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ABSTRACT 

Integrating vectors are widely used in gene therapy for stable and long-term transgene expression. In 

ex vivo hematopoietic gene therapy approaches, HIV-1-derived lentiviral vectors can thus be used to 

transduce hematopoietic progenitors. The biological potency of the vector is expected to correlate 

positively with the frequency of transduced cells and with the number of integration events (VCN, 

vector copy number) per cell. However, the use of integrating vectors that cannot target transgene 

integration into host chromosome may lead to insertional mutagenesis. In this regard, the safety of 

these vectors remains a significant concern in clinical applications. I collaborated on a study 

evaluating the level of transduction of hematopoietic progenitor cells at the single-cell level by 

measuring VCN in individual colony-forming cell units using an adapted quantitative PCR method. It 

was shown that the frequency of transduced progenitor cells and the distribution of VCN in 

hematopoietic colonies may depend upon experimental conditions including features of vectors. 

On the other hand, the use of vectors that can target the integration of the transgene into a specific-

site of the host genome would overcome genotoxicity issues. While site-specific integrative 

approaches based on engineered nucleases such as Zinc-finger nucleases or Meganucleases are 

currently developed, I evaluated the use of a group II intron for genomic targeting. Group II introns 

are self-splicing mobile elements found in prokaryotes and eukaryotic organelles. They can integrate 

into precise genomic locations by homing, following assembly of a ribonucleoprotein complex 

containing the intron-encoded protein (IEP) and the spliced intron RNA. Engineered group II introns 

are commonly used tools for targeted genomic modifications in prokaryotes but not in eukaryotes, 

probably due limited catalytic activation of currently known group II introns in eukaryotic cells. The 

brown algae Pylaiella littoralis Pl.LSU/2 group II intron is uniquely capable of in vitro ribozyme 

activity at unusually low level of magnesium. As this intron remains poorly characterized, I purified 

recombinant Pl.LSU/2 IEP expressed in Escherichia coli and showed that the protein displays a 

reverse transcriptase activity either alone or associated with intronic RNA. The Pl.LSU/2 intron could 

be engineered to splice accurately in Saccharomyces cerevisiae and splicing efficiency was improved 

by the maturase activity of the IEP. However, spliced transcripts were not expressed. Although intron 

splicing was not detected in human cells, and homing of Pl.LSU/2 in E. coli and S. cerevisiae could 

not be demonstrated, these data provide the first functional characterization of the PI.LSU/2 IEP and 

the first evidence that the Pl.LSU/2 group II intron splicing occurs in vivo in eukaryotes in an IEP-

dependent manner. 

 

KEYWORDS 

Gene therapy; integrating vector; group II intron; Pl.LSU/2; Intron-encoded protein; splicing; homing; 

Pylaiella littoralis 
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RÉSUMÉ 

(Section in French) 

En thérapie génique, le transgène d’intérêt est généralement amené au sein des cellules cibles par 

l’utilisation de transporteurs, appelés vecteurs. Les différents types de vecteurs existant peuvent être 

classés selon leur nature (viraux, non-viraux), ou encore en fonction de leur capacité à induire ou non 

une intégration du transgène dans l’ADN génomique des cellules cibles. Cette intégration présente un 

avantage notable pour la correction de cellules ayant un pouvoir prolifératif important, comme c’est le 

cas des cellules souches. En effet, l’insertion du transgène dans ces cellules permet alors d’assurer son 

expression stable et à long terme, et ce au sein de l’ensemble de la population cellulaire descendante, 

même si l’expression du transgène peut parfois être diminuée ou éteinte par des modifications 

épigénétiques (phénomène de « silencing »). Cette relative stabilité de l’expression ne s’observe pas 

en absence d’intégration, ceci étant dû principalement à la dilution du matériel génétique épisomal au 

cours des divisions cellulaires.  

Les différentes approches intégratives développées pour des applications cliniques diffèrent les unes 

des autres par le profil d’intégration du transgène au sein du génome. En effet, cette intégration peut 

s’effectuer soit de façon aléatoire ou semi-aléatoire, soit de façon « orientée », ou encore de façon site-

spécifique.  

La première catégorie regroupe les vecteurs basés sur les transposons à ADN (profil d’intégration 

aléatoire vis-à-vis de certaines structures génomiques comme les îlots CpG ou les unités de 

transcription), les vecteurs rétroviraux (vecteurs γ-rétroviraux et lentiviraux), et les recombinases. Les 

vecteurs rétroviraux sont historiquement les premiers vecteurs à avoir été utilisés en clinique chez 

l’homme, et leur utilisation est très largement répandue aujourd’hui. Ils offrent l’avantage de 

transduire un grand nombre de type cellulaire et d’induire une intégration efficace du transgène dans le 

génome de la cellule hôte. Néanmoins, les vecteurs γ-rétroviraux présentent un profil d’intégration 

biaisé vers les sites d’initiation de la transcription et les îlots CpG, tandis que les vecteurs lentiviraux 

présentent un biais vers les unités transcriptionnelles. De façon générale, l’insertion d’un transgène au 

sein du génome peut induire une mutagénèse insertionnelle, liée à la dérégulation de l’expression de 

certains gènes. Dans le cas où une copie du vecteur est insérée au sein d’un oncogène, cette 

dérégulation peut entrainer une oncogenèse. Les profils d’intégration caractéristiques des vecteurs 

rétroviraux favorisant l’insertion de l’ADN proviral autour des unités transcriptionnelles et/ou des 

promoteurs augmente ainsi le risque de mutagénèse. L’insertion aléatoire ou semi-aléatoire d’un 

vecteur représente donc un risque génotoxique non négligeable qu’il convient d’évaluer dans le cadre 

de protocoles cliniques.  
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Suite à l’avènement de ce type d’effet indésirable lors d’études cliniques utilisant des vecteurs dérivés 

de rétrovirus, des stratégies alternatives ont été développées afin de surmonter ce problème. Certaines 

approches, basées sur l’utilisation de domaines spécifiques de liaisons à l’ADN, sont développées pour 

permettre une insertion « orientée » du transgène au sein du génome hôte. Ces domaines de liaison à 

l’ADN, reconnaissant une séquence spécifique du génome, peuvent être fusionnés directement à la 

protéine impliquée dans le mécanisme d’intégration du vecteur (intégrase pour les vecteurs 

lentiviraux ; transposase pour les transposons), ou à une protéine partenaire interagissant avec un des 

composants du complexe d’intégration, ceci afin de diriger la machinerie d’intégration vers une région 

choisie du génome. Ces stratégies permettent en théorie de favoriser l’insertion du vecteur aux 

alentours de la région ciblée, mais n’empêchent toutefois pas une intégration hors de la région 

d’intérêt. 

L’élaboration d’approches permettant une intégration du transgène au niveau d’un site précis et unique 

du génome est actuellement un champ d’action largement étudié en thérapie génique. En effet, ce type 

de stratégie permettrait, outre de s’affranchir du risque de mutagénèse insertionnelle, d’effectuer de la 

réparation génique, ouvrant ainsi la voie à des traitements de maladies génétiques à transmission 

dominante. Actuellement, ces approches sont basées sur l’utilisation de nucléases site-spécifiques, 

comme les zinc-finger nucléases (ZFN), les méganucléases, ou encore plus récemment les TALEN 

(transcription activator-like effector nuclease). Ces nucléases sont capables d’induire une coupure 

double-brin au niveau d’un site spécifique de l’ADN. Lorsqu’une molécule d’ADN donneur 

comportant des régions homologues au site d’intégration est présente au sein du noyau des cellules 

cibles, la cassure double-brin peut être réparée par recombinaison homologue. Si cet ADN donneur 

contient le transgène d’intérêt, il sera alors intégré précisément au niveau de la coupure double-brin. 

Ces stratégies, bien qu’étant prometteuses, présentent certains risques qu’il convient d’évaluer. En 

effet, la coupure double-brin du génome des cellules hôtes peut potentiellement s’effectuer ailleurs 

qu’au niveau du site choisi si la spécificité de la nucléase utilisée n’est pas assez grande. De plus, la 

réparation de la coupure double-brin peut être effectuée par un mécanisme alternatif à la 

recombinaison homologue, le NHEJ (non-homologous end joining), qui est souvent source d’erreurs. 

Il convient également de noter que l’efficacité de ces approches reste à l’heure actuelle trop faible pour 

être généralisée dans les approches de thérapie génique. 

Enfin, des approches mixtes ont été mises en place et consistent à combiner l’activité de transfert 

d’acides nucléiques au sein des cellules d’un vecteur à la machinerie d’intégration d’un autre vecteur. 

Ces vecteurs « hybrides » sont particulièrement intéressants lorsque le vecteur possédant l’activité de 

transfert d’acides nucléiques ne permet pas une intégration du matériel génétique au sein du génome 

hôte (comme c’est le cas pour les vecteurs dérivés des Adénovirus, ou des virus AAV associés à 

l’adénovirus), ou bien lorsque l’efficacité d’acheminement de la machinerie d’intégration au noyau 

cellulaire est faible (comme c’est le cas des vecteurs non-viraux, ou plasmides, utilisés pour exprimer 
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les transposons/transposases, ou nucléases site-spécifique). Dans ce dernier cas, si l’efficacité globale 

d’intégration du transgène dans le génome est bien améliorée, les questions de sécurité liées au 

système intégratif utilisé demeurent. 

L’ensemble de ces données montre l’intérêt d’évaluer la sécurité des vecteurs intégratifs actuellement 

utilisés en clinique, mais aussi de développer des stratégies alternatives permettant un ciblage de 

l’insertion du transgène au niveau d’un site précis du génome des cellules hôtes.  

