈ Σ→ N a set of graph-restricted names,

� Nfree ⊂ Σ a set of free names.

� Ntres
def
= {r 7→

−→
N | r ∈ R ∧

−→
N ∈ Σ → N} a function from R to vectors of

thread-restricted names,

� Nvar ∈ R → Σ a function from R to sets of bound variables,

For example, with the π-graph model in Figure 3.3, R = {R,D, P}, and K(R) =

K(D) = K(P) = 2. The set of global restricted names Ngres = {b, c, d, e, f, g}, and the set

of free names Nfree = {a, reject}. We illustrate the static graphs of replicators for one of

them, such as G(R). Suppose that vertices of G(R) are VR = {v1, v2, . . . , v11}, as follows:

56 CHAPTER 4. THE π-GRAPHS FORMALISM

R[2] : (νk)

a〈k〉

v1 v2

k(x)

v3

c〈x〉

v4

b(x)

v5

v6

y〈k〉

v7

k〈reject〉

v8

v9

y〈k〉

v10

k〈y〉

v11

[k 6= a]τ

[x = c]f(y)

[x 6= c]g(y)

The static graph of replicator R and its local restricted names are as follows:

• Labelling map of vertices: LR(v1) = a〈k〉, LR(v2) = [k 6= a]τ, LR(v3) = k(x),

LR(v4) = c〈x〉, LR(v5) = b(x), LR(v6) = [x = c]f(y), LR(v7) = y〈k〉, LR(v8) =

k〈reject〉, LR(v9) = [x 6= c]g(y), LR(v10) = y〈k〉, LR(v11) = k〈y〉,

• Set of directed edges: ER = {(v1, v2), (v2, v3), (v3, v4), (v5, v6), (v6, v7), (v7, v8), (v5, v9),

(v9, v10), (v10, v11)},

• Local restricted names Ntres(R) = {k}, and bound variables Nvar(R) = {x}.

4.2.2 Dynamic part: Global context of a π-graph

The global context of a π-graph diagram represents all information about the current

con�guration of the system, which consists of information about threads and about names.

The information about threads, called control �ow context, indicates which threads are

already used and for which actions, and which threads are still in the pool of threads.

The information about names, called name context, indicates which ones are received

and which ones are sent out to the environment. Moreover, it indicates also the scope of

names and the relation between them, i.e., which names are known outside and which

ones are known only inside the system, which names are compatible and which ones are

not.

4.2.2.1 Control �ow context

The control �ow context of a π-graphs diagram, denoted by ∆, can be regarded as a

distribution of threads to vertices. It determines which threads are used (spawned) and

which ones are not, i.e., the availability of threads for performing actions. Let π be a

π-graphs diagram. We recall that, by Def. 4.1, each replicator r in π has a set of vertices

Vr and a set of threads that can run concurrently. Thus, the control �ow context ∆ of a

diagram can be de�ned as the control �ow context of each replicator r, denoted by ∆r.

4.2. OPERATIONAL SEMANTICS OF π-GRAPHS 57

De�nition 4.2 (Control �ow context). The control �ow context ∆r for a replicator r

is a mapping Vr → P(N) associating (possibly empty) sets of thread identi�ers to some

π-graph vertices. The set of threads that are present at a given vertex v in replicator r is

denoted by ∆r(v).

Threads of a replicator are represented by thread identi�ers, called thread ids for

short, which are positive integer numbers. A vertex v in replicator r is said to have

control for a thread i if i is present at vertex v, i.e., i ∈ ∆r(v). The vertex v is said to

have control if there are some threads such that v has control for them, i.e., ∆r(v) 6= ∅.
Initially, no vertex of replicator r has control. The initial control �ow context of r is

∆0
r = {v → ∅ | v ∈ Vr}.

We consider an example of control �ow context of replicator R which represents com-

ponent Receptionist in Figure 3.3. Suppose that at some stage replicator R already

received a request from some client on thread 1, and already sent back a result to some

client on thread 2, as illustrated in Figure 4.1. The control �ow context of R at this stage

is:

∆R = {v3 → {1}; v11 → {2}; vj → ∅ | j ∈ {1, 2, 4..10}}

R[] : (νk)

a〈k〉

v1 v2

k(x)

v3

c〈x〉

v4

b(x)

v5

v6

y〈k〉

v7

k〈reject〉

v8

v9

y〈k〉

v10

k〈y〉

v11

[k 6= a]τ

[x = c]f(y)

[x 6= c]g(y)

1

2

Figure 4.1: A threads distribution of replicator R

Suppose that at a next stage replicator R can send the received request r to replicator

D, then thread 1 will move to vertex v4 to perform the output c〈r〉. Moreover, thread 2

will be released as the action at vertex v11 is �nal. Thus, the next control �ow context

of R is:

∆′R = {v4 → {1}; vj → ∅ | j ∈ {1..3, 5..11}}

The control �ow context of a replicator evolves with the evolution of the system. As

a thread is spawned for performing a process of the replicator, it will appear at the �rst

action of the process. When an action at vertex v has control for a thread i, if v has

successors then thread i can perform an action at one of the successors, otherwise, i is

terminated, it moves back to the �pool of threads� and becomes available for the next

execution of a process. Threads can be spawned, can be terminated, or can move between

58 CHAPTER 4. THE π-GRAPHS FORMALISM

vertices of a replicator, but the total number of threads on all vertices of r can not exceed

the capacity K(r).

Invariant 4.1. ∀r ∈ R,
∑

v∈Vr |∆r(v)| ≤ K(r) where R is a set of all replicators of π.

De�nition 4.3 (Inactive threads). For a given con�guration, an inactive thread is a

thread that is not used for performing any action. Let π = 〈R,K,G,N〉 be a π-graph,

and ∆r the control-�ow context for r ∈ R. The set of inactive threads ids of replicator r

is denoted by inact(∆r), de�ned as follows:

inact(∆r)
def
= {1, . . . ,K(r)} \

⋃
v∈Vr

∆r(v)

Proposition 4.1 (Thread location). For any r in R and i in [1..K(r)], either i ∈
inact(∆r) or there exists a unique vertex v ∈ Vr such that i ∈ ∆r(v).

Proof. At each stage, a thread i can either be used by only one action or be in the �pool

of threads�. If it is in the pool, recall that the control-�ow context ∆r is a mapping

Vr → P(N) (cf. Def. 4.2), there is no vertex that has control for i, thus i 6∈ cod(∆r). By

Def. 4.3, i is inactive in r, i.e. i ∈ inact(∆r). Otherwise, there exists a vertex v ∈ Vr that
has control for thread i, i.e. i ∈ ∆r(v). Moreover, v is unique in Vr. Thus, the property

holds.

4.2.2.2 Name context

A name context of a π-graph keeps information about what was already received and sent

out of the system and about the scopes of names and the relations between them. This

information may change during the evolution of the system. To represent these changes,

we associate syntactic names to their instances, which can be regarded as their values,

and all information about syntactic names is encoded in the instances and the relations

between them. At each stage, the instances of syntactic names may be updated.

De�nition 4.4. Let π = 〈R,K,G,N〉 be a π-graph. The set S of syntactic names

of π is the (disjoint) union of its global restricted names and its thread restricted names

(private and variable names) which are indexed by thread ids:

S def
= Ngres ∪Nfree ∪

⋃
r∈R,i∈[1..K(r)]

({νri a | νra ∈ Ntres(r)} ∪ {yri | yr ∈ Nvar(r)})

where Ngres and Nfree are sets of global restricted names and free names, Ntres(r) and

Nvar(r) are sets of thread restricted names and variable names of replicator r.

Global restricted and free names do not depend on threads, so each global restricted

name itself is a syntactic one. However, a thread restricted name may correspond to

4.2. OPERATIONAL SEMANTICS OF π-GRAPHS 59

several syntactic ones depending on the number of threads of the replicator to which the

name belongs. For example, S = S1∪S2 is the set of syntactic names of the π-graph that

is illustrated in Figure 3.3, where

S1 = Ngres ∪Nfree = {b, c, d, e, f, g} ∪ {a, reject}.

Moreover, notice that replicator R has a private name k, thus it gives the correspond-

ing syntactic names νkR1 and νkR2 . Similarly, each variable of each replicator has its

corresponding syntactic version for each thread. Thus

S2 = {νkR1 , νkR2 , xR1 , xR2 , xD1 , xD2 , xP1 , xP2 }.

The instances of syntactic names may be free names or fresh names. The last one

are classi�ed into three kinds: fresh input names for input information, output names

for output information, and private names for private information. We introduce the

following notations that allow us to specify these kinds of fresh names:

De�nition 4.5. The set of fresh names F is the disjoint union of: F! ⊆ {!n | n ∈ N} the set of output names

F? ⊆ {?n | n ∈ N} the set of input names

Fν ⊆ {νn | n ∈ N} the set of private names

Since the system that we model is open, it can potentially receive anything from the

environment and we do not know in advance what will be received. Moreover, if the sys-

tem sends out private information, then the sent information is new for the environment.

We need notations for describing these situations. In Def. 4.5, our approach is to use

integer numbers together with di�erent pre�xes (!, ?, and ν) to represent the di�erent

kinds of fresh names. For example, three names !1, ?1, ν2 are respectively input, output,

and private names. The fresh name !1 can appear, for example, when the system sends

out private information. Similarly, ?1 can appear when the system receives something.

In order to express con�gurations, the name context should provide the information

about:

• what is the current instantiation of the syntactic names: this will be ensured by the

mapping β, called name environment, which associates a value with each syntactic

name;

• which instances have already been matched and should be interpreted as equal: this

will be provided by a dynamic partition γ of instances. Each set in γ (in fact an

equivalent class for equality) gathers names (instances) which have already been

matched;

60 CHAPTER 4. THE π-GRAPHS FORMALISM

• which instances have already been mismatched and should be interpreted as dif-

ferent: this will be provided by a set of pairs of sets in δ, called distinctions. A

distinction C1 ↔ C2 records the fact that instances in C1 are di�erent from those

in C2.

These notations are illustrated in Figure 4.2. The name context is represented on the

left. The dynamic partition γ and the set of distinctions δ form a graph where the nodes

are the sets in γ and the edges are the pairs in δ. In particular, one can see that a and ?1

have already been matched (they are both in the same class), as well as ?2 and !1. Also,

the name ν1 is di�erent from all the others (the class containing it has a distinction with

all the other classes).

νb

yr1

yr2

a

νc

ν1

?1

?2

a

!1

β

ν1

a ?1
?2

!1

γ, δ

Figure 4.2: An example of name context

In the context in Figure 4.2, syntactic names are in black and the instances are in

other colours. Based on this context, we have assertions of scopes of syntactic names and

the relations between these as follows:

• νb is private to the system, but other syntactic names are not private;

• (νb 6= a) ∧ (νb 6= νc) ∧ (νb 6= xr1) ∧ (νb 6= xr2);

• (a = xr1) ∧ (νc = xr2).

In the following, we present more formally and in more details three parts (β, γ, δ) of

a name context and we give the de�nition of π-graphs name context. Moreover, abstract

devices, called logical clocks, are also introduced. They are used for generating fresh

names in a name context.

Name environment The name environment β relates the syntactic occurrences of

names in the π-graphs diagram to their instances, which can be either a syntactic name,

a fresh name or ⊥. The symbol ⊥ represents an unknown instance that is similar to the

symbol nil in some programming language. The association x → ⊥ indicates that the

instance of syntactic name x is unde�ned (or unknown).

4.2. OPERATIONAL SEMANTICS OF π-GRAPHS 61

Given a π-graph π = 〈R,K,G,N〉 and a name x in π, i.e., x ∈ Ngres ∪ Nfree ∪⋃
r∈RNtres(r) ∪

⋃
r∈RNvar(r), the notation βri (x) gives the instance of x for replicator r

and thread i, as follows:

βri (x)
def
=

{
β(x) if x ∈ dom(β) ∧ (gres(x) or free(x))

β(xri) if x
r
i ∈ dom(β) ∧ (tres(x) or var(x))

(4.1)

where gres(x), tres(x), free(x), and var(x) are predicates asserting that x is a global

restricted name, a thread restricted name, a free name, or a variable name, respectively.

They are de�ned as follows:

• gres(x) if x ∈ Ngres

• tres(x) if x = νri a with r ∈ R, νra ∈ Ntres(r) and i ∈ [1..K(r)]

• var(x) if x = yri with r ∈ R, yr ∈ Nvar(r) and i ∈ [1..K(r)]

• free(x) otherwise.

If x is a global restricted or free name, then it does not depend on threads nor on

replicators, thus the corresponding syntactic name of x is x itself. In this case, the instance

of x in r and thread i is just β(x). Similarly, if x is a thread restricted or a variable name,

then it depends on replicators and threads, thus the corresponding syntactic name in

replicator r and thread i is xri . Therefore, the instance of x is β(xri). In both cases, it

must be ensured that the corresponding syntactic name of x is present in the domain of

β which is asserted by predicate x ∈ dom(β) or xri ∈ dom(β). For example, in the name

context in Figure 4.2 we have: βr1(y) =?1, βr1(a) = βr2(a) = a, and βr1(b) = βr2(b) = ν1.

Dynamic partition The dynamic partition γ gives a contextual representation of name

equality, that may evolve over time. The partition applies on the range of the name

environment β. For two names a, b ∈ ran(β), if we have [a]γ = [b]γ (or there exist an

equivalence class C in γ such that a, b ∈ C), then a and b are considered equal and in

particular, the guard [a = b] will be evaluated to true.

A peculiarity of π-graphs (and thus the π-calculus) is that we cannot consider a and

b as unequal solely based on the fact that they are in distinct equivalent classes of γ, we

need explicit distinctions.

Distinctions A distinction in δ relates two equivalence classes of γ when they are

asserted unequal. Graphically, the pair γ, δ can be seen as an undirected graph with the

equivalences classes of γ as vertices, and the distinctions as edges (see the right-hand

side part of Figure 4.2). Since edges are undirected, we work up to symmetry. Let C1

62 CHAPTER 4. THE π-GRAPHS FORMALISM

and C2 be two distinct equivalent classes of γ, then we denote C1 ↔γ C2 ∈ δ to express

C1, C2 ∈ γ and both (C1, C2) ∈ δ and (C2, C1) ∈ δ.

To understand the relation between the dynamic partition and the distinctions, con-

sider x1, x2 two names occurring in γ. Then:

• if there exists a class in γ which contains both x1 and x2 then x1 = x2 is true

• if x1 and x2 are in di�erent classes C1 and C2 then:

� if there exists a distinction between C1 and C2 then x1 6= x2 is true

� otherwise, we do not know whether x1 = x2 or x1 6= x2 is true or false. For

example, in Figure 4.2, we do not know whether ?1 =?2 or ?1 6=?2.

De�nition 4.6. A π-graphs name context Γ is a triple 〈β, γ, δ〉 with:

• β ∈ S → S ∪ F ∪ {⊥} a name environment

• γ ⊂ P(S ∪ F) a dynamic partition of ran(β)

• δ ⊆ γ × γ a set of distinctions

where S is a set of syntactic names, F is a set of fresh names, and ⊥ is a special name

representing an unde�ned instance.

4.2.2.3 Logical clocks

During the evolution of the system, fresh names may be created or removed but it must

be ensured that the created names are not used in the range of the name environment

yet and the removed names can be reused later. To do that, we de�ne three logical clocks

used to generate fresh values based on the current range of β, as follows:

• Output clock clk!(β, γ, δ)
def
= min(N \ {n |!n ∈ ran(β)})

• Input clock clk?(β, γ, δ)
def
= min(N \ {n |?n ∈ ran(β)})

• Private clock clkν(β, γ, δ)
def
= min(N \ {n | νn ∈ ran(β)})

As in Def. 4.5, fresh names are classi�ed into three types: input names, output names,

and private names. Each type of fresh names is generated by a corresponding logical clock,

i.e., the output clock generates output names, input clock generates input names, and

private clock generates private names. We describe below how an output clock generates

fresh names, the other types of clocks work similarly. This can be done in two steps as

follows:

4.2. OPERATIONAL SEMANTICS OF π-GRAPHS 63

1. Compute all input names in the range of the current name environment,

2. Determine what is the smallest unused id (minimum value in {n |!n ∈ ran(β)}). It
is used for generating the output name.

For example, suppose that the current name environment β of a name context Γ is as

in Figure 4.3 that has a set of fresh input names Fν = {ν1}, a set of fresh input names

F? = {?1} and a set of fresh output names F! = {!1}. The performance of an input action

d(e) updates the name environment β to β′. In β′, input name ?2 that is generated by

the input clock is assigned to e.

a

b

c

d

e

ν1

ν1

?1

!1

⊥

β

input d(e)

a

b

c

d

e

ν1

ν1

?1

!1

?2

β′

Figure 4.3: Generating input name ?2 (and a new name environment)

4.2.3 Operators on a name context

There are many events that may give rise to change a name context of a π-graph. For

example, spawning a thread or terminating a thread after performing a terminal action,

etc. We de�ne four basic operators allowing to update the name context as follows:

1. Removing instantiations,

2. Instantiating a name,

3. Exchanging an instantiation, and

4. Re�ning the dynamic partition.

4.2.3.1 Removing instantiations

In the name context, an instantiation can be thought of as a value which is assigned to

one or more syntactic names. During the evolution of the context, a syntactic name can

be updated, for example, when an input action is activated. To do this, it �rst releases

the old value and then takes the new one. If the released value is no longer used by

64 CHAPTER 4. THE π-GRAPHS FORMALISM

another syntactic name then it will be removed from the name context. The operator

of removing instantiations of syntactic names allows us to release the instantiations from

the syntactic names (setting it to ⊥).

Let Γ = (β, γ, δ) be a name context of a π-graphs diagram π, X a set of syntactic

names whose values will be released from a thread i in replicator r. The operator removing

instantiations of X is de�ned as follows:

Γri −X = β′, γ′, δ′ with



β′
def
= β \


{x 7→ βri (x) | x ∈ X ∩ dom(β)∧
(gres(x) ∨ free(x))}
∪{xri 7→ βri (x) | x ∈ X ∧ xri ∈ dom(β)∧
(tres(x) ∨ var(x))}


γ′

def
= {C ′ | C ′ 6= ∅ ∧ C ′ = C \ Z ∧ C ∈ γ}

δ′
def
= {C1 \ Z ↔γ′ C2 \ Z | C1 ↔γ C2 ∈ δ}
with Z

def
= {z | ∃x ∈ X, z = βri (x) ∧ z 6∈ ran(β′)}

This operator updates all three parts of the name context. In the name environment β,

all syntactic names a ∈ X will get a new value ⊥ which indicates that their instantiations

become unde�ned. In the dynamic partition γ and the distinctions δ, all instantiations

that are no longer used in β will be removed, empty classes and their connections to

others will be also removed.

For example, Figure 4.4 illustrates the operator of removing instantiations of two

syntactic names a and d from a name context Γ = (β, γ, δ). Before removing, ν1 is

assigned to both a and b, !1 is assigned to d. After removing, both a and d take ⊥ as

their instantiations. The instantiation !1 of d is removed from γ but ν1 is maintained

because it is also assigned to b. Because !1 is alone so after removing it, the corresponding

class and the connection to the class of ν1 is also removed. The name context Γ is updated

to Γ′ = (β′, δ′, γ′).

a

b

c

d

e

ν1

ν1

?1

!1

⊥

β

?1

ν1

!1

δ, γ

Γ− {a, d}

a

b

c

d

e

⊥

ν1

?1

⊥

⊥

β′

?1

ν1

δ′, γ′

Figure 4.4: Removing instantiations of two syntactic names a and d

4.2. OPERATIONAL SEMANTICS OF π-GRAPHS 65

4.2.3.2 Instantiating a name

The instance of a syntactic name can be updated to di�erent values during the evolution

of the name context. For example, after performing an input action c(x), variable x is

substituted by the received information and the old value of x may be removed if it is no

longer assigned to any other syntactic name. The update is performed by applying the

operator of name instantiation, which is done in two steps:

• remove the instantiation of the syntactic name, then

• insert the pair of the syntactic name and its new instantiation into the name envi-

ronment and update the dynamic partition and distinctions.

More formally, let Γ be the name context of a π-graphs diagram π, r a replicator in

π and i a given thread identity of r. We instantiate a syntactic name x in r with a fresh

name z by performing two steps: �rst, we remove the instantiation of x using the operator

de�ned above to obtain a new name context, Γri − {x}, and then insert the association

x→ z into the new name context. The operator of inserting an association into a name

context is de�ned as follows:

Γri + (x 7→ z) = β′, γ′, δ′ with



β′
def
=

β ∪ {x 7→ z} if gres(x) ∨ free(x)

β ∪ {xri 7→ z} otherwise

if freshΓ(z) then : γ′
def
= γ ∪ {{z}}

δ′
def
=

[
δ ∪ {{z} ↔γ′ C | C 6= {z}} if priv(z)

δ ∪ {{z} ↔γ′ {y} | priv(y)} otherwise
otherwise γ′ = γ ∧ δ′ = δ

where

• freshΓ(z) is a predicate asserting that a fresh name z has been used or not in the

name context Γ. It is de�ned as follows:

freshβ,γ,δ(z)
def
= z 6∈ dom(β) ∪ ran(β) ∪ {⊥}

• priv(z) is a predicate asserting that a fresh name z is a private fresh name; it is true

i� ∃n ∈ N∗, z = νn. Similarly, to check if a given name z is not a private fresh

name, we de�ne a predicate pub(z) which is true i� ¬priv(z).

The idea of inserting an association x→ z into the name context Γ = (β, δ, γ) is that

if z is an unused fresh name, i.e., freshΓ(z) is true, then we add into γ a new singleton

class C that contains only z and update the distinctions in δ between C and the other

classes. If z is a private fresh name then we add distinctions between C and all others

66 CHAPTER 4. THE π-GRAPHS FORMALISM

to ensure that z is di�erent from all the other names, otherwise, we add a distinction

between C and classes of other private fresh names to ensure that z is di�erent from all

the other fresh private names. Moreover, an association between a and z is added into

the name environment. If z is already existing in the name context, then both γ and δ

do not change.

Figure 4.5 illustrates the operator of instantiating a syntactic name a with a fresh

output name !2, denoted by Γ[a←!2]. This operator may a�ect all three components of

the name context. Let (β′, δ′, γ′) be the new name context after performing this operator.

For the name environment, since ν1 is the instantiation of both a and b, it still appears

in β′. However, in β′, !2 is associated with a. For the dynamic partition and distinctions,

since !2 does not appear in β, a new class for !2 is added to δ and γ is also updated.

Because !2 is not a private fresh name, only one distinction between the class of !2 and

the class of ν1 is added to γ.

a→ ν1

b→ ν1

c→?1

d→!1

e→ ⊥

β

ν1

?1 !1

δ, γ

Γ[a←!2]−−−−−→

a→!2

b→ ν1

c→?1

d→!1

e→ ⊥

β′

ν1

?1 !1!2

δ′, γ′

Figure 4.5: Instantiating a name a with !2

4.2.3.3 Exchanging instantiations

This operator allows to exchange a private fresh name, which is alone in a class of the

dynamic partition, with a new fresh output name.

Given a private fresh name νn in the name context Γ and a fresh output name !m,

the exchange between νn and !m is de�ned as follows:

Γ[νn�!m] = β′, γ′, δ′ with


β′

def
= (β \ {x 7→ νn | x ∈ dom(β) ∧ β(x) = νn})
∪{x 7→!m | x ∈ dom(β) ∧ β(x) = νn}

γ′
def
= (γ \ {{νn}}) ∪ {{!m}}

δ′
def
= {C1 ↔γ C2 | C1 ↔γ C2 ∈ δ ∧ νn 6∈ C1 ∪ C2}
∪{{!m} ↔γ′ C | ∃z ∈ C, z ∈ F \ {!m}}

The exchange operator updates each of the three elements of the name context. In

the name environment, each association to the private fresh name νn is replaced by an

association to the new fresh output name !m. In the dynamic partition, the class that

contains νn, which is a singleton one, is replaced by a new one that also contains only !m.

4.2. OPERATIONAL SEMANTICS OF π-GRAPHS 67

All the distinctions between classes that do not contain νn are maintained. Moreover,

because !m is a new fresh output name, it must be di�erent from any other fresh output

names in the name environment. This is represented by adding distinctions between the

class of !m and the classes of other fresh names.

a

b

c

d

e

ν1

ν1

?1

!1

⊥

β

?1

ν1

!1

δ, γ

Γ[ν1�!2]

a

b

c

d

e

!2

!2

?1

!1

⊥

β′

?1

!2

!1

δ′, γ′

Figure 4.6: Exchanging private fresh name ν1 with new fresh output name !2

For example, Figure 4.6 illustrates the exchanging fresh private name ν1 with a fresh

output name !2. Before the exchange, the fresh private name ν1 is alone in a class and it

is assigned to both a and b. After the exchange, the new fresh output name !2 is assigned

to both a and b. Moreover, all the distinctions between the class that contains ν1 and

classes of other fresh names do not change, meaning that the relation between !2 and

other fresh names is the same as that of ν1 with the others.

This operator may be useful when a private name is sent out at the �rst time, which

will be called a bound output in Section 4.2.4.2. Suppose that initially, a restricted name

a is associated to a fresh private name νk. This private name is di�erent from all the

others, it is alone in a class that has distinctions with all the other classes in the dynamic

partition. When a is sent out, its instantiation is replaced by a new output fresh name,

which is generated by the output clock, and is still di�erent from the other fresh names

in the current context. In the example in Figure 4.6, the operator Γ[ν1�!2] may be used

for the performance of action c〈a〉.

4.2.3.4 Re�ning dynamic partition

Re�ning dynamic partition allows us to make two given names become equal or unequal

in the name context.

Re�ning with an equality We de�ne the re�ning with an equality z = z′. We assume

that z, z′ ∈ ran(β) \ {⊥}, [z]γ 6= [z′]γ and [z]γ ↔ [z′]γ 6∈ δ to ensure these two names

are not distinct before re�ning because two distinct names can not become equal. The

68 CHAPTER 4. THE π-GRAPHS FORMALISM

operator of re�ning with an equality is de�ned as follows:

ΓCz=z′ = β′, γ′, δ′ with


β′

def
= β

γ′
def
= (γ \ {[z]γ, [z

′]γ}) ∪ {[z]γ ∪ [z′]γ}
δ′

def
= δ \{C1 ↔γ C2 ∈ δ | C1 = [z]γ ∨ C1 = [z′]γ}
∪{C ↔γ ([z]γ ∪ [z′]γ) | (C ↔γ [z]γ ∈ δ ∧ [z′]γ 6∈ C)∨
(C ↔γ [z′]γ ∈ δ ∧ [z]γ 6∈ C)}

This operator updates the dynamic partition and the distinctions of the name context,

but leaves the name environment unchanged. First, two classes that contain the instances

z and z′ are replaced by a new class containing all their members. Second, the relations

between classes are maintained by replacing each distinction between a class to one of

two removed classes by a distinction to the new class. This operator is used, for example,

to evaluate a match in a guarded action.

Figure 4.7 illustrates the changing of the name context after re�ning with an equality.

Before re�ning, the two names !1 and ?2 are in two di�erent classes and both are di�erent

from the fresh private name ν1. After the re�ning, these two names are grouped in the

same class and this class has a distinction with the class of ν1. This distinction maintains

the relation between these two names to the name ν1.

a

b

c

d

e

ν1

ν1

?1

!1

⊥

β

?1

ν1

!1

δ, γ

ΓC?1=!1

a

b

c

d

e

ν1

ν1

?1

!1

⊥

β′ = β

?1, !1

ν1

δ′, γ′

Figure 4.7: Re�ning with an equality ΓC?1=!1.

Re�ning with an inequality We de�ne the re�ning of a dynamic partition with an

inequality z 6= z′, assuming that z, z′ ∈ ran(β) \ {⊥} and [z]γ ↔γ [z′]γ 6∈ δ, as follows:

ΓCz 6=z′ = β′, γ′, δ′ with

 β′
def
= β

γ′
def
= γ

δ′
def
= δ ∪ {[z]γ′ ↔γ′ [z′]γ′}

Like for equality, this operator does not change the name environment and the dy-

namic partition, it only adds a distinction between two classes that contain the two

unequal names. We use this operator to evaluate a mismatch in a guarded action.

4.2. OPERATIONAL SEMANTICS OF π-GRAPHS 69

Figure 4.8 illustrates the change of the distinctions after a re�ning with an inequality

?1 6=!1. These names are in two di�erent classes, so they may be equal or unequal. After

the re�ning, a distinction between two corresponding classes is added to indicate that

these names are unequal.

a

b

c

d

e

ν1

ν1

?1

!1

⊥

β

?1

ν1

!1

δ, γ

ΓC?16=!1

a

b

c

d

e

ν1

ν1

?1

!1

⊥

β′ = β

?1

ν1

!1

δ′, γ′

Figure 4.8: Re�ning with an inequality ΓC?16=!1.

4.2.3.5 Initial name context

The initial name context is the name context in which no action has been activated and

no thread has been used. Some syntactic names have to be initialized, but the names for

which the initialization is not necessary are left uninitialized. For example,

• global restricted names and free names may be potentially used by everyone so they

must be available from the beginning;

• thread restricted names and variable names depend on threads, so they will be

initialized when a thread is spawned.

Hence, in the initial name context, all global restricted names are instantiated by fresh

private names and all free names are instantiated by themselves. Each fresh name owns a

unique class because we do not know if they are equal. Each class of a fresh private name,

which is di�erent from the others, has a distinction to all the other classes excluding itself.

Formally, the initial name environment is de�ned as follows:

β0
def
= {x 7→ νn | x ∈ dom(

−−→
Ngres) ∧ n =

−−→
Ngres(x)}

∪ {x 7→ x | x ∈ Nfree}

In this de�nition, we consider all global restricted names Ngres as a vector
−−→
Ngres instead

of a set as in Def. 4.1. If we considered Ngres as a set of global restricted names as in

Def. 4.1, then there would be many choices for mapping an instance to a syntactic name,

depending on the order of generating of the fresh names. For example, suppose that x

and y are global restricted names. If x is instantiated �rst, then x → ν1, and then y is

70 CHAPTER 4. THE π-GRAPHS FORMALISM

instantiated, y → ν2. But if the order is reversed, then y → ν1 and x → ν2. Thus, to

make the instantiation deterministic, we consider Ngres as a vector
−−→
Ngres ∈ Σ → N, and

each syntactic name x with index n is instantiated to a private name νn. This technique

is also applied for the thread restricted names Ntres.