Au cours de ce travail de thèse, effectué sous la direction du Pr. Javier Perea au sein du laboratoire 

« Immunologie moléculaire et Biothérapies » à Généthon dirigé par le Dr. Anne Galy, j’ai 

principalement évalué la possibilité d’utiliser l’intron de groupe II Pl.LSU/2 de l’algue brune Pylaiella 

littoralis comme vecteur site-spécifique en ciblage génomique. Pour cela, la majeure partie de mon 

travail a porté sur la caractérisation des activités catalytiques de cet intron in vivo, ainsi que l’étude des 

activités biochimiques de la protéine qu’il code.  

J’ai également eu l’opportunité de collaborer avec l’équipe d’Anne Galy sur une étude visant à évaluer 

l’efficacité et la sureté de vecteurs lentiviraux en déterminant le niveau de transduction de progéniteurs 

hématopoïétiques par une mesure du nombre de copies de vecteur au sein de clones cellulaires dérivés 

de progéniteurs isolés (CFC, colony-forming cells). La correction génique de progéniteurs 

hématopoïétiques est une stratégie thérapeutique efficace pour le traitement de plusieurs types 

maladies génétiques, comme le syndrome de Wiskott-Aldrich (WAS). WAS est un déficit immunitaire 

héréditaire rare de transmission récessive liée au chromosome X, dû à des mutations dans le gène 

codant la protéine WASp. Un essai clinique initié en Allemagne et basé sur la transduction de 

progéniteurs hématopoïétiques de patients par des vecteurs rétroviraux comportant le transgène codant 

WASp, suivie de la réimplantation de ces cellules corrigées au sein du patient, a montré l’efficacité 

thérapeutique de cette stratégie. Un essai clinique international et multi-centrique de phase I/II, auquel 

l’équipe d’Anne Galy est associée, est actuellement en cours. Cet essai est basé sur l’utilisation d’un 

vecteur lentiviral auto-inactivé dérivé du VIH-1 (virus de l’immunodéficience humaine de type 1). En 

fonction des conditions expérimentales utilisées, les vecteurs lentiviraux peuvent transduire un nombre 

variable de cellules et intégrer un nombre variable de copies d’ADN proviral au sein du génome des 

cellules hôtes. Il est couramment accepté que l’efficacité d’un vecteur est corrélée positivement au 

pourcentage de cellules transduites ainsi qu’au nombre de copies de vecteur intégrées. Néanmoins, il a 

également est montré que le nombre de copies de vecteur intégrées est corrélé à la génotoxicité. Il 

apparait donc nécessaire de contrôler la distribution des copies de vecteur au sein des cellules 

transduites de façon à pouvoir évaluer l’efficacité et la sécurité des protocoles expérimentaux utilisés, 

et ainsi définir la fenêtre thérapeutique du vecteur. S. Charrier et collaborateurs ont donc développé et 

validé une méthode simple de quantification du nombre de copies de vecteurs intégrées au niveau des 

CFC basée sur la PCR quantitative. Des clones de lignées cellulaires transduits par le vecteur lentiviral 
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ont été générés et utilisés comme contrôles pour démontrer la faisabilité, la sensibilité, et la 

reproductibilité de cette méthode de quantification. Mon implication dans ce travail s’est effectuée lors 

de cette étape. Cette étude, publiée en 2011 dans le journal Gene Therapy, a montré que la fréquence 

de progéniteurs hématopoïétiques transduits et la distribution du nombre de copies de vecteur 

intégrées dans les CFC dépendent des conditions expérimentales utilisées, telles que la dose de 

vecteur, le nombre de tour de transduction, ou bien la méthode de purification du vecteur. L’ensemble 

des résultats obtenus démontrent l’importance d’une telle évaluation afin d’optimiser les protocoles de 

transduction pré-cliniques et cliniques utilisant des vecteurs lentiviraux de façon à définir pour chaque 

protocole les conditions expérimentales permettant d’assurer une efficacité de transduction suffisante 

tout en maximisant la sécurité du protocole. 

Si l’évaluation des risques liés à l’insertion non ciblée de vecteurs intégratifs est une étape nécessaire à 

l’élaboration de protocoles cliniques, le ciblage de l’intégration à un site spécifique du génome 

pourrait représenter une solution majeure au problème de mutagénèse insertionnelle. Cependant, 

certains obstacles liés aux systèmes actuellement développés (efficacité et spécificité) restent encore à 

surmonter avant d’élargir leur utilisation en clinique. C’est pourquoi il existe un intérêt à évaluer et 

développer de nouveaux systèmes permettant un ciblage de l’intégration au niveau du génome. La 

majeure partie de ce travail de thèse a donc consisté à évaluer la possibilité d’utiliser un intron de 

groupe II en ciblage génomique.  

Les introns de groupe II sont des éléments mobiles naturels présents dans les génomes procaryotes ou 

d’organelles d’eucaryotes. Une fois transcrit, ils ont la caractéristique de pouvoir s’auto-épisser in 

vitro dans des conditions ioniques spécifiques sans l’intervention d’aucune protéine. Cette fonction 

catalytique d’auto-épissage est directement liée à la molécule d’ARN elle-même ; ainsi ces ARN 

catalytiques ont été nommés « ribozymes ». Cet épissage s’effectue classiquement via deux étapes de 

transesterification et est dépendant du repliement de l’ARN précurseur en une structure 

catalytiquement active. Dans certains cas, les introns de groupe II possèdent un cadre ouvert de lecture 

codant une protéine, appelée IEP (Intron-encoded protein), qui participe au repliement de l’intron 

ARN in vivo et favorise ainsi l’épissage de l’intron. Cette protéine présente d’autres activités 

biochimiques impliquées dans le mécanisme de mobilité des introns. Les introns de groupe II sont en 

effet capables de se propager au sein des génomes au niveau d’un site précis par un mécanisme 

nommé « homing », détaillé ci-dessous. Le site naturel d’insertion des introns correspond, dans un 

génome sans intron, à la jonction des deux exons desquels il s’est excisé. La reconnaissance du site 

d’insertion s’effectue principalement par appariement de séquences entre certaines régions de l’intron 

et le site cible. Cette caractéristique a permis de développer des introns « re-ciblés » pouvant s’intégrer 

à un site spécifique choisi dans le génome de procaryotes simplement en modifiant certaines 

séquences de l’intron impliquées dans la reconnaissance du site d’intégration. Il existe d’ailleurs un 

système de knock-out commercialisé (TargeTron gene knock-out system, Sigma Aldrich) développé 
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pour E. coli et basé sur l’utilisation de l’intron de groupe II Ll.LtrB de Lactococcus lactis, pouvant être 

« re-ciblé ». 

Les mécanismes d’épissage et de homing des introns de groupe II reposent en grande partie sur la 

structure de l’ARN intronique. La structure secondaire des introns de groupe II est hautement 

conservée et consiste en six domaines (DI à DVI) arrangés autour d’une boucle centrale. Chaque 

domaine possède des rôles spécifiques impliqués dans le repliement, les réarrangements 

conformationels, et/ou l’activité catalytique des introns. Il existe plusieurs intéractions entre les 

différents domaines de l’intron, permettant la formation d’une structure tertiaire conservée. Cette 

structure est à l’origine de la formation du site actif, essentiel à l’activité catalytique de l’intron. Les 

activités catalytiques d’épissage et « d’épissage inverse » de l’intron impliquent, en plus des 

intéractions tertiaires existants au sein de la molécule, un appariement de séquence entre l’intron et les 

exons flanquants. Notons que ces intéractions sont identiques lors de l’épissage de l’intron, de  

l’épissage inverse de l’intron au sein de l’ARN messager mature, ou encore de l’« épissage 

inverse » de l’intron au sein d’une cible ADN.  

Lorsque l’intron a adopté sa structure catalytique et que les appariements avec les exons flanquants se 

sont effectués, l’intron peut alors s’épisser. Cet épissage requiert la liaison d’ions Mg
2+

 au niveau du 

site actif de l’intron, et s’effectue généralement via deux étapes de transesterification, conduisant à la 

formation d’un intron ARN épissé en lariat (via une liaison de l’extrémité 5’ de l’intron au 2’-OH du 

A de branchement). L’épissage peut également conduire à la formation d’un ARN intronique linéaire 

si le nucléophile impliqué lors de la première étape n’est pas le A de branchement, mais est externe. 

Une grande partie des introns de groupe II code une protéine multifonctionnelle, l’IEP. In vivo, le 

repliement d’un intron de groupe II est favorisé par l’activité maturase de son IEP. En général, cette 

protéine possède quatre domaines conservés : le domaine X, responsable de l’activité maturase, le 

domaine RT, responsable de l’activité de transcriptase inverse (reverse transcription), le domaine D de 

liaison à l’ADN, et le domaine En, responsable de l’activité endonucléase. Ces trois dernières activités 

biochimiques sont impliquées dans le mécanisme de homing de l’intron. Ce mécanisme, comprenant 

différentes étapes, est basé sur la formation d’une particule ribonucléoprotéique (RNP) formée de 

l’IEP et de l’intron épissé en lariat, obtenu suite à l’épissage de l’intron in vivo favorisé par l’IEP. 

C’est ce complexe qui est impliqué dans la reconnaissance du site cible d’intégration : l’IEP peut en 

effet effectuer des intéractions avec 2 à 6 nucléotides du site cible et induire un déroulement local de la 

structure en double hélice, permettant ainsi à l’intron de s’apparier avec le site cible sur une longueur 

de 13 à 15 nucléotides. L’intron effectue alors un épissage inverse sur le brin sens à la jonction des 

deux exons. L’IEP, via son activité endonucléase, clive alors le brin anti-sens 9 ou 10 nucléotides en 

aval de cette jonction, générant ainsi une extrémité 3’-OH utilisée par l’IEP pour synthétiser un ADN 

complémentaire à l’intron via son activité de transcriptase inverse. Une copie double brin d’ADN 
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complémentaire correspondant à l’intron est enfin synthétisée et intégrée par la machinerie de 

réparation cellulaire. 