The initial dynamic partition is:

γ0
def
= {{x} | x ∈ ran(β0) \ {⊥}}

and the initial distinctions are:

δ0
def
= {{νn} ↔γ0 {νm} | νn, νm ∈ ran(β0) ∧ n 6= m}
∪ {{x} ↔γ0 {νn} | x ∈ Nfree ∧ νn ∈ ran(β0)}

It may be observed that, given a fresh private name z in the name context Γ = (β, δ, γ),

z must always be di�erent from the other names during the evolution of Γ. It is alone in

a class and this class has a distinction with each other class. This invariant is de�ned as

follows:

Invariant 4.2. Let β, γ, δ be a name context. Then we have :

∀z ∈ ran(β), priv(z) =⇒ [z]γ = {z}
∧ ∀C ∈ γ \ {z}, {z} ↔γ C ∈ δ

4.2.4 The evolution of a global context

The condition for activating an action and the evolution of the context depend on the

types of actions. For example, an input action φc(x) at vertex v can be activated if there

exist a thread i that can be moved to v, the guard φ has to be true in the name context

Γ. After activating, the thread i is moved to vertex v, the name context is updated to Γ′

so that the guard φ is really true in Γ′ and x is the new input value.

Similarly, if the label of v is an output action c〈a〉 in which the instantiation of a is a

fresh private name, then after sending, the instantiation of a is escaped. That means the

instantiation of a becomes a free name and a may be matched to other names later on.

4.2.4.1 Evaluating guards

The �rst condition for activating an action is that the guard of the action must be true

in the current name context. Given a name context Γ = (β, γ, δ) and a guard φ, we have

to check if φ may be made true in Γ. Then, if it is true, we update the context related

to the guard (i.e., update the dynamic partition and distinctions such as, for example,

put two instantiations in the same class or add a distinction between two classes). This

is de�ned by two functions check and eval respectively.

4.2. OPERATIONAL SEMANTICS OF π-GRAPHS 71

First of all, all the syntactic names in the guard φ are substituted by their instantia-

tions belonging to a given thread i of a replicator r, denoted by βri (φ), as follows:
βri (true)

def
= true

βri (mφ)
def
= βri (m)βri (φ)

βri ([a = b])
def
= [βri (a) = βri (b)]

βri ([a 6= b])
def
= [βri (a) 6= βri (b)]

Function check checks if a given guard φ may be made true in the name context Γ. It

is denoted by checkβ,γ,δ(φ) and de�ned as follows:
checkβ,γ,δ(true) is true

checkβ,γ,δ(mφ) i� checkβ,γ,δ(m) ∧ checkβ′,γ′,δ′(φ)

where β′, γ′, δ′ = evalm(β, γ, δ)

checkβ,γ,δ([a = b]) i� [a]γ = [b]γ ∨ [a]γ ↔γ [b]γ 6∈ δ
checkβ,γ,δ([a 6= b]) i� [a]γ 6= [b]γ

We check from left to right if each name comparison may be true and the �nal result

is a conjunction of these results. If a comparison is a match, then it may be true if the

classes of two names in the match have no distinction; otherwise it is false. A mismatch

may be true if the two names are not in the same class. If a name comparison may be

true then it is evaluated, changing the name context so that the comparison becomes

e�ectively true.

The evaluation of a guard φ in the context Γ is denoted by function evalΓ(φ). It may

produce a new dynamic partition and new distinctions. The de�nition is as follows:

evaltrue(β, γ, δ)
def
= β, γ, δ

evalmφ(β, γ, δ)
def
= evalφ(β′, γ′, δ′) where β′, γ′, δ′ = evalm(β, γ, δ)

eval[a=b](β, γ, δ)
def
=

{
β, γ, δ if [a]γ = [b]γ

(β, γ, δ)Ca=b otherwise

eval[a6=b](β, γ, δ)
def
=

{
β, γ, δ if [a]γ ↔γ [b]γ ∈ δ
(β, γ, δ)Ca6=b otherwise

As above, the list of name comparisons is evaluated from left to right. For a match,

the two names are grouped into the same class by applying the operator of re�ning with

equality. For a mismatch, a distinction between two classes is added by applying the

operator of re�ning with inequality.

Graphically, Figure 4.9 illustrates the evaluation of the guard [c 6= a][c = d] in a name

context Γ = (β, γ, δ). First of all, all syntactic names are substituted in the guard to [?1 6=
ν1][?1 =!1]. Next, mismatch [?1 6= ν1] is checked in the current name context (β, γ, δ).

Because the instantiations ?1 and ν1 are not in the same class, checkβ,γ,δ([?1 6= ν1]) =

true, and we can update the context by calling function eval[?16=ν1](β, γ, δ). Because both

72 CHAPTER 4. THE π-GRAPHS FORMALISM

instantiations are already in di�erent classes, which are connected by distinctions, the

name context is not changed, and we have β′ = β.

a→ ν1

b→ ν1

c→?1

d→!1

e→ ⊥

β

ν1

?1 !1

δ, γ

[?1 6=ν1]−−−−→

ν1

?1 !1

δ′, γ′

[?1=!1]−−−−→

ν1

?1, !1

δ′′, γ′′

[?1 6= ν1][?1 =!1]

Figure 4.9: Evaluation of the guard [c 6= a][c = d]

Next, match [?1 =!1] is checked. Similarly, because both ?1 and !1 are in two classes

which have no distinction, checkβ′,γ′,δ′([?1 =!1]) = true and we can evaluate this match

by calling function eval[?1=!1](β
′, γ′, δ′). This evaluation re�nes the dynamic partition

and distinctions with equality [?1 =!1], it updates the name context to (β′′, γ′′, δ′′) with

β′′ = β.

In summary, the evaluation of guard [c 6= a][c = d] does not change the name envi-

ronment, it combines two classes that contain the instances of c and d and maintains the

distinction between the combined class and the class of the instance of a.

4.2.4.2 Commitment of actions

Let Γ = (β, δ, γ) be a name context of a diagram π, r a replicator in π, and v a vertex in

r with an action φα having control with thread i. The commitment of a silent, an input

and an output action, and the communication between an input and an output action

are de�ned in the following.

Function check is used to check if a guard of the action can be made true in a name

context. If true, the action is activated and the context is updated by function eval. The

checking of guards is performed before activating the action and the evaluation of guards

is performed afterwards. These two operations can be speci�ed by two functions pre and

post as follows:

• preφ(β, γ, δ, r, i)
def
= checkβ,γ,δ(β

r
i (φ))

• postφ(β, γ, δ, r, i)
def
= evalβri (φ)(β, γ, δ)

Silent step The silent action φτ at vertex v can be activated if the guard φ may be

true in the name context Γ. After activating, the name context is updated by evaluating

the guard φ. The commitment is de�ned as follows:

4.2. OPERATIONAL SEMANTICS OF π-GRAPHS 73

[tau] Γ ` r : i

φτ
τ

=⇒ posttau(Γ, r, i, φ) if pretau(Γ, r, i, φ)

with pretau(Γ, r, i, φ) = preφ(Γ, r, i)

posttau(Γ, r, i, φ) = postφ(Γ, r, i)

Input An input action φc(x) at vertex v can be activated if the guard φ can be made

true in the name context Γ and the channel c is public after the evaluation of φ. After the

activation, a new fresh input name is assigned to name x. The commitment is de�ned as

follows:

[in] Γ ` r : i

φc(x)
c′(x′)
===⇒ postin(Γ, r, i, φc(x)) if prein(Γ, r, i, φc(x))

with prein(β, γ, δ, r, i, φc(x)) =


preφ(β, γ, δ, r, i)

∧ β′, γ′, δ′ = postφ(β, γ, δ, r, i)

∧ pub(β′ri (c))

postin(Γ, r, i, φc(x)) = Γ′[x← clk?(β
′)] where Γ′ = postφ(Γ, r, i)

c′ = β′ri (c), x′ = clk?(β
′)

The new fresh input name is generated by the input logical clock based on the name

context after the evaluation of the guard φ.

Output An output action φc〈a〉 can be activated at vertex v if the guard φ can be

made true in the name context Γ and both c and a are public after the evaluation of φ.

After the activation, the name context is the evaluated one. The commitment is de�ned

as follows:

[out] Γ ` r : i

φc〈a〉
c′〈a′〉
===⇒ postout(Γ, r, i, φ) if preout(Γ, r, i, φc〈a〉)

with preout(β, γ, δ, r, i, φc〈a〉) =


preφ(β, γ, δ, r, i)

∧ β′, γ′, δ′ = postφ(β, γ, δ, r, i)

∧ pub(β′ri (c)) ∧ pub(β′ri (a))

postout(Γ, r, i, φ) = postφ(Γ, r, i)

c′ = β′ri (c), a′ = β′ri (a)

Bound output A bound output action φc〈a〉 sends out a private name. The commit-

ment is de�ned as follows:

74 CHAPTER 4. THE π-GRAPHS FORMALISM

[νout] Γ ` r : i

φc〈a〉
c′〈a′〉
===⇒ postνout(Γ, r, i, φc〈a〉)

if preνout(Γ, r, i, φc〈a〉)

with preνout(β, γ, δ, r, i, φc〈a〉) =


preφ(β, γ, δ, r, i)

∧ β′, γ′, δ′ = postφ(β, γ, δ, r, i)

∧ pub(β′ri (c)) ∧ priv(β′ri (a))

postνout(Γ, r, i, φc〈a〉) = Γ′[βri (a)� clk!(β
′)], where Γ′ = postφ(Γ, r, i)

c′ = β′ri (c), a′ = νclk!(β
′)

Similarly to the output action, it can be activated if the guard can be made true in

the name context and the channel is public after the evaluation of the guard. After the

activation, the output name is instantiated with a fresh output name.

After sending out a fresh private name, it is no longer private. It is replaced by a new

fresh output name, which is generated by the output clock based on the evaluated name

context. Consider an example of the bound output action as in Figure 4.10.

a

b

c

d

e

ν1

ν1

?1

!1

⊥

?1

ν1

!1

β
δ, γ

evaluate

[c = d]

a

b

c

d

e

ν1

ν1

?1

!1

⊥

ν1

?1, !1

β′
δ′, γ′

c〈a〉

a

b

c

d

e

!2

!2

?1

!1

⊥

!2

?1, !1

β′′
δ′′, γ′′

Figure 4.10: A bound output action [c = d]c〈a〉

First, the guard [c = d] is checked if it can be made true in the name context Γ.

Because ?1 and !1, the instantiations of c and d, respectively, are in two distinct classes

that are not connected by a distinction, the guard is true and the output action c〈a〉 may

be activated. After the evaluation of the guard, Γ becomes Γ′, in which the instantiation

ν1 of the output name a is a fresh private name and the instantiation ?1 of the channel c

is public. After the activation of the output action, the private fresh name is exchanged

by a new output fresh name !2.

Proposition 4.2. Let Γ be a name context, r a replicator, and i a thread in r. For any

output action φc〈a〉, we always have:

¬(preout(Γ, r, i, φc〈a〉) ∧ preνout(Γ, r, i, φc〈a〉)) = true

Proof. Let P = preout(Γ, r, i, φc〈a〉) ∧ preνout(Γ, r, i, φc〈a〉). By the de�nition of the

precondition of an output preout(. . .) (cf. p. 73), and of a bound-output preνout(. . .) (cf.

4.2. OPERATIONAL SEMANTICS OF π-GRAPHS 75

p. 73), we have:

P =


preφ(β, γ, δ, r, i)

∧ β′, γ′, δ′ = postφ(β, γ, δ, r, i)

∧ pub(β′ri (c)) ∧ priv(β′ri (a)) ∧ pub(β′ri (a)).

Moreover, by the de�nition of function pub(a) and priv(a) (cf. p. 65), we always have:

priv(β′ri (a)) ∧ pub(β′ri (a)) = false. Thus P always being false, the property holds.

Communication If there is a pair of input and output actions that send and receive

information on the same channel then they can potentially communicate together.

Let φ1c〈a〉 be an output action in replicator ro at a vertex vo, which has control with

thread io, and let φ2d(x) be an input action in replicator ri at a vertex vi, which has

control with thread ii. The communication between these actions can be activated if

both the guards φ1 and φ2 can be made true in the current name context and the two

channels are compatible. The last meaning that the instances of c and d are not in two

di�erent classes of γ connected with a distinction, i.e., [c]γ 6= [d]γ and ([c]γ, [d]γ) 6∈ δ.

After the activation, two channels are asserted equal and the instantiation of the output

name is assigned to the input name. The commitment is de�ned as follows:

[com] Γ ` ro : io ri : ii

φ1c〈a〉 φ2d(x)
τ

=⇒ postcom(Γ, ro, io, φ1c〈a〉, ri, ii, φ2d(x))

if precom(Γ, ro, io, φ1c〈a〉, ri, ii, φ2d(x))

with precom(β, γ, δ, ro, io, φ1c〈a〉, ri, ii, φ2d(x))

=


∧ preφ1

(β, γ, δ, ro, io) ∧ β′, γ′, δ′ = postφ1
(β, γ, δ, ro, io)

∧ preφ2
(β′, γ′, δ′, ri, ii) ∧ β′′, γ′′, δ′′ = postφ2

(β′, γ′, δ′, ri, ii)

∧ c′ = β′′roio
(c) ∧ d′ = β′′riii

(d) ∧ a′ = β′′roio
(a)

∧ [c′]γ′′ ↔γ′′ [d′]γ′′ /∈ δ′′

postcom(Γ, ro, io, φ1c〈a〉, ri, ii, φ2d(x)) = Γ′′′riii
[x← a′]

with Γ′′′ = Γ′′Cc′=d′

and Γ′′ = postφ2
(Γ′, ri, ii)

and Γ′ = postφ1
(Γ, ro, io)

4.2.4.3 Graph rewrite rules

Graph rewrite rules describe the evolution of threads in the π-graph.

Atomic action This is a simplest case in which the considered action has both prede-

cessor and successor, and the predecessor has control for at least one thread.

Let φα be an action at vertex v in replicator r, i a thread for which the predecessor of

76 CHAPTER 4. THE π-GRAPHS FORMALISM

v has control and Γ the current name context. The atomic action rule, denoted by [act],

is de�ned as follows:

[act] Γ ` r : i

φα

µ−→ Γ′ ` r : i

φα

if Γ ` r : i

φα
µ

=⇒ Γ′

If the action φα can be activated on thread i and its performance updates name

context Γ to Γ′ then thread i will be moved to v. The thread will be available for

performing the action at a successor of v.

Spawning a thread To activate an action that has no predecessor, the total number

of used threads must be less than the capacity of the replicator. In such a case, a thread

may be spawned activating the action.

When a new thread i of replicator r is spawned, all the names that depend on this

thread must be instantiated. The thread-restricted names are initialized to fresh values.

The variable names are associated to⊥ because they are unde�ned at this stage. Formally,

the initialization of name context Γ for a thread i in replicator r is de�ned as follows:

initri (Γ)
def
= {xri 7→ ⊥ | x ∈ N r

var} ∪ new(
−−→
N r

tres, r, i,Γ)

with new(〈x1, . . . , xn−1, xn〉, r, i,Γ)
def
= new(xn, r, i, new(xn−1, r, i, . . . new(x1, r, i,Γ) . . .))

and new(x, r, i,Γ)
def
= Γri [x← clkν(β)]

Let φα be an action at vertex v in replicator r. We assume that action φα is not a

terminal one and the vertex v has no predecessor. The rule of spawning a thread, denoted

by [spawn], is de�ned as follows:

[spawn] Γ ` r : Ir

φα

i
def
= min(Ir)

µ−→ Γ′ ` r : Ir \ {i} i

φα

if initri (Γ) ` r : i

φα
µ

=⇒ Γ′ and Ir 6= ∅.

Suppose that Γ is the current name context and i is a spawned thread. The spawning

of the thread updates the name context Γ to initri (Γ). If the performance of the action φα

updates the initialized context to Γ′, then the thread can be used by the action. Because

the action is not terminal, the thread is available for activating the successor action.

4.2. OPERATIONAL SEMANTICS OF π-GRAPHS 77

Terminating a thread After performing a terminal action, the thread that is used for

this performance is terminated and it is available for next session. The termination of a

thread i in replicator r requires an update of the name context. All the private names and

the variables attached to this thread must be reset, their instantiations have to disappear

from the name context. We de�ne a function reset for this purpose as follows:

resetri (Γ)
def
= Γri − (dom(

−−→
N r

tres) ∪N r
var)

Let φα be an action at vertex v of replicator r. We assume that action φα is a terminal

one and the predecessor of v has control for a thread i. The rule of terminating a thread,

denoted as [term] is de�ned as follows:

[term] Γ ` r : I i

φα

µ−→ resetri (Γ
′) ` r : I ∪ {i}

φα

if Γ ` r : i

φα
µ

=⇒ Γ′

If the performing of action φα on thread i updates the name context Γ to Γ′ then

after performing this action, Γ will be reset and the thread i will be available in the pool

of threads.

Special case: monadic action Monadic action is a terminal one and it has no pre-

decessor. Its activating requires a thread i is spawned and after performing this action,

the name context is reset. Let φα be a monadic action in replicator r. The rewrite rule

for this action, denoted by [mono], is de�ned as follows:

[mono] Γ ` r : I

φα

µ−→ resetri (Γ
′) ` r : I

φα

if i ∈ I and initri (Γ) ` r : i

φα
µ

=⇒ Γ′

If the activating of action φα with thread i updates the initialized name context to

Γ′, then after performing this action, the name context will be reset and thread i will

also be available in the pool of threads.

Synchronization Let φ1α1 be an output action at vertex vout in replicator rout, φ2α2

an input action at vertex vin in replicator rin, Γ the name context before performing the

synchronization. The predecessor of vout and vin have control for a thread iout and iin

respectively. The rule of synchronization between two actions is de�ned as follows:

78 CHAPTER 4. THE π-GRAPHS FORMALISM

[sync] Γ ` ro : io

φ1α1

ri : ii

φ2α2

µ−→ Γ′ ` ro : io

φ1α1

ri : ii

φ2α2

if Γ ` ro : io

φ1α1

ri : ii

φ2α2

τ
=⇒ Γ′

Remark In the communication rule, there may be a communication within a single

replicator (i.e., rin = rout), but in this case, it must be within two distinct threads (i.e.,

iin 6= iout).

Consider an example of the synchronization between an output [c = d]a〈c〉 and an

input b(e) as in Figure 4.11. Before the communication (depicted in Figure 4.11a), the

instantiations of c and d (i.e., ?1 and !1, respectively) are in two classes which are not

connected by a distinction, meaning that the guard [c = d] is evaluated to true. Moreover,

the instantiations of both a and b are ν1, thus the communication between these two

actions may be activated. After the communication (depicted in Figure 4.11b), the

dynamic partition is updated, in which the instantiations of c and d are in the same

class, and the distinctions are also updated (remaining only one distinction). Moreover,

name e (which is associated to ⊥ before the communication) is associated to ?1 (the

instantiation of c).

a

b

c

d

e

ν1

ν1

?1

!1

⊥

?1

ν1

!1

β
δ, γ

(a) Before the communication

a

b

c

d

e

ν1

ν1

?1

!1

?1

ν1

?1, !1

β′
δ′, γ′

(b) After the communication

Figure 4.11: The communication between [c = d]a〈c〉 and b(e)

Derived synchronization rules A synchronization is a coordination between an out-

put and an input action. Each of them can be one of four kinds of action: atomic,

spawning a thread, terminating a thread or monadic. So, there are in total 16 rules for

synchronization, consisting of the rule [sync] and 15 derived rules that are combinations

with the [spawn], [term] and [mono] rules.

4.2. OPERATIONAL SEMANTICS OF π-GRAPHS 79

The main issue is that there are initializations to perform before one or both synchro-

nizing threads are spawned, and also resets to perform after one or both synchronized

threads are terminated. The initializations on one side, and the resets on the other side

trivially commute because they operate only on distinct pairs (replicator r, thread i).

Compared to the [sync] rule above, the only notable di�erence for the other 15 rules is

the computation of the resulting name context, called Γ′ in the Table 4.1.

From the semantics rules above, one may observe that if two classes has a distinction

then they must be di�erent in the dynamic partition γ. Moreover, γ is a partition of all

the instantiations of the name environment β. These properties are invariants in π-graphs

formalism, they are de�ned as follows:

Invariant 4.3. ∀C1, C2 ∈ γ. (C1, C2) ∈ δ → C1 6= C2.

Invariant 4.4. γ is a partition of ran(β), i.e.,

• ∅ 6∈ γ

•
⋃
C∈γ C = ran(β)

• ∀C1, C2 ∈ γ. C1 6= C2 → C1 ∩ C2 = ∅

Besides the classi�cation of actions in π-graphs into input, output, bound output

and silent, they can be classi�ed based on their relation to the other actions in the π-

graphs structure, called structural type of actions. In the following, we present the formal

de�nition of structural types and several related properties.

De�nition 4.7 (Structural type). Let π = 〈R,K,G,N〉 be a π-graph, G(r) = 〈Vr, Lr, Er〉
the static graph of a replicator r in π. The structural type of an action at vertex v in

Vr, denoted by stype(r, v), is either:

• mono: if deg−r (v) = 0 and deg+
r (v) = 0;

• spwn: if deg−r (v) = 0 and deg+
r (v) > 0;

• term: if deg−r (v) = 1 and deg+
r (v) = 0;

• norm: if deg−r (v) = 1 and deg+
r (v) > 0.

where deg−r (v) (resp. deg+
r (v)) means the input (resp. output) degree of vertex v in the

static graph G(r) of replicator r.

Proposition 4.3 (Disjoint structural types). The four structural types of atomic actions

are disjoint.

80 CHAPTER 4. THE π-GRAPHS FORMALISM

Derived rule

from a [sync] between two threads in context Γ

(ro, io) is output thread, (ri, ii) is input thread

Initializations Resets

[sync&spawn/out]

([spawn] for output thread)
initroio (Γ)

[sync&spawn/in]

([spawn] for input thread)
initriii (Γ)

[sync&spawn− spawn]

([spawn] for both threads)
initriii (initroio (Γ))

[sync&term/out]

([term] for output thread)
resetroio (Γ′)

[sync&term/in]

([term] for input thread)
resetriii (Γ

′)

[sync&term− term]

([term] for both threads)
resetriii (resetroio (Γ′))

[sync&spawn/out− term/in]

([spawn] for output thread, [term] for input)
initroio (Γ) resetriii (Γ

′)

[sync&spawn/in− term/out]

([spawn] for input thread, [term] for output)
initriii (Γ) resetroio (Γ′)

[sync&mono/out]

([mono] for output thread)
initroio (Γ) resetroio (Γ′)

[sync&mono/in]

([mono] for input thread)
initriii (Γ) resetriii (Γ

′)

[sync&mono−mono]

([mono] for both threads)
initriii (initroio (Γ)) resetriii (resetroio (Γ′))

[sync&mono/out− spawn/in]

([mono] for output thread, [spawn] for input)
initriii (initroio (Γ)) resetroio (Γ′)

[sync&mono/in− spawn/out]

([mono] for input thread, [spawn] for output)
initriii (initroio (Γ)) resetriii (Γ

′)

[sync&mono/out− term/in]

([mono] for output thread, [term] for input)
initroio (Γ) resetriii (resetroio (Γ′))

[sync&mono/in− term/out]

([mono] for input thread, [term] for output)
initriii (Γ) resetriii (resetroio (Γ′))

Table 4.1: Derived synchronization rules

4.2. OPERATIONAL SEMANTICS OF π-GRAPHS 81

Proof. Let π = 〈R,K,G,N〉 be a π-graphs, G(r) = 〈Vr, Lr, Er〉 the static graph of a

replicator r in π. For any vertex v in Vr, its input degree deg−r (v) is either 0 or 1, and its

output degree deg+
r (v) is either 0 or more. Thus, there are four totally disjoint cases for

a combination between deg−r (v) and deg+
r (v), which is the structural type of the action

at (r, v). So, the four structural types in Def. 4.7 are disjoint.

Proposition 4.4. Let π be a π-graph and an action at (r, v) such that its structural type

is either term or mono. For any context Cπ of π, we always have ∆r(v) = ∅.

Proof. This property is derived directly from rule term and mono (cf. p. 76).

De�nition 4.8 (Global rewrite of π-graphs). Let Cπ and C ′π be the contexts of a π-

graphs π. The global rewrite of π with label µ, denoted by Cπ
µ−→ C ′π, is triggered by the

performance of either an atomic action or a synchronization, and the applied rule is:

• Single rewrite rule [act], [spawn], [term], [mono] if the structural type of the atomic

action is norm, spwn, term or mono, respectively;

• Rule [sync] in case of the synchronization.

Each rule matches a sub-component of π and updates only this component.

Finally, as mentioned above, the evolution of a π-graph is described by a labelled

transition system whose states are contexts that the system may reach, and labelled

transitions indicate under which conditions the change of states may occur. The formal

de�nition of the labelled transition system of a π-graphs is presented as follows:

De�nition 4.9. Let Λ be a set of labels of transitions. A labelled transition system

(LTS) of a π-graph π over Λ is a tuple (C , C0
π,R), where:

• C is a �nite set of contexts Cπ,

• C0
π is an initial context in C ,

• R ⊆ C × Λ× C is a transition relation.

A transition t in R with label λ is often written as Cπ
λ−→ C ′π.

All these de�nitions and propositions will be used in the translation of π-graphs into

Petri nets and in the proof of the conformance of the translation in Chapter 5.

82 CHAPTER 4. THE π-GRAPHS FORMALISM

4.3 Synthesis

This chapter presents the π-graphs formalism formally. It provides a formal syntax and

operational semantics of π-graphs.

The syntax is presented in a top-down manner, which starts from a diagram and ends

with guarded actions. A diagram models the whole system, which consists of a �nite set

of replicators modelling components of the system, and are supposed to work in parallel.

Each replicator speci�es a process in which threads may run in the form of a tree whose

nodes are guarded actions and directed edges represent their precedence. A replicator

also de�nes a thread bound, which is the maximum number of threads that can run

simultaneously in it. Replicators make the encoding of π-graphs more compact because

multiple threads can share a sub-graph.

Names used in π-graphs can be classi�ed into free names, variable names, and re-

stricted names. There are two kinds of restricted names: the global ones, which are

at the diagram level, and local ones, which are at the replicator level. Actions can be

classi�ed into silent, input, output and bound output. The di�erence between output

and bound output is that the bound output is the output of restricted names at the �rst

time, after that the name is not longer restricted and becomes public.

The operational semantics of a π-graphs diagram is de�ned as a labelled transition

system (LTS) in which the states are global contexts (con�gurations) that the system

may reach and the labelled transitions indicate under which conditions the change of the

states may occur. A global context is composed of a control �ow and a name context.

The former indicates which actions are active and which threads are available for each

replicator. The later records the instantiations of names (through a name environment)

and the relations between names, such as the equality (through a dynamic partition) and

the inequality (through a set of distinctions). Moreover, a set of operators on a context,

a set of commitment and rewrite rules and logical clocks are provided to describe the

evolution of the global context. Commitment rules describe the evolution of names and

rewrite rules describes the evolution of threads on the π-graphs structure. Logical clocks

are used to generate fresh names. Especially, a garbage collector, which is implemented

as function reset, is used to remove automatically all the occurrences of inactive names

in the context each time a thread terminates. Both the clocks and the garbage collector

make the LTS become �nite.

Chapter 5

Translating a π-graph into Petri nets

Petri nets are a modelling formalism that was invented by Carl Adam Petri [42]. They are

suitable for modelling concurrent and distributed systems, and they have many support

tools that allow us to analyze these systems. In the previous chapter, we modelled open

recon�gurable systems using π-graphs. As a variant of π-calculus formalism, π-graphs

has an expressive power for modelling the communication and the dynamic changing of

the structure of the systems. However, there are not many available support tools and

veri�cation techniques for π-calculus. Thus, we translate the model in π-graphs into

Petri nets to use available tools and techniques for Petri nets to analyze the systems.

Section 5.1 presents the translation from π-graphs into high-level Petri nets presented in

Section 2.2. In Section 5.2 we prove that the translated Petri nets behave dynamically

as the original π-graphs. In other words, the Petri nets translation of a π-graph has the

conformance property.

5.1 Translation of π-graphs into Petri nets

The translation of a π-graph π in a context (Γ,∆) into high-level Petri nets is structural,

which means that we rely only on the structure of π and the information in (Γ,∆) to

construct the corresponding Petri net. The translation is obtained in two parts:

1. Obtaining the Petri net structure from the π-graph,

2. Obtaining the marking for the translated net structure from (Γ,∆).

Before introducing the formal de�nition of the translation, these two parts will be illus-

trated by a simple example.

83

84 CHAPTER 5. TRANSLATING A π-GRAPH INTO PETRI NETS

5.1.1 An example of the translation

Suppose that we have a π-graph shown in Figure 5.1 with an arbitrary but well de�ned

context (Γ1,∆1).

r : 2

a(x)

v1

1

τ

v2

φb〈x〉

v3

Figure 5.1: A simple π-graph with one replicator

The two parts of the translation are described in detail as follows:

5.1.1.1 Part I: Obtaining the Petri net structure

This part will produce a Petri net structure S = (P, T, U,G) (it means an unmarked

high-level Petri net) in 5 steps:

1. Creating the places,

2. Translating the atomic π-graphs actions into atomic transitions,

3. Translating the synchronizations into synchronization transitions,

4. Creating the name context place and connecting it to the transitions,

5. Computing the guards for all transitions.

1. Create the places For each replicator (here, we have only one replicator r) we create

one initial place (here, p0
r). For each inner vertex (here, v1 and v2) we create a place

(here, p1 and p2, respectively). The terminal vertex v3 does not give any place in

the translation. These three places of the translated net structure are represented

in Figure 5.2.

pr0
p1 p2

Figure 5.2: Places of the translated net structure S.

All places but initial one (p0
r) may carry tokens which are pairs of constants of

the form r.i where r is a replicator and i is a thread identi�er. Initial place p0
r

is intended to carry the set of such tokens (actually, only one token of the form

X ⊆ {r.i | i ∈ [1..K(r)]}).

5.1. TRANSLATION OF π-GRAPHS INTO PETRI NETS 85

Step 2: Translate atomic actions Each atomic action of the π-graph gives rise to

an atomic transition which is labelled by the action. The arcs of the obtained

translation depend on the connections of the vertex in the π-graph.

For vertex v2, the corresponding transition t2, with label τ , is connected to p1 and

p2, where p1 is the input place and p2 is the output one (as v2 is preceded by v1 and

v2 is not a terminal vertex in the π-graph). The arcs around t2 are labelled r.i as

the action at v2 is a silent action τ . If the action was an input (resp. output) then

these arcs would be labelled ri.ii (resp. ro.io).

For vertex v1, the corresponding transition t1 with label a(x) is connected to p0
r and

p1, where p0
r is the input place and p1 is the output one (as v1 is an initial vertex

and it is not a terminal one in the π-graph). Because t1 is connected to the initial

place p0
r, its connectivity is particular as shown in Figure 5.3, where X is a variable.

It means that the �ring of transition t1 will take the set X from place p0
r, will �nd

the thread r.i in X with i being the smallest thread identi�er in X, will put into

p0
r the set (one token) X \ {min(X)} and into p1 the pair r.i. In other words, this

�ring will spawn a new thread r.i.

pr0
p1

p2a(x)

t1
X

X \ {min(X)} min(X)
τ

t2

r.i r.i

φb〈x〉

t3

r o
.i oX

X ∪ {r
o .i

o}

Figure 5.3: Adding atomic transitions

Finally, for vertex v3, the corresponding transition t3 with label φb〈x〉 has p2 as the

input place and p0
r as output place (as v3 is preceded by v2 and v3 is a terminal

vertex in the π-graph). The input arc from p2 to t3 is labelled ro.io depending on

the type of the action at v3 as in the case of t1. Similarly to transition t2, the

connection between t3 and p0
r is also particular because of the type of p

0
r. The input

arc from p0
r to t3 is labelled X and the output arc is labelled X ∪ {ro.io} meaning

that token ro.io is added to the set (token) in p0
r. These three atomic transitions of

the translated net are represented in Figure 5.3.

Step 3: Translate synchronizations In the π-graph, any pair of input and output

actions can potentially lead to a synchronization, so we create a new synchronization

86 CHAPTER 5. TRANSLATING A π-GRAPH INTO PETRI NETS

transition for each such pair, called a sync-transition. In the example, the transition

t4 labelled τ with double border is such a sync-transition. The connectivity of this

sync-transition is inherited from the input and output transitions. All transitions

of the translated net are represented in Figure 5.4.

pr0
p1

p2a(x)
X

X \ {min(X)} min(X)
τ

r.i r.i

φb〈x〉

r o
.i oX

X ∪ {r
o .i

o}

τ

X
r
o .i

o

m
in

(X
)

X \ {
min(X)} ∪ {

ro.io
}

Figure 5.4: Adding sync-transitions

Step 4: Create a name context place At this stage, we add a context place pΓ and

connect it to each transition. The input arc is labelled Γ and the output one is

labelled Γ′, where Γ and Γ′ are net variables. This place will store the current name

context of the π-graph. Figure 5.5 illustrates the connectivity of the name context

place pΓ.

pr0
p1

p2a(x)
X

X \ {min(X)} min(X)
τ

r.i r.i

φb〈x〉

r o
.i oX

X ∪ {r
o .i

o}

τ

X
r
o .i

o

m
in

(X
)

X \ {
min(X)} ∪ {

ro.io
}

pΓ

Γ′

Γ

Γ′
Γ

Γ′

Γ

Γ′

Γ

Figure 5.5: Adding the name context place pΓ

Step 5: Make guards The transition guards depend on the type of the action (input,

output, internal or synchronization) and on the situation of the corresponding vertex

5.1. TRANSLATION OF π-GRAPHS INTO PETRI NETS 87

(or two vertices in the case of a sync-transition) in the π-graph. In particular, in

our example, the transition t3 corresponds to the action at vertex v3 which is an

output on a terminal vertex. The guard of t3 is de�ned as follows:

G(t3) =

[
preout(Γ, r, io, φb〈x〉) ∧
Γ′ ← resetrio(postout(Γ, r, io, φb〈x〉))

where the �rst line is a �ring condition and the second line may be seen as an always

true Boolean expression used to update the name context information.

The sync-transition with label τ depends on the actions at vertices v1 and v3. Its

guard is de�ned as follows:

G(t4) =

[
precom(initroio (Γ), ro, io, φb〈x〉, ri, ii, a(x)) ∧
Γ′ ← resetriii (postcom(initroio (Γ), ro, io, φb〈x〉, ri, ii, a(x))).

Notice that in these guards, preout(), postout, precom, postcom, reset() and init() are

functions that are used to de�ne the precondition and post-condition of an action

in π-graphs.

5.1.1.2 Part II: Translating the context

For each π-graph we obtain a corresponding Petri net structure which does not depend

on the context of the π-graph and is static. The context of π-graphs is translated into a

marking of the translated net structure which is obtained as follows:

• The name context is put into the name context place pΓ as a unique structured

token.

• For each replicator, threads at an inner vertex in the π-graph are put into the

corresponding places (there is never threads in terminal vertices); and

• The set of all threads in the pool of threads is put into the initial place as a unique

token;

For the example in Figure 5.1, the translated marking is shown in Figure 5.6. One

may observe that there is a correspondence between the π-graph in the context (Γ1,∆1)

and the translated Petri net. In the π-graph, the atomic actions at vertices v1 and v3,

and the synchronization between these two actions can be activated if their preconditions

are satis�ed. Similarly, in the translated net, the corresponding transitions t1, t3 and

the sync-transition can be performed if their guards are satis�ed. Because the guard

of transitions are essentially the same as the preconditions of the corresponding actions

in the π-graph, if an action in the π-graph may be activated then the corresponding

transition can be performed in the translated net.

88 CHAPTER 5. TRANSLATING A π-GRAPH INTO PETRI NETS

r : 2

a(x)

v1

1

τ

v2

φb〈x〉

v3

Γ1

pr0 r.2

p1

p2r.1a(x)
X

X \ {min(X)} min(X)
τ

r.i r.i

φb〈x〉

r o
.i oX

X ∪ {r
o .i

o}

τ

X
r
o .i

o

m
in

(X
)

X \ {
min(X)} ∪ {

ro.io
}

pΓΓ1

Γ′

Γ

Γ′
Γ

Γ′

Γ

Γ′

Γ

Figure 5.6: Translation of the context producing a marking.

5.1.2 Formal de�nition of the translation

As mentioned above, in the translation of the context, in order to optimize the size of

the state space, we need to determine the minimum value in the set of available threads

of a given replicator. We de�ne a function that allows us to compute this minimum as

follows.

De�nition 5.1 (Minimum token). Let Ir ⊆ [1..K(r)] be subset of threads of replicator r

and Tr = {r.i | i ∈ Ir} be the set of tokens corresponding to Ir. The minimum token of

Tr, denoted by min(Tr), is token r.i having the minimal i.

We start the translation by producing the Petri net structure, the corresponding

marking will be introduced at the end.

De�nition 5.2 (Translated net structure). Let π = 〈R,K,G,N〉 be a π-graph, and χπ

the type of the name context of π. The translated net structure of π, denoted by net(π),

is a tuple (P,T,U,G) which is obtained as follows:

The set of places P

P = {pΓ} ∪ P0 ∪ Pv with (5.1)

P0 = {pr0 | r ∈ R} initial places

Pv =
⋃
r∈R

{prv | v ∈ Vr, stype(r, v) ∈ {norm, spwn}}

5.1. TRANSLATION OF π-GRAPHS INTO PETRI NETS 89

Type of places:

∀p ∈ P,U(p) =


χπ if p = pΓ,

P({r.i | i ∈ [1..K(r)]}) if p ∈ P0, p = pr0,

{r.i | i ∈ [1..K(r)]} if p ∈ Pv, p = prv.

(5.2)

The set of transitions T = T1 ∪ T2, where T1 is the set of atomic transitions and T2

is the set of synchronization transitions.

T1 = N ∪S ∪ T ∪M is the set of atomic transitions, with

N = {trv | r ∈ R, v ∈ Vr, stype(r, v) = norm}, (5.3a)

S = {trv | r ∈ R, v ∈ Vr, stype(r, v) = spwn}, (5.3b)

T = {trv | r ∈ R, v ∈ Vr, stype(r, v) = term}, (5.3c)

M = {trv | r ∈ R, v ∈ Vr, stype(r, v) = mono}. (5.3d)

T2 = {trorivovi
| trou , triv ∈ T1, Lro(vo) = φc〈a〉, Lri(vi) = ψd(x)} (5.4)

For each transition t ∈ T, its label U(t) is de�ned as follows:

U(t) =

Lr(v) if t = trv ∈ T1

τ if t ∈ T2

(5.5)

The arcs For each transition t in T, the arcs connected to t are de�ned by its input and

output places.

The input places of t, denoted by •t, are:

•t =


{pr0, pΓ} if t = trv ∈ S ∪M

{pru, pΓ} if t = trv ∈ N with (u, v) ∈ Er
{pru, pr0, pΓ} if t = trv ∈ T with (u, v) ∈ Er
•trovo ∪

•trivi if t = trorivovi
∈ T2

(5.6)

The output places of t, denoted by t•, are:

t• =


{pr0, pΓ} if t = trv ∈ T ∪M

{prv, pΓ} if t = trv ∈ N

{prv, pr0, pΓ} if t = trv ∈ S

trovo
• ∪ trivi

• if t = trorivovi
∈ T2

(5.7)

The arc labels assigning to each arc an expression (possibly with variables) compatible

with its input/output place, where X,Γ, r, ro, ri, i, io, ii are variables, are de�ned as

follows:

90 CHAPTER 5. TRANSLATING A π-GRAPH INTO PETRI NETS

• Input arcs labels for all atomic transitions t in T and all places p in •t are:

U((p, t)) =



Γ if p = pΓ

X if p = pr0

r.i if (p = prv) ∧ (U(t) = φτ) (cf. Tab. 5.3)

ro.io if (p = prv) ∧ (U(t) = φc〈a〉)

ri.ii if (p = prv) ∧ (U(t) = φc(x))

(5.8)

• Input arcs labels for all sync-transitions t = trorivovi
∈ T2 and all place p in

•t = {p1, p2, pΓ | p1 ∈ •trovo , p2 ∈ •trivi}, are:

U((p, t)) =



Γ if p = pΓ

X if (p1 = p2 = pr0) ∧ (p = p1)

ro.io, ri.ii if (p1 = p2 = prv) ∧ (p = p1)

Xo if (p1 6= p2) ∧ (p = p1 = pr0) (cf. Tab. 5.4)

ro.io if (p1 6= p2) ∧ (p = p1 = prv)

Xi if (p1 6= p2) ∧ (p = p2 = pr0)

ri.ii if (p1 6= p2) ∧ (p = p2 = prv)

(5.9)

• Output arcs labels for all atomic-transitions t in T1 and all places p in t• are:

U((t, p)) =



Γ′ if p = pΓ

X ′ if p = pr0

r.i if (p = prv) ∧ (U(t) = φτ) (cf. Tab. 5.3)

ro.io if (p = prv) ∧ (U(t) = φc〈a〉)

ri.ii if (p = prv) ∧ (U(t) = φc(x))

(5.10)

• Output arcs labels for all sync-transitions t = trorivovi
∈ T2 and all places p in

t• = {p1, p2, pΓ | p1 ∈ trovo
•, p2 ∈ trivi

•} are:

U((t, p)) =



Γ′ if p = pΓ

X ′ if (p1 = p2) ∧ (p = p1 = pr0)

X ′o if (p1 6= p2) ∧ (p = p1 = pr0) (cf. Tab. 5.4)

X ′i if (p1 6= p2) ∧ (p = p2 = pr0)

ro.io if (p1 6= p2) ∧ (p = p1 = prv)

ri.ii if (p1 6= p2) ∧ (p = p2 = prv)

(5.11)

The transition guard for each transition t in T, denoted by G(t), is given in Tab. 5.1

if t ∈ T1 and in Tab. 5.2 if t ∈ T2.

5.1. TRANSLATION OF π-GRAPHS INTO PETRI NETS 91

trv U(trv) G(trv)(Γ, r, i)

N

φτ pretau(Γ, r, i, φ); Γ′ ← posttau(Γ, r, i, φ)

φc(x) prein(Γ, ri, ii, φc(x)); Γ′ ← postin(Γ, ri, ii, φc(x))

φc〈a〉
(preout(Γ, ro, io, φc〈a〉

′); Γ′ ← postout(Γ, ro, io, φ)) or

(preνout(Γ, ro, io, φc〈a〉); Γ′ ← postνout(Γ, ro, io, φc〈a〉))

S

φτ pretau(initri (Γ), r, i, φ); Γ′ ← posttau(initri (Γ), r, i, φ)

φc(x) prein(initriii (Γ), ri, ii, φc(x)); Γ′ ← postin(Γ, ri, ii, φc(x))

φc〈a〉
(preout(initroio (Γ), ro, io, φc〈a〉); Γ′ ← postout(initroio (Γ), ro, io, φ)) or

(preνout(initroio (Γ), ro, io, φc〈a〉); Γ′ ← postνout(initroio (Γ), ro, io, φc〈a〉))

T

φτ pretau(Γ, r, i, φ); Γ′ ← resetri (posttau(Γ, r, i, φ))

φc(x) prein(Γ, ri, ii, φc(x)); Γ′ ← resetriii (postin(Γ, ri, ii, φc(x)))

φc〈a〉
(preout(Γ, ro, io, φc〈a〉); Γ′ ← resetroio (postout(Γ, ro, io, φ))) or

(preνout(Γ, ro, io, φc〈a〉); Γ′ ← resetroio (postνout(Γ, ro, io, φc〈a〉)))

M

φτ pretau(initri (Γ), r, i, φ); Γ′ ← resetri (posttau(initri (Γ), r, i, φ))

φc(x) prein(initriii (Γ), ri, ii, φc(x)); Γ′ ← resetriii (postin(initriii (Γ), ri, ii, φc(x)))

φc〈a〉

(preout(initroio (Γ), ro, io, φc〈a〉);
Γ′ ← resetroio (postout(initroio (Γ), ro, io, φ))) or

(preνout(initroio (Γ), ro, io, φc〈a〉);
Γ′ ← resetroio (postνout(initroio (Γ), ro, io, φc〈a〉)))

Table 5.1: Guards of atomic-transitions

In the de�nition, the unique place pΓ ∈ P is called a context place of the translated

net, other places are called control places. Similarly, a token in a control place is called

a control token, and a token in a context place is called a context token. Note that, an

initial place contains a special token, which is a set of control tokens.

Tab. 5.1 shows the de�nition of the guards of atomic transitions trv, where G(trv)(Γ, r, i)

denotes the evaluation of the guard of trv with the name context token Γ in the context

place pΓ and with thread i of replicator r. Each guard is composed of a precondition,

which is the precondition of the corresponding action at vertex v in replicator r, denoted

(r, v), in the π-graph. It also contains a computation of the name context token Γ′ after

�ring the transition, which is the post-condition of the corresponding action. Obviously,

the evaluation of a guard has the same value as the precondition.

Similarly, Tab. 5.2 on the next page shows the de�nition of the guards of synchro-

nization transitions. We denote by G(trorivovi
)(Γ, ro, io, ri, ii) the evaluation of the guard of a

sync-transition trorivovi
with the name context token Γ, thread io of replicator ro performing

an output and thread ii of ri performing an input. The synchronization transitions are

grouped with respect to the types of their atomic transitions (i.e., N,M,S,T). More-

over, depending on these types, the name context Γ may be initialized or reset in the

same way as given in Tab. 4.1 on page 80.

92 CHAPTER 5. TRANSLATING A π-GRAPH INTO PETRI NETS

No. trorivovi
G(trorivovi

)(Γ, ro, io, ri, ii)

1 N−N
precom(Γ, ro, io, φoc〈a〉, ri, ii, φid(x));

Γ′ ← postcom(Γ, ro, io, φoc〈a〉, ri, ii, φid(x))

2 N−S
precom(initriii (Γ), ro, io, φoc〈a〉, ri, ii, φid(x));

Γ′ ← postcom(initriii (Γ), ro, io, φoc〈a〉, ri, ii, φid(x))

3 N− T
precom(Γ, ro, io, φoc〈a〉, ri, ii, φid(x));

Γ′ ← resetriii (postcom(Γ, ro, io, φoc〈a〉, ri, ii, φid(x)))

4 N−M
precom(initriii (Γ), ro, io, φoc〈a〉, ri, ii, φid(x));

Γ′ ← resetriii (postcom(initriii (Γ), ro, io, φoc〈a〉, ri, ii, φid(x)))

5 S−S
precom(initriii (initroio (Γ)), ro, io, φoc〈a〉, ri, ii, φid(x));

Γ′ ← postcom(initriii (initroio (Γ)), ro, io, φoc〈a〉, ri, ii, φid(x))

6 S− T
precom(initroio (Γ), ro, io, φoc〈a〉, ri, ii, φid(x));

Γ′ ← resetriii (postcom(initroio (Γ), ro, io, φoc〈a〉, ri, ii, φid(x)))

7 S−M
precom(initriii (initroio (Γ)), ro, io, φoc〈a〉, ri, ii, φid(x));

Γ′ ← resetriii (postcom(initriii (initroio (Γ)), ro, io, φoc〈a〉, ri, ii, φid(x)))

8 T− T
precom(Γ, ro, io, φoutc〈a〉, ri, ii, φid(x));

Γ′ ← resetriii (resetroio (postcom(Γ, ro, io, φoc〈a〉, ri, ii, φid(x))))

9 T−M
precom(initriii (Γ), ro, io, φoc〈a〉, ri, ii, φid(x));

Γ′ ← resetroio (postcom(initriii (Γ), ro, io, φoc〈a〉, ri, ii, φid(x)))

10 M−M

precom(initriii (initroio (Γ)), ro, io, φoc〈a〉, ri, ii, φid(x));

Γ′ ← resetriii (resetroio (postcom(initriii (initroio (Γ)),

ro, io, φoc〈a〉, ri, ii, φid(x))))

Table 5.2: Guards of sync-transitions

Tab. 5.3 on the next page shows rules of assigning arc labels for atomic transitions

depending the types of transitions and types of the corresponding actions in π-graphs.

In this table, we do not present the label of input and output arcs between the transition

and the context place pΓ for simplicity. In fact, pΓ is connected to all transitions with

Γ and Γ′ as input and output arc labels, respectively. Thus, the arc label of an atomic

transition may be

• a variable Γ, representing the context token that the transition consumes from pΓ,

• a variable Γ′ (instantiated in the guards in Tab. 5.1) represents the context token

produced to pΓ after �ring the transition,

• a structured expression r.i (resp. ro.io or ri.ii) representing a control token (thread)

used by a silent action (resp. by an output or an input),

• a variable X, representing a special token (i.e., contains a set of control tokens in

the form of r.i) in an initial place that the transition consume or produce,

5.1. TRANSLATION OF π-GRAPHS INTO PETRI NETS 93

trv φτ φc(x) φc〈a〉

N pru prv

G(t).τ
r.i r.i

pru prv

G(t).c(x)
ri.ii ri.ii

pru prv

G(t).c〈a〉
ro.io ro.io

S

pr0 prv

G(t).τ

X

X′
r.i

[
r.i = min(X)

X′ = X r {r.i}

pr0 prv

G(t).c(x)

X

X′
ri.ii

[
ri.ii = min(X)

X′ = X r {ri.ii}

pr0 prv

G(t).c〈a〉

X

X′
ro.io

[
ro.io = min(X),

X′ = X r {ro.io}

T

pru pr0

G(t).τ
r.i

X

X′

X′ = X ∪ {r.i}
pru pr0

G(t).c(x)
ri.ii

X

X′

X′ = X ∪ {ri.ii}
pru pr0

G(t).c〈a〉
ro.io

X

X′

X′ = X ∪ {ro.io}

M

pr0

G(t).τ

X

X′[
X′ = X

r.i = min(X)

pr0

G(t).a(x)

X

X′[
X′ = X

ri.ii = min(X)

pr0

G(t).c〈a〉

X

X′[
X′ = X

ro.io = min(X)

Table 5.3: Arc label of an atomic-transition trv

• an expression X ∪ {r.i} (resp. X \ {r.i}) meaning that a control token r.i is added

to X (resp. removed from X) and then X is put back to the initial place, or

• an expression min(X) representing the minimum control token in X, computed

using Def 5.1.

We can observe that if the type of an atomic transition trv is T, then pr0 is both input

and output place of trv. However, place pr0 does not provide control token for �ring the

transition but it receives control token that trv consumes from place pru. In this case, pru
is a control input place of trv, but not p

r
0. Similarly, if the type of trv is S, then place prv is

a control output place of trv. In this case, pr0 is a control input place of trv.

Tab. 5.4 shows rules of assigning arc labels for sync-transitions. Similarly to Tab. 5.3,

we do not present the arcs between the transition and context place pΓ. Since a sync-

transition is constructed by fusing an output and an input atomic transitions, it needs

two control tokens ro.io and ri.ii for �ring, where ro and ri may be the same. Arc labels

of a sync-transition may be

• a variable Γ or Γ′, where Γ′ is computed using de�nitions from Tab. 5.2

• a structured expression ro.io or ri.ii, as before

• a variable Xo, representing a special token of the initial place, which was connected

before the synchronization to the output,

94 CHAPTER 5. TRANSLATING A π-GRAPH INTO PETRI NETS

• a variable Xi, the same as above for input

• a variable X, the same as above, but when the same place was both an input and

an output,

• variablesX ′o, X
′
i, orX

′, corresponding to updated tokensXo, Xi andX, respectively,

• a pair of variables ro.io, ri.ii, representing a pair of output and input control tokens

that are consumed from the same place

We denote by cip(trv) and cop(trv) the control input place and control output place of

an atomic transition trv, and have the following related properties.

Proposition 5.1 (Unique control input place). Let π be a π-graph. If trv is an atomic

transition in the translated net structure of π, then it has exactly one control input place,

cip(trv) =

pr0 if trv ∈ S ∪M

pru if trv ∈ N ∪ T, where (u, v) ∈ Er.

Proof. By Def. 5.2 (Eq. 5.6).

Proposition 5.2 (Unique control output place). Let π be a π-graph. If trv is an atomic-

transition in the translated net structure of π, then it has exactly one control output place,

cop(trv) =

pr0 if trv ∈M ∪ T

prv if trv ∈ N ∪S.

Proof. By Def. 5.2 (Eq. 5.7).

Proposition 5.3 (Control places of sync transitions). Let π be a π-graph and t a sync-

transition in net(π). Then t has at most two control input places and at most two control

output places.

Proof. Let t = tr1r2v1v2
be a synchronization transition. By Def. 5.2 (Eq. 5.6, Eq. 5.7), the

control input (resp. output) places of t are the union of control input (resp. output)

places of atomic transitions tr1v1
and tr2v2

. Moreover, by Prop. 5.1 and Prop. 5.2, each of

tr1v1
and tr2v2

has exactly one control input place and one control output place (which may

be the same place). Thus, the union of them contains at most two places. Therefore, the

property holds.

De�nition 5.3 (Translated marking). Let π = 〈R,K,G,N〉 be a π-graph, Cπ = (Γ,∆) a

context of π, and N = net(π) the translated net structure. The translated marking of Cπ
in N, denoted by mark(Cπ,N), is a marking Mπ, where:

1. Mπ(pΓ) = {Γ}

5.2. CONFORMANCE OF THE TRANSLATION 95

2. ∀prv ∈ Pv, Mπ(prv) = {r.i | i ∈ ∆r(v)}

3. ∀pr0 ∈ P0, Mπ(pr0) = {X} with X = {r.i | i ∈ inact(∆r)}.

According to Def. 5.3, given an initial context (Γ0
π,∆

0
π), the corresponding initial

marking M0
π is:

M0
π(p) =


{Γ0

π} if p = pΓ

∅ if p = prv,∀prv ∈ Pv

{X} if p = pr0, ∀pr0 ∈ P0 with X = {r.i | i ∈ {1, . . . ,K(r)}}

De�nition 5.4 (Translation). Let Cπ be a context of a π-graph π. The translation of π

in context Cπ, denoted by trans(π, Cπ), is a high-level Petri net 〈P,T,U,G; M〉 in which

the net structure 〈P,T,U,G〉 = net(π) and the marking Mπ = mark(Cπ, net(π)).

Proposition 5.4 (Global occurrence of transitions). Let π be a π-graph. The occurrence

of a transition t in net(π) matches a subset of places related to t and updates only them,

the rest does not change.

Proof. By Def. 5.2 (Eq. 5.6), the context place pΓ is the input place of all transitions in

net(π). Moreover, by Def. 5.3, the place pΓ contains only one token, which is the name

context token. Thus, all the transitions are mutual exclusive, and at most one of them

may �re at a time. Therefore, only the markings of places which are input and output

places of this transition are updated, the rest does not change. Property is proved.

5.2 Conformance of the translation

Let π = 〈R,K,G,N〉 be a π-graph. The translated net structure of π is net(π) =

〈P,T,U,G〉. We denote by Cπ = 〈Γ,∆〉 a context of π. The marking corresponding to Cπ
in the translated net is mark(Cπ, net(π)) (cf. Def. 5.3). In the conformance proof, since π

and net(π) are static, we introduce the abbreviation mark(Cπ). From now on, we omit π

and net(π).

The proof is decomposed into two levels: local and global conformance. The former

concerns the correspondence between each kind of actions in π-graphs, which is an atomic

action or a synchronization, and a transition in the translated Petri net. The later

concerns the correspondence between any kind of actions and the transitions, i.e., the

conformance of the whole translation.

In order to make easier the reading of the proof, which is complex because using many

de�nitions, propositions and lemmas, we present (before going to technical details) the

structure of each important part of the proof by a directed graph whose nodes are:

96 CHAPTER 5. TRANSLATING A π-GRAPH INTO PETRI NETS

• de�nitions, which are denoted by D1, D2, . . . (if the de�nition appears in Chapter 5)

or D3.1, D4.2 (in case it appears in another chapter, e.g., chapter 3, 4)

• tables, which are denoted by tb1, tb2, . . .

• rules, which are denoted by Rc in the case of commitment rules or Rr in the case

of rewrite rules

• propositions, which are denoted by P1, P2, . . .

• lemmas, which are denoted by L1, L2, . . . , or

• theorems, which are denoted by T1, T2, . . .

The arcs represent the dependence.

5.2.1 Local conformance

We prove the soundness and the completeness of atomic actions and synchronizations.

Informally, the soundness property asserts that if there is a rewrite in the π-graphs with

label µ then there exists a corresponding transition with the same label in the translated

Petri net. The completeness property asserts that if there is a transition in the Petri net

with label µ then there exists a corresponding rewrite with the same label in the π-graphs.

In the following, we prove each property for an atomic action and for a synchronization.

For each proof, we begin with a dependence graph and then its detail.

5.2.1.1 Soundness for atomic actions

The proof of the soundness for an atomic action (Theorem 5.1, denoted by T1) is struc-

tured as shown in a dependence graph in Figure 5.7.

Proposition 5.5 (Existence of atomic transitions). For any atomic action in a π-graph

π, there exists a transition in net(π) such that it has the same label as the action.

Proof. Suppose that π = 〈R,K,G,N〉. By Def. 4.7, for any atomic action at (r, v), with

r ∈ R, G(r) = 〈Vr, Lr, Er〉, and v ∈ Vr, its structural type is either: norm, spwn, term,

or mono. By Def. 5.2 (eq. 5.3), for each case of the action, there exists a corresponding

atomic-transition trv in T1. Moreover, by Def. 5.2 (Eq. 5.5), the syntactical label of the

action at (r, v) and the transition trv are the same. Thus, the property holds.

De�nition 5.5 (Available thread). Let Cπ = (Γ,∆) be the context of a π-graph π

and r a replicator in π. A thread i is available to the action at (r, v) if and only if

5.2. CONFORMANCE OF THE TRANSLATION 97

L2

T1

P8

L3

P6 P7

P5

D3

L1P9

P1

D2

P2P3 D7D6Rr P4.2D4.8 tb1

D4.7

D5

Rc

tb3

Figure 5.7: Dependence graph of soundness for an atomic action

availπ(i, r, v, Cπ) = true, with:

availπ(i, r, v, Cπ)
def
=

i ∈ inact(∆r) if stype(r, v) ∈ {spwn,mono}

i ∈ ∆r(u) if stype(r, v) ∈ {norm, term} with (u, v) ∈ Er

De�nition 5.6 (Available control token). Let π be a π-graph, Mπ a marking of net(π)

and t a transition in net(π). A control token r.i is available to t in the marking Mπ,

denoted by availn(r.i, t,Mπ), if and only if the token is present in the marking of a control

input place of t.

De�nition 5.7 (Atomic precondition). Let Γπ be the name context of a π-graph π and

i a thread that is available to the action at (r, v). The precondition of the atomic action

in Γπ with thread i, denoted by preatom(Γπ, r, v, i), is de�ned as follows:

preatom(Γπ, r, v, i)
def
=


pretau(Γπ, r, i, φ) if Lr(v) = φτ

prein(Γπ, r, i, φc(x)) if Lr(v) = φc(x)

(preout(Γπ, r, i, φc〈a〉)

∨ preνout(Γπ, r, i, φc〈a〉))
if Lr(v) = φc〈a〉

If the structural type of the action at vertex v in replicator r stype(r, v) is mono or spwn,

then Γπ is substituted by initri (Γπ) on the right hand side.

Proposition 5.6 (Thread existence for atomic actions). Let Cπ = (Γ,∆) be the context of

a π-graph π. If there exists C ′π such that Cπ
µ−−→

(r,v)
C ′π, then there exists a thread i ∈ [1..K(r)]

such that availπ(i, r, v, Cπ) = true and preatom(Γ, r, v, i) = true.

98 CHAPTER 5. TRANSLATING A π-GRAPH INTO PETRI NETS

Proof. First, we prove that if Cπ
µ−−→

(r,v)
C ′π, then there exists a thread i such that availπ(i, r, v, Cπ) =

true, by analyzing all cases of structural type of the action at (r, v).