Certains introns de groupe II ont été utilisés en ciblage génomique chez les procaryotes. En effet, il a 

été montré que des modifications dans les séquences introniques responsable de l’appariement aux 

exons inhibent l’épissage de l’intron, et que des mutations complémentaires des exons restaurent 

l’épissage. De même, le site d’intégration de certains introns peut être modifié en mutant ces mêmes 

séquences introniques impliquées dans la reconnaissance du site cible. L’intron de Lactococcus lactis 

Ll.LtrB a été largement étudié en ce sens. Le site d’intégration est choisi en fonction des nucléotides 

reconnus par l’IEP, qui constituent les seules positions fixes. Chaque gène du génome d’E. coli 

contient plusieurs sites potentiels d’intégration, étant donné le faible nombre de ces positions fixes. 

Les séquences de l’intron impliquées dans la reconnaissance du site d’intégration sont alors modifiées 

pour s’apparier au site choisi. L’intron est en général délété de la séquence codant l’IEP, qui est 

exprimée en trans, et un transgène peut alors y être cloné. Ces introns « re-ciblés » peuvent induire des 

modifications génomiques ciblées de façon très efficace dans les cellules procaryotes et induire 

l’insertion de transgène de façon site-spécifique. Néanmoins, les tentatives d’utilisation des introns de 

groupe II dans les cellules eucaryotes se sont révélées infructueuses. Il semblerait qu’au moins un des 

obstacles empêchant l’activité catalytique de l’intron (splicing et/ou homing) dans les cellules 

eucaryotes soit lié à un environnement cellulaire ionique défavorable. En effet, l’efficacité de homing 

de l’intron Ll.LtrB dans des oocytes de Xénopus Laevis, ou des embryons de Drosophilia 

Melanogaster ou de Zebrafish (Danio renio) peut être nettement améliorée en injectant les RNPs en 

présence de MgCl2.  

Dans ce contexte, nous avons choisi d’étudier l’intron de Pylaiella littoralis Pl.LSU/2. En effet, il a été 

montré que cet intron est capable de s’auto-épisser in vitro à des concentrations particulièrement 

faibles de Mg
2+

. A ce jour, cet intron est le seul possédant cette caractéristique. Cette faible 

dépendance de l’intron Pl.LSU/2 vis-à-vis du Mg
2+

 pourrait faire de lui un bon candidat pour du 

ciblage génomique dans les cellules eucaryotes. Cet intron possède un cadre ouvert de lecture codant 

théoriquement une protéine présentant tous les domaines conservés des IEP. Néanmoins, ni la capacité 

d’épissage in vivo ou de homing de cet intron, ni les activités biochimiques de la protéine qu’il code 

n’avaient été étudiées lors de l’initiation de ce projet de thèse.  

J’ai donc dans un premier temps caractérisé les activités biochimiques de l’IEP codée par l’intron 

Pl.LSU/2. Cette étude a nécessité plusieurs étapes d’optimisations afin de purifier la protéine en vue 

de sa caractérisation biochimique. L’IEP a été exprimée en utilisant différents systèmes (expression 

dans E. coli, expression in vitro, ou expression dans les cellules d’insectes Sf9 par baculovirus), et 

purifiée. Etant donné l’absence d’anticorps disponibles dirigés contre l’IEP, nous avons choisi 

d’exprimer l’IEP fusionnée à différentes étiquettes (Histidine ou Glutathione-S-transférase) en vue de 
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sa purification par chromatographie d’affinité. Nous avons tout d’abord optimisé l’expression chez E. 

coli de l’IEP fusionnée en N-terminal à la GST (GST-IEP) sous forme soluble, puis nous avons purifié 

cette protéine en utilisant une résine chargée en glutathion. La GST-IEP a ainsi pu être partiellement 

purifiée. Des protéines mutantes, la GST-IEPmtDD-, dont le motif catalytique YADD a été changé en 

YAAA, et la GST-IEPΔRT5, qui porte une déletion d’une partie du domaine conservé RT5, censées 

être défectives pour l’activité de transcriptase inverse (RT), ont également été exprimées et purifiées. 

Enfin, en contrôle, nous avons exprimé et purifié la GST seule, dans les mêmes conditions. L’activité 

RT de ces protéines a par la suite été testée en utilisant les fractions de protéines partiellement 

purifiées. Cette expérience a montré une activité RT pour la GST-IEP, mais également pour les 

mutants. La fraction de protéines GST partiellement purifiée n’a, elle, pas montré d’activité RT. Nous 

avons donc émis l’hypothèse qu’une protéine présentant une activité RT contaminait les fractions 

GST-IEP et mutants, empêchant ainsi d’évaluer l’activité biochimique de l’IEP.  

Nous avons donc testé d’autres systèmes d’expression, en espérant s’affranchir de cette 

contamination. L’IEP, fusionnée en N-terminal à une étiquette de six résidus histidine et à un épitope 

V5 (HisV5-IEP) a été exprimée in vitro (cell-free) en utilisant un kit commercial. Dans les conditions 

testées, l’HisV5-IEP n’a pas pu être détectée par électrophorèse et coloration au bleu de Coomassie, 

indiquant que la protéine n’est pas exprimée ou trop faiblement pour pouvoir étudier pas la suite ses 

activités biochimiques. Ce système a donc été abandonné, car les éventuelles optimisations sont assez 

limitées.  

Le système d’expression dans les cellules d’insectes Sf9 par baculovirus a ensuite été évalué. Pour 

cela, la séquence codant l’IEP fusionnée en N-terminal à une étiquette de six résidus histidine (His-

IEP) a été insérée au sein du génome du baculovirus, puis un stock de baculovirus recombinant a été 

produit. Les cellules Sf9 infectées par le baculovirus codant l’His-IEP expriment la protéine lors du 

cycle viral du baculovirus. Cette expérience a montré que l’His-IEP était majoritairement exprimée 

sous forme insoluble dans les cellules Sf9, limitant ainsi sa purification. Les optimisations étant 

également assez limitées avec ce système, nous avons choisi de réévaluer l’expression et la 

purification de l’IEP chez E. coli. 

L’étiquette fusionnée à l’IEP a donc été changée afin d’éviter la contamination mise en évidence 

lors de la purification de la GST-IEP. Nous avons donc exprimé l’HisV5-IEP chez E. coli  et purifié la 

protéine par chromatographie d’affinité en utilisant une résine chargée en Ni
2+

. Les mutants HisV5-

IEPmtDD- et HisV5-IEPΔRT5 ont également été exprimé et purifié. Nous avons testé plusieurs 

conditions de purifications : dénaturantes, non-dénaturantes en présence du détergent zwitterionique 

CHAPS, et natives. Toutes ces purifications ont conduit à l’obtention de fractions de protéines 

partiellement purifiées, mais dont la pureté était tout de même satisfaisante. Néanmoins, aucune de ces 

fractions n’a montré d’activité RT. 
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Nous avons alors émis l’hypothèse que l’activité RT de l’IEP pouvait être instable en absence d’intron 

ARN, comme c’est le cas pour l’IEP de l’intron Ll.LtrB. Nous avons donc co-exprimé l’HisV5-IEP et 

l’intron Pl.LSU/2 chez E. coli et purifié l’HisV5-IEP théoriquement complexée à l’intron ARN en 

RNP, ceci par deux méthodes : chromatographie d’affinité en utilisant une résine chargée en Ni
2+

 ou 

ultracentrifugation sur une solution de sucrose. Le mutant HisV5-IEPmtDD- a également été co-

exprimé avec l’intron ARN et purifié dans les mêmes conditions. Ces expériences ont permis de 

montrer que l’HisV5-IEP contenue dans les RNP présente une activité RT uniquement lorsque les 

RNP sont purifiées par ultracentrifugation en sucrose. Cette activité est dépendante de la dose de RNP 

utilisée et du temps d’incubation de la réaction. Le mutant HisV5-IEPmtDD- ne présente, lui, aucune 

activité RT, comme attendu. Ces résultats indiquent que les conditions de purification de l’IEP par 

chromatographie d’affinité sont délétères pour l’activité biochimique de la protéine. Par la suite, nous 

avons testé l’activité RT de l’HisV5-IEP exprimée seule chez E. coli et purifiée par ultracentrifugation 

en sucrose. Les résultats obtenus montrent une activité RT de la protéine significativement différente 

de celle obtenue avec la protéine mutante HisV5-IEPmtDD-. L’HisV5-IEP présente donc une activité 

RT soit seule, soit complexée en RNP à l’ARN intronique. 

Dans un second temps, nous avons voulu évaluer la capacité de l’intron Pl.LSU/2 à s’épisser in vivo 

dans une cellule eucaryote. Pour cela, nous avons développé une stratégie pouvant permettre la mise 

en évidence directe de l’épissage de l’intron chez Saccharomyces cerevisiae. L’intron Pl.LSU/2, 

flanqué d’une partie de ses exons naturels, a été cloné dans un plasmide d’expression de levure en 

amont du gène URA3 codant l’orotidine 5-phosphate decarboxylase (Ura3p) et en aval d’un épitope 

HA. L’expression de l’ensemble de ces séquences est placée sous le contrôle d’un même promoteur. 