If the structural type of the action is norm or term, then by Def. 4.8 on page 81, the

rewrite is triggered by applying rule [act] or [term] (cf. p. 75). By these rules, there exists

a thread i in [1..K(r)] such that i ∈ ∆r(u), where (u, v) ∈ Er. So, by Def. 5.6, we have:

availπ(i, r, v, Cπ) = true.

Otherwise, if the structural type of the action is spwn or mono, then by Def. 4.8, the

rewrite is triggered by applying rule [spawn] or [mono] (cf. p. 76). By these rules, there

exists a thread i in [1..K(r)] such that i = min(inact(∆r)). Thus, i ∈ inact(∆r). So, by

Def. 5.6, availπ(i, r, v, Cπ) = true. In all cases of the action, there always exists a thread i

such that availπ(i, r, v, Cπ) = true.

Second, we prove that with such a thread, we also have preatom(Γ, r, v, i) = true. By

all four rules [act], [spawn], [term] and [mono], in order to trigger a rewrite for an action

φα at (r, v), we must have a commitment as follows:

Γ ` r : i

φα

µ
=⇒ Γ′

in which Γ is substituted by initri (Γ) in case of applying rule [spawn], or [mono]. We

analyze by cases of the action and show that preatom(Γ, r, v, i) = true.

If α is a silent action, α = τ , then by rule [tau], we have pretau(Γ, r, i, φ) = true. Thus,

by Def. 5.7, preatom(Γ, r, v, i) = true. Similarly, if α is an input action, α = c(x), then by

rule [in], we have prein(Γ, r, i, φ) = true. Thus, by Def. 5.7, preatom(Γ, r, v, i) = true.

Otherwise, α is an output action, α = c〈a〉 then by Prop. 4.2, two exclusive rules can

be applied [out] or [νout]. If rule [out] is applied, then we have preout(Γ, r, i, φ) = true;

otherwise, preνout(Γ, r, i, φ) = true. By Def. 5.7, preatom(Γ, r, v, i) = true. In all cases of

action, we also have preatom(Γ, r, v, i) = true. Thus, the property holds.

Lemma 5.1 (Correspondance between available threads and control tokens). Let Cπ be

the context of a π-graph π, Mπ the corresponding marking Cπ of the translated net struc-

ture, and trv an atomic-transition. If there exists a thread i such that availπ(i, r, v, Cπ) =

true, then availn(r.i, trv,Mπ) = true.

Proof. We prove by analyzing all the cases of the structural type of the action at (r, v).

If the action is spwn or mono, then by Def. 5.2 (Eq. 5.3b and Eq. 5.3d), trv belongs to S

orM. By Prop. 5.1, place pr0 is the unique control input place of t
r
v. Moreover, by Def. 5.5,

in these two cases, we have i ∈ inact(∆r). By Def. 5.3, the control token r.i is present in

place pr0. Thus, we have r.i ∈ Mπ(pr0). By Def. 5.6, we have availn(r.i, trv,Mπ) = true.

5.2. CONFORMANCE OF THE TRANSLATION 99

Otherwise, the action is norm or term then by Def. 5.2 (Eq. 5.3a and Eq. 5.3c), trv
belongs to N or T. By Prop. 5.1, pru is the unique control input place of trv, where

(u, v) ∈ Er. Moreover, by Def. 5.5, in these two cases, we have i ∈ ∆r(u). By Def. 5.3,

the control token r.i is present in place pru, so, r.i ∈ Mπ(pru). Thus, by Def. 5.6, we have

availn(r.i, trv,Mπ) = true. In all cases of the action, we always have availn(r.i, trv,Mπ) =

true. Therefore, the property holds.

Proposition 5.7 (Equivalence between preconditions and guards for atomic action). Let

Γπ be the name context of a π-graph π, trv an atomic transition in the translated net such

that it is the corresponding transition of the action at (r, v), and i the id of the thread

that is available to trv. Then preatom(Γ, r, v, i) = true if and only if G(trv)(Γ, r, i) = true.

Proof. We show that in any case of the action at (r, v) (input, output, silent), its pre-

condition preatom(Γ, r, v, i) is exactly the same as the evaluation of the guard of the cor-

responding transition, G(trv)(Γ, r, i).

First, we prove the property for two structural types of the action, norm and term. If

Lr(v) = φτ , then by Def. 5.7, preatom(Γ, r, v, i) = pretau(Γ, r, i, φ). By Tab. 5.1 (case φτ

for N,T), the evaluation of the guard of trv is G(trv)(Γ, r, i) = pretau(Γ, r, i, φ). Similarly,

if Lr(v) = φc(x), then by Def. 5.7, preatom(Γ, r, v, i) = prein(Γ, r, i, φc(x)). By Tab. 5.1

(case φc(x) for N,T), the evaluation of the guard of trv is prein(Γ, r, i, φc(x)). Otherwise,

Lr(v) = φc〈a〉, by Def. 5.7, preatom(Γ, r, v, i) = preout(Γ, r, i, φc〈a〉) ∨ preνout(Γ, r, i, φc〈a〉).
By Tab. 5.1 (case φc〈a〉 for N,T), the evaluation of the guard of trv is preout(Γ, r, i, φc〈a〉)
∨ preνout(Γ, r, i, φc〈a〉). From the analysis, we always have preatom(Γ, r, v, i) = G(trv)(Γ, r, i).

Thus, the property holds in the case of the structural type of the action at (r, v) norm

and term.

Second, we prove for two other structural types of the action, mono and spwn. By

Def. 5.7, the precondition preatom(Γ, r, v, i) is the same as above, in which Γ is substituted

by initri (Γ). Moreover, by Tab. 5.1, the evaluation of the guard is also the same as given

in two structural types above, with Γ substituted by initri (Γ). So, preatom(Γ, r, v, i) =

G(trv)(Γ, r, i). Thus, the property holds in the case of the structural type of the action

mono and spwn.

From the analysis above, in all the cases of the action and in all the structural types,

the evaluation of the precondition of the action at (r, v) is exactly the same as the eval-

uation of the guard of trv. Thus, the property holds.

Lemma 5.2 (Existence of the occurrence of an atomic transition). Let Cπ = (Γ,∆) be a

context of a π-graph π. If there exists a context C ′π such that Cπ
µ−−→

(r,v)
C ′π, then there exists

a marking M′π such that mark(Cπ)[trv:µ〉M′π.

Proof. Let C ′π be a context such that Cπ
µ−−→

(r,v)
C ′π. By Prop. 5.6, there exists a thread i

such that availπ(i, r, v, Cπ) = true and preatom(Γ, r, v, i) = true. Let Mπ = mark(Cπ). By

100 CHAPTER 5. TRANSLATING A π-GRAPH INTO PETRI NETS

Lem. 5.1, from availπ(i, r, v, Cπ) = true, we have availn(r.i, trv,Mπ) = true. Moreover, by

Prop. 5.7, from preatom(Γ, r, v, i) = true, we have G(trv)(Γ, r, i) = true, and by Def. 5.3,

Mπ(pΓ) = {Γ}. Thus, G(trv)(Mπ(pΓ), r, i) = true. Furthermore, by Prop. 5.5, both the

transition trv and the action at (r, v) have the same label. Thus, there exists a marking

M′π such that we have an occurrence of transition mark(Cπ)[trv:µ〉M′π.

Proposition 5.8 (Marking of the context place). Let Cπ = (Γπ,∆π) and C ′π = (Γ′π,∆
′
π).

If Cπ
µ−−→

(r,v)
C ′π and there exists M′π such that mark(Cπ)[trv:µ〉M′π, then mark(C ′π)(pΓ) =

M′π(pΓ).

Proof. Remind that if Cπ → C ′π then there exists a marking M′π such that mark(Cπ)[trv:µ〉M′π
(according to Lem. 5.2). We prove that for any structural type of an action at (r, v), Γ′π
is exactly the token Γ′ that is produced to the context place pΓ after �ring the transition

trv.

First, we prove for the structural type norm by analyzing all the cases of the ac-

tion. If the action is a silent one, then by rule [tau] (cf. p. 72), Γ′π = posttau(Γπ, r, i, φ).

By Def. 5.3, mark(Cπ)(pΓ) = {Γ′π}. Thus, by Tab. 5.1 (case N, φτ), we have Γ′ =

posttau(Γπ, r, i, φ). If it is an input action, then by rule [in] (cf. p. 73), Γ′π = postin(Γπ, r, i, φc(x)).

By Def. 5.3, mark(Cπ)(pΓ) = {Γ′π}. Thus, by Tab. 5.1 (case N, φc(x)), we have Γ′ =

postin(Γπ, r, i, φc(x)). Otherwise, it is an output action, we have two possibilities for Γ′π:

1. Γ′π = postout(Γπ, r, i, . . .) if preout(Γπ, r, i, φc〈a〉) = true (by rule [out]);

2. Γ′π = postνout(Γπ, r, i, φc〈a〉) if preνout(Γπ, r, i, φc〈a〉) = true (by rule [νout]).

Moreover, by Def. 5.3, we have mark(Cπ)(pΓ) = {Γ′π}. Thus, by Tab. 5.1 (case N, φc〈a〉),
Γ′ = postout(Γπ, r, i, φc〈a〉) if preout(Γπ, r, i, φc〈a〉) = true; and Γ′ = postνout(Γπ, r, i, φc〈a〉)
if preνout(Γπ, r, i, φc〈a〉) = true.

From the analysis above, and because preout(. . .) and preνout(. . .) are exclusive (by

Prop. 4.2), thus we have Γ′π = Γ′. Moreover, by Def. 5.3, we have: mark(C ′π)(pΓ) = {Γ′π};
and by Def. 5.2, we have M′π(pΓ) = Γ′. Thus, mark(C ′π)(pΓ) = M′π(pΓ).

Second, we prove the property for the other structural types (i.e., spwn, term, and

mono) based on the proof for the type norm. In the case of spwn, Γπ is substituted by

initri (Γπ). In the case of term, Γ′ is substituted by resetri (Γ
′). In the case of mono, Γπ is

substituted by initri (Γπ), and Γ′ is substituted by resetri (Γ
′). For all the cases, we always

have Γ′π = Γ′. Thus, similarly, we have M′π(pΓ) = Γ′. Therefore, mark(C ′π)(pΓ) = M′π(pΓ).

The property holds.

Proposition 5.9 (Marking of control places). Let Cπ = (Γπ,∆π) and C ′π = (Γ′π,∆
′
π). If

Cπ
µ−→
r,v
C ′π and there exists a marking M′π of net(π) such that mark(Cπ)[trv:µ〉M′π, then for

any control place p in net(π), M′π(p) = mark(C ′π)(p).

5.2. CONFORMANCE OF THE TRANSLATION 101

Proof. Let i be the thread that performs the action at (r, v). We prove the property by

analyzing all the cases of the structural types of the action.

norm: By Def. 4.8, rule [act] is applied for the rewrite and only controls of vertices u, v,

where (u, v) ∈ Er, are updated. We have ∆′r(u) = ∆r(u)\{i}, ∆′r(v) = ∆r(v)∪{i},
and ∀w 6∈ {u, v},∆′r(w) = ∆r(w). By Def. 5.3, the corresponding marking mark(C ′π)

is determined as follows:
mark(C ′π)(pru) = mark(Cπ)(pru) \ {r.i}

mark(C ′π)(prv) = mark(Cπ)(prv) ∪ {r.i}

∀p 6∈ {pru, prv, pΓ},mark(C ′π)(p) = mark(Cπ)(p)

(N1)

Moreover, by Prop. 5.1 and Prop. 5.2, place pru is the unique control input place and

prv is the unique control output place of the transition trv. By Prop. 5.4, only the

markings of places pru, p
r
v, and pΓ are updated by the occurrence of the transition.

Thus, by Tab. 5.3 (case N), the marking M′π is determined as follows:
M′π(pru) = mark(Cπ)(pru) \ {r.i}

M′π(prv) = mark(Cπ)(prv) ∪ {r.i}

∀p 6∈ {pru, prv, pΓ},M′π(p) = mark(Cπ)(p)

(N2)

From (N1) and (N2), we have: ∀p 6= pΓ,M
′
π(p) = mark(C ′π)(p).

spwn: By Def. 4.8, rule [spawn] is applied for the rewrite and only controls of vertex

v and set of inactive threads are updated. Let i = min(inact(∆r)). We have:

inact(∆′r) = inact(∆r) \ {i}, ∆′r(v) = ∆r(v) ∪ {i}, and ∀u 6= v,∆′r(u) = ∆r(u).

Thus, by Def. 5.3, the corresponding marking mark(C ′π) is determined as follows:
mark(C ′π)(pr0) = mark(Cπ)(pr0) \ {r.i}

mark(C ′π)(prv) = mark(Cπ)(prv) ∪ {r.i}

∀p 6∈ {pr0, prv, pΓ},mark(C ′π)(p) = mark(Cπ)(p)

(S1)

Moreover, by Prop. 5.1 and Prop. 5.2, pr0 is the unique control input place and

prv is the unique control output place of the transition trv. By Prop. 5.4, only the

markings of places pr0, p
r
v, and pΓ are updated by the occurrence of the transition.

Thus, by Tab. 5.3 (case S), the marking M′π is determined as follows:
M′π(pr0) = mark(Cπ)(pr0) \ {r.i}

M′π(prv) = mark(Cπ)(prv) ∪ {r.i}

∀p 6∈ {pr0, prv, pΓ},M′π(p) = mark(Cπ)(p)

(S2)

From (S1) and (S2), we have: ∀p 6= pΓ,M
′
π(p) = mark(C ′π)(p).

102 CHAPTER 5. TRANSLATING A π-GRAPH INTO PETRI NETS

term: By Def. 4.8, rule [term] is applied for the rewrite and only controls of vertex u,

where (u, v) ∈ Er, and set of inactive threads are updated. We have: ∆′r(u) =

∆r(u) \ {i}, inact(∆′r) = inact(∆r) ∪ {i}, and ∀w 6= u,∆′r(w) = ∆r(w). Thus, by

Def. 5.3, the corresponding marking mark(C ′π) is determined as follows:
mark(C ′π)(pru) = mark(Cπ)(pru) \ {r.i}

mark(C ′π)(pr0) = mark(Cπ)(pr0) ∪ {r.i}

∀p 6∈ {pr0, pru, pΓ},mark(C ′π)(p) = mark(Cπ)(p)

(T1)

Moreover, by Prop. 5.1 and Prop. 5.2, pru is the unique control input place and pr0
is the unique control output place of trv. By Prop. 5.4, only the markings of places

pr0, p
r
u, and pΓ are updated by the occurrence of the transition. Thus, by Tab. 5.3

(case T), the marking M′π is determined as follows:
M′π(pru) = mark(Cπ)(pru) \ {r.i}

M′π(pr0) = mark(Cπ)(pr0) ∪ {r.i}

∀p 6∈ {pr0, pru, pΓ},M′π(p) = mark(Cπ)(p)

(T2)

From (T1) and (T2), we have: ∀p 6= pΓ,M
′
π(p) = mark(C ′π)(p).

mono: By Def. 4.8, rule [mono] is applied for the rewrite and the control context of r

does not change, we have: inact(∆′r) = inact(∆r), and ∀v ∈ Vr,∆
′
r(v) = ∆r(v).

Thus, by Def. 5.3, the corresponding marking mark(C ′π) is determined as follows:

∀p 6= pΓ,mark(C ′π)(p) = mark(Cπ)(p) (M1)

Moreover, by Prop. 5.1 and Prop. 5.2, pr0 is the unique control input place and

control output place of trv. By Prop. 5.4, only the markings of pr0 and pΓ are updated

by the occurrence of the transition. Thus, by Tab. 5.3 (case M), the marking M′π
is determined as follows:

∀p 6= pΓ,M
′
π(p) = mark(Cπ)(p) (M2)

From (M1) and (M2), we have: ∀p 6= pΓ,M
′
π(p) = mark(C ′π)(p).

From the analysis above, for any structural type of the action and for any control

place p, we always have M′π(p) = mark(C ′π)(p). The property is proved.

Lemma 5.3 (Equal markings). Let Cπ and C ′π be contexts of a π-graph π. If Cπ
µ−→
r,v
C ′π

and there exists a marking M′π of net(π) such that mark(Cπ)[trv:µ〉M′π, then M′π = mark(C ′π).

5.2. CONFORMANCE OF THE TRANSLATION 103

Proof. We prove that for any place p in the translated net, the marking M′π(p) is exactly

the same as the marking mark(C ′π)(p).

By Def. 5.2 (Eq. 5.1), the place p is either a context place (i.e. p = pΓ) or a control

place. If p = pΓ, then by Prop. 5.8, we have mark(C ′π)(p) = M′π(p). Otherwise, by

Prop. 5.9, we also have mark(C ′π)(p) = M′π(p). In both cases of the place p, we have

mark(C ′π)(p) = M′π(p). Thus, the property is proved.

Theorem 5.1 (Soundness for an atomic action). Let Cπ be a context of π. For any

µ, C ′π, r, v such that Cπ
µ−−→

(r,v)
C ′π, there exists a marking M′π of net(π) such that mark(Cπ)[trv:µ〉M′π

and M′π = mark(C ′π).

Proof. By Lem. 5.2, if there exists a rewrite Cπ
µ−→
r,v
C ′π then there exists an occurrence

mark(Cπ)[trv:µ〉M′π. Moreover, by Lem. 5.3, we have M′π = mark(C ′π). Thus, the property

holds.

5.2.1.2 Soundness for synchronizations

Similarly to the soundness for an atomic action, the proof of the soundness for a synchro-

nization (Theorem 5.2, denoted by T2) is structured as shown in Figure 5.8.

L5

T2

L6

P11 P12 L4

L1

D3

P14 P13

P1

D2

P2

D4.7 D4.8 RcRr D9

D5

tb4.1 tb2

D6

D8tb4

Figure 5.8: Dependence graph of the soundness for a synchronization

Proposition 5.10 (Correspondance between syncs and sync-transitions). For any pair

of an output at (ro, vo) and an input at (ri, vi) in a π-graph π, there exists a corresponding

sync-transition trorivovi
in net(π) with label τ .

Proof. By Def. 5.2 (Eq. 5.3), for any structural type of the actions at (ro, vo) and at

(ri, vi) in π, there exist corresponding transitions trovo and trivi in net(π). Moreover, by

Def. 5.2 (Eq. 5.4), for any two such transitions which correspond to an output and an

104 CHAPTER 5. TRANSLATING A π-GRAPH INTO PETRI NETS

input action, there exists a corresponding sync-transition. In this case, there exists a

sync-transition trorivovi
∈ T2. In the other hand, since trorivovi

∈ T2, thus, by Def. 5.2 (Eq. 5.5),

its label is τ .

De�nition 5.8 (Available control tokens for a sync transition). Let Mπ be the marking

of a translated net net(π) of a π-graph π. Two control tokens r1.i1 and r2.i2 are available

for a sync-transition tr1r2v1v2
if avail⊕n (tr1r2v1v2

, r1.i1, r2.i2,Mπ) is true, with:

avail⊕n (tr1r2v1v2
, r1.i1, r2.i2,Mπ)

def
= r1.i1 ∈ Mπ(cip(tr1v1

)) ∧ r2.i2 ∈ Mπ(cip(tr2v2
)),

where cip(trv) (resp. cop(trv)) is the control input (resp. output) place of the atomic

transition trv.

De�nition 5.9 (Precondition of a sync). Let io be a thread that performs an output φc〈a〉
at (ro, vo), and ii a thread that performs an input ψd(x) at (ri, vi). The precondition of a

synchronization between these two actions is de�ned as follows:

presync(Γ, ro, vo, io, ri, vi, ii)
def
= precom(Γ, ro, io, φc〈a〉, ri, ii, ψd(x)).

If the structural type of the actions at (ro, vo) or (ri, vi) is mono or spwn, then Γ is

replaced as in column Initialization of Tab. 4.1 on page 80.

Proposition 5.11 (Available threads for a sync). For any sync rewrite Cπ
µ−−−−−−−→

(ro,vo),(ri,vi)
C ′π,

there exist threads io in [1..K(ro)] and ii in [1..K(ri)] such that:

availπ(io, ro, vo, Cπ) ∧ availπ(ii, ri, vi, Cπ) ∧ presync(Γ, ro, vo, io, ri, vi, ii) = true

Proof. Because the rewrite is triggered by a synchronization, by Def. 4.8 on page 81, rule

[sync] is applied.

First, we prove that availπ(io, ro, vo, Cπ) = true and availπ(ii, ri, vi, Cπ) = true. By the

rule [sync] (cf. p. 77), there exist io ∈ [1..K(ro)] and ii ∈ [1..K(ri)] such that the thread

io (resp. ii) is used for performing the action at (ro, vo) (resp. (ri, vi)). If the structural

type of the action at (ro, vo) is mono or spwn (i.e., deg−ro(vo) = 0, by Def. 4.7), then

io ∈ inact(∆ro); otherwise, i.e., there exists uo such that (uo, vo) ∈ Ero (by def. 4.7), then

io ∈ ∆ro(uo). Thus, by Def. 5.5, we have availπ(io, ro, vo, Cπ) = true. Similarly, we also

have availπ(ii, ri, vi, Cπ) = true.

Second, we prove that presync(Γ, ro, vo, io, ri, vi, ii) = true. By rule [sync], we also have

a commitment for a communication between these two atomic actions. If both of them

are norm actions, then by rule [com] (cf. p. 75), we have precom(Γ, ro, io, φc〈a〉, ri, ii, ψd(x))

is true, where φc〈a〉 is the output at (ro, vo) and ψd(x) is the input at (ri, vi). Otherwise,

Γ is replaced as in column Initialization of Tab. 4.1 on page 80. Thus, by Def. 5.9, we

have presync(Γ, ro, vo, io, ri, vi, ii) = true.

5.2. CONFORMANCE OF THE TRANSLATION 105

Lemma 5.4. Let Cπ be a context of a π-graph π and Mπ the corresponding marking of

Cπ in net(π). If Lr1(v1) = φc〈a〉 and Lr2(v2) = ψc(x), then

availπ(i1, r1, v1, Cπ) ∧ availπ(i2, r2, v2, Cπ)⇒ avail⊕n (tr1r2v1v2
, r1.i1, r2.i2,Mπ).

Proof. Suppose that availπ(i1, r1, v1, Cπ) = true and availπ(i2, r2, v2, Cπ) = true, we prove

that avail⊕n (tr1r2v1v2
, r1.i1, r2.i2,Mπ) = true.

By Lem. 5.1, availπ(i1, r1, v1, Cπ)⇒ availn(r1.i1, t
r1
v1
,Mπ). Thus, availn(r1.i1, t

r1
v1
,Mπ) =

true. By Prop. 5.1, the atomic-transition tr1v1
has a unique control input place, p1 =

cip(tr1v1
). By Def. 5.6, we have: r1.i1 ∈ Mπ(p1). Similarly, let p2 = cip(tr2v2

), we also have:

r2.i2 ∈ Mπ(p2). Thus, by Def. 5.8, avail⊕n (tr1r2v1v2
, r1.i1, r2.i2,Mπ) = true.

Proposition 5.12. We have:

presync(Γ, ro, vo, io, ri, vi, ii)⇔ G(trorivovi
)(Γ, ro, io, ri, ii)

Proof. We prove that for all the types of actions at (ro, vo) and (ri, vi), the precondition

presync(Γ, ro, vo, io, ri, vi, ii) is exactly the same as the evaluation of the corresponding

guard G(trorivovi
)(Γ, ro, io, ri, ii).

First, we prove the property for the case in which the structural type of both actions

is norm. By Def. 5.9,

presync(Γ, ro, vo, io, ri, vi, ii) = precom(Γ, ro, io, φc〈a〉, ri, ii, ψd(x)).

Moreover, by Tab. 5.2 on page 92 (case N−N),

G(trorivovi
)(Γ, ro, io, ri, ii) = precom(Γ, ro, io, φc〈a〉, ri, ii, ψd(x)).

Thus, we have presync(Γ, ro, vo, io, ri, vi, ii) = G(trorivovi
)(Γ, ro, io, ri, ii).

Second, we prove the proposition for all the other structural types of these actions.

By Def. 5.9, the substitution for Γ is given in column Initialization of Tab. 4.1 on page 80,

which is exactly the substitution for the guard in Tab. 5.2. Thus, the precondition and

the evaluation of the corresponding guard are the same.

Lemma 5.5 (Existence of an occurrence of a sync-transition). Let Cπ be a context of a

π-graph π. If Cπ
τ−−−−−−−−→

(r1,v1),(r2,v2)
C ′π, then there exists M′π such that mark(Cπ)[tr1r2v1v2

:τ 〉M′π.

Proof. By Prop. 5.11 on the facing page, there exist i1 ∈ [1..K(r1)] and i2 ∈ [1..K(r2)]

such that

availπ(i1, r1, v1, Cπ) ∧ availπ(i2, r2, v2, Cπ) ∧ presync(Γ, r1, v1, i1, r2, v2, i2) = true.

106 CHAPTER 5. TRANSLATING A π-GRAPH INTO PETRI NETS

Let Mπ = mark(Cπ). By Lem. 5.1 on page 98, availπ(i1, r1, v1, Cπ)⇒ availn(r1.i1, t
r1
v1
,Mπ)

and availπ(i2, r2, v2, Cπ) ⇒ availn(r2.i2, t
r2
v2
,Mπ), thus, we have availn(r1.i1, t

r1
v1
,Mπ) = true

and availn(r2.i2, t
r2
v2
,Mπ) = true. By Lem. 5.4 on the preceding page, we have:

avail⊕n (tr1r2v1v2
, r1.i1, r2.i2,Mπ) = true. (1)

Moreover, by Def. 5.3 on page 94, Mπ(pΓ) = {Γ}. Thus, by Prop. 5.12 on the preceding
page, from the precondition presync(Γ, r1, v1, i1, r2, v2, i2) = true, we have:

G(tr1r2v1v2
)(Mπ(pΓ), r1, i1, r2, i2) = true. (2)

Thus, from (1), (2) and U(tr1r2v1v2
) = τ (by Def. 5.2 on page 88, as tr1r2v1v2

∈ T2), there

exists a marking M′π such that mark(Cπ)[tr1r2v1v2
:τ 〉M′π.

Proposition 5.13. Let Cπ = (Γπ,∆π) and C ′π = (Γ′π,∆
′
π). If Cπ

τ−−−−−−−−→
(r1,v1),(r2,v2)

C ′π and there

exists M′π such that mark(Cπ)[tr1r2v1v2
:τ〉M′π, then M′π(pΓ) = mark(C ′π)(pΓ).

Proof. Let φc〈a〉 be the output at (r1, v1), ψd(x) the input at (r2, v2), and i1 (resp. i2)

the thread that performs the output (resp. input). By Def. 5.3, mark(C ′π)(pΓ) = {Γ′π}.
Moreover, by Def. 5.2, M′π(pΓ) = {Γ′} (Γ′ is the token that is produced to the context

place pΓ after �ring the transition tr1r2v1v2
). Thus, we prove that for any structural type of

the input and output, Γ′π = Γ′.

First, we prove the property for the case norm− norm, in which the structural types

of both input and output are norm. Because the rewrite is triggered by a synchro-

nization, thus, by Def. 4.8, rule [sync] (cf. p. 77) is applied. By this rule, the con-

text Γ′π is given by rule [com] (cf. p. 75), Γ′π = postcom(Γπ, r1, i1, φc〈a〉, r2, i2, ψd(x)).

By Def. 5.3, mark(Cπ)(pΓ) = {Γπ}, thus, by Tab. 5.2 on page 92 (case 1), we have:

Γ′ = postcom(Γπ, r1, i1, φc〈a〉, r2, i2, ψd(x)). So, Γ′π = Γ′, the property holds.

Second, we prove the property for all the other cases based on the case norm− norm.

In these cases, Γπ (resp. Γ′π) is substituted as in column Initialization (resp. Resets) of

Tab. 4.1 on page 80, which is the same way for computing Γ′ in Tab. 5.2 on page 92.

Thus, Γ′π = Γ′, and the property holds.

Proposition 5.14. Let Cπ = (Γπ,∆π) and C ′π = (Γ′π,∆
′
π) be two contexts of a π-graph

π. If Cπ
τ−−−−−−−−→

(r1,v1),(r2,v2)
C ′π and there exists M′π such that mark(Cπ)[tr1r2v1v2

:τ 〉M′π, then for any

control place p in net(π), we have M′π(p) = mark(C ′π)(p).

Proof. By Def. 4.7 on page 79, each atomic action can be one of four kinds: norm, spwn,

term, or mono. Because of the symmetry and the similarity between the cases, we develop

the 4 basic cases as follows. Suppose that i1 (resp. i2) is the thread that performs the

action at (r1, v1) (resp. (r2, v2)).

5.2. CONFORMANCE OF THE TRANSLATION 107

norm− ∗: First, we prove for the case norm− norm, where both the output an the input

are norm actions. By Def. 4.7 on page 79, there exist vertices u1, w1, u2, and w2

such that: (u1, v1) ∈ Er1 , (v1, w1) ∈ Er1
(u2, v2) ∈ Er2 , (v2, w2) ∈ Er2

1. Case u1 6= u2: By rule [sync] (cf. p. 77) and Def. 4.8 on page 81,
∆′r1(u1) = ∆r1(u1) \ {i1},∆′r1(v1) = ∆r1(v1) ∪ {i1}

∆′r2(u2) = ∆r2(u2) \ {i2},∆′r2(v2) = ∆r2(v2) ∪ {i2}

∀v 6∈ {u1, v1, u2, v2} : ∆′r1(v) = ∆r1(v),∆′r2(v) = ∆r2(v)

By Def. 5.3 on page 94,

mark(C ′π)(pr1u1
) = mark(Cπ)(pr1u1

) \ {r1.i1}

mark(C ′π)(pr1v1
) = mark(Cπ)(pr1v1

) ∪ {r1.i1}

mark(C ′π)(pr2u2
) = mark(Cπ)(pr2u2

) \ {r2.i2}

mark(C ′π)(pr2v2
) = mark(Cπ)(pr2v2

) ∪ {r2.i2}

∀p 6∈ {pr1u1
, pr1v1

, pr2u2
, pr2v2

, pΓ} : mark(C ′π)(p) = mark(Cπ)(p)

(NN1.1)

Moreover, by Tab. 5.4 on page 118 (case 1) and Prop. 5.4 on page 95 we have:

M′π(pr1u1
) = mark(Cπ)(pr1u1

) \ {r1.i1}

M′π(pr1v1
) = mark(Cπ)(pr1v1

) ∪ {r1.i1}

M′π(pr2u2
) = mark(Cπ)(pr2u2

) \ {r2.i2}

M′π(pr2v2
) = mark(Cπ)(pr2v2

) ∪ {r2.i2}

∀p 6∈ {pr1u1
, pr1v1

, pr2u2
, pr2v2

, pΓ} : M′π(p) = mark(Cπ)(p)

(NN1.2)

From (NN1.1) and (NN1.2), we have: ∀p 6= pΓ,M
′
π(p) = mark(C ′π)(p).