L’épissage de l’intron Pl.LSU/2 permettrait d’établir un cadre ouvert de lecture comprenant l’épitope 

HA, les deux exons (E2 et E3), et le gène URA3, pouvant donc conduire à l’expression d’une protéine 

de fusion HA-E2-E3-URA3. La stratégie est donc la suivante : le plasmide contenant l’intron 

Pl.LSU/2 est transformé dans une souche mutante de levure dont le gène URA3 est défectif, et les 

levures sont ensuite étalées sur un milieu minimum contenant ou non de l’uracile. Les clones poussant 

sur le milieu sans uracile témoigneraient alors d’une expression de la protéine de fusion HA-E2-E3-

URA3 et donc d’un épissage de l’intron Pl.LSU/2. Afin d’effectuer cette expérience, nous avons 

construit un plasmide contrôle contenant les séquences HA, E2, E3, et URA3 en phase, afin de 

s’assurer que l’expression de cette protéine de fusion permette bien une croissance des levures sur un 

milieu sans uracile. De plus, afin d’évaluer l’activité maturase de l’IEP, nous avons également 

construit un plasmide permettant l’expression conditionnelle de l’IEP fusionnée en C-terminal à un 

épitope c-Myc et possédant des signaux de localisation nucléaire (NLS). La séquence de l’IEP utilisée 

ici est codon-optimisée pour la traduction dans les cellules humaines. L’expression de l’IEP, placée 

sous le contrôle du promoteur Gal10, est réprimée lorsque les levures se trouvent en présence de 

glucose et induite en présence de galactose. Lors de cette expérience, aucun clone de levure n’a été 
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obtenu sur milieu sans uracile, même chez les levures exprimant l’IEP. Les levures contenant le 

plasmide contrôle peuvent, elles, pousser sur le milieu sans uracile. A la suite de ces résultats, nous 

avons voulu analyser les ARN exprimés chez la levure par RT-PCR et RT-PCR quantitative. Ces 

résultats ont montré que l’intron Pl.LSU/2 s’épisse bien chez la levure et que l’expression de l’IEP 

permet d’augmenter l’efficacité de l’épissage de l’intron. L’analyse des protéines exprimées par 

western blot a montré que la protéine de fusion HA-E2-E3-URA3 n’est pas détectée chez les levures 

contenant le plasmide avec intron. Ce dernier résultat explique donc l’absence de clones sur milieu 

sans uracile. Deux hypothèses peuvent être émises à la suite de cette étude : 1) l’épissage de l’intron 

Pl.LSU/2 n’étant pas assez efficace, la quantité d’ARN messager mature ne permet pas une expression 

suffisante de protéines HA-E2-E3-URA3 pour être détectée par western blot ; ou 2) il existe un 

blocage de la traduction de l’ARN messager mature dans les cellules empêchant l’expression de la 

protéine HA-E2-E3-URA3. Cette dernière hypothèse a été formulée par une autre équipe ayant obtenu 

des résultats comparables lors d’une étude similaire réalisée en utilisant l’intron Ll.LtrB. 

Aux vues de l’ensemble des résultats obtenus chez la levure, nous avons voulu évaluer la capacité 

d’épissage de l’intron Pl.LSU/2 dans les cellules humaines. Cette étude a été réalisée par une 

collaboratrice de l’équipe. Pour assurer une expression suffisante de l’intron et de l’IEP dans les 

cellules, nous avons décidé d’utiliser des vecteurs lentiviraux dérivés du VIH-1 afin, d’une part 

d’établir des lignées stables exprimant l’intron, et d’autre part d’exprimer l’IEP dans ces lignées 

stables. Lors de ces expériences, différentes formes de l’intron ont été utilisées : le domaine IV, 

contenant naturellement la séquence codant l’IEP, a été plus ou moins délété. En effet, il avait été 

montré pour l’intron Ll.LtrB qu’une structure du domaine IV correspondait à une région de liaison à 

l’IEP de Ll.LtrB. L’utilisation de différentes formes d’intron Pl.LSU/2 présentant un domaine IV plus 

ou moins délété pourrait donc permettre de déterminer la ou les régions impliquées dans la liaison de 

l’IEP à l’intron, pré-requise à l’activité maturase de l’IEP. Nous avons tout d’abord vérifié la 

transcription des différentes formes d’intron dans les lignées stables de cellules humaines HCT 116, 

ainsi que l’expression de l’IEP, fusionnée en C-terminal à un épitope c-Myc, possédant des signaux de 

localisation nucléaire, et codon-optimisée pour la traduction dans les cellules humaines. L’analyse par 

RT-PCR et RT-PCR quantitative des ARN exprimés dans les lignées stables contenant les différentes 

formes d’intron et exprimant ou non l’IEP n’a pas permis de mettre en évidence un épissage de 

l’intron Pl.LSU/2. Il semblerait donc qu’au contraire des résultats obtenus chez la levure, l’intron 

Pl.LSU/2 ne s’épisse pas ou très peu efficacement dans les cellules humaines. 

L’ensemble de ces résultats portant sur la caractérisation des activités biochimiques de l’IEP de 

Pl.LSU/2 et de la capacité d’épissage de l’intron dans la levure et dans les cellules humaines a été 

décrit dans un article soumis au journal PLoS ONE, dont la publication a été acceptée sous réserve de 

modifications. 
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Enfin, une étude sur la capacité de homing de l’intron Pl.LSU/2 chez E. coli et chez la levure a été 

menée. Nous avons tout d’abord évalué le homing de l’intron Pl.LSU/2 chez E. coli en utilisant une 

stratégie adaptée d’une méthode utilisée pour mettre en évidence le homing de Ll.LtrB chez E. coli. 

L’intron Pl.LSU/2, flanqué d’une partie de ses deux exons (E2 et E3) est cloné dans un plasmide 

d’expression procaryote (plasmide donneur) en aval de la séquence codant l’HisV5-IEP. Une partie de 

la séquence codant l’IEP (au niveau du domaine IV de l’intron) est délétée et remplacée par le gène de 

résistance à la kanamycine (Kan
R
) positionné en sens inverse par rapport à l’intron. Ce gène Kan

R
 est 

interrompu par l’intron de groupe I td, positionné dans le même sens que l’intron Pl.LSU/2 et pouvant 

s’auto-épisser très efficacement chez E. coli. L’expression de l’ensemble de ces séquences s’effectue à 

partir d’un même promoteur et de façon conditionnelle. Un second plasmide (plasmide accepteur), 

possédant le gène de résistance au chloramphénicol, est également utilisé et contient les exons E2 et 

E3 juxtaposés : cette séquence correspond au site d’intégration naturel de l’intron Pl.LSU/2. Lors de la 

transcription effectuée à partir du plasmide donneur, l’intron td devrait s’épisser, permettant ainsi une 

restauration du gène Kan
R
. L’intégration de l’intron Pl.LSU/2 portant le gène Kan

R
 restauré 

permettrait alors l’expression de ce gène et l’apparition de clones bactériens sur un milieu contenant 

de la kanamycine. La stratégie est donc la suivante : les deux plasmides sont transformés chez E. coli 

puis l’expression de l’intron Pl.LSU/2 et de l’HisV5-IEP est induite. Les bactéries sont ensuite étalées 

sur un milieu nutritif contenant soit du chloramphénicol seul, soit du chloramphénicol et de la 

kanamycine (sélection des clones portant au moins le plasmide accepteur dans lequel l’intron s’est 

intégré). Malheureusement, durant les expériences effectuées, aucun clone n’a été obtenu sur le milieu 

contenant de la kanamycine. Afin d’étudier de façon plus approfondie l’état des plasmides contenus 

dans les bactéries, une analyse par restriction enzymatique a été effectuée sur l’ADN plasmidique 

extrait des bactéries à différents temps après induction de la transcription de l’intron Pl.LSU/2 et de 

l’HisV5-IEP. Cette analyse n’a pas permis de détecter le plasmide accepteur dans lequel se serait 

intégré l’intron Pl.LSU/2. Le homing de Pl.LSU/2 chez E. coli n’a donc pas pu être déterminé.  

Le homing peut s’effectuer si au préalable l’intron Pl.LSU/2 est épissé dans la cellule. Or, nous 

n’avons pas mis en évidence la capacité d’épissage de l’intron chez E. coli. En revanche, comme 

mentionné ci-dessus, nous avons montré un épissage de l’intron Pl.LSU/2 chez la levure, dont 

l’efficacité est augmentée via l’activité maturase de l’IEP. Nous avons donc cherché à évaluer le 

homing de Pl.LSU/2 chez la levure. Pour cela, nous avons utilisé les mêmes plasmides que lors de 

l’étude de l’épissage de Pl.LSU/2 chez la levure (plasmide contenant l’intron et plasmide exprimant 

l’IEP), et inclus un troisième plasmide, le plasmide accepteur de homing, contenant les exons E2 et E3 

juxtaposés et constituant le site d’intégration naturel de l’intron. Les levures ont tout d’abord été 

transformées par le plasmide contenant l’intron et le plasmide accepteur, puis les cellules doublement 

recombinantes ont été transformées ou non par le plasmide exprimant l’IEP. Dans cette stratégie, le 

homing de l’intron Pl.LSU/2 n’est pas mis en évidence par la restauration d’un gène rapporteur ; il est 
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donc nécessaire d’analyser l’état des plasmides contenus dans les cellules afin d’évaluer le homing. 

Après une période de culture, l’ADN plasmidique a donc été extrait des levures et analysé par PCR 

afin de mettre en évidence la présence de plasmide accepteur dans lequel l’intron serait intégré. Cette 

analyse a révélé la présence de ce plasmide dans toutes les levures, même celles non transformées par 

le plasmide codant l’IEP. En absence d’IEP, le mécanisme de homing ne peut pas avoir lieu, car l’IEP 

est directement impliquée dans ce mécanisme via ses activités RT et endonucléase. Les résultats 

obtenus pourraient donc être expliqués par la mise en place d’un processus de recombinaison 

homologue entre le plasmide contenant l’intron et le plasmide accepteur, puisque ces deux plasmides 

présentent des régions d’homologie (E2 et E3). Dans ce contexte, le homing de Pl.LSU/2 n’a donc pas 

pu être déterminé. Le choix d’une stratégie alternative, similaire à celle utilisée chez E. coli, s’avère 

donc nécessaire. 

Ce travail de thèse constitue donc un apport dans la caractérisation de l’intron de groupe II Pl.LSU/2 et 

a permis de démontrer l’épissage de l’intron et l’activité maturase de l’IEP in vivo chez la levure. 

L’activité de transcriptase inverse de l’IEP a également été démontrée in vitro. La caractérisation du 

mécanisme de homing de l’intron reste à être effectuer, et de futures optimisations sont requises en 

vue de l’utilisation des introns de groupe II en ciblage génomique dans les cellules humaines. 
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 INTRODUCTION 

This chapter consists in a literature review and describes intellectual background to the work presented 

in this thesis. A short history of gene therapy is presented and the different integrating approaches are 

described. Targeting strategies are depicted followed by a focus on group II introns. Finally, the aim of 

this work, which principally concerns the characterization of a promising group II intron, is outlined.  
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1 - GENE THERAPY 

Gene therapy consists in transferring nucleic acids into target cells of a patient in order to obtain a 

therapeutic effect. Classical gene therapy is the technology by which genes or small DNA molecules 

are delivered to human cells, tissues, or organs to correct a genetic defect, or provide new therapeutic 

functions for the ultimate purpose of preventing or treating diseases. These approaches have been 

diversified from the treatment of monogenic disorders to cancer treatments or prevention of a disease 

by transferring genes encoding therapeutic proteins as a vaccine. More recently, nucleic acids transfer 

has been used to perform gene repair rather than supplementation, which opens the path of dominant 

genetic disorders treatment. Gene therapy has also been developed to modulate the expression of an 

endogenous protein by targeting the messenger RNA, either to restore its expression or to degrade it 

(Watts JK and Corey DR 2012). After decades of research, gene therapy has now been successfully 

used to treat a number of disorders in humans.  

Nucleic acid transfer into cells requires a transporter, also called vector. Indeed, transfection of naked 

DNA without vectorization is poorly efficient due to several cellular hurdles such as the crossing of 

the cellular membrane, the routing to the nucleus, and the crossing of the nuclear envelope. Two 

different strategies have been exploited in gene therapy: either a direct in vivo delivery of the vector, 

or an ex vivo strategy, which consists in the delivery of the vector to patient target cells before re-

engraftment of these modified cells into the patient. The in vivo delivery of the vector could be 

achieved by different administration routes (intravenous systemic administration, or local 

administration such as intraocular, intramuscular, etc.), which efficiency can be impeded by several 

extracellular barriers such as immunity, natural filters, vascular walls, extracellular matrix, etc. The 

feasibility of ex vivo gene therapy is usually less complex than those of in vivo gene therapy due to the 

absence of extra-cellular barriers and as the required quantity of vector is usually lower (at least 

compared to in vivo systemic administration).  

The idea of gene therapy emerged in the early 60s, which was at this time only theoretical. In 1964, 

Edward Tatum declared in a perspective paper: “Within the next hundred years great advances can be 

expected in the control of mutational processes, in the design and synthesis of genetic determinants, 

and in the development of techniques for the introduction of such new genetic determinants into the 

genome of living organisms.” (Tatum EL 1964). He detailed his idea during a symposium in 1966 with 

the description of what will define the basis of ex vivo gene therapy: “The first successful genetic 

engineering will be done with the patient’s own cells, for example, liver cells, grown in culture. The 

desired new gene will be introduced by directed mutation, or from normal cells of another donor by 

transduction, or by direct DNA transfer. The rare cell with the desired change will then be selected, 

grown into a mass culture, and reimplanted in the patient’s liver.” (Campbell TL 1966). 

The first two clinical trials were initiated in the early 70s and 80s and were both unapproved. In the 

first trial, the wild-type Shope papilloma virus was delivered directly into patients presenting an 

arginase deficiency syndrome with the hope that the viral arginase would replace the missing enzyme 

in these patients (Friedmann T 1992). The second gene therapy trial consisted in a transfection of bone 

marrow cells collected from beta-thalassemia patients with plasmids encoding the human beta-globin 

gene, before re-infusion of the cells into the patients. Although no adverse effect was observed in both 

cases, no therapeutic benefit resulted from those trials. 
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The major significant bottleneck for realization of gene therapy at this time was thus to efficiently 

insert foreign DNA into human cells. The need of efficient vectors for the introduction of transgenic 

DNA into mammalian cells stimulated researches in this field. A number of improvements in non-viral 

vector strategies were performed using liposomes (Schaefer-Ridder M et al. 1982), electroporation 

(Neumann E et al. 1982), and later the polycation polyethyleneimine (Boussif O et al. 1995). It was 

not until the late 70s that the potential use of viruses as gene therapy vectors became evident. Viruses 

are indeed naturally-occuring vehicles for the introduction of foreign DNA into cells. The first viral 

vector was based on Simian Virus 40 (SV40) in 1979 (Hamer DH and Leder P 1979) followed by the 

development of γ-retroviral vectors (Shimotohno K and Temin HM 1981; Wei CM et al. 1981; Tabin 

CJ et al. 1982), adenoviral vectors (Van Doren K et al. 1984) and adeno-associated virus (AAV) 

vectors (Hermonat PL and Muzyczka N 1984). These vector systems were later refined, for example 

by splitting viral genomes so that viral protein sequences could be removed (Mann R et al. 1983), or 

the development of retroviral vectors based on the lentivirus HIV-1 to transduce non-dividing cells 

(Naldini L et al. 1996). Viral vectors are now deficient for replication and the maximum of viral 

sequences are removed. A comparison of the major gene therapy vectors is depicted in Table I-1. 

 

Table I-1: Properties of major gene therapy vectors. 

(-): zero; (+): low; (++): moderate; (+++): high. Adapted from (Nathwani AC et al. 2005). 

The development of viral vectors improved the efficiency of gene transfer so that clinical benefit from 

gene therapy could be expected. This enables the first fully regulated clinical trial in 1990 (Anderson 

WF et al. 1990). In this trial, two children with severe combined immunodeficiency caused by a lack 

of adenosine deaminase activity (ADA-SCID) were treated by ex vivo gene therapy using autologous 

T-lymphocytes, transduced with a Moloney murine leukaemia virus (MoMLV)-derived vector 

encoding the ADA gene, and subsequently retransplanted in the patient. No adverse effects were 

observed in this ADA-SCID trial, and a significant expression of ADA was detected in transduced 

cells recovered from the patients (Blaese RM et al. 1993; Blaese RM et al. 1995). However, transient 

transgene expression required regular infusions of transduced cells and enzyme replacement therapy. 
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This was due to the fact that the corrected cells were differentiated T-lymphocytes with a limited 

proliferative potential. Therefore, in 1992, another gene therapy clinical trial using a MoMLV-derived 

vector for the treatment of ADA-SCID was initiated, but this time targeted both autologous peripheral 

blood lymphocytes and
 
hematopoietic stem cells (HSC) (Bordignon C et al. 1995). This trial led to 

both short-term and long-term reconstitution of the patient immune system and correction of growth 

failure. However, enzyme replacement therapy was still required. Although the clinical benefit of 

these two studies were limited, they open the way of a successful clinical trial by Aiuti and coworkers, 

where nonmyeloablative bone marrow conditioning facilitated the engraftment of gene modified HSC 

(Aiuti A et al. 2002; Aiuti A et al. 2009). 

Subsequently, the number of clinical trials initiated from the 1990s increased significantly (Fig. I-2). 

 

Figure I-2: Number of gene therapy clinical trials from 1989. 

Source: The Journal of gene Medicine; Clinical Trials database (www.wiley.co.uk/genmed/clinical ; update June 

2012). Unknown section corresponds to clinical trials for which information of approved/initiated year is 

missing.  

The first serious adverse event due to a gene therapy protocol occurred in 1999 during a trial using an 

adenoviral vector to treat the liver metabolic disorder ornithine transcarbamylase deficiency. The 

patient developed a massive systemic inflammatory response to the adenoviral vector, leading to 

multiple organ failure and death within few days of vector administration (Raper SE et al. 2003). 

Investigations on the design of this clinical protocol outlined several protocol violations and 

unreporting of previous adverse events on animal model. This marked the need of correct clinical trial 

designs and also of studying immune responses to vectors used in gene therapy. 

http://www.wiley.co.uk/genmed/clinical
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The first successful gene therapy clinical trial was reported in 2000 in a study initiated in Paris for X-

linked severe combined immunodeficiency (SCID-X1) (Cavazzana-Calvo M et al. 2000). In this trial, 

HSC were extracted from the bone marrow of 10 children and transduced with a MoMLV retroviral 

vector encoding the interleukin-2 gamma c common chain receptor (IL2RG). Cells were then infused 

into patients intravenously. In all but one patient, a polyclonal T-cell repertoire was found within years 

of treatment and an antigen-specific response to immunization was detected (Schmidt M et al. 2005; 

Hacein-Bey-Abina S et al. 2010). This immune system reconstitution enables the withdrawal of 

immunoglobulin therapy in the majority of the patients and they now can live outside of a sterile 

confinement. An associated trial was conducted in London with 10 patients incorporated (Gaspar HB 

et al. 2004) and also resulted in effective immune reconstitution (Gaspar HB et al. 2011). However, 

both trials experienced serious adverse events (unexpected at this time) with the formation of T-cell 

leukemia-like expansions (Hacein-Bey-Abina S et al. 2003a). These events have occurred in 5 of 20 

treated patients of the two studies combined, leading to one death. The other patients were 

successfully treated by chemotherapy and entered in remission. The initiated event in those expansions 

is an insertion of the retroviral vector near oncogenes causing a dysregulated expression of these genes 

through the action of an enhancer contained in the vector (Hacein-Bey-Abina S et al. 2003b; Hacein-

Bey-Abina S et al. 2008; Howe SJ et al. 2008). The subject of insertional mutagenesis is discussed in 

more details in section 2.2 - of the introduction. 