2. Case u1 = u2 = u: In this case, r1 = r2 = r. By rule [sync] and Def. 4.8 on

page 81, 
∆′r(u) = ∆r(u) \ {i1, i2}

∆′r(v1) = ∆r(v1) ∪ {i1},∆′r(v2) = ∆r(v2) ∪ {i2}

∀v 6∈ {u, v1, v2} : ∆′r(v) = ∆r(v)

By Def. 5.3 on page 94,
mark(C ′π)(pru) = mark(Cπ)(pru) \ {r.i1, r.i2}

mark(C ′π)(prv1
) = mark(Cπ)(prv1

) ∪ {r.i1}

mark(C ′π)(prv2
) = mark(Cπ)(prv2

) ∪ {r.i2}

∀p 6∈ {pru, prv1
, prv2

, pΓ} : mark(C ′π)(p) = mark(Cπ)(p)

(NN2.1)

108 CHAPTER 5. TRANSLATING A π-GRAPH INTO PETRI NETS

Moreover, by Tab. 5.4 on page 118 (case 2) and Prop. 5.4 on page 95 we have:
M′π(pru) = mark(Cπ)(pru) \ {r.i1, r.i2}

M′π(prv1
) = mark(Cπ)(prv1

) ∪ {r.i1}

M′π(prv2
) = mark(Cπ)(prv2

) ∪ {r.i2}

∀p 6∈ {pru, prv1
, prv2

, pΓ} : M′π(p) = mark(Cπ)(p)

(NN2.2)

From (NN2.1) and (NN2.2), we have: ∀p 6= pΓ,M
′
π(p) = mark(C ′π)(p).

Second, all the other cases, i.e., norm− spwn, norm− term and norm−mono, are

similar to the case norm− norm. In these cases, the move of the thread used for

the output is the same as the case norm− norm, the thread used for the input is

similar.

spwn− ∗: First, we prove the property for the case spwn− spwn by analyzing two sub-

cases, in which two replicators are either di�erent or not.

1. r1 6= r2: By rule [sync] (cf. p. 77) and Def. 4.8, we have:
inact(∆′r1) = inact(∆r1) \ {i1}; ∆′r1(v1) = ∆r1(v1) ∪ {i1}

inact(∆′r2) = inact(∆r2) \ {i2}; ∆′r2(v2) = ∆r2(v2) ∪ {i2}

∀v 6∈ {v1, v2} : ∆′r1(v) = ∆r1(v),∆′r2(v) = ∆r2(v)

(SS1)

2. r1 = r2 = r: Similarly, we have:
inact(∆′r) = inact(∆r) \ {i1, i2}

∆′r(v1) = ∆r(v1) ∪ {i1}; ∆′r(v2) = ∆r(v2) ∪ {i2}

∀v 6∈ {v1, v2} : ∆′r(v) = ∆r(v)

(SS2)

From (SS1) and (SS2), similarly to the proof for the case norm− norm, we also

have: ∀p 6= pΓ,M
′
π(p) = mark(C ′π)(p). The property holds.

The other cases, i.e., spwn− term and spwn−mono, are similar to the case spwn− spwn.

term− ∗: First, we prove the property for the case term− term. By Def. 4.7 on page 79,

there exist vertices u1 and u2 such that (u1, v1) ∈ Er1 and (u2, v2) ∈ Er2 . We

analyze two cases concerning the replicators.

1. r1 6= r2: We have:
inact(∆′r1) = inact(∆r1) ∪ {i1}; ∆′r1(u1) = ∆r1(u1) \ {i1}

inact(∆′r2) = inact(∆r2) ∪ {i2}; ∆′r2(u2) = ∆r2(u2) \ {i2}

∀v 6∈ {u1, u2} : ∆′r1(v) = ∆r1(v),∆′r2(v) = ∆r2(v)

(TT1)

5.2. CONFORMANCE OF THE TRANSLATION 109

2. r1 = r2 = r: We have:
inact(∆′r) = inact(∆r) ∪ {i1, i2}

∆′r1(u1) = ∆r1(u1) \ {i1}; ∆′r2(u2) = ∆r2(u2) \ {i2}

∀v 6∈ {u1, u2} : ∆′r1(v) = ∆r1(v),∆′r2(v) = ∆r2(v)

(TT2)

From (TT1) and (TT2), similarly, the property holds. For the remaining case, i.e.

term−mono, the proof is similar to the case term− term.

mono− ∗: For the case mono−mono, the threads distribution does not change before

and after applying the rewrite rule, so the marking does not change. Thus, the

property holds. For the other cases, the proof is based on the cases above.

Lemma 5.6. Let Cπ and C ′π be contexts of a π-graph π. If Cπ
τ−−−−−−−−→

(r1,v1),(r2,v2)
C ′π and there

exists M′π such that mark(Cπ)[tr1r2v1v2
:τ 〉M′π, then we have: M′π = mark(C ′π).

Proof. By Def. 5.2 on page 88, a place p in the translated net structure is either a context

place pΓ or a control place. If p = pΓ, by Prop. 5.13 on page 106, we have: mark(C ′π)(p) =

M′π(p). Otherwise, by Prop. 5.14 on page 106, we also have: mark(C ′π)(p) = M′π(p). Thus,

the property holds.

Theorem 5.2. Let Cπ be a context of a π-graph π. For any µ, C ′π, ro, vo, ri, vi such that

Cπ
τ−−−−−−−→

(ro,vo),(ri,vi)
C ′π, there exists M′π s.t mark(Cπ)[trorivovi

:τ〉M′π and M′π = mark(C ′π).

Proof. By Lem. 5.5 on page 105, if there exists a rewrite Cπ
µ−−→

(r,v)
C ′π then there exists

an occurrence mark(Cπ)[trv:µ〉M′π. Moreover, by Lem. 5.6, we have M′π = mark(C ′π). Thus,

the property holds.

5.2.1.3 Completeness for atomic actions

The proof of the completeness for an atomic action (Theorem 5.3, denoted by T3) is

structured as shown in Figure 5.9. In this dependence graph, theorem T1 is used for

proving T3 but we do not show its dependence graph as it was already shown before.

De�nition 5.10 (Converse of a marking). Let π = 〈R,K,G,N〉 be a π-graph and Mπ

a marking of net(π). A converse of marking Mπ, denoted by convmark(Mπ), is a context

(Γ,∆), in which:

1. Γ = Mπ(pΓ)

110 CHAPTER 5. TRANSLATING A π-GRAPH INTO PETRI NETS

P15

T3

T1 L8

D10

L7D3

D2

P18

P2

P4.4 P7P19

Rr D7tb1D6 D5D4.3D2.4

Figure 5.9: Dependence graph of the completeness for an atomic action

2. ∀r ∈ R,∀v ∈ Vr, with Vr is the set of vertices of G(r),

∆r(v) =

{i | r.i ∈ Mπ(prv)} if stype(r, v) ∈ {norm, spwn}

∅ otherwise

Proposition 5.15. Let Cπ be a context of a π-graph π. We have convmark(mark(Cπ)) =

Cπ.

Proof. Let Cπ = (Γ,∆), Mπ = mark(Cπ), and C ′π = convmark(Mπ) = (Γ′,∆′). We prove

that C ′π = Cπ by showing that Γ′ = Γ and ∆′r(v) = ∆r(v) for any replicator r in R and

any vertex v in Vr.

On one hand, by Def. 5.3 on page 94 (case 1), we have: Mπ(pΓ) = {Γ}. Moreover, by

Def. 5.10 on the previous page (case 1), we have: Γ′ = Mπ(pΓ). Thus, Γ′π = Γπ.

On the other hand, for any r in R and v in Vr, if stype(r, v) ∈ {norm, spwn}, then
by Def. 5.2 on page 88 (Eq. 5.1), there exists a place prv ∈ Pv such that Mπ(prv) =

{r.i | i ∈ ∆r(v)}. Moreover, by Def. 5.10 on the previous page (case 2), we have:

∆′r(v) = {i | r.i ∈ Mπ(prv)}. Thus, ∆′r(v) = ∆r(v). Otherwise, by Prop. 4.4 on page 81,

∆r(v) = ∅. Moreover, by Def. 5.10 on the previous page (case 2), we also have ∆′r(v) = ∅.
Thus, ∆′r(v) = ∆r(v). So, for any case of (r, v), we always have: ∆′r(v) = ∆r(v).

Proposition 5.16. Let π be a π-graph π and Mπ a marking of net(π). We have

mark(convmark(Mπ)) = Mπ.

Proof. Let Cπ = convmark(Mπ) = (Γ,∆), M′π = mark(Cπ). We prove that Mπ = M′π by

showing that Mπ(p) = M′π(p) for any place p in the translated net net(π). By Def. 5.2 on

page 88 (Eq. 5.1), the place p is either a context place (i.e., p = pΓ) or a control place.

We have two cases:

5.2. CONFORMANCE OF THE TRANSLATION 111

First, if p = pΓ, then by Def. 5.10, Mπ(p) = Γ. Moreover, by Def. 5.3, M′π(p) = Γ.

Thus, Mπ(p) = M′π(p).

Second, if p is a control place, then it is either an initial place or not. If p is not

an initial place, i.e., p = prv, then by Def. 5.3 on page 94, M′π(p) = {r.i | i ∈ ∆r(v)}.
Moreover, by Def. 5.2 on page 88 (Eq. 5.1), stype(r, v) ∈ {norm, spwn}. By Def. 5.10

on page 109, ∆r(v) = {i | r.i ∈ Mπ(p)}, thus, Mπ(p) = {r.i | i ∈ ∆r(v)}. Thus,

M′π(p) = Mπ(p). Otherwise, i.e., p = pr0, because the set of control tokens in a replicator

is constant and each place which is not initial has the same control tokens in both Mπ

and M′π, thus, Mπ(pr0) = Mπ(pr0).

For all the cases of place p, we always have M′π(prv) = Mπ(prv). Thus, the property

holds.

Proposition 5.17 (Correspondance between atomic transitions and actions). Let net(π) =

(P,T,U,G) be the translated net structure of a π-graph π. For any atomic transition in

T, there exists an action in π with the same label.

Proof. For any atomic-transition t in T1, by Def. 5.2 on page 88 (Eq. 5.3), T1 = N∪S∪
T ∪M, thus t belongs to either N, S, T, or M. Suppose that t = trv, we prove that in

any case of t, there exists a corresponding action with the same label by analyzing all the

cases of t.

• If t belongs toN, then by Def. 5.2 on page 88 (Eq. 5.3a), there exists a corresponding

action at (r, v) such that stype(r, v) = norm.

• If t belongs to S, then by Def. 5.2 (Eq. 5.3b), there exists a corresponding action

at (r, v) such that stype(r, v) = spwn.

• If t belongs to T, then by Def. 5.2 (Eq. 5.3c), there exists a corresponding action

at (r, v) such that stype(r, v) = term.

• If t belongs to M, then by Def. 5.2 (Eq. 5.3d), there exists a corresponding action

at (r, v) such that stype(r, v) = mono.

Moreover, by Def. 5.2 (Eq. 5.5), the label of action at (r, v) is the same as the label of

transition t = trv. Thus, the property holds.

Proposition 5.18. Let net(π) be the translated net of a π-graph π. If there exists Mπ,M
′
π

such that Mπ[trv:µ〉M′π, then there exists i ∈ [1..K(r)] such that availn(r.i, trv,Mπ) = true

and G(trv)(Mπ(pΓ), r, i) = true.

Proof. By Prop. 5.1, the transition trv has a unique control input place, let p = cip(trv).

Moreover, by Def. 5.2 (Eq. 5.6 and Eq. 5.7), the transition trv has a unique context place

pΓ. So, all input places of trv is the set
•trv = {p, pΓ}.

112 CHAPTER 5. TRANSLATING A π-GRAPH INTO PETRI NETS

By Def. 5.2 on page 88 (Eq. 5.8), U(pΓ, t
r
v) = Γ and the label of input arc U(p, trv) is

either X, ro.io, ri.ii or r.i. By the Petri nets transition rule (cf. p. 24), there exists a

control token r.i ∈ Mπ(p) and a context token Γπ ∈ Mπ(pΓ) such that the evaluation of

guard G(trv)(Γπ, r, i) is true. Because Mπ(pΓ) = Γπ, thus, G(trv)(Mπ(pΓ), r, i) = true. By

Def. 5.6, from r.i ∈ Mπ(p) we have availn(r.i, trv,Mπ) = true. Moreover, by Def. 5.2, we

also have i ∈ [1..K(r)]. Thus, the property holds.

Lemma 5.7. Let π be a π-graph, Mπ a marking of net(π), Cπ the converse marking of

Mπ, t
r
v an atomic-transition and i a thread in π. Then, if availn(r.i, trv,Mπ) = true, then

availπ(i, r, v, Cπ) = true.

Proof. By Def. 5.6 on page 97, from availn(r.i, trv,Mπ) = true, there exists a control input

place p of trv such that r.i is present in the marking Mπ(p). By Prop. 5.1 on page 94, trv
has only one control input place, either pr0 or pru. We have two cases:

• If p = pr0, then r.i ∈ Mπ(pr0). By Def. 5.10 on page 109 (case 2), for any vertex v in

Vr, i 6∈ ∆r(v), thus, by Def. 4.3 on page 58, i ∈ inact(∆r). Moreover, by Prop. 5.1 on

page 94, the action at (r, v) must be mono or spwn. Thus, we have: i ∈ inact(∆r)∧
stype(r, v) ∈ {mono, spwn}. By Def. 5.5 on page 96, availπ(i, r, v, Cπ) = true.

• If p = pru, then r.i ∈ Mπ(pru). By Def. 5.10 (case 2), we have i ∈ ∆r(u), with

(u, v) ∈ Er. Moreover, by Prop. 5.1, the action at (r, v) must be norm or term.

Thus, we have: i ∈ ∆r(u) ∧ stype(r, v) ∈ {norm, term}, where (u, v) ∈ Er. By

Def. 5.5, we have: availπ(i, r, v, Cπ) = true.

Proposition 5.19. Let r be a replicator in a π-graph π. For any context Cπ = (Γ,∆) of π,

if there exists a thread i ∈ [1..K(r)] such that availπ(i, r, v, Cπ) = true and preatom(Γ, r, v, i) =

true, then there exists C ′π such that Cπ
µ−−→

(r,v)
C ′π.

Proof. Let Cπ be a context of π. For any structural type of the action at (r, v), the

�rst condition availπ(i, r, v, Cπ) is that for controls and the second preatom(Γ, r, v, i) = true

is that for the precondition for a rewrite. Thus, by the corresponding rewrite rule (cf.

Sec. 4.2.4.3 on page 75), there exists a context C ′π such that we have a rewrite Cπ
µ−−→

(r,v)
C ′π.

The property holds.

Lemma 5.8 (Existence of an atomic rewrite). Let π be a π-graph, Mπ a marking of the

translated net. Then, if there exists an atomic transition trv and a marking M′π such that

Mπ[trv:µ〉M′π, then there exists a context C ′π such that convmark(Mπ)
µ−−→

(r,v)
C ′π.

5.2. CONFORMANCE OF THE TRANSLATION 113

Proof. By Prop. 5.18 on page 111, there exists a thread i in [1..K(r)] such that availn(r.i, trv,Mπ) =

true and G(trv)(Mπ(pΓ), r, i) = true. Let Cπ = convmark(Mπ). By Lem. 5.7 on the preced-

ing page, from availn(r.i, trv,Mπ) = true, we have availπ(i, r, v, Cπ) = true. By Prop. 5.7 on

page 99, from G(trv)(Mπ(pΓ), r, i) = true, we have preatom(Mπ(pΓ), r, v, i) = true.

Moreover, by Def. 5.10 on page 109 (case 1), if Cπ = (Γ,∆), then the corresponding

marking of the context place is Mπ(pΓ) = Γ. Thus,

availπ(i, r, v, Cπ) ∧ preatom(Γ, r, v, i) = true

By Prop. 5.19 on the facing page, there exists C ′π such that Cπ
µ−−→

(r,v)
C ′π. The property

holds.

Theorem 5.3. Let π be a π-graph and Mπ a marking of the translated net structure

of π. If there exists a transition trv and a marking M′π such that Mπ[trv:µ〉M′π, then

convmark(Mπ)
µ−−→

(r,v)
convmark(M′π).

Proof. By Lem. 5.8 on the preceding page, there exists C ′π such that convmark(Mπ)
µ−−→

(r,v)

C ′π. By Thrm. 5.1 on page 103, we have mark(C ′π) = M′π. Thus, convmark(mark(C ′π)) =

convmark(M′π). Moreover, by Prop. 5.15 on page 110 we have convmark(mark(C ′π)) =

C ′π. Thus, C ′π = convmark(M′π), so convmark(Mπ)
µ−−→

(r,v)
convmark(M′π). The property

holds.

5.2.1.4 Completeness for synchronizations

The proof of the completeness for a synchronization (Theorem 5.4, denoted by T4) is

structured as shown in Figure 5.10. Similarly, in this dependence graph, we omit the

fragment concerning theorem T2.

Proposition 5.20. Let π be a π-graph. For any sync-transition trorivovi
in net(π), there

exists a pair of an output action at (ro, vo) and an input action at (ri, vi).

Proof. For any sync-transition trorivovi
, by Def. 5.2 (Eq. 5.4), there exist two atomic-transitions

trovo and t
ri
vi
with labels φc〈a〉 and ψd(x), respectively. Moreover, by Prop. 5.17 on page 111,

for each atomic-transition, there exists a corresponding atomic action with the same la-

bel. Thus, there exists an output action at (ro, vo) and an input action at (ri, vi). The

property holds.

Proposition 5.21. Let π be a π-graph, tr1r2v1v2
a sync-transition in net(π) and Mπ a marking

of net(π). If there exists a marking M′π such that Mπ[tr1r2v1v2
:µ〉M′π, then there exist threads

i1 ∈ [1..K(r1)] and i2 ∈ [1..K(r2)] such that:

avail⊕n (tr1r2v1v2
, r1.i1, r2.i2,Mπ) = true ∧ G(tr1r2v1v2

)(Mπ(pΓ), r1, i1, r2, i2) = true.

114 CHAPTER 5. TRANSLATING A π-GRAPH INTO PETRI NETS

T2

T4

P15

L10

D10

L7

D3

L1

D2

P21

P2

P20

P17P4.4

L9

P12P22

Rr

D2.4

D6

L4

D8

tb2 D9 tb4.1

D5D4.3

Figure 5.10: Dependence graph of the completeness for a synchronization

Proof. By Def. 5.2 on page 88 (Eq. 5.6), we have: •tr1r2v1v2
= •tr1v1

∪ •tr2v2
. By Prop. 5.1 on

page 94, each atomic-transition has a unique control input place. Let p1 be the control

input place of tr1v1
and p2 be the control input place of tr2v2

. All the control input places of

the sync-transition are in the set •tr1r2v1v2
= {pΓ, p1, p2}. Thus, by Def. 2.4 on page 24, the

transition is enabled if and only if there exists at least one control token in each control

place p1 and p2, there exists a context token in pΓ and if the guard is evaluated to true.

Thus, there exists i1 ∈ [1..K(r1), i2 ∈ [1..K(r2)] such that:

r1.i1 ∈ Mπ(p1) ∧ r2.i2 ∈ Mπ(p2) = true (1)

and G(tr1r2v1v2
)(Mπ(pΓ), r1, i1, r2, i2) = true (2)

By Def. 5.6 on page 97, from (1), we have: availn(r1.i1, t
r1
v1
,Mπ)∧availn(r1.i1, t

r1
v1
,Mπ) =

true. Moreover, by Lem. 5.4 on page 105, from (2), we have avail⊕n (tr1r2v1v2
, r1.i1, r2.i2,Mπ) =

true. Thus, the property holds.

Lemma 5.9. Let π be a π-graph, Mπ a marking of net(π), Cπ the converse mark-

ing of Mπ, and r1.i1 and r2.i2 be two control tokens. Suppose Lr1(v1) = φc〈a〉 and
Lr2(v2) = ψc(x). If avail⊕n (tr1r2v1v2

, r1.i1, r2.i2,Mπ) = true, then availπ(i1, r1, v1, Cπ) = true

and availπ(i2, r2, v2, Cπ) = true.

Proof. By Prop. 5.20 on the preceding page, there exists an output action at (r1, v1) and

an input action at (r2, v2) corresponding to atomic transitions tr1v1
and tr2v2

.

By Prop. 5.1 on page 94, each atomic transition has a unique control input place. Let

p1 be the control input place of tr1v1
and p2 the control input place of tr2v2

. By Def. 5.8

on page 104, the control token r1.i1 is present in marking Mπ(p1) and r2.i2 is present

5.2. CONFORMANCE OF THE TRANSLATION 115

in Mπ(p2). Moreover, by Def. 5.6 on page 97, we have: availn(r1.i1, t
r1
v1
,Mπ) = true and

availn(r2.i2, t
r2
v2
,Mπ) = true. Thus, by Lem. 5.7, we have: availπ(i1, r1, v1, Cπ) = true and

availπ(i2, r2, v2, Cπ) = true. The property holds.

Proposition 5.22. For any context Cπ = (Γ,∆) of a π-graph π, if there exists threads

i1 ∈ [1..K(r1)] and i2 ∈ [1..K(r2)] such that:

availπ(i1, r1, v1, Cπ) ∧ availπ(i2, r2, v2, Cπ) ∧ presync(Γ, r1, v1, i1, r2, v2, i2) = true

then there exists C ′π such that Cπ
µ−−→

(r,v)
C ′π.

Proof. For any structural type of the action at (r, v), the �rst condition availπ(i1, r1, v1, Cπ) =

true and availπ(i2, r2, v2, Cπ) = true is the condition for controls, and the second one

presync(Γ, r1, v1, i1, r2, v2, i2) is the the precondition for sync rewrite. Thus, by rewrite

rules of π-graph, there exists a rewrite Cπ
µ−−→

(r,v)
C ′π. The property holds.

Lemma 5.10. Let Mπ be a marking of a translated net of a π-graph π. If there exist

a sync-transition tr1r2v1v2
and a marking M′π such that Mπ[tr1r2v1v2

:τ 〉M′π, then there exists C ′π
such that convmark(Mπ)

τ−−−−−−−−→
(r1,v1),(r2,v2)

C ′π.

Proof. By Prop. 5.21 on page 113, the occurrence of transition Mπ[tr1r2v1v2
:τ 〉M′π leads to

there exists threads i1 ∈ [1..K(r1)] and i2 ∈ [1..K(r2)] such that

avail⊕n (tr1r2v1v2
, r1.i1, r2.i2,Mπ) ∧ G(tr1r2v1v2

)(Mπ(pΓ), r1, i1, r2, i2) = true.

By Lem. 5.9 on the preceding page, from avail⊕n (tr1r2v1v2
, r1.i1, r2.i2,Mπ) = true, we have:

availπ(i1, r1, v1, Cπ) = true ∧ availπ(i1, r1, v1, Cπ) = true.

By Prop. 5.12 on page 105, from G(tr1r2v1v2
)(Mπ(pΓ), r1, i1, r2, i2) = true, we also have:

presync(Mπ(pΓ), r1, v1, i1, r2, v2, i2) = true. Let Cπ be the converse of marking Mπ, suppose

Cπ = (Γ,∆). By Def. 5.10 on page 109 (case 1), we have Mπ(pΓ) = Γ. Thus,

availπ(i1, r1, v1, Cπ) ∧ availπ(i2, r2, v2, Cπ) ∧ presync(Γ, r1, v1, i1, r2, v2, i2) = true

Thus, by Prop. 5.22, there exists C ′π such that Cπ
τ−−−−−−−−→

(r1,v1),(r2,v2)
C ′π. Because Cπ =

convmark(Mπ), we have: convmark(Mπ)
τ−−−−−−−−→

(r1,v1),(r2,v2)
C ′π. The property holds.

Theorem 5.4. Let π be a π-graph and Mπ a marking of the translated net structure

of π. If there exist a transition tr1r2v1v2
and a marking M′π such that Mπ[tr1r2v1v2

:µ〉M′π, then
convmark(Mπ)

µ−−−−−−−−→
(r1,v1),(r2,v2)

convmark(M′π).

116 CHAPTER 5. TRANSLATING A π-GRAPH INTO PETRI NETS

Proof. By Lem. 5.10 on the previous page, from the occurrence of transition Mπ[tr1r2v1v2
:µ〉M′π,

there exists a context C ′π such that convmark(Mπ)
µ−−−−−−−−→

(r1,v1),(r2,v2)
C ′π. By Thrm. 5.2 on

page 109, we have: mark(C ′π) = M′π, thus, convmark(mark(C ′π)) = convmark(M′π). More-

over, by Prop. 5.15 on page 110 we have: convmark(mark(C ′π)) = C ′π. Thus, C ′π =

convmark(M′π), so convmark(Mπ)
µ−−−−−−−−→

(r1,v1),(r2,v2)
convmark(M′π). The property holds.

5.2.2 Global conformance

Finally, the proof of global conformance is structured as shown in Figure 5.11. In these

dependence graphs, we omit the fragment concerning theorems T1, T2, T3 and T4.

T2

T5

T1 P5 P10 D4.8

D4.7 D2

(a) Soundness

T3

T6

P5P10

D2

T4

D4.7

(b) Completeness

Figure 5.11: Dependence graph of global conformance

Theorem 5.5 (Soundness of the translation). Let Cπ be a context of a π-graph π. For

any µ and for any C ′π, if Cπ
µ−→ C ′π, then there exists a unique transition t and a marking

M′π such that mark(Cπ)[t:µ〉M′π and M′π = mark(C ′π).

Proof. By Def. 4.8 on page 81, the rewrite Cπ
µ−→ C ′π is triggered by the performance of

either an atomic action, which is denoted by Cπ
µ−−→

(r,v)
C ′π or a synchronization, which is

denoted by Cπ
τ−−−−−−−−→

(r1,v1),(r2,v2)
C ′π. We have two cases:

First, if the rewrite is Cπ
µ−−→

(r,v)
C ′π, then, by Prop. 5.5 on page 96, there exists a unique

corresponding transition trv such that U(trv) = Lr(v). By Thrm. 5.1 on page 103, there

exists M′π such that mark(Cπ)[trv:µ〉M′π and M′π = mark(C ′π).

Second, if the rewrite is Cπ
τ−−−−−−−−→

(r1,v1),(r2,v2)
C ′π, then by Prop. 5.10 on page 103, there

exists a unique corresponding transition tr1r2v1v2
such that U(tr1r2v1v2

) = τ . By Thrm. 5.2 on

page 109, there exists M′π such that mark(Cπ)[tr1r2v1v2
:τ 〉M′π and M′π = mark(C ′π).

Theorem 5.6 (Completeness of the translation). Let π be a π-graph and Mπ a marking

of the translated net structure of π. If there exist a transition t and a marking M′π such

that Mπ[t:µ〉M′π, then convmark(Mπ)
µ−→ convmark(M′π).

5.3. SYNTHESIS 117

Proof. By Def. 5.2, a transition in the translated net is either an atomic transition, which

is denoted by trv, or a sync transition, which is denoted by tr1r2v1v2
. We have two cases:

First, if the transition is trv, then, by Prop. 5.5, there exists a unique action at (r, v)

such that U(trv) = Lr(v). By Thrm. 5.3, we have: convmark(Mπ)
µ−−→

(r,v)
convmark(M′π).

Second, if the transition is tr1r2v1v2
, then, by Prop. 5.10, there exists a unique output at

(r1, v1) and a unique input at (r2, v2). By Thrm. 5.4, we have: convmark(Mπ)
τ−−−−−−−−→

(r1,v1),(r2,v2)

convmark(M′π).

5.3 Synthesis

This chapter presents the translation of π-graphs into high-level Petri nets and proves a

series of important properties of the translation.

The translation is illustrated �rst on a small example, step by step. It consists of

creating places with the marking corresponding to the control �ow context, translating

atomic actions and synchronizations into transitions, translating the name context into a

speci�c marking of the context place, and �nally, computing the guards for the transitions.

Then, a formal de�nition of the translation is provided. The translation can be performed

for any con�guration of π-graphs.

As the main result, we prove that the translation is an isomorphism. The proof is

decomposed in two levels: local and global conformance. The local conformance con-

cerns the soundness and completeness properties of atomic actions and synchronizations.

The global conformance concerns these two properties of the whole translation. Thus,

properties of systems modelled in π-graphs can be checked in the translated Petri nets.

Moreover, the counter-examples that are provided by the model checkers for Petri nets

can be easily constructed in terms of the original π-graphs.