Other notable gene therapy clinical trials have demonstrated therapeutic benefits. They include 

lentiviral transduction of HSC for treatment of the β-thalassemia anemia (Cavazzana-Calvo M et al. 

2010), lentiviral vector transduction of HSC for treatment of X-linked adrenoleukodystrophy (X-ALD) 

(Cartier N et al. 2009), lentiviral vector transduction of HSC for treatment of the Wiskott-Aldrich 

syndrome (WAS) (Boztug K et al. 2010; Galy A and Thrasher AJ 2011), retroviral transduction of 

epidermal stem cells for treatment the junctional epidermolysis bullosa (Mavilio F et al. 2006), 

retroviral anti-melanoma T-cell receptor immunotherapy (Johnson LA et al. 2009), retroviral T-cell 

suicide gene therapy to control proliferation following T-cell and bone marrow transplant for leukemia 

(Bonini C et al. 1997), AAV-mediated neurotransmitter production for treatment of Parkinson’s 

disease (Kaplitt MG et al. 2007), and AAV-mediated expression of RPE65 (Retinal pigment 

epithelium-specific 65-kDa protein) in retina for treatment of Leber’s congenital amaurosis 

(Bainbridge JW et al. 2008; Maguire AM et al. 2009; Simonelli F et al. 2010; Jacobson SG et al. 

2012). 

However, gene therapy trials are currently hampered by a number of technical hurdles. The first 

bottleneck can be represented by the inability of the vector to efficiently transduce the target cell 

population, as appear to be the case in a clinical trial for cystic fibrosis (Griesenbach U and Alton EW 

2009). Moreover, expression of the transgene may be lost following promoter silencing, as may have 

occurred during a clinical trial for treatment of the chronic granulomatous disease (CGD) (Ott MG et 

al. 2006; Grez M et al. 2011). Efficient engraftment and expansion of cell transplants modified ex vivo 

may be limited in absence of significant survival advantage for transduced cells, as was observed in a 

clinical trial for anti-HIV gene therapy (Mitsuyasu RT et al. 2009). Patients may also develop immune 

response to the transgene product or the vector itself (Manno CS et al. 2006; Mingozzi F et al. 2009; 

Mendell JR et al. 2010).  
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Although clinical application of gene therapy remains experimental due to technical challenges, 

sustained research efforts are made to overcome those hurdles. To date, gene therapy protocols have 

improved the health (sometimes dramatically) for dozens of patients. 

A number of gene therapy approaches currently use tools that can enable active integration of the 

therapeutic transgene into target cell chromosomes. Indeed, even though episomal nuclear DNA can 

integrate into chromosomes under the action of host DNA repair proteins (Stephen SL et al. 2008), this 

mechanism is likely too inefficient to be useful for most applications. Strategies for which the 

therapeutic transgene is integrated into the host chromosome are better candidates for targeting cells 

that have rapid turnover, as hematopoietic cells. Gene therapy that target mitotic cells and/or tissues 

thus required the integration of the transgene for long-term transgene expression. The following 

chapter describes the major classes of integrative approaches in gene therapy. 

 



Introduction – Integrative approaches 

 7 

2 - INTEGRATIVE APPROACHES 

Several strategies, either viral or non-viral, are used or developed to allow transgene integration into 

the host cell genome. The transgene integration can be random, semi-random, oriented, or site-

specific, depending on the system used.  

2.1 - RANDOM AND SEMI-RANDOM INTEGRATION 

2.1.1 - DNA transposon vectors 

DNA transposons are naturally mobile genetic elements residing in the genome as repetitive sequences 

that can move through a direct cut-and-paste mechanism called transposition, in which the transposon 

gets excised from the donor locus and is subsequently integrated into another location by the 

transposase protein. DNA transposons were first extensively used as genetic tools in invertebrates and 

in plants for transgenesis or insertional mutagenesis (Osborne BI and Baker B 1995; Plasterk RH 

1996; Hayes F 2003). The most studied DNA transposon for applications in mammals is the 

Tc1/mariner-type Sleeping beauty (SB) transposon. 

The SB transposon was reconstructed by consensus alignment of inactive transposon “fossils” from a 

number of salmonid fish (Ivics Z et al. 1997; Ivics Z et al. 2009). The complete wild-type transposon 

consists of a transposase protein coding sequence flanked by two nonidentical 230 bp inverted repeats 

(IR) (Fig. I-3A). The region between the left IR and the transposase coding sequence is able to 

promote weak transcription of transposase (Moldt B et al. 2007). The 340 amino acid transposase 

consists of an N-terminal domain presenting DNA binding domains, a nuclear localization signal 

(NLS), and a C-terminal DDE-type catalytic domain, which is common to integrases and transposases 

from many mobile elements, like retroviruses (Cui Z et al. 2002; Ikeda R et al. 2007), and contains 

three carboxylate residues believed to be responsible for coordinating metal ions needed for DNA 

cleavage activity. The transposase is able to cleave the DNA transposon from flanking DNA and 

reintegrate it elsewhere by a “cut-and-paste” mechanism (Fig. I-3B). A 32-34 nt transposase binding 

site is present at the inner and outer end of each IR (Izsvak Z et al. 2002). After binding of the 

transposase to these sites, a tetramer of transposase is subsequently formed, bringing the two IR into 

close proximity, and the transposase then cleaves the DNA at the IR. This cleavage is performed only 

when the transposon is flanked by TA dinucleotides, and is enhanced when the flanking sequence is a 

TATA motif. The excised transposon subsequently integrates into a new target DNA at a TA-

dinucleotide. The non-homologous end joining (NHEJ) DNA repair pathway allows the integration of 

the transposon into the target DNA, resulting in a 3 bp footprint on the donor DNA and duplication of 

the TA-dinucleotide at the target site (Yant SR and Kay MA 2003; Izsvak Z et al. 2004). Potential TA-

dinucleotides targets differ in their attractiveness for SB integration due to local DNA characteristics, 

and structural prediction of integration sites preferences has been described (Geurts AM et al. 2006). 

However, the integration profile of the SB transposon is random with respect to genomic features such 

as transcription units and CpG islands (Vigdal TJ et al. 2002), with about 35 % of SB integrations in 

genes. 
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Figure I-3: Sleeping beauty transposon and its transposition mechanism. 

(A) Schematic representation of wild-type SB transposon consisting of flanking inverted repeats (Left and right 

IR) and a transposase coding sequence. Light gray boxes: transposase binding sites; NLS: nuclear localization 

signal; pA: polyadenylation signal. (B) Mechanism of SB transposition. The integrated SB transposon is excised 

by the transposase protein, leaving the donor DNA with 3 bp transposon-mediated overhangs. The donor DNA is 

repaired by the NHEJ pathway, resulting in the formation of a transposon “footprint”. The excised SB 
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transposon can insert a DNA site containing a TA dinucleotide, which is duplicated at each end of the integration 

site during the transposon integration. Adapted from (Plasterk RH et al. 1999). 

Subsequently to the reconstruction of active SB transposon, several other transposons, such as the 

hAT-like transposon Tol2 from the medaka fish Oryzias latipes (Kawakami K and Noda T 2004; 

Kawakami K 2007), the PiggyBac (PB) transposon from the cabage looper moth Trichoplusia ni 

(Ding S et al. 2005), or the Tc1-like Frog Prince transposon from the frog Rana pipens (Miskey C et 

al. 2003) were shown to effectively transpose in mammalians. Among them, Tol2, SB and PB 

transposons have been extensively evaluated for gene therapy (Kang Y et al. 2009; Hackett PB et al. 

2010; Swierczek M et al. 2012). DNA transposons have thus emerged as particularly attractive vectors 

for gene therapy. As non-viral vector, they can be delivered into primary cells by conventional 

transfection techniques, like electroporation (Mates L et al. 2009). Moreover, as there are no viral 

antigen contained in the vector, they are potentially less immunogenic than viral vectors. DNA 

transposons combine the desired features possessed by naked DNA and the ability to insert transgenes 

into host chromosomes, thus enable long-term transgene expression. Finally, the use of DNA 

transposons may overcome some of manufacturing hurdles intrinsic to the production of high-titered 

batches of vectors in viral vectors gene therapy protocols. 

To turn the SB DNA transposon into a gene delivery tool, three systems were developed (Fig. I-4). 