118 CHAPTER 5. TRANSLATING A π-GRAPH INTO PETRI NETS

No. Arc labels No. Arc labels

1

prouo

p
ri
ui

provo

p
ri
vi

G(t).τ

ro .io

ri.ii

ro.io

r
i .ii

2

pru

prvo

prvi

G(t).τ
ro.io

ri.ii

ro.io

r
i .ii

3

p
ri
0

prouo

p
ri
vi

provo

G(t).τ
X

X ′

ro.io

ri.ii

r
o .io[

ri.ii = min(X)

X′ = X r {ri.ii} 4

prouo

p
ri
ui

pro0

p
ri
vi

G(t).τ

ro .io

ri.ii
X

X ′

ro.io

X′ = X ∪ {ro.io}

5

pro0

p
ri
ui

p
ri
vi

G(t).τ
X

X ′

ri.ii

ri.ii

[
ro.io = min(X)

X′ = X
6

pr0

prvo

prvi

G(t).τX

X′
ro.io

r
i .ii ro.io = min(X)

ri.ii = min(X r {min(X)})
X′ = X r {ro.io, ri.ii}

7

pr0

prvo

prui

G(t).τX

X′
ro.io

r
i .ii ri = ro = r

ro.io = min(X)

X′ = X r {ro.io} ∪ {ri.ii} 8

pr0 G(t).τX

X′

prvo
ro.io

 ro.io = min(X)

ri.ii = min(X r {ro.io})
X′ = X r {ro.io}

9

pr0

pruo

prui

G(t).τX

X′
ro.io

r
i .ii

X′ = X ∪ {ro.io, ri.ii} 10

pr0 G(t).τX

X′

pru
ro.io

ri.ii

X′ = X ∪ {ro.io, ri.ii}

11

pr0 G(t).τX

X′

pruo
ro.io

[
ri.ii = min(X)

X′ = X ∪ {ro.io}
12

pr0 G(t).τ
X

X′

 ro.io = min(X)

ri.ii = min(X r {min(X)})
X′ = X

Table 5.4: Arc label of a sync-transition trorivovi

Chapter 6

Veri�cation

After modelling recon�gurable systems using π-graphs and translating them into Petri

nets, our next objective is to check properties of their behaviours. This chapter �rst

describes a logic allowing to specify behavioural and temporal properties of π-graphs.

The logical language is split into context and temporal operators. Context operators

(in Section 6.1) allow to express properties of the name context and control context of a

given π-graph state. For the temporal operators, we use Linear Temporal Logic (LTL) [8].

We saw in the previous chapter that there is an isomorphism between the π-graphs and

the translated Petri net semantics. Hence, the logic is also a logic about the Petri nets.

This means we can reuse existing Petri net analysis tools to automate the veri�cation of

properties. As an illustration, we show (in Section 6.3.2 on page 145) how to translate

the properties into the logic of the NECO model checker [28].

6.1 Context properties of π-graphs

We remind the readers that a context consists of two parts: a name context, and a

control context (cf. Section 4.2.2 on page 56). The name context represents the instances

of names in the π-graph. The control context represents the current states of threads on

vertices, i.e., if a vertex has control for some threads.

6.1.1 Classi�cation of context properties

Context properties of π-graphs can be classi�ed along multiple dimensions:

1. Atomic vs. compound,

2. Unary vs. binary,

3. Signature, i.e., the number and types of parameters.

119

120 CHAPTER 6. VERIFICATION

Atomic vs. compound In general, a context property is a statement about some

of the following four elements: replicator identi�ers, threads, vertices and names. For

example, �A vertex v in replicator r has control for a thread i� (cf. Section 4.2.2.1 on

page 56). This property is denoted by active(r, i, v) in the logic. Such a property cannot

be derived from another one, thus it is called an atomic property.

Compound properties are higher-level assertions. They can be existential formulas,

universal formulas, conjunctions, disjunctions, or the combination of these. For example,

the property �There exists a replicator such that all of its threads are active� can be

expressed as follows:

∃r ∈ R ∀i ∈ K(r) ∃v ∈ Vr : active(r, i, v). (6.1)

Such compound properties can be derived from atomic ones. For example, prop-

erty (6.1) can be derived from active(r, i, v) as follows:

∃r ∈ R ∀i ∈ K(r) ∃v ∈ Vr : active(r, i, v) ≡
∨
r∈R

∧
i∈K(r)

∨
v∈Vr

active(r, i, v).

This kind of derivation is speci�c to a given π-graph and can be cumbersome to write

by hand. Thankfully, the derivation process can be generalized and systematized. For

this, we use symbols * and ? to represent the universal and existential quanti�ers, and

typed parameters to distinguish quanti�cations over replicators, threads and vertices. For

example, the property (6.1) can be derived as follows:

∃r ∈ R︸ ︷︷ ︸
?r:Repl

∀i ∈ K(r)︸ ︷︷ ︸
*i:Thrd

∃v ∈ Vr︸ ︷︷ ︸
?v:Vert

: active(r, i, v)︸ ︷︷ ︸
active(r : Repl, i : Thrd, v : Vert)

(6.2)

A property such as (6.2) is called a compound property. Note that it contains exactly one

occurrence of atomic proposition.

It also possible to �x one or more parameters. For example, the compound property

�Thread 1 of replicator r1 is active� is written as follows:

?v:Vert active(r1, 1, v : Vert).

Unary vs. binary Most properties assert about a single replicator context. This is

the case for atomic property active(r, i, v) and also for the compound property (6.2).

Assertions involving synchronization require two replicator contexts. For example, the

atomic property �Is there a synchronization between output thread i1 at (r1, v1) and input

thread i2 at (r2, v2)?� is denoted by sync(r1, i1, v1 ‖ r2, i2, v2). The compound property

�Is there an internal synchronization in a given replicator r in the current state?� can be

written as follows:

?v1:Vert ?i1:Thrd � ?v2:Vert ?i2:Thrd sync(r, v1 : Vert, i1 : Thrd ‖ r, v2 : Vert, i2 : Thrd). (6.3)

6.1. CONTEXT PROPERTIES OF π-GRAPHS 121

Signature The signature of an atomic property is its number of parameters, their

relative order and their respective type. For example, the property active(r, i, v) has

signature RIV. The �rst parameter has type Repl for replicator, the second parameter

has type Thrd for thread id and the last parameter has type Vert for vertex, hence the

notation RIV. The signature of a compound property is the signature of its underlying

atomic assertion. For example, the compound property *i:Thrd fresh(r, i : Thrd, n), mean-

ing name n has not been instantiated in any thread of replicator r, has signature RIN.

The �rst parameter has type Repl for replicator, the second parameter has type Thrd for

thread id and the last parameter has type Name for names.

Not all possible combinations are allowed. The available signatures for unary proper-

ties are summarized in Figure 6.1 where r represents a replicator, i represents a thread

id, v represents a vertex and n represents a name.

r

i

v

n

RIVN

RIV

RI
n

RIN

Figure 6.1: Possible signatures of unary context properties, where R means replicator, I

means thread id, V means vertex and N means name

For binary properties, only two combinations are possible: RIN-RIN and RIV-RIV.

For example, the property (6.3) has signature RIV-RIV. In both replicator contexts,

the �rst parameter has type Repl, the second parameter has type Vert and the last

parameter has type Thrd. Similarly, property equal(r1, i1, n1 ‖ r2, i2, n2), meaning name

n1 in thread i1 of replicator r1 is equal to name n2 in thread i2 of replicator r2, has

signature RIN-RIN. In both replicator contexts, the parameters have type Repl, Thrd

and Name, respectively.

6.1.2 Atomic context properties

According to the classi�cation of the context properties de�ned above, all compound

properties can be derived from atomic ones, thus we need a set of atomic properties as

base. This section provides the formal propositions for all the atomic context properties

by groups: RI, RIN, RIV, RIVN, RIN-RIN and RIV-RIV.

Recall that formally a context of a π-graph consists of two components C = (Γ,∆),

122 CHAPTER 6. VERIFICATION

where Γ = (β, γ, δ) is the name context and ∆ is the control context. An atomic property

is de�ned based on these elements.

6.1.2.1 Atomic RI properties

Atomic RI properties are properties about a replicator r and one of its threads i, with

the parameters list (r : Repl, i : Thrd).

1. satisfyφ(r : Repl, i : Thrd): the guard φ holds for the thread i of replicator r in the

current context (cf. p. 72).

satisfyφ(r : Repl, i : Thrd)
def
= preφ(β, γ, δ, r, i)

2. knownz(r : Repl, i : Thrd): a co-domain name z is known for thread i in replicator

r, i.e., there is some local name in r such that its instance for thread i is in the

same class of the dynamic partition γ as z.

knownz(r : Repl, i : Thrd)
def
=
∨
x∈X

y ∈ [βri (x)]γ,where X = tres(r) ∪ var(r)

6.1.2.2 Atomic RIN properties

Properties in group RIN are mainly properties about π-graphs names. Note that if a

name x is not instantiated, then an assertion about x is considered false.

1. fresh(r : Repl, i : Thrd, x : Name): the name x in replicator r and thread i is a fresh

name, i.e., it does not appear in the name environment β, neither in the domain

nor in the co-domain, (cf. p. 65).

fresh(r : Repl, i : Thrd, x : Name)
def
=

x 6∈ dom(β) ∪ cod(β)

∧ xri 6∈ dom(β)

2. instancez(r : Repl, i : Thrd, x : Name): the instance of name x in replicator r, thread

i in the current name context (cf. p. 61) and the co-domain name z are in the same

class of the dynamic partition, i.e., they are considered equal in the current state.

instancez(r : Repl, i : Thrd, x : Name)
def
= z ∈ [βri (x)]γ

3. nameα(r : Repl, i : Thrd, x : Name): the instance of name x in replicator r and

thread i is a fresh input name in Fi, a fresh output name in Fo, or a fresh private

name in Fν , depending on the value of α.

nameα(r : Repl, i : Thrd, x : Name)
def
= βri (x) ∈ Fα with α ∈ {o, i, ν}

6.1. CONTEXT PROPERTIES OF π-GRAPHS 123

6.1.2.3 Atomic RIV properties

Atomic RIV properties are properties of a replicator r and one of its threads i at a vertex

v. We decompose the properties of this group into four subgroups:

• properties about the control,

• properties about the preconditions of atomic actions,

• properties about the activation of actions, and

• properties about the labels of transitions.

Properties about the control

1. active(r : Repl, i : Thrd, v : Vert): action at (r, v) is active, i.e., it has control for

thread i.

active(r : Repl, i : Thrd, v : Vert)
def
= i ∈ ∆r(v)

2. avail(r : Repl, i : Thrd, v : Vert): thread i is available for performing an action at

(r, v), depending on the structural type of (r, v). If v is an initial vertex then thread

i is in the pool of threads, otherwise, it is present in the predecessor of v.

avail(r : Repl, i : Thrd, v : Vert)
def
=

i ∈ inact(∆r) if deg−r (v) = 0

active(r, u, i) ∧ (u, v) ∈ Er if deg−r (v) = 1

Properties about preconditions of atomic actions

1. pretau(r : Repl, i : Thrd, v : Vert): precondition for a silent action at (r, v) using

thread i (cf. p. 72).

pretau(r : Repl, i : Thrd, v : Vert)

def
=


Lr(v) = φτ ∧ preφ(β, γ, δ, r, i) if deg−r (v) = 1 Lr(v) = φτ ∧ preφ(β′, γ′, δ′, r, i)

with (β′, γ′, δ′) = initri (Γ)
if deg−r (v) = 0

2. preout(r : Repl, i : Thrd, v : Vert): precondition for an output action at (r, v) using

124 CHAPTER 6. VERIFICATION

thread i (cf. p. 73).

preout(r : Repl, i : Thrd, v : Vert)

def
=



 Lr(v) = φc〈a〉 ∧ preφ(β, γ, δ, r, i)

∧ pub(βri (c)) ∧ pub(βri (a))
if deg−r (v) = 1

Lr(v) = φc〈a〉 ∧ preφ(β′, γ′, δ′, r, i)

∧ pub(β′ri (c)) ∧ pub(β′ri (c))

with (β′, γ′, δ′) = initri (Γ)

if deg−r (v) = 0

3. preνout(r : Repl, i : Thrd, v : Vert): precondition for a bound output at (r, v) using

thread i (cf. p. 73).

preνout(r : Repl, i : Thrd, v : Vert)

def
=



 Lr(v) = φc〈a〉 ∧ preφ(β, γ, δ, r, i)

∧ pub(βri (c)) ∧ priv(βri (a))
if deg−r (v) = 1

Lr(v) = φc〈a〉 ∧ preφ(β′, γ′, δ′, r, i)

∧ pub(β′ri (c)) ∧ priv(β′ri (a))

with (β′, γ′, δ′) = initri (Γ)

if deg−r (v) = 0

4. preinp(r : Repl, i : Thrd, v : Vert): precondition for an input at (r, v) using thread i

(cf. p. 73).

preinp(r : Repl, i : Thrd, v : Vert)

def
=


Lr(v) = φc(x) ∧ preφ(β, γ, δ, r, i) ∧ pub(βri (c)) if deg−r (v) = 1 Lr(v) = φc(x) ∧ preφ(β′, γ′, δ′, r, i)

∧ pub(β′ri (c)) with (β′, γ′, δ′) = initri (Γ)
if deg−r (v) = 0

5. preatom(r : Repl, i : Thrd, v : Vert): precondition for an atomic action at (r, v) using

thread i.

preatom(r : Repl, i : Thrd, v : Vert)
def
= pretau(r, v, i) ∨ preout(r, v, i) ∨ preνout(r, v, i) ∨ preinp(r, v, i)

Properties about the activation of actions

1. atomicα(r : Repl, i : Thrd, v : Vert) checks if thread i is available for action α and

the guard of the action can hold in the current context.

atomicα(r : Repl, i : Thrd, v : Vert)
def
= avail(r, i, v) ∧ preα(r, i, v) where α ∈ {tau, inp, out, νout}

6.1. CONTEXT PROPERTIES OF π-GRAPHS 125

For example, if α is tau, then we have atomictau(r, i, v)
def
= avail(r, i, v)∧pretau(r, i, v),

which corresponds to the performance of a silent action at (r, v) using thread i.

2. atomic(r : Repl, i : Thrd, v : Vert) checks if the action at (r, v) can be activated

using thread i, whatever the type of the action, i.e., silent action, input, output

or bound output. The property is de�ned by applying property atomicα above, as

follows:

atomic(r : Repl, i : Thrd, v : Vert)
def
= atomictau(r, i, v) ∨ atomicinp(r, i, v) ∨ atomicout(r, i, v) ∨ atomicνout(r, i, v)

Properties about the labels of transitions

• labelµ(r : Repl, i : Thrd, v : Vert) asserts that the atomic action at (r, v) can perform

with label µ using thread i. The parameter µ can be considered as a constant.

labelµ(r : Repl, i : Thrd, v : Vert)

def
=



atomictau(r, i, v) ∧ µ = τ if Lr(v) = φτ

atomicinp(r, i, v) ∧ µ = βri (c)(clk?(β)) if Lr(v) = φc(x) atomicout(r, i, v) ∧ µ = βri (c)〈βri (a)〉

∨ atomicνout(r, i, v) ∧ µ = βri (c)〈νclk!(β)〉
if Lr(v) = φc〈a〉

In the comparison between labels, we can use wild-cards. Symbol �∗� is used to

represent any channel name, sent-name, or received-name. For example, suppose that

the action at (r, v) is an output. We want to check if the output action can send out a

name �!6�. The label we will check is ∗〈!6〉.

6.1.2.4 Atomic RIVN properties

Atomic RIVN properties assert the e�ect on a name after performing an action. A name

n in replicator r may be updated when the action at (r, v) is activated. The performance

of the action may update the instance of name n in the name environment β, or updates

the relation between n and other names, which is represented by the distinctions δ of the

name context.

1. updatedβ(r : Repl, i : Thrd, v : Vert, n : Name) checks if the action at (r, v) can be

activated using thread i and the instance of name n in the thread will be updated

after performing the action. Since a silent action and an output action do not

126 CHAPTER 6. VERIFICATION

update the instance of any name in the name context, the property is de�ned as

follows:

updatedβ(r : Repl, i : Thrd, v : Vert, n : Name)

def
=

βri (n) 6= β′ri (n) ∧

(atomicinp(r, i, v) ∨ atomicνout(r, i, v))

where β′ is the name context after performing the atomic action, which is de�ned

as the post-condition of an input and a bound output (cf. p. 72), as follows:

(β′, γ′, δ′)
def
=

postin(Γ, r, i, φc(x)) if Lr(v) = φc(x)

postνout(Γ, r, i, φc〈a〉) if Lr(v) = φc〈a〉 ∧ priv(a)

2. updatedδ(r : Repl, i : Thrd, v : Vert, n : Name) checks if the action at (r, v) can be

activated using thread i and name n will be updated after performing the action.

updatedδ(r : Repl, i : Thrd, v : Vert, n : Name)

def
=


∃n′ ∈ N s.t ([n]γ ↔ [n′]γ ∈ δ ∧ [n]γ′ ↔ [n′]γ′ 6∈ δ′) ∨

([n]γ ↔ [n′]γ 6∈ δ ∧ [n]γ′ ↔ [n′]γ′ ∈ δ′)
∧ (

∨
α atomicα(r, i, v)) with α ∈ {tau, inp, out, νout}

where γ′ and δ′ are the dynamic partition and the set of distinctions after performing

the atomic action, it is de�ned as follows:

(β′, γ′, δ′)
def
=


posttau(Γ, r, i, φ) if Lr(v) = φτ

postin(Γ, r, i, φc(x)) if Lr(v) = φc(x)

postout(Γ, r, i, φ) if Lr(v) = φc〈d〉 ∧ pub(d)

postνout(Γ, r, i, φc〈d〉) if Lr(v) = φc〈d〉 ∧ priv(d)

3. updated(r : Repl, i : Thrd, v : Vert, n : Name) checks if the activation of the action

at (r, v) updated the instance of name n or updated the relationship of n with other

names. It is de�ned as follows:

updated(r : Repl, i : Thrd, v : Vert, n : Name)
def
= updatedβ(r, i, v, n) ∨ updatedδ(r, i, v, n)

6.1.2.5 Atomic RIN-RIN properties

Atomic RIN-RIN properties assert about the relation between two names in two replica-

tors (possibly in the same replicator). The two names may be equal, unequal or unknown

(may be evaluated as equal or unequal), or they have the same instantiation.

6.1. CONTEXT PROPERTIES OF π-GRAPHS 127

1. equal(r : Repl, i : Thrd, x : Name ‖ r′ : Repl, i′ : Thrd, x′ : Name): the name x in

replicator r, thread i and the name x′ in replicator r′, thread i′ are equal, i.e., their

instantiations are in the same class of the dynamic partition. The de�nition of this

property is as follows:

equal(r : Repl, i : Thrd, x : Name ‖ r′ : Repl, i′ : Thrd, x′ : Name)
def
= [βri (x)]γ = [βr

′

i′ (x′)]γ

2. unequal(r : Repl, i : Thrd, x : Name ‖ r′ : Repl, i′ : Thrd, x′ : Name): the name x in

replicator r, thread i, and the name x′ in replicator r′, thread i′ are unequal, i.e.,

their instantiations are in two distinct classes of the dynamic partition and there is

a distinction between these classes (cf. Invariant 4.3 on page 79).

unequal(r : Repl, i : Thrd, x : Name ‖ r′ : Repl, i′ : Thrd, x′ : Name)
def
= ([βri (x)]γ, [β

r′

i′ (x′)]γ) ∈ δ

3. unknown(r : Repl, i : Thrd, x : Name ‖ r′ : Repl, i′ : Thrd, x′ : Name): we do not know

if the two names x and x′ may be equated or not, i.e., their instantiations are in two

distinct classes of the dynamic partition but there is no distinction between them.

unknown(r : Repl, i : Thrd, x : Name ‖ r′ : Repl, i′ : Thrd, x′ : Name)
def
= ([βri (x)]γ 6= [βr

′

i′ (x′)]γ) ∧ ([βri (x)]γ, [β
r′

i′ (x′)]γ) 6∈ δ

4. shared(r : Repl, i : Thrd, x : Name ‖ r′ : Repl, i′ : Thrd, x′ : Name): the instantiation

of name x in replicator r, thread i, and the instantiation of name x′ in replicator

r′, thread i′ are the same, i.e.,

shared(r : Repl, i : Thrd, x : Name ‖ r′ : Repl, i′ : Thrd, x′ : Name)
def
= βri (x) = βr

′

i′ (x′)

6.1.2.6 Atomic RIV-RIV properties

Atomic RIV-RIV properties assert about the synchronization between two di�erent repli-

cators which are represented by two parameters lists of the form (r1 : Repl, i1 : Thrd, v1 :

Vert ‖ r2 : Repl, i2 : Thrd, v2 : Vert). If the �rst parameters list is for an output then

the second one is for an input, or vice-versa.

1. presync(r1 : Repl, i1 : Thrd, v1 : Vert ‖ r2 : Repl, i2 : Thrd, v2 : Vert): checks

the precondition for synchronization between an action at (r1, v1) and an action at

128 CHAPTER 6. VERIFICATION

(r2, v2) using threads i1 and i2 respectively (cf. p. 75).

presync(r1 : Repl, i1 : Thrd, v1 : Vert ‖ r2 : Repl, i2 : Thrd, v2 : Vert)

def
=



{
Lr1(v1) = φ1c〈a〉 ∧ Lr2(v2) = φ2d(x)

∧ precom(β′, γ′, δ′, r1, i1, φ1c〈a〉, r2, i2, φ2d(x))

∨{
Lr1(v1) = φ1d(x) ∧ Lr2(v2) = φ2c〈a〉
∧ precom(β′′, γ′′, δ′′, r1, i1, φ1d(x), r2, i2, φ2c〈a〉)

where

• (β′, γ′, δ′) = finit(finit(Γ, r1, i1, v1), r2, i2, v2),

• (β′′, γ′′, δ′′) = finit(finit(Γ, r2, i2, v2), r1, i1, v1),

• finit(Γ, r, i, v) =

initri (Γ) if deg−r (v) = 0

Γ otherwise.

2. sync(r1 : Repl, i1 : Thrd, v1 : Vert ‖ r2 : Repl, i2 : Thrd, v2 : Vert) checks if the

synchronization between atomic actions at (r1, v1) and at (r2, v2) using threads i1
and i2 can be performed. The property is de�ned as follows:

sync(r1 : Repl, i1 : Thrd, v1 : Vert ‖ r2 : Repl, i2 : Thrd, v2 : Vert)

def
=

[
avail(r1, i1, v1) ∧ avail(r2, i2, v2)

∧ presync(r1, i1, v1, r2, i2, v2)

6.1.3 The logic of context properties

This section presents the grammar, well-formedness constraints and semantics of context

properties.

6.1.3.1 Syntax of context properties

Table 6.1 gives the syntax of context properties. A context property can be atomic or

compound. The list of atomic context properties is given in Section (6.1.2) above. For

compound properties, there are two cases: unary and binary ones. Unary properties are

of the form δP(σ) with δ a derivation operator1, P an atomic property and σ a list of

parameters. A derivation operator δ is a possibly empty sequence of operators of the

form ?p:T or *p:T. The �rst one is the existential quanti�cation and the second one is

the universal quanti�cation. The parameters list σ is a comma-separated list of formal

parameters p : T and constants p, e.g., a given thread or a replicator. An empty derivation

1We hope it will not be confusion between δ (derivation operators) and the set of distinctions used in

the other context

6.1. CONTEXT PROPERTIES OF π-GRAPHS 129

(context property) Φc ::= atomic property

| compound property

(atomic property) ϕ ::= P(σ) unary atomic

| P(σ1 ‖ σ2) binary atomic

(compound property) ϑ ::= δ P(σ) unary compound

| δ1 � δ2 P(σ1 ‖ σ2) binary compound

| δ1 ♦ δ2 P(σ1 ‖ σ2) distinct binary compound

(derivation operators) δ ::= ∅ no derivation operator

| ?p:T δ existential quanti�cation

| *p:T δ universal quanti�cation

(type) T ::= Repl replicator identi�ers

| Vert vertex identi�ers

| Thrd thread identi�ers

| Name names

(parameters) σ ::= ∅ no parameter

| p, σ �xed parameter p

| p : T, σ formal parameter p

Table 6.1: Syntax of context properties

operator δ or parameter list σ is denoted by ∅. As a convenience we can omit trailing ∅'s,
i.e., δ∅ ≡ δ and σ, ∅ ≡ σ.

In a binary compound property δ1 � δ2 P(σ1 ‖ σ2), P is a binary atomic property with

left parameters σ1 and right parameters σ2. The operator δ1 explains the derivation of

the left parameters and δ2 explains the derivation of the right parameters. By default,

the � operator does not restrict the pair of replicators involved in the property. If we

want to assert a proposition about two distinct replicators then the operator ♦ must be

used instead.

6.1.3.2 Well-formedness constraints

Observe that a property that has a correct syntax may still be not well-formed. For ex-

ample, both properties ?r:Repl active(r : Repl, i : Thrd, 1) and ?v:Vert ?i:Thrd active(r, i :

Thrd, v : Vert) are syntactically correct but they are not well-formed. In the �rst prop-

erty, the number of derivation operators is di�erent from the number of formal param-

eters. In the second one, the derivation operators do not match the formal parameters,

130 CHAPTER 6. VERIFICATION

i.e., operator ?v:Vert does not match parameter i : Thrd and similarly, operator ?i:Thrd does

not match parameter v : Vert. We introduce well-formedness constraints in the form of

inference rules. Each inference rule has the following form:

P1 . . . Pn
C

(N) n ≥ 0
(6.4)

where N is the rule name, P1, . . . , Pn are premises, and C is the conclusion of the rule. If

all premises P1, . . . , Pn are true, then we can conclude that the conclusion C is true.

We use boxes to enrich the syntax of context properties to state about well-formedness.

A unary (resp. binary) compound property δ δ′ P(σ, σ′) (resp. δ1 δ
′
1 � δ2P(σ1, σ

′
1 ‖ σ2))

is checked for well-formedness if and only if there is a �nite tree (formal proof) with:

• the property is the root of the tree (conclusion of the proof)

• internal nodes are applications of inference rules

• the leaves are axioms (inference rules without hypothesis)

The purpose of the tree is to check well-formedness for the boxed components.

Unary constraints An unary compound property δP(σ) is well-formed if and only if

there is a proof of δ P(σ) in the logical system of unary constraints given in Table 6.2.

δ ∅ P(σ, ∅)
(U− Correct)

δ δ′ P(σ, p, σ′) p 6∈ δ′

δ δ′ P(σ, p, σ′)
(U− Fixed)

δ •p:T δ′ P(σ, p : T, σ′)

δ •p:T δ′ P(σ, p : T, σ′)
(U−Derive)

Table 6.2: Well-formedness rules for unary compound properties

In these rules, we denote by �•� a quanti�cation operator which may be ? or *. Rule

(U− Correct) is the only axiom of the system i.e., there is nothing left to be checked.

Rule (U−Derive) is applied to match a derivation •p:T with a parameter p : T. The

boxed property δ •p:T δ′ P(σ, p : T, σ′) is checked for well-formedness if and only if there

is a tree such that the root is δ •p:T δ′ P(σ, p : T, σ′). The rule (U− Fixed) can be used

instead of (U−Derive) in the case of the �xed parameter p.

Binary constraints A binary compound property δ1 ♦ δ2P(σ1 ‖ σ2) is well-formed if

and only if there is a proof of δ1 ♦ δ2P(σ1 ‖ σ2) in the logical system of binary con-

straints given in Table 6.3 and Table 6.4. Since the well-formedness of a binary com-

pound property does not depend on the kind of combination operator ♦ or �, if property

6.1. CONTEXT PROPERTIES OF π-GRAPHS 131

δ1 ♦ δ2P(σ1 ‖ σ2) is well-formed then property δ1 � δ2P(σ1 ‖ σ2) is well-formed, and vice-

versa.

Well-formedness rules that are used to check well-formedness of left parameters and

the corresponding derivation operators in binary compound properties are given in Ta-

ble 6.3. Rule (B− LDerive) is applied to match a derivation •p:T with a parameter p : T.

The boxed property δ1 •p:Tδ′1 � δ2 P(σ1, p : T, σ′1 ‖ σ2) is checked for well-formedness if

and only if there is a tree with the root δ1 •p:T δ′1 � δ2 P(σ1, p : T, σ′1 ‖ σ2). Similarly

as above, the rule (B− LFixed) can be used instead of (B− LDerive) in the case of the

�xed parameter p. The rule (Switch) is applied to switch checking well-formedness from

left parameters to the right ones.

δ1 � δ2 P(σ1 ‖ σ2)

δ1 ∅ � δ2 P(σ1, ∅ ‖ σ2)
(Switch)

δ1 •p:T δ′1 � δ2 P(σ1, p : T, σ′1 ‖ σ2)

δ1 •p:T δ′1 � δ2 P(σ1, p : T, σ′1 ‖ σ2)
(B− LDerive)

δ1 δ
′
1 � δ2 P(σ1, p, σ

′
1 ‖ σ2) p 6∈ δ′1

δ1 δ
′
1 � δ2 P(σ1, p, σ

′
1 ‖ σ2)

(B− LFixed)

Table 6.3: Well-formedness rules for left parameters of binary compound properties

Well-formedness rules that are used to check well-formedness of right parameters

are given in Table 6.4. The rules (B− RDerive) and (B− RFixed) are similar to the

rule (B− LDerive) and (B− LFixed), respectively. The rule (B− Correct) is the unique

axiom of the system.

δ1 � δ2 ∅ P(σ1 ‖ σ2, ∅)
(B− Correct).

δ1 � δ2 •q:T δ′2 P(σ1 ‖ σ2, q : T, σ′2)

δ1 � δ2 •q:T δ′2 P(σ1 ‖ σ2, q : T, σ′2)
(B− RDerive)

δ1 � δ2 δ
′
2 P(σ1 ‖ σ2, q, σ

′
2) q 6∈ δ′2

δ1 � δ2 δ
′
2 P(σ1 ‖ σ2, q, σ

′
2)

(B− RFixed)

Table 6.4: Well-formedness rules for right parameters of binary compound properties

132 CHAPTER 6. VERIFICATION

Well-formedness checking A compound property is well-formed if it is derived by

constraint rules. The derivation is a tree of rule applications with the given property as

the root. To demonstrate the strategy of checking the well-formedness of a compound

property, we consider an example for checking the well-formedness of a unary compound

property

P = ?r:Repl *i:Thrd active(r : Repl, i : Thrd, 1).

Property P is well-formed because there is an inference for this property as follows:

?r:Repl *i:Thrd ∅ active(r, i, 1, ∅)
(U− Correct)

?r:Repl *i:Thrd ∅ active(r : Repl, i : Thrd, 1)
(U− Fixed)

?r:Repl *i:Thrd active(r : Repl, i : Thrd, 1)
(U− Derive)

?r:Repl *i:Thrd active(r : Repl, i : Thrd, 1)
(U− Derive)

Table 6.5: Well-formedness proof

of property ?r:Repl *i:Thrd active(r : Repl, i : Thrd, 1)

Property ?r:Repl ?v:Vert *i:Thrd active(r : Repl, i : Thrd, v : Vert) is not well-formed

because the derivation operators and parameters do not match. Operator ?v:Vert does not

match parameter i : Thrd, and operator *i:Thrd does not match parameter v : Vert.