The first is composed of a unique plasmid containing the gene of interest with its own promoter and 

flanked by the transposon terminal repeat sequences in their natural inverted orientation (IR) required 

for transposition, and the transposase ORF with its promoter (Mikkelsen JG et al. 2003) (Fig. I-4A). It 

is also possible to provide the transposase on a separate plasmid or by the direct delivery of 

transposase mRNA (Wilber A et al. 2006) (Fig. I-4B). The wild-type size of SB transposon is 1.7 kb, 

and each 1 kb increase in transposon length leads to a decrease of 30% in the transposition efficiency 

(Izsvak Z et al. 2000). However, up to 8 kb inserts can be efficiently transferred with the SB 

transposon, and the generation of “sandwich” transposons with two complete SB transposons elements 

flanking the transgene (Fig. I-4B; two ended arrows) enhances transposition of large sequences (> 10 

kb) (Zayed H et al. 2004). In each system described, the transposase binds the inverted repeats and 

catalyzes the excision of the gene of interest from the plasmid, as well as its integration into the host 

cell genome. 
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Figure I-4: Schematic representation of plasmid-based SB vector systems. 

(A) One plasmid system: the transposase coding sequence and the SB transposon containing the gene of interest 

are on the same plasmid. (B) The transposase is provide either on a separate plasmid or by direct delivery of 

transposase mRNA (green solid line with polyA queue). The gene of interest can be flanked by the SB inverted 

repeats (IR) in their natural orientation, or by two IR in a “sandwich” configuration (two-ended blue arrows). 

pA: polyadenylation signal; P: promoter. The expressed transposase (green circles) binds the inverted repeats 
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and catalyzes the excision of gene of interest and its subsequent genomic integration at TA dinucleotides, which 

are duplicated and subsequently flank the transposon at the integration site. Adapted from (Izsvak Z et al. 2010). 

The level of transposase expression in target cells using SB and PB transposon vectors must be tightly 

controlled, as overexpression of transposase actually reduces the level of transposition by a 

phenomenon called overproduction inhibition, while Tol2 transposition is directly proportional to the 

level of transposase and thus does not exhibit overproduction inhibition (Geurts AM et al. 2003; Wu 

SC et al. 2006). The mechanism of overproduction inhibition, which has been reported in other 

Tc1/mariner transposons, is not known, but may represent an autoregulatory system (Lohe AR and 

Hartl DL 1996). 

As mentioned above, the efficiency of transposition from transposon vector plasmid declines with the 

transgene size, limiting its useful capacity. The PB transposon-mediated system can still efficiently 

transpose inserts of up to 14 kb and the Tol2 transposon vector can transfer genes of up to 11 kb 

without loss of transposition activity (Izsvak Z et al. 2000; Ding S et al. 2005; Balciunas D et al. 

2006).  

Constant improvements of transposases led to the development of a set of hyperactive transposases. 

To date, the most active SB transposase recently developed is called SB100X and displays a 100-fold 

higher transposition efficiency than the originally reconstructed protein (Mates L et al. 2009). The PB 

transposase, for which the coding sequence was codon-optimized for translation in target cells (mPB), 

exhibits enhanced transposition activity in mouse embryonic stem cells (Bjork BC et al. 2010), and a 

recent study allows the development of an hyperactive PB transposase, which yields to a 17-fold 

enhanced excision and 9-fold enhanced integration activity compared to the mPB (Yusa K et al. 2011; 

Doherty JE et al. 2012). 

The introduction of a transgene into the host genome can be targeted for silencing. This phenomenon 

is often observed when the transgene is inserted by viral vectors. Some studies have reported post-

integrative silencing of insertions by epigenetic modifications of the locus, and showed that the 

promoter within the cargo transgene construct has a major influence in triggering epigenetic 

modifications of the integrated transposon (Garrison BS et al. 2007). However, a recent study using 

individual clones containing transposon integrations demonstrated that transposon vector systems 

using SB100X, Tol2 and mPB all showed low levels (1.7 – 3.8 %) (Grabundzija I et al. 2010). 

One of the first demonstrations that transposons could be used in gene therapy was obtained by 

transfecting keratinocytes from patients suffering of junctional epidermolysis bullosa with the sleeping 

Beauty vector system encoding laminin (Ortiz-Urda S et al. 2003). The gene-modified cells were able 

to regenerate human skin on immunodeficient mice. Other demonstrations were recently made with 

the Sleeping Beauty vector system using SB100X to integrate SB transposon containing GFP or DsRed 

marker genes in CD34
+
 hematopoietic progenitors (Mates L et al. 2009; Xue X et al. 2009). The use of 

SB100X in these studies allowed efficient and stable gene transfer in up to 50% of the hematopoietic 

colonies and gene-marked cells were able to reconstitute multilineage hematopoietic system after 

transplantation into immunodeficient mice. SB-based vector system has also been used in animal 

models for the correction of hemophilia A (Ohlfest JR et al. 2005; Liu L et al. 2006; Kren BT et al. 

2009) and hemophilia B (Yant SR et al. 2002), tyrosinemia type I (Montini E et al. 2002), 

mucopolysaccharidosis I and VII (Aronovich EL et al. 2007) and diabetes (Heggestad AD et al. 2004). 

The SB transposon-mediated system has recently received the NIH Recombinant DNA Advisory 
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Committee agreement to be use in a human clinical trial. SB transposon carrying a chimeric antigen 

receptor is used to genetically modify human T-cells, rendering them specifically cytotoxic for CD19
+
 

B-lineage tumors (Xue X et al. 2009; Hackett PB et al. 2010).  

The PB transposon has been explored for both in vivo (Ding S et al. 2005; Nakanishi H et al. 2010) 

and ex vivo (Grabundzija I et al. 2010; Di Matteo M et al. 2012) gene therapy. Also, several studies 

have shown that the PB transposon-mediated system could be an efficient and safe approach to 

achieve the genetic reprogramming of mouse or human fibroblasts into induced pluripotent stem (iPS) 

cells (Kaji K et al. 2009; Woltjen K et al. 2009; Yusa K et al. 2009). 

As mentioned above, SB transposons do not appear to display integration bias toward genes or CpG 

islands, and exhibit a random pattern of integration (Vigdal TJ et al. 2002). It was also shown that the 

distribution of SB transposon integrations inside intergenic sequences is non-random, with a strong 

bias toward microsatellite repeats (Yant SR et al. 2005). In contrast, the PB transposon exhibit a non-

random integration profile with a bias to transcription units (Wilson MH et al. 2007). It has been 

reported that the frequency of PB integrations in a window of 50 kb around transcription start sites of 

almost 900 known proto-oncogenes (from the Sanger Cancer Gene Census) was around 2.5% in 

human primary T cells (Galvan DL et al. 2009). Another study of transposon integrations to sites 

within a window of either 400 kb or 1000 kb around almost 2100 cancer-related gene (from 

CancerGene database) shows a higher frequency of Tol2 integrations (up to 9.4%) than PB 

integrations (up to 6.6%) (Meir YJ et al. 2011). It was also shown that Tol2 and PB transposons are 

more prone to induce abnormal clonal expansion than SB transposon (Huang X et al. 2010), which can 

evolve into tumor developments. Although the SB transposon shows a global random integration 

pattern and displays only weak promoter/enhancer activity, it can still potentially induce adverse 

genotoxic event. The use of insulator sequences within the transposon was thus evaluated and showed 

a reduction of the risk of cis activation of neighboring genes around the integration site (Walisko O et 

al. 2008). 

Even if DNA transposon-mediated vector system represents an attractive approach in gene therapy, 

some advances and analyses are still needed. Transfection technologies need to be developed to enable 

efficient uptake of the transposon and transposase plasmids by the target cells. Although a major 

breakthrough has been made with the development of the SB100X transposase, which can support up 

to 50% of stable gene transfer in CD34
+
 cells (Mates L et al. 2009), transposon-mediated vector 

system remains less efficient than viral vector, with up to 80% of CD34
+
 transduction using a lentiviral 

vector in optimal conditions. In addition, detailed analyses of the potential genotoxicity induced by the 

use of DNA transposon vectors have to be conducted as it was done previously for γ-retroviral and 

lentiviral vectors, with the use of tumor-prone mouse models or in vitro genotoxicity assays. 

2.1.2 - Retroviral vectors 

The family of retroviruses, known as Retroviridae, consists of a number of enveloped positive-sense 

single-stranded RNA viruses for whom reverse transcription and chromosomal integration of the viral 

genome are essential stages of the viral cycle. Within this family, the γ-retrovirus, lentivirus and 

spumavirus (foamy virus) genera have been developed as vectors for gene therapy. 
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The retroviral vector analyzed in this thesis was an HIV-1-based lentiviral vector, so the following 

summary is focused principally on this virus. However, the important differences existing between 

lentiviruses and γ-retroviruses or foamy viruses are also described.  

Over the course of their viral cycle, retroviruses alternate between two major forms: the provirus and 

the virion (reviewed in (Coffin JM et al. 1997)). The provirus consists of double-stranded DNA 

integrated into a host cell chromosome. Viral RNA and proteins are expressed from the provirus using 

the host’s transcription and translation machinery. These are subsequently packaged at the host plasma 

membrane into virion particles which are then enveloped by a host-derived lipid membrane. The 

resulting virion can bind to and enter a new host cell, reverse transcribe its genome to regenerate the 

double-stranded DNA form and finally integrate it into the host chromosome as a new provirus. 

HIV-1 RNA genome is approximately 9 kb in length and encodes several viral proteins (Fig. I-5). The 

viral genome contains structural (gag, pol and env), regulatory (rev and tat) and accessory (vif, vpr, 

vpu and nef) genes, which are flanked by long terminal repeats (LTR). The gag gene encodes viral 

core proteins, which are the matrix protein, the capsid p24 protein (CA), the nucleocapsid, and 

peptides p2, p1 and p6. The Gag-Pol precursor protein encodes essential replication enzymes, which 

are the reverse transcriptase (RT), the integrase, and the protease. The env gene encodes the 

glycopolyprotein envelope precursor (gp160), which can be cleaved by a protease to generate the 

surface glycoprotein gp120 and the transmembrane glycoprotein gp41. 