6.1.3.3 Derivation of context properties

The derivation of an atomic context property ϕ, denoted by Dπ[[ϕ]], is itself, i.e., Dπ[[ϕ]] =

ϕ. The derivation of a compound context property ϑ is a combination of atomic properties

using logical conjunctions and disjunctions such that the combination has the same truth

value as ϑ. We denote by Dπ[[δ P(σ)]] (resp. Dπ[[δ1 � δ2P(σ1 ‖ σ2)]]) the derivation of

property δ P(σ) (resp. δ1 � δ2P(σ1 ‖ σ2)).

The derivation of a compound context property is obtained recursively through the

derivation of compound properties with smaller sizes. As previously, we denote by •p:T a
derivation operator of parameter p with type T, it may be ?p:T or *p:T. The derivation of

the • itself is de�ned as follows:

Dπ[[•]] def
=

∧ if • = *

∨ if • = ?

Derivation of unary properties We denote by Dπ[[δP(σ1, σ2)]] the derivation of the

property for the remaining parameters σ2 (σ1 has already been derived, i.e., �xed pa-

rameters). Recall that in an unary property, the �rst parameter is always a replicator

identi�er, after that may be a thread, a vertex, or a name.

6.1. CONTEXT PROPERTIES OF π-GRAPHS 133

First parameter If the �rst parameter (replicator identi�er) of the property is not

�xed, then it may be one of the replicators of the set R of the π-graph. In the derived

property, the replicator parameter becomes �xed. Thus, we have the following rule:

Dπ[[•r:Repl δ P(r : Repl, σ)]]
def
= Dπ[[•]]r∈R Dπ[[δ P(r, σ)]] (USem-First)

Next parameters If the �rst parameter, the replicator identi�er r, is �xed and σ

is a sequence of other instances of parameters, then the instance of parameter p depends

on parameter type.

Dπ[[•p:T δ P(r, σ, p : T, σ′)]] (USem-Param)

def
=


Dπ[[•]]p∈Vr Dπ[[δ P(r, σ, p, σ′)]] if T = Vert

Dπ[[•]]p∈K(r) Dπ[[δ P(r, σ, p, σ′)]] if T = Thrd

Dπ[[•]]p∈Nr Dπ[[δ P(r, σ, p, σ′)]] if T = Name

where Nr is the set of names in replicator r.

If x is a �xed parameter, we mark it as that is derived and continue for the next

parameter, as follows:

Dπ[[•p:T δ P(σ, x, σ′)]] with x 6= p (USem-Fixed)
def
= Dπ[[•p:T δ P(σ, x, σ′)]]

End of derivation Finally, if all the parameters are instantiated, then

Dπ[[P(σ)]]
def
= P(σ) (USem-Final)

Derivation of binary properties In binary properties, their parameters are composed

of two parts and each of them always begin with a replicator identi�er. The derivation

of binary properties are determined recursively by instantiating parameters from left to

right.

First parameters If the �rst parameter of two parts of parameters is not an in-

stance, then the �rst replicator identi�er parameter is instantiated �rst. Its instance may

be one of replicator identi�ers in set R of the π-graph. Thus, we have the following rule:

Dπ[[•r1:Repl δ
′
1 � •r2:Repl δ

′
2 P(r1 : Repl, σ1 ‖ r2, σ2)]] (BSem-First)

def
= Dπ[[•]]r1∈R Dπ[[δ′1 � •r2:Repl δ

′
2 P(r1, σ1 ‖ r2, σ2)]]

If the �rst replicator parameter r1 is not �xed and the second replicator parameter r2

is �xed, then the possibilities of r1 depend on the kind of combination operator. If it is

134 CHAPTER 6. VERIFICATION

♦ operator, then r2 must be excluded from all possibilities R of r1.

Dπ[[•r1:Repl δ1 � δ2 P(r1, σ1 ‖ r2, σ2)]] (BSem-LFirst)
def
= Dπ[[•]]r1∈R Dπ[[δ1 � δ2 P(r1, σ1 ‖ r2, σ2)]]

Dπ[[•r1:Repl δ1 ♦ δ2 P(r1, σ1 ‖ r2, σ2)]]
def
= Dπ[[•]]r1∈R′ Dπ[[δ1 ♦ δ2 P(r1, σ1 ‖ r2, σ2)]] with R′ = Rr {r2}

If all parameters in the �rst part are instantiated, then we continue with parameters

in the second part. Similarly to rule (BSem-LFirst) we have:

Dπ[[� •r2:Repl δ2 P(r1, σ1 ‖ r2, σ2)]] (BSem-RFirst)
def
= Dπ[[•]]r2∈R Dπ[[δ2 P(r1, σ1 ‖ r2, σ2)]]

Dπ[[♦ •r2:Repl δ2 P(r1, σ1 ‖ r2, σ2)]]
def
= Dπ[[•]]r2∈R′ Dπ[[δ2 P(r1, σ1 ‖ r2, σ2)]] with R′ = Rr {r1}

Next parameters For other formal parameters:

Dπ[[•p:T δ1 � δ2 P(r1, σ1, p : T, σ′1 ‖ σ2)]] (BSem-LParam)

def
=


Dπ[[•]]p∈Vr1 Dπ[[δ1 � δ2 P(r1, σ1, p, σ

′
1 ‖ σ2)]] if T = Vert

Dπ[[•]]p∈K(r1) Dπ[[δ1 � δ2 P(r1, σ1, p, σ
′
1 ‖ σ2)]] if T = Thrd

Dπ[[•]]p∈Nr1 Dπ[[δ1 � δ2 P(r1, σ1, p, σ
′
1 ‖ σ2)]] if T = Name

Dπ[[•q:T δ2 P(σ1 ‖ r2, σ2, q : T, σ′2)]] (BSem-RParam)

def
=


Dπ[[•]]q∈Vr2 Dπ[[δ2 P(σ1 ‖ r2, σ2, q, σ

′
2)]] if T = Vert

Dπ[[•]]q∈K(r2) Dπ[[δ2 P(σ1 ‖ r2, σ2, q, σ
′
2)]] if T = Thrd

Dπ[[•]]q∈Nr2 Dπ[[δ2 P(σ1 ‖ r2, σ2, q, σ
′
2)]] if T = Name

For �xed parameters:

Dπ[[•p:T δ′1 � δ2 P(σ′1, x, σ
′′
1 ‖ σ2)]] with x 6= p (BSem-LFixed)

def
= Dπ[[•p:T δ′1 � δ2 P(σ′1, x, σ

′′
1 ‖ σ2)]]

Dπ[[•q:T δ′2 P(σ1 ‖ σ′2, x, σ′′2)]] with x 6= q (BSem-RFixed)
def
= Dπ[[•q:T δ′2 P(σ1 ‖ σ′2, x, σ′′2)]]

6.1. CONTEXT PROPERTIES OF π-GRAPHS 135

End of derivation When all parameters are �xed, the derivation of the property

is de�ned as follows:

Dπ[[P(σ1 ‖ σ2)]]
def
= P(σ1 ‖ σ2) (BSem-Final)

Remark: We assume the following structural equivalences:

i) p, σ ≡ p, σ

ii) ∅ ≡ ∅

Illustration of derivation rules Consider a π-graph π in Figure 6.2, which represents

a sub part of the RDP system that is described in Chapter 3. We determine the derivation

of the following compound property:

P = *r1:Repl ?i1:Thrd ?v1:Vert ♦ ?i2:Thrd sync(r1 : Repl, i1 : Thrd, v1 : Vert ‖ R, i2 : Thrd, 11).

Restricted: b, c, d, e, f, g

R[2] : (νk)

a〈k〉

1 2

k(x)

3

c〈x〉

4

b(x)

5

6

y〈k〉

7

k〈reject〉

8

9

y〈k〉

10

k〈y〉

11

τ

[x = d]f(y)

[x 6= c]g(y)

D[2]:

c(x)

1

e〈x〉
3

d〈x〉
2

b〈c〉

4

f〈x〉

5

Figure 6.2: A sub part of the RDP system

Property P asserts that there exists the synchronization between the action at (R, 11)

and all the other replicators (in fact here there is only D because the second replicator

is already �xed to R), which is indicated by the combination operator ♦. The derivation

136 CHAPTER 6. VERIFICATION

of P is determined as follows:

Dπ[[P]]
def
= Dπ[[?i1:Thrd ?v1:Vert ♦ ?i2:Thrd sync(D, i1 : Thrd, v1 : Vert ‖ R, i2 : Thrd, 11)]]

def
=

[
Dπ[[?v1:Vert ♦ ?i2:Thrd sync(D, 1, v1 : Vert ‖ R, i2 : Thrd, 11)]] ∨
Dπ[[?v1:Vert ♦ ?i2:Thrd sync(D, 2, v1 : Vert ‖ R, i2 : Thrd, 11)]]

def
=

[∨
v1∈[1..5]Dπ[[♦ ?i2:Thrd sync(D, 1, v1 ‖ R, i2 : Thrd, 11)]] ∨∨
v1∈[1..5]Dπ[[♦ ?i2:Thrd sync(D, 2, v1 ‖ R, i2 : Thrd, 11)]]

.

def
=



sync(D, 1, 1 ‖ R, 1, 11) ∨ sync(D, 1, 1 ‖ R, 2, 11) ∨
sync(D, 1, 2 ‖ R, 1, 11) ∨ sync(D, 1, 2 ‖ R, 2, 11) ∨
sync(D, 1, 3 ‖ R, 1, 11) ∨ sync(D, 1, 3 ‖ R, 2, 11) ∨
sync(D, 1, 4 ‖ R, 1, 11) ∨ sync(D, 1, 4 ‖ R, 2, 11) ∨
sync(D, 1, 5 ‖ R, 1, 11) ∨ sync(D, 1, 5 ‖ R, 2, 11) ∨
sync(D, 2, 1 ‖ R, 1, 11) ∨ sync(D, 2, 1 ‖ R, 2, 11) ∨
sync(D, 2, 2 ‖ R, 1, 11) ∨ sync(D, 2, 2 ‖ R, 2, 11) ∨
sync(D, 2, 3 ‖ R, 1, 11) ∨ sync(D, 2, 3 ‖ R, 2, 11) ∨
sync(D, 2, 4 ‖ R, 1, 11) ∨ sync(D, 2, 4 ‖ R, 2, 11) ∨
sync(D, 2, 5 ‖ R, 1, 11) ∨ sync(D, 2, 5 ‖ R, 2, 11)

6.1.3.4 Semantics of context properties

The interpretation of context properties is de�ned recursively as follows, using the de�-

nition of atomic properties:

De�nition 6.1. Let Cπ be a π-graphs context and P a context property. P holds in

context Cπ, denoted by Cπ |= P , i� interpCπ(Dπ[[P]]), with

interpCπ(p)
def
=

true if the atomic property p holds in Cπ
false otherwise

interpCπ(P1 ∨ P2)
def
= interpCπ(P1) ∨ interpCπ(P2)

interpCπ(P1 ∧ P2)
def
= interpCπ(P1) ∧ interpCπ(P2)

De�nition 6.2. Let π be a π-graph and Cπ a π-graphs context. The set of all atomic

properties that hold in context Cπ, denoted by atoms(Cπ), is de�ned as follows:

atoms(Cπ) = {p an atomic context property | interpCπ(p)}.

6.2 Temporal properties of π-graphs

Temporal properties of π-graphs are de�ned based on context properties.

6.2. TEMPORAL PROPERTIES OF π-GRAPHS 137

6.2.1 Kripke structure for π-graphs

We introduce a Kripke structure for π-graphs based on their semantics as labelled tran-

sition system (LTS) (cf. Def. 4.9 on page 81). The main idea is to map each state in the

LTS to the set of atomic context properties that hold in this state.

We begin with the classical de�nition of Kripke structures.

De�nition 6.3. A Kripke structure over a set of atomic properties LP is a transition

system KS = (S , s0,T ,P), where

• S a �nite set of states

• s0 ∈ S is an initial state

• T ∈ S ×S is a transition relation

• P : S → 2LP is a property map (or interpretation function)

Now we explain the mapping from π-graphs semantics to Kripke structures.

De�nition 6.4. Let LTSπ = (Cπ, C0
π,Rπ) be a labelled transition system of a π-graph π,

the corresponding Kripke structure is KSπ = (Sπ, s
0
π, Tπ, Pπ) such that:

• Sπ = {sC | C ∈ Cπ}

• s0
π is sC0

π

• Tπ = {(sC, sC′) | C
µ−→ C ′ ∈ Rπ}

• Pπ is such that for a state sC ∈ Sπ then Pπ(sC) is the set of atomic context properties

that are true in context C. Formally, Pπ(sC) = atoms(C).

Consider a π-graph π with three reachable contexts C0, C1 and C2 where C0 is the initial

context, and π consists of two replicators r and r′. The LTS of π is given in Figure 6.3a and

the corresponding Kripke structure is given in Figure 6.3b with three states s0
π, sC1 and sC2

corresponding to C0, C1 and C2, respectively. Each state is associated with a set of atomic

properties that hold in this state, for example, Pπ(sC1) = {nameν(r, 1, a), shared(r, 1, x ‖
r′, 2, y)}.

De�nition 6.5. Let KS = (S , s0,T ,P) be a Kripke structure. A path of KS is a

sequence of states ρ = (s0, s1, . . .) such that for each i ≥ 0, (si, si+1) ∈ T . We denote by:

• ρ[i] the i-th state of the path ρ, i.e., ρ[i] = si;

• ρ[..i] the i-th pre�x of ρ, i.e., ρ[..i] = (s0, s1, . . . , si);

• ρ[i..] the i-th su�x of ρ, i.e., ρ[i..] = (si, si+1, . . .).

138 CHAPTER 6. VERIFICATION

C0

µ1

C1C2

µ5

µ2

µ4

µ3

(a) The LTS of π

s0
π

sC1sC2

{nameν(r,1,a)}

{
nameν(r,1,a),

shared(r,1,x‖r′,2,y)

}{
nameν(r,1,a),

active(r,2,1)

}

(b) The Kripke structure

Figure 6.3: The LTS and the corresponding Kripke structure of π-graph π

6.2.2 Syntax of π-graphs temporal properties

De�nition 6.6. A temporal property formula ϕ is formed as follows:

ϕ ::= true | p | ϕ1 ∧ ϕ2 | ¬ϕ | Xϕ | ϕ1 Uϕ2

where p is a context property.

For other logical connectives such as disjunction, implication, equivalence, and exclu-

sive are derived from basic operators in Def. 6.6 as follows:

ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2)

ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2

ϕ1 ↔ ϕ2 ≡ (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1)

ϕ1 ⊕ ϕ2 ≡ (ϕ1 ∧ ¬ϕ2) ∨ (ϕ2 ∧ ¬ϕ1)

Moreover, for a full temporal logic, we add temporal operators always G and eventually

F. They are derived from operators X and U as follows:

Fϕ ≡ true Uϕ

Gϕ ≡ ¬F¬ϕ

De�nition 6.7. Given a temporal property ϕ and a π-graph π, the derivation of ϕ on π

extends the de�nition of the derivation of context properties with the following rules:

Dπ[[true]]
def
= true

Dπ[[ϕ1 ∧ ϕ2]]
def
= Dπ[[ϕ1]] ∧ Dπ[[ϕ2]]

Dπ[[ϕ1 ∨ ϕ2]]
def
= Dπ[[ϕ1]] ∨ Dπ[[ϕ2]]

Dπ[[¬ϕ]]
def
= ¬Dπ[[ϕ]]

Dπ[[Xϕ]]
def
= XDπ[[ϕ]]

Dπ[[ϕ1 Uϕ2]]
def
= Dπ[[ϕ1]] UDπ[[ϕ2]]

6.2. TEMPORAL PROPERTIES OF π-GRAPHS 139

6.2.3 Semantics of temporal properties

Some reminders for the intuitive meaning of temporal modalities is depicted in Fig. 6.4.

For simplicity, we just illustrate the meaning of the modalities with atomic properties.

A property p without any temporal operator is satis�ed if it holds in the current state,

but p may hold or not in the successor states. Property X p holds if p holds at the state

after the current one. Property pU q holds if p holds until property q holds. Property

F p holds if there is a state in the future such that p holds on it. Finally, property G p

holds if p holds in all states.

p
p

. . .

X p
p

. . .

pU q
p p q

. . .

F p
p

. . .

G p
p p p p

. . .

Figure 6.4: Intuitive meaning of temporal modalities

De�nition 6.8. A word over a set of local atomic properties LP is a sequence of sets

of atomic properties, w = (w0, w1, w2, . . .), i.e., wi ∈ 2LP for any i ≥ 0. We denote

w[i], w[..i], and w[i..] the i-th element, i-th pre�x and i-su�x of the word w, respectively.

De�nition 6.9. A word w = (w0, w2, . . .) satis�es a temporal property formula ϕ, de-

noted by w |= ϕ, if and only if w |=D Dπ[[ϕ]], where the satisfaction relation |=D is de�ned

as follows.

w |=D true

w |=D p i� p ∈ w0, with p is a local atomic property

w |=D ϕ1 ∧ ϕ2 i� (w |=D ϕ1) ∧ (w |=D ϕ2)

w |=D ¬ϕ i� w 6|=D ϕ

w |=D Xϕ i� w[1..] |=D ϕ

w |=D ϕ1 Uϕ2 i� ∃j ≥ 0 w[j..] |=D ϕ2, and ∀i, 0 ≤ i < j w[i..] |=D ϕ1.

De�nition 6.10. Let ϕ be a temporal property formula over a set of local atomic prop-

erties LP . The set of words over LP induced by ϕ is

words(ϕ) = {w ∈ (2LP)ω | w |= ϕ},

where (2LP)ω denotes the set of words that arise from the in�nite concatenation of words

in 2LP .

140 CHAPTER 6. VERIFICATION

De�nition 6.11. Let KS = (S , s0,T ,P) be a Kripke structure and ϕ a temporal

property formula over a set of local atomic properties LP .

• For a path ρ = (s0, s1, . . .) of KS, the satisfaction relation is de�ned by

ρ |= ϕ i� (w0, w1, . . .) |= ϕ with wi = P(si) for any i ≥ 0;

• For a state s in S , the satisfaction relation is de�ned by

s |= ϕ i� (∀ρ ∈ paths(s), ρ |= ϕ),

where paths(s) denotes all paths that start from s;

• KS satis�es ϕ, denoted by KS |= ϕ, i� s0 |= ϕ.

6.2.4 Examples of π-graphs temporal properties

We introduce some examples of properties of π-graphs and their speci�cations. These

properties can be divided into three groups: safety properties, liveness properties and

others.

6.2.4.1 Safety properties

Informally, safety properties assert that �Nothing bad will happen�. The following are

some examples of important safety properties:

1. Deadlock-freedom: In any context, the system can always evolve by performing an

atomic action or a synchronization, i.e.,

G(?r:Repl ?i:Thrd ?v:Vert atomic(r : Repl, i : Thrd, v : Vert) ∨
?r1:Repl ?i1:Thrd ?v1:Vert ♦ ?r2:Repl ?i2:Thrd ?v2:Vert

sync(r1 : Repl, i1 : Thrd, v1 : Vert ‖ r2 : Repl, i2 : Thrd, v2 : Vert)

)

2. The property asserts that a given global restricted name x is never sent to the envi-

ronment (because of some security requirement), meaning that for all the replicators

and all the threads in each replicator, the instance of a given name x is always a

private name, is de�ned as follows:

G(*r:Repl *i:Thrd nameν(r : Repl, i : Thrd, x)).

In the above de�nition, name x is a constant that is indicated by x.

6.2. TEMPORAL PROPERTIES OF π-GRAPHS 141

3. The number of e�ective fresh input/output names space is bounded. For example,

the number of fresh input names is always less than or equal to 6.

Since fresh input names are generated by a logical input clock of the form ?k, where

k ∈ N+, and a fresh name ?k is generated only if all fresh names ?j, with j < k,

are being used (i.e., existing in the co-domain of the name environment β) (cf.

Section 4.2.2.3 on page 62), K is the bound of e�ective fresh input names if name

?k, where k = K + 1, is never generated. It means that property

?r:Repl ?i:Thrd ?v:Vert labelα(r : Repl, i : Thrd, v : Vert)), with α = ∗(?k)

never holds. This property can be speci�ed using temporal operator G as follows:

G(¬ ?r:Repl ?i:Thrd ?v:Vert labelα(r : Repl, i : Thrd, v : Vert)),

with α = ∗(?k), k = K + 1.

For fresh output names, the property is similar except that α = ∗<!k>.

6.2.4.2 Liveness properties

Informally, liveness properties assert that �Something good will eventually happen�. The

following are examples of some important liveness properties:

1. Eventually, all threads will be released (i.e., the system will go to a state where all

local names will be reset). We recall that if a thread i in replicator r is released,

then there is no vertex v having control for i, meaning that active(r, i, v) is false.

The property is de�ned as follows:

F(¬ ?r:Repl ?i:Thrd ?v:Vert active(r : Repl, i : Thrd, v : Vert))

2. A local restricted name x in replicator r will eventually be escaped, i.e., its instan-

tiation is not a fresh private name. This property is de�ned as follows:

F(¬ ?i:Thrd nameν(r, i : Thrd, x)).

Similarly, if x is a global restricted name, then the property which asserts that x

will eventually be escaped is de�ned as follows:

F(¬ *r:Repl ?i:Thrd nameν(r : Repl, i : Thrd, x)).

6.2.4.3 Other properties

We list here the properties which are not in the two previous categories.

142 CHAPTER 6. VERIFICATION

• In the de�nition of replicators, each one has a bounded number of threads. In some

cases, this is not the e�ective bound, i.e., the number of threads that are spawned

may be less than the given bound. A number n is not an e�ective bounded number

of a replicator r if in all context, there is no vertex in r that has control for the

thread with identi�er n.

G(¬ ?v:Vert active(r, n, v : Vert))

• Checking if there is any output/input on a given channel. This property is speci�ed

using property labelα(r : Repl, i : Thrd, v : Vert). There is an output on a channel

c if and only if there is an action at (r, v) that is activated using thread i with label

c〈∗〉. This property is de�ned as follows:

?r:Repl ?i:Thrd ?v:Vert labelα(r : Repl, i : Thrd, v : Vert)

where α = c〈∗〉. Similarly for an input action on channel c, the label in this case is

α = c(∗).

6.3 Model checking with the NECO framework

Now that we have a formalism � the π-graphs � for specifying recon�gurable systems

as well as a language to describe properties about the behaviours of these systems, the

next step is to be able to model-check these properties in an automated way. It would

be di�cult and time-consuming to develop a speci�c model checker [17, 23] for the π-

graphs. Thankfully we can exploit the one-to-one correspondence between the π-graphs

and Petri nets stated in Section 5.2 on page 95. Since the translated net is a high-level

Petri net, two tools appear to be particularly adapted to this case: HELENA [26] and

SNAKES+NECO [28][52]. We �nally decided to use SNAKES+NECO for the following

reasons:

• To conduct the experiment on the semantics of π-graphs, we implemented a π-

graphs simulator using programming language Python. Moreover, SNAKES is a

Python library that provides all that is necessary to de�ne and execute many sorts

of Petri nets including the high-level Petri nets in our translation. Thus, it is

reasonable to choose SNAKES for the translation and checking the conformance

between the π-graphs and the translated Petri nets.

• NECO is a model checker based on SNAKES. It can verify LTL properties of Petri

nets models which are de�ned in SNAKES in an e�cient way relying on the high

performance of the SPOT framework [7, 22].

6.3. MODEL CHECKING WITH THE NECO FRAMEWORK 143

This section presents �rst how to express LTL properties of Petri nets in NECO. Next,

we illustrate how to translate π-graphs properties into the logic of NECO, following our

translation scheme. Then, we show how to interpret a counterexample if the property

does not hold. Finally, the section ends with a practical experiment of our approach.

Unlike the rest of the thesis, the following presentation will mostly remain informal.

6.3.1 Specifying properties in NECO

A property of a Petri net model in NECO [27] is based on atomic propositions of Petri

nets markings. The main atomic propositions are described below:

• Comparisons between two lists of tokens or two integer expressions using operators

in {=, ! =, <=, <,>,>=}.

1. A list of tokens [tok1, . . . , tokn] expresses actually a multi-set of values {tok1, . . . , tokn}.
In particular, NECO representation of markings uses lists of tokens, e.g.,

marking(p) where p is a place name.

2. An integer expression can be an integer or a sum of integers. In particular,

the number of tokens in a list L, which is computed using the function card(L)

is also an integer expression.

• Prede�ned atomic propositions on transitions to check the �ring possibilities of

transitions at a given marking.

� fireable(t) meaning that transition t can be �red at the current marking.

� deadlock meaning that there is no transition that can be �red at the current

marking.

• Prede�ned atomic propositions on places to check if a user-de�ned property f is

true on a token tok, denoted by f(tok).

� all(p, f) is true for all token tok in the place p, f(tok) is true. If there is no

token in p, then all(p, f) is also true.

� any(p, f) is true if there exists for some token tok in place p such that f(tok)

is true. If there is no token in p, then any(p, f) is false.

• Combinations of atomic propositions to form compound properties using:

� Classical logic connectives: and, or, xor, not, ->, <->.

� Temporal logic operators: X (next), G (always), F (eventually), and U (until).

144 CHAPTER 6. VERIFICATION

Examples of property speci�cations in NECO

We consider two examples of specifying properties in NECO. Given a Petri net (as in

Fig. 6.5) which comprises two places p1 and p2, and a transition t. Transition t consumes

a token from p1 and produces the same token to p2. The guard of t is empty meaning

that it is always satis�ed. Initially, p1 contains three tokens 1, 3 and 5, p2 contains two

tokens 2 and 4.

1, 3, 5

p1

t

∅
2, 4

p2

x x

Figure 6.5: An example of Petri net model

First, let us consider the following property P1 of the Petri net at a given marking,

P1
def
= ([1, 3] <= marking(p1)) and (card(marking(p2)) <= 3).

It is true if place p1 contains at least two tokens 1 and 3, and the number of tokens in p2

is less than or equal to 3.

If we want to check if P1 holds sometimes in the future, we should add temporal

operator F (eventually) in front of P1. The obtained property P ′1 asserts about a path of

markings,

P ′1
def
= F(([1, 3] <= marking(p1)) and (card(marking(p2)) <= 3)).

Second, let us consider another property P2 that holds for a given marking: �All tokens

in place p1 are odd numbers and there is at least one token in place p2 such that it is

an even number�. It may be expressed in the following way using user-de�ned Boolean

functions on a given token. These functions must be de�ned before using prede�ned

atomic propositions all(p, f) and any(p, f) of NECO. In general, to specify and check

such a property, we have to:

1. De�ne user-de�ned functions in a separate Python module. For example, the de�-

nitions of two functions odd(tok) and even(tok), which check if the token tok is an

odd (resp. even) number should be de�ned in such a module.

2. Specify the desired properties using these user-de�ned functions together with con-

structs �for all tokens� and �there exists a token�. In this example, function odd

applies to all tokens in place p1 and function even applies to some tokens in place

p2.

6.3. MODEL CHECKING WITH THE NECO FRAMEWORK 145

The speci�cation of property P2 is then in NECO:

P2
def
= all(p1, odd) and any(p2, even).

Similarly to the �rst example, we can add temporal operators to P2 to obtain new prop-

erties that assert a formula about a path of markings.

6.3.2 Translating properties of π-graphs

According to the de�nition of a temporal property of π-graphs, it is a combination of

context properties using classical connectives and temporal logic operators. Moreover,

for any context property speci�cation (atomic or compound one), by derivation rules, we

can obtain an equivalent formula which is a conjunction or disjunction of corresponding

atomic properties. Thus, to translate a temporal property into an equivalent one that

can be checked using NECO model checker, it is enough to have a method for translating

atomic context properties into the corresponding ones in NECO.

Furthermore, according to the classi�cation of context properties of π-graphs based

on the number and the order of parameters, each atomic property may be in one of four

groups: RI, RIV, RIN, RIVN. More abstract, these properties can be regrouped into

those about threads and those about names. The former relate purely to threads, they

can be translated without using user-de�ned functions. The latter relate to the name

context, and the translation needs user-de�ned functions that apply to the unique name

context token in place pΓ of the translated net.

6.3.2.1 Translation of thread properties

Among atomic context properties of π-graphs speci�ed in Sec. 6.1.2 on page 121, there

are two properties that can be translated directly into the equivalent one of the translated

net in NECO:

active(r : Repl, i : Thrd, v : Vert), and avail(r : Repl, i : Thrd, v : Vert).

Recall that in the translated net of a π-graph, each non-terminating vertex v in

replicator r has a corresponding transition trv and an output place prv of trv. Thus, if a

vertex v in a replicator r has control for a thread i, then it means that the token r.i

is present in the place prv. The translation of property active(r, i, v) is thus de�ned as

follows:

active(r : Repl, i : Thrd, v : Vert)
def
= [r.i] <= marking(prv).

The availability of a thread i for performing an action at (r, v) depends on the struc-

tural type of the action. If its type is mono or spwn (i.e., deg−r (v) = 0), then thread i

146 CHAPTER 6. VERIFICATION

is available to the action at (r, v) if it is not present at any vertex in r. Otherwise, i.e.,

deg−r (v) = 0, i is available to the action at (r, v) if it is present at the predecessor of v.

The translation of property avail(r : Repl, i : Thrd, v : Vert) also based on the marking

of places in the translated net as follows:

avail(r : Repl, i : Thrd, v : Vert)

def
=

[r.i] <= marking(pru) if deg−r (v) = 1 where (u, v) ∈ Er
¬(
∨
u∈Vr\{w|deg+

r (w)=0}([r.i] <= marking(pru))) if deg−r (v) = 0

6.3.2.2 Translation of name context properties

An atomic context property that relates to the name context of π-graphs must be trans-

lated indirectly using prede�ned atomic propositions all(pΓ, f) and any(pΓ, f), where f is

a user-de�ned Boolean function that applies to the name context token Γ in place pΓ.

Since Γ is a singleton in pΓ (cf. Def. 5.2), the evaluations of all(pΓ, f) and any(pΓ, f) are

the same at a given marking, we should choose arbitrarily one of them for the translation

of properties. Suppose that we choose all(pΓ, f).

In fact, function f may has other free parameters, let's say p1, . . . , pn , besides a bound

parameter Γ (which represents the unique name context token in place pΓ). However,

because of the syntax of the two prede�ned atomic propositions all(pΓ, f) and any(pΓ, f),

we cannot pass these free parameters. This problem can be solved by de�ning a new

function

g : Γ× P1 × · · · × Pn → {true, false}, (6.5)

where Pi is the domain of parameter pi. Then, for each distinct tuple of e�ective param-

eters (pk1, . . . , p
k
n) we de�ne a new function

fk : Γ→ {true, false} where fk(Γk)
def
= g(Γk, pk1, . . . , p

k
n).

In our implementation, a name context token is an instance of class NameContext,

thus (6.5) may be implemented as a method of NameContext and the application

g(Γk, pk1, . . . , p
k
n) becomes a method call Γk.g(pk1, . . . , p

k
n).

Functions fk(Γ) are user-de�ned functions as described above.

6.3.3 Processing counterexamples

Given a model net(π) which is the translated net of a π-graph π, and a property ϕπ

which is the translation of a π-graphs property Φπ, we check if the model satis�es the

property using the model checker NECO. Similarly to other model checkers, if the model

6.4. EXPERIMENTAL RESULTS 147

satis�es ϕπ then the model checker will give us an answer �OK�, otherwise, it gives us

a counterexample, which is a trace of markings that does not satisfy the property. The

counterexample can be abstracted as follows:

M0[ϕ0
π]→ M2[ϕ2

π]→ · · · → Mn[ϕnπ], (6.6)

where Mi is a marking of the translated net and ϕiπ is the assertion of property ϕπ on

marking Mi, and there exists a marking Mk, 0 ≤ k ≤ n, such that the corresponding

assertion ϕkπ is false.

Based on the counterexample in (6.6) we can recover which context of the π-graph

does not satisfy the property Φπ. Recall that the translation of π-graphs into Petri nets

is isomorphic (cf. Sec. 5.2), thus we can always compute the context from the marking

based on Def. 5.10 on page 109. Moreover, the property ϕkπ is a conjunction of atomic

properties and the checker also show us which atomic property is not satis�ed. Thus, we

have more information about the action or names that made that property false.

6.4 Experimental results

This section presents experimental results of using open system logic to specify properties

of systems modelled in π-graphs, and using NECO to check these properties. The system

we use for this purpose is represented in Figure 6.6, which is presented in Chapter 3.

Moreover, we present also the interpretation of a counter-example from NECO in π-

graphs, and propose a solution for modifying the model of the system such that it satis�es

the property.

Suppose that we want to check if the system satis�es three properties: deadlock-

freedom, no internal loop and internal private channel. They are described as follows:

Deadlock-freeness (P1) The system has no deadlock if at any reachable state there

exists at least an atomic action or a synchronization that can be activated. It can

be de�ned based on atomic properties atomic and sync as follows:

P1
def
= G

 ?r:Repl ?i:Thrd ?v:Vert atomic(r : Repl, i : Thrd, v : Vert)

∨(?r1:Repl ?i1:Thrd ?v1:Vert � ?r2:Repl ?i2:Thrd ?v2:Vert

sync(r1 : Repl, i1 : Thrd, v1 : Vert ‖ r2 : Repl, i2 : Thrd, v2 : Vert))


NECO provides an atomic proposition deadlock asserting that the current state

of the system is deadlock, i.e., there is no �reable transition. We can use this

proposition to de�ne P1.

No internal loop (P2) In each replicator, the information it sends to another replicator

(or sent to the environment) should not be received by itself. For example, in

148 CHAPTER 6. VERIFICATION

replicator R, the answer y to the requester, which is represented by the action k〈y〉,
should not be received by R itself by an input action, e.g., k(x). It is de�ned as

follows:

P2
def
= G

(
¬(?i1:Thrd � ?i2:Thrd sync(R, i1 : Thrd, 8 ‖ R, i2 : Thrd, 3))

∧¬(?i1:Thrd � ?i2:Thrd sync(R, i1 : Thrd, 11 ‖ R, i2 : Thrd, 3))

)

NECO provides an atomic proposition fireable(t) where t is a transition that asserts

that t is �reable in the current state, which may be used to de�ne P2. In the

translated net, there are two transitions representing the synchronizations between

the output at (R, 1), (R, 8) and (R, 11) with the input at (R, 3), named S1R3R,

S8R3R and S11R3R, respectively. Each synchronization can be activated if and

only if the corresponding transition can be �red. Thus, we have another de�nition

for P2 as follows:

P2
def
= G(¬ fireable(S8R3R) ∧ ¬ fireable(S11R3R) ∧ ¬ fireable(S1R3R)).

Similarly, a property may concern replicator P where the output g〈x〉 should not

synchronize with the input d(x) or e(x). In this case study, we consider only the

property for replicator R.

Internal private channel (P3) All global restricted channels of the system (i.e., X =

{b, c, d, e, f, g}) are always private. It may be de�ned as follows:

P3
def
= G(

∧
n∈X

*r:Repl *i:Thrd nameν(r : Repl, i : Thrd, n)).

6.4.1 Checking results for the original model

We carried numerous experiments on the original model, which is represented in Figure 6.6

on the next page. The results are presented in Table 6.6. Each line corresponds to a case

of (KR,KD,KP), in which a satis�ed property is marked with symbol 3, otherwise it is

marked with 7.

In Table 6.6, property P1 (i.e., deadlock-freedom) does not hold in all cases, other

ones hold for all cases. For each case, NECO gives us a counter example for P1. We

consider the one for the �rst case, i.e., KR = KD = KP = 1, which is represented in

Listing 6.1. The property that NECO checks is indicated in the �rst line of the listing,

`G (!DEAD)� (i.e., always not deadlock).

We recall the reader that to check this property, NECO computes the negation of

the property, �FDEAD� (eventually deadlock), and checks if there exists a path that

satis�es the negation. The pre�x of the path consists of a sequence of markings that

does not satisfy the negation, i.e., each marking is evaluated to !DEAD, and ends with

6.4. EXPERIMENTAL RESULTS 149

Restricted: b, c, d, e, f, g

R[2] : (νk)

a〈k〉

1 2

k(x)

3

c〈x〉

4

b(x)

5

6

y〈k〉

7

k〈reject〉

8

9

y〈k〉

10

k〈y〉

11

[a 6= k]τ

[x = c]f(y)

[x 6= c]g(y)

D[2]:

c(x)

1

e〈x〉
3

d〈x〉
2

b〈c〉

4

f〈x〉

5

P [2]:

d(x)

1

τ

2

b〈d〉

3

g〈x〉

4

e(x)

5

τ

6

b〈e〉

7

g〈x〉

8

Figure 6.6: The original π-graph model of the RDP system

a marking that satis�es the negation (lines 13 to 15), which is evaluated to DEAD. The

cycle part (lines 17 to 20) is consists of one marking, which is exactly the deadlock

marking. Moreover, by Def. 5.2, place p3R corresponds to vertex 3 of replicator R, p1D

corresponds to vertex 1 of D, p2P corresponds to vertex 1 of P and pG corresponds to

the context of the π-graph model. Notice that we only show the places that have token.

By Def. 5.3, place p3R has token 1 if the action at vertex 3 of R has control with thread

1. Similarly, that action at vertex 1 of D has control with thread 1 and vertex 1 of P also

has control with thread 1. The context token at place pG is represented by three parts

which corresponds to the name environment, the dynamic partition and the distinctions

(cf. Section 4.2.2.2). Thus, in the corresponding context of the deadlock marking,

• R is waiting for communicating with D,

• D is waiting for communicating with P ,

• P is waiting for communicating with R.

150 CHAPTER 6. VERIFICATION

No. Thread bounds Time (sec) Num of Properties

KR KD KP compile explore states P1 P2 P3

1 1 1 1 401.36 2.64 162 7 3 3

2 1 1 2 400.97 54.92 2545 7 3 3

3 1 1 3 400.89 1645.40 52080 7 3 3

4 1 2 1 401.31 19.74 1090 7 3 3

5 1 2 2 399.98 602.60 21644 7 3 3

6 2 1 1 402.02 1373.51 50337 7 3 3

Table 6.6: Results of checking on the original model

No. Thread bounds Times (sec) Num of Properties

KR KD KP compile explore states P1 P2 P3

1 1 1 1 401.29 0.71 18 3 3 3

2 1 1 2 393.30 0.72 18 3 3 3

3 1 1 3 395.21 0.70 18 3 3 3

4 1 2 1 400.10 0.75 18 3 3 3

5 1 2 2 399.54 0.71 18 3 3 3

6 2 1 1 399.67 534.41 27211 3 3 3

Table 6.7: Results for the improved model in Figure 6.7

But these three replicators cannot perform the input action at (R, 5), (D, 1), (P, 1) and

(P, 5) as they have no available threads. This corresponds to a deadlock in the π-graph.

6.4.2 Checking results for the improved model

From the interpretation of the counter-example above, we propose a solution for modifying

the model such that the system is deadlock-free by making the action b(x) at (R, 5)

become the successor of the action at (R, 4); the other replicators do not change. This

modi�cation ensures that each thread of R has to wait for receiving the answer from D

or P after sending a request (by performing action c〈x〉).

The new model is represented in Figure 6.7 and the checking results for it are given in

Table 6.7, meaning that all properties P1, P2 and P3 are satis�ed. Moreover, the number

of states are the same in all cases in which KR = 1, meaning that D and P need only one

thread for performing actions. This gives rise to a property of the system: if KR = 1,

then the e�ective thread bounds of both D and P are 1. The property can be speci�ed

analogously to that in Section 6.2.4.3 as follows:

G(¬ ?v:Vert active(D, 2, v) ∧ ¬ ?v:Vert active(P, 2, v)).

6.5. SYNTHESIS 151

Listing 6.1: The original output from NECO of a counterexample of property P1, where

pG represents the context place pΓ

1 Formula : (G (!DEAD))

2 Pre f i x :

3 {p0R : [1] , p0D : [1] , p0P : [1] ,

4 pG: [{ b : $2 , c : $1 , . . . } ; {$1 : 1 , $2 : 2 , . . . } ; { 1 −2 , . . . }]

5 }∗ FDEAD | !DEAD

6

7 {p1R : [1] , p0D : [1] , p0P : [1] ,

8 pG: [{ k .R. 1 : ! 1 , c : $1 , . . . } ; { ! 1 : 1 , $1 : 2 , . . . } ; { 1 −2 , . . . }]

9 }∗ FDEAD | !DEAD

10 .

11 .

12 .

13 {p3R : [1] , p1D : [1] , p2P : [1] ,

14 pG: [{ x .D. 1 : ? 2 , x .P . 1 : ? 1 , x .R . 1 : ? 3 , . . . } ; { ?1 : 8 , ? 2 : 9 , ? 3 : 1 0 , . . . } ; { . . . }]

15 }∗ FDEAD | DEAD

16

17 Cycle :

18 {p3R : [1] , p1D : [1] , p2P : [1] ,

19 pG: [{ x .D. 1 : ? 2 , x .P . 1 : ? 1 , x .R . 1 : ? 3 , . . . } ; { ?1 : 8 , ? 2 : 9 , ? 3 : 1 0 , . . . } ; { . . . }]

20 }∗ 1 | DEAD {Acc [1] }

6.5 Synthesis

This chapter deals with specifying properties of systems modelled in π-graphs and check-

ing them using the model checker NECO.

To specify properties, we develop a high-level variant of the linear temporal logic,

which allows to specify properties about the dynamic evolution of the systems taking

into account interactions within open environments. The logic provides a set of atomic

propositions, a set of derivation rules and constraints. Atomic propositions capture pre-

cisely the state properties of π-graphs processes. Derivation rules allow to derive all

compound properties and temporal properties in this framework into equivalent ones,

which are conjunctions and disjunctions of atomic ones. Constraints allow to check the

well-formedness of property formulae.

To check these properties, which are speci�ed in this logic, using the model checker

NECO, we present informally a method for translating atomic properties into the corre-

sponding ones in NECO. Some properties on π-graphs, such as deadlock-freedom, may

have several ways of translating into the equivalent ones on Petri nets. On one hand,

these properties may be de�ned using atomic ones of the logic and then translated into

equivalent ones in Petri nets. On the other hand, NECO provides a possibility to trans-

late these properties, such as deadlock or �reable, directly into the ones on Petri nets. In

152 CHAPTER 6. VERIFICATION

Restricted: b, c, d, e, f, g

R[2] : (νk)

a〈k〉

1 2

k(x)

3

c〈x〉

4

b(x)

5

6

y〈k〉

7

k〈reject〉

8

9

y〈k〉

10

k〈y〉

11

[k 6= a]τ

[x = c]f(y)

[x 6= c]g(y)

D[2]:

c(x)

1

e〈x〉
3

d〈x〉
2

b〈c〉

4

f〈x〉

5

P [2]:

d(x)

1

τ

2

b〈d〉

3

g〈x〉

4

e(x)

5

τ

6

b〈e〉

7

g〈x〉

8

Figure 6.7: The modi�ed π-graph model of the RDP system

general, these two ways of translating of properties give di�erent but hopefully equivalent

results (which still should be proved).

The chapter ends with experimental results on checking properties of the system RDP,

gives some indications on how to interpret the counter-example and proposes a solution

for modifying the model such that the system satis�es the property.

Chapter 7

Conclusion and Perspectives

We summarize the main results of the thesis and then discuss some future works.

7.1 Summary

First, we recall the main objective of this thesis: to develop the theory of π-graphs �

our visual variant of the π-calculus � enough so that modelling and veri�cation tools can

be developed to support the design and reasoning about open recon�gurable system. Of

course, the development of an ad-hoc tool would be an unbearable among of work, espe-

cially for the purpose of automated veri�cation. Hence, our approach is to translate the

π-graphs models into Petri nets and then reuse existing Petri net tools for the veri�cation

part.

The translation consists of �rst translating the structure of the π-graphs into a corre-

sponding high-level Petri nets structure, and then translating each con�guration (state)

of π-graphs into a corresponding marking of the translated net. Unlike the previous at-

tempts [21, 48], the Petri nets used for the translation are not of a speci�c class, and

corresponds to a class that is commonly supported by existing Petri nets tools, such as

SNAKES+NECO. It is a structural translation thus the size of the translated Petri net

is polynomial. Hence, unlike semantic translations, our translation can always be applied

without involving any combinatorial explosion (which can of course still occur later when

performing model-checking). Moreover, the translation can be performed on-the-�y for

any con�guration of π-graphs, thus we can check properties while simulating the models.

Put in other terms, we can control the veri�cation of properties, hopefully reducing the

state-space to explore.

We also proved that the translation is an isomorphism in the sense that for each

transition in the π-graph with label µ, there exists an occurrence with the same label in

the translated Petri net. And vice-versa, for each occurrence with label µ in the translated

153

154 CHAPTER 7. CONCLUSION AND PERSPECTIVES

net, there exists a transition with the same label in the π-graph. Moreover, it is easy

to recover a con�guration of a π-graph from a given reachable marking of the translated

Petri net, and vice-versa.

In addition, to specify properties of open systems, we developed the open system logic.

The basic part of the logic is a set of atomic properties that capture the state properties

of π-graphs processes. All more complex properties in the logic can be derived from the

atomic ones. As an extension of our translation to Petri nets, the open system logic

properties can be translated to equivalent properties about Petri nets. These translated

properties can then be model-checked using existing Petri tools. If a property does not

hold for a system, then the model checker will provide a counterexample in terms of Petri

nets. Thanks to the isomorphism, we can recover easily the π-graphs con�guration that

does not satisfy the property as well as the computation path reaching this con�guration.

Finally, the whole framework has been implemented during the course of this thesis.

Our prototype tool supports the following functionalities:

• encode a π-graphs model in a textual form,

• explore the state-space of a model and simulate transitions,

• export the transitions of a system in the form of a labelled transitions system into

a textual representation, which can be used by external tools such as GRAPHVIZ

in order to visualize the evolution of the system.

• translate a π-graphs model into Petri nets and manipulate the latter using the

SNAKES framework,

• specify properties of π-graphs in the open system logic,

• translate such properties into the logic of NECO model-checker and verify them on

the translated nets,

• reinterpret the results in terms of π-graphs.

In conclusion, we reached our primary goals, which demonstrates in our opinion that

the detour we made within the Petri nets world could be seen as overkill but was ulti-

mately rewarding.

7.2 Future works

In the future, we will continue to develop our approach in the following directions:

First, unlike the translation of systems that we proved formally correct, the trans-

lation of the logic properties remains mostly informal. However, the fact that we have

7.2. FUTURE WORKS 155

implemented and heavily tested this logical translation makes us quite con�dent about

the feasibility of such a formal proof. Indeed, one major component of the proof would be

the correspondence of states and this part of the proof is already available. The second

part would be to show that the set of states that satisfy a π-graphs formula is in a one-

to-one correspondence with the set of markings of the translated Petri net that satisfy

the translated formula.

Our approach does not translate directly an abstract π-calculus but uses an interme-

diate model of π-graphs. Now that we know what must be put into the intermediate

model so that the translation works, it would be interesting to connect our translation

to a more abstract calculus. The most interesting aspect would be to study if the logical

properties could be abstracted similarly. At the other end of the translation, we intend

to characterize a precise Petri nets class together with composition operators that would

allow to remove the distinction between the π-graphs on the one side and the Petri nets

on the other side. We are con�dent that this characterization is possible based on the

argument that our current translation is actually an isomorphism. This would make our

work closer to the Petri box calculus but in the context of open recon�gurable systems.

We also intend to make our prototype tool more user-friendly, especially taking ad-

vantages of the visual representation of π-graphs.

156 CHAPTER 7. CONCLUSION AND PERSPECTIVES

Bibliography

[1] Graphviz. http://www.graphviz.org/.

[2] LoLA tool. http://www.informatik.uni-rostock.de/tpp/lola/.

[3] Mpsat tool. http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/mpsat/.

[4] Petri nets world. http://www.informatik.uni-hamburg.de/TGI/PetriNets/.

[5] PETRUCHIO tool. http://petruchio.informatik.uni-oldenburg.de/.

[6] Luca Aceto, Anna Ingólfsdóttir, Kim G Larsen, Ji°i Srba, et al. Reactive systems:

modelling, speci�cation and veri�cation, volume 8. Cambridge University Press Cam-

bridge, 2007.

[7] Duret-Lutz Alexandre. Spot. http://spot.lip6.fr.

[8] Christel Baier, Joost-Pieter Katoen, et al. Principles of model checking. MIT press

Cambridge, 2008.

[9] Martin Berger. An interview with Robin Milner. http://www.sussex.ac.uk/

Users/mfb21/interviews/milner/, September 2003.

[10] Eike Best, Raymond Devillers, and Jon G Hall. The box calculus: a new causal

algebra with multi-label communication. Springer, 1992.

[11] Eike Best, Raymond Devillers, and Maciej Koutny. Petri net algebra. Monographs

in Theoretical Computer Science. An EATCS Series. Springer, 2001.

[12] Eike Best, Wojciech Fr¡czak, Richard P Hopkins, Hanna Klaudel, and Elisabeth

Pelz. M-nets: An algebra of high-level petri nets, with an application to the semantics

of concurrent programming languages. Acta Informatica, 35(10):813�857, 1998.

[13] Michele Boreale and Rocco De Nicola. Testing equivalence for mobile processes. Inf.

Comput., 120(2):279�303, 1995.

[14] Nadia Busi. Analysis issues in Petri nets with inhibitor arcs. Theoretical Computer

Science, 275(1):127�177, 2002.

157

http://www.graphviz.org/
http://www.informatik.uni-rostock.de/tpp/lola/
http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/mpsat/
http://www.informatik.uni-hamburg.de/TGI/PetriNets/
http://petruchio.informatik.uni-oldenburg.de/
http://spot.lip6.fr
http://www.sussex.ac.uk/Users/mfb21/interviews/milner/
http://www.sussex.ac.uk/Users/mfb21/interviews/milner/

158 BIBLIOGRAPHY

[15] Nadia Busi and Roberto Gorrieri. Distributed semantics for the π-calculus based

on Petri nets with inhibitor arcs. The Journal of Logic and Algebraic Programming,

78(3):138�162, 2009.

[16] Luís Caires. Behavioral and spatial observations in a logic for the pi-calculus. In Igor

Walukiewicz, editor, FoSSaCS, volume 2987 of Lecture Notes in Computer Science,

pages 72�89. Springer, 2004.

[17] Edmund M Clarke. The birth of model checking. In 25 Years of Model Checking,

pages 1�26. Springer, 2008.

[18] Mads Dam. Model checking mobile processes. In Eike Best, editor, CONCUR,

volume 715 of Lecture Notes in Computer Science, pages 22�36. Springer, 1993.

[19] Raymond Devillers, Hanna Klaudel, and Maciej Koutny. Context-based process

algebras for mobility. In ACSD, pages 79�88, 2004.

[20] Raymond Devillers, Hanna Klaudel, and Maciej Koutny. Modelling mobility in high-

level petri nets. In Twan Basten, Gabriel Juhás, and Sandeep K. Shukla, editors,

ACSD, pages 110�119, 2007.

[21] Raymond Devillers, Hanna Klaudel, and Maciej Koutny. A compositional Petri net

translation of general π-calculus terms. Formal Aspects of Computing, 20(4-5):429�

450, 2008.

[22] Alexandre Duret-Lutz and Denis Poitrenaud. Spot: an extensible model checking li-

brary using transition-based generalized Büchi automata. InModeling, Analysis, and

Simulation of Computer and Telecommunications Systems, 2004.(MASCOTS 2004).

Proceedings. The IEEE Computer Society's 12th Annual International Symposium

on, pages 76�83. IEEE, 2004.

[23] E Allen Emerson. The beginning of model checking: A personal perspective. In 25

Years of Model Checking, pages 27�45. Springer, 2008.

[24] Javier Esparza and Mogens Nielsen. Decidability issues for Petri nets. BRICS,

Computer Science Department, University of Aarhus, 1994.

[25] Sami Evangelista. High level Petri nets analysis with Helena. In Gianfranco Cia-

rdo and Philippe Darondeau, editors, Applications and Theory of Petri Nets 2005,

volume 3536 of Lecture Notes in Computer Science, pages 455�464. Springer Berlin

Heidelberg, 2005.

[26] Sami Evangelista and Christophe Pajault. Helena�A high level net analyzer. http:

//lipn.univ-paris13.fr/~evangelista/helena/.

[27] Lucasz Fonc. Neco. https://code.google.com/p/neco-net-compiler/.

http://lipn.univ-paris13.fr/~evangelista/helena/
http://lipn.univ-paris13.fr/~evangelista/helena/
https://code.google.com/p/neco-net-compiler/

BIBLIOGRAPHY 159

[28] �ukasz Fronc and Alexandre Duret-Lutz. Ltl model checking with neco. In Dang

Van Hung and Mizuhito Ogawa, editors, Automated Technology for Veri�cation

and Analysis, volume 8172 of Lecture Notes in Computer Science, pages 451�454.

Springer International Publishing, 2013.

[29] Michel Hack. Decidability questions for Petri nets. Garland, 1979.

[30] Ryszard Janicki and P. E. Lauer. Speci�cation and Analysis of Concurrent Systems:

The COSY Approach. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1992.

[31] Kurt Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical

Use. Volume 1. Springer-Verlag, 1997.

[32] Kurt Jensen and Lars M Kristensen. Coloured Petri nets: modelling and validation

of concurrent systems. Springer, 2009.

[33] Victor Khomenko. A usable reachability analyser. School of Comp. Sci., Newcastle

Univ., Tech. Rep. CS-TR-1140, 2009.

[34] Hanna Klaudel and Franck Pommereau. M-nets: a survey. Acta informatica, 45(7-

8):537�564, 2008.

[35] P. E. Lauer. Path Expression and Petri Nets, or Petri Nets with Fewer Tears.

Newcastle upon Tyne, England: University of Newcastle upon Tyne, Computing

Laboratory, MRM 70, Jan, 1974.

[36] Marko Mäkelä. Maria: Modular reachability analyser for algebraic system nets. In

Application and Theory of Petri Nets 2002, pages 434�444. Springer, 2002.

[37] Roland Meyer. Structural stationarity in the π-calculus. PhD thesis, Carl-von-

Ossietzky-Univ., Department für Informatik, 2009.

[38] Roland Meyer. A theory of structural stationarity in the π-calculus. Acta Informat-

ica, 46(2):87�137, 2009.

[39] Roland Meyer, Victor Khomenko, and Reiner Hüchting. A polynomial translation

of π-calculus (FCP) to safe petri nets. CONCUR 2012�Concurrency Theory, pages

440�455, 2012.

[40] Robin Milner. A calculus of communicating systems. Springer, 1980.

[41] Robin Milner. Communicating and mobile systems: the pi calculus. Cambridge

university press, 1999.

[42] Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of the

IEEE, 77(4):541�580, 1989.

160 BIBLIOGRAPHY

[43] E.-R. Olderog. Nets, Terms and Formulas: Three Views of Concurrent Processes

and Their Relationship. Cambridge University Press, New York, NY, USA, 1991.

[44] Joachim Parrow. An introduction to the-calculus. Handbook of process algebra, pages

479�543, 2001.

[45] F. Peschanski, H. Klaudel, and R. Devillers. Pigraphs with replicators: Finiteness

and boundedness results. Technical report, IBISC-Universite d'Evry-Val d'Essonne,

2012.

[46] Frédéric Peschanski and Joël-Alexis Bialkiewicz. Modelling and verifying mobile

systems using π-graphs. SOFSEM 2009: Theory and Practice of Computer Science,

pages 437�448, 2009.

[47] Frédéric Peschanski, Hanna Klaudel, and Raymond Devillers. A decidable charac-

terization of a graphical pi-calculus with iterators. arXiv preprint arXiv:1011.0220,

2010.

[48] Frédéric Peschanski, Hanna Klaudel, and Raymond Devillers. A Petri net inter-

pretation of open recon�gurable systems. Fundamenta Informaticae, 122(1):85�117,

2013.

[49] James L Peterson. Petri net theory and the modeling of systems. Prentice Hall PTR,

1981.

[50] Carl Adam Petri. Communication with automata, new york: Gri�ss air force base.

Technical report, Tech. Rep. RADC-TR-65-377, 1966.

[51] Franck Pommereau. SNAKES. https://code.google.com/p/python-snakes/.

[52] Franck Pommereau. Quickly prototyping Petri nets tools with SNAKES. In Pro-

ceedings of the 1st International Conference on Simulation Tools and Techniques for

Communications, Networks and Systems & Workshops, Simutools '08, pages 17:1�

17:10. ICST (Institute for Computer Sciences, Social-Informatics and Telecommuni-

cations Engineering), 2008.

[53] Wolfgang Reisig. Petri nets: an introduction. Springer-Verlag New York, Inc., 1985.

[54] Wolfgang Reisig. Understanding Petri Nets: Modeling Techniques, Analysis Methods,

Case Studies. Springer Science & Business, 2013.

[55] Davide Sangiorgi and David Walker. The pi-calculus: a Theory of Mobile Processes.

Cambridge university press, 2003.

[56] Karsten Schmidt. LoLA a low level analyser. In Application and Theory of Petri

Nets 2000, pages 465�474. Springer, 2000.

https://code.google.com/p/python-snakes/

BIBLIOGRAPHY 161

[57] Dirk Taubner. Finite representations of CCS and TCSP programs by automata and

Petri nets, volume 369. Springer, 1989.

[58] Björn Victor and Faron Moller. The Mobility Workbench�a tool for the π-calculus.

In Computer Aided Veri�cation, pages 428�440. Springer Berlin Heidelberg, 1994.

	Introduction
	Contributions
	Structure of the thesis

	Background and related work
	Open reconfigurable systems in the -calculus
	Petri nets
	Place/transition Petri nets
	High-level Petri nets
	Petri nets vs. process algebras

	Translation of -calculus variants into Petri nets
	Open systems vs. closed systems
	Translation only for closed systems
	Translation for open systems
	Discussion

	Syntactic vs. semantic translation
	Syntactic translation
	Semantic translation
	Discussion

	The -calculus variants
	Repetitive behaviour
	Name comparison
	Discussion

	Verification and tool support

	Synthesis

	Modelling open reconfigurable systems
	An example of open reconfigurable system
	Overview of the system
	Functionality of components
	Describing the communication using ports

	Modelling the system using -graphs
	Modelling the system
	A scenario of the -graphs evolution

	A prototype tool for -graphs
	Synthesis

	The -graphs formalism
	Syntax of -graphs
	Diagrams Dia
	Replicators Rep
	Processes Proc
	Guarded actions

	Operational semantics of -graphs
	Static part: Graph model of a -graph
	Dynamic part: Global context of a -graph
	Control flow context
	Name context
	Logical clocks

	Operators on a name context
	Removing instantiations
	Instantiating a name
	Exchanging instantiations
	Refining dynamic partition
	Initial name context

	The evolution of a global context
	Evaluating guards
	Commitment of actions
	Graph rewrite rules

	Synthesis

	Translating a -graph into Petri nets
	Translation of -graphs into Petri nets
	An example of the translation
	Part I: Obtaining the Petri net structure
	Part II: Translating the context

	Formal definition of the translation

	Conformance of the translation
	Local conformance
	Soundness for atomic actions
	Soundness for synchronizations
	Completeness for atomic actions
	Completeness for synchronizations

	Global conformance

	Synthesis

	Verification
	Context properties of -graphs
	Classification of context properties
	Atomic context properties
	Atomic RI properties
	Atomic RIN properties
	Atomic RIV properties
	Atomic RIVN properties
	Atomic RIN-RIN properties
	Atomic RIV-RIV properties

	The logic of context properties
	Syntax of context properties
	Well-formedness constraints
	Derivation of context properties
	Semantics of context properties

	Temporal properties of -graphs
	Kripke structure for -graphs
	Syntax of -graphs temporal properties
	Semantics of temporal properties
	Examples of -graphs temporal properties
	Safety properties
	Liveness properties
	Other properties

	Model checking with the NECO framework
	Specifying properties in NECO
	Translating properties of -graphs
	Translation of thread properties
	Translation of name context properties

	Processing counterexamples

	Experimental results
	Checking results for the original model
	Checking results for the improved model

	Synthesis

	Conclusion and Perspectives
	Summary
	Future works