 

Figure I-5: Schematic representation of HIV-1 provirus and polyprotein structure. 

(A) Structure of HIV-1 provirus. LTR: long terminal repeat (subdivided into U3, R and U5 regions); PBS: tRNA 

primer binding site; ψ: RNA packaging signal; gag: polyprotein encoding virion structural proteins; pol: 

polyprotein encoding viral enzymes; vif/vpr/vpu/nef: genes encoding accessory proteins; rev and tat: genes 

encoding regulatory proteins; PPT: polypurine tract. (B) HIV-1 Gag and Gag-pol polyproteins. MA: matrix 

protein; CA: capsid p24 protein; p1, p2 and P6: spacer peptides; NC: nucleocapsid protein; fs: ribosomal 

frameshift site; PR : protease; RT: reverse transcriptase; IN: integrase. 
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The viral cycle of HIV-1 is composed by several steps, including transcription of the provirus, 

translation of viral proteins, virion assembly and budding, virion maturation, cell entry, uncoating, 

reverse transcription, nuclear import and integration. 

Transcription of proviral DNA by the host RNA polymerase II (PolII) enzyme is driven by the U3 

promoter region within the 5’ LTR. The regulation of HIV-1 transcription occurs through both host 

transcription factors (Pereira LA et al. 2000) and tat protein. In absence of tat, viral transcription from 

5’ LTR yields short and non-polyadenylated RNA (Ratnasabapathy R et al. 1990; Zhou Q and Sharp 

PA 1995). In contrast to HIV-1, γ-retroviruses do not regulate their transcription in this way, but 

foamy viruses express a transactivator protein with a similar function (Lochelt M et al. 1994). HIV-1 

produces at least 30 different mRNAs through alternative splicing, though about half of these mRNA 

remains unspliced (Purcell DF and Martin MA 1993). The splicing of γ-retroviruses is less complex, 

resulting in only two mRNA species. In all retroviruses, the unspliced mRNA, which is the molecule 

uptake into virion, is required for the production of the viral proteins it encodes. For HIV-1, it is 

exported from the nucleus via the cellular protein Crm1 and the rev viral protein, which contains a 

nuclear export signal (Meyer BE et al. 1996) and binds the unspliced mRNA to the Rev response 

element (RRE) (Malim MH et al. 1989; Bogerd HP et al. 1998). γ-retroviruses such as the Moloney 

murine leukemia virus (MoMLV) do not express a Rev protein and use a different mode of export of 

their unspliced mRNA, which may be mediated by the ψ packaging signal (Smagulova F et al. 2005). 

In the Mason Pfizer Monkey virus, the “constitutive transport element” sequence contained in the 

unspliced mRNA binds the cellular RNA export factor Tap to allow the unspliced mRNA export 

(Gruter P et al. 1998). 

The translation of HIV-1 mRNA, which is carried out by host ribosomes, is promoted by rev protein 

through an increase of the ribosomal association (D'Agostino DM et al. 1992). The initiation of 

translation does not occur at the 5’ cap of viral mRNA, but is probably initiated at the internal 

ribosome entry site (IRES) located upstream of gag (Buck CB et al. 2001). The translation of 

unspliced mRNA gives rise to Gag and Gag-Pol polyproteins (Fig. I-5B), which are translated in a 

ratio of approximately 20:1. Gag-Pol translation is achieved by a bypass of the gag termination codon 

through a ribosome frameshift (Fig. I-5B; fs) of one nucleotide back into the Pol reading frame (Jacks 

T et al. 1988). Gag polyproteins is myristoylated during translation and this modification together with 

a N-terminal membrane binding domain allow the protein to interact with the membrane (Henderson 

LE et al. 1983; Zhou W et al. 1994).  

The Env polyprotein is translated from a spliced viral mRNA and carries an N-terminal signal 

peptide which allows its targeting to the rough endoplasmic reticulum. The C-terminal region of Env 

contains hydrophobic amino acids, which are inserted into the membrane and thus acting as 

transmembrane anchors (Perez LG et al. 1987). The env protein is glycosylated in the endoplasmic 

reticulum, which is a critical step for correct Env folding and cleavage (Pal R et al. 1989; Li Y et al. 

1993). Env polyprotein, in their oligomeric state, are cleaved by host proteases, resulting in 

heterodimers of the surface and transmembrane proteins. This cleavage exposes the fusogenic peptide 

of the transmembrane protein (Gallaher WR 1987), making the Env oligomers competent for cell 

fusion. 

In addition of the basic genes (gag, pol and env) encoded by all retroviruses, HIV-1 expresses the 

regulatory genes tat and rev described above and the four accessory genes vif, vpr, vpu and nef. These 

accessory proteins are often multifunctional and their diverse roles in the HIV-1 life cycle are 
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extensively studied (reviewed in (Malim MH and Emerman M 2008)). It appears that HIV-1 accessory 

proteins frequently act to protect the virus from restriction factors such as host proteins which serves 

as antiviral defenses. Vif is thought to be a viral countermeasure against antiviral activity of 

APOBEC3G (Mariani R et al. 2003). The Vpr protein has several proposed functions such as assisting 

nuclear import of the preintegration complex (Heinzinger NK et al. 1994), causing cell cycle arrest at 

the G2/M state (He J et al. 1995; Re F et al. 1995), or activating transcription from the HIV-1 LTR 

promoter (Felzien LK et al. 1998). Among other functions, Vpu and Nef act to protect from 

superinfection by reducing the CD4 presentation at the cell surface (Garcia JV and Miller AD 1991; 

Bour S et al. 1995). 

Virion assembly requires the subcellular co-localization of the viral Gag, Gag-Pol and Env proteins 

together with the viral genome and a number of essential host factors. The Gag protein is the major 

structural component of the immature virion and can induce assembly and budding of virus-like 

particles in the absence of other viral components (Shioda T and Shibuta H 1990). Gag 

multimerization is essential in the formation of virions and there are estimated to be 2000-5000 

molecules of Gag in each HIV-1 virion (Briggs JA et al. 2004). Unspliced viral genome is recruited to 

nascent virions as a dimer through an interaction between the nucleocapsid region of Gag and the 

packaging signal (ψ) (Clever JL et al. 2002). Among the host factor recruited to virions (reviewed in 

(Ott DE 2002)), the tRNA primer that is used for first strand DNA synthesis during reverse 

transcription is packaged via an interaction with the Gag-Pol polyprotein (Khorchid A et al. 2000). 

The recruitment of Env appears to be a non-specific mechanism, as nascent virions are able to 

incorporate envelope proteins from other viruses and this phenomenon is called pseudotyping (Zavada 

J 1982). Rather than a specific recognition of Gag and Env proteins, it is suggested that co-localization 

of these factors occurs within a specific subcellular structure, possibly lipid rafts (reviewed in (Briggs 

JA et al. 2003).  

 Budding is the process by which rafts of multimerized Gag and other components form into 

spherical bodies surrounded by host-derived lipid membrane. Several observations lead to suggest that 

retroviruses make use of a pre-existing host exosomal pathway in both virion budding and cell entry 

(Gould SJ et al. 2003). Indeed, the Tsg101 multivesicular budding protein plays an essential role in 

HIV-1 budding (Garrus JE et al. 2001). In addition, exosomes can form directly at the plasma 

membrane or via budding into endosomes within the cell, which are mechanisms that can be related to 

the observation of HIV-1 budding into endosomes in macrophages and direct budding at the cell 

surface in T-cells (Raposo G et al. 2002).  

During and after budding, virions undergo a morphological transition known as maturation, which 

induces a shift in virion electron density from the envelope to the core. This process is dependent upon 

Gag and Gag-Pol cleavages by the viral protease. In the mature virion, (Fig. I-6), the matrix protein is 

proposed to be bound to the envelope, CA forms the outer shell of the virion core, and the 

nucleocapsid is associated with the viral genome. 
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Figure I-6: Schematic representation of a mature HIV-1 virion. 

The major determinant of viral tropism is recognition of a host cell surface receptor by the virion Env 

protein. In addition, an number of non-receptor molecules have been implicated in initial binding if 

HIV-1 to the cell surface (Fortin JF et al. 1998; Mondor I et al. 1998; Nisole S et al. 1999; Lin CL et 

al. 2000). Following initial contact, a specific interaction between Env and the host receptor is 

required for successful viral entry. The primary receptor for HIV-1 is CD4 (Dalgleish AG et al. 1984), 

but successful infection also require the coreceptor CCR5 (Alkhatib G et al. 1996; Choe H et al. 1996; 

Deng H et al. 1996; Doranz BJ et al. 1996; Dragic T et al. 1996) and/or CXCR4 (Feng Y et al. 1996), 

which are both involved in chemokine signaling. It is thought that the initial contact between the 

surface protein and CD4 induces a conformational change in the former protein, revealing a strongly 

conserved, high-affinity coreceptor binding domain. Coreceptor binding leads to exposure of the 

transmembrane fusion peptide (Bosch ML et al. 1989), which may allow an interaction of the fusion 

peptide to the cell membrane. For the fusion between the host and virus membranes, retroviruses 

employ the type I fusion pathway (reviewed in (Colman PM and Lawrence MC 2003)). The viral 

transmembrane protein is believed to insert its fusion peptide into the host cell membrane, 

subsequently collapsed into a six helical bundle conformation. The membranes are then into close 

proximity for fusion, resulting in the pore formation (Markosyan RM et al. 2003). Enveloped viruses 

are also able to fuse host membranes at endosomal membranes following endocytosis, which can take 

place via clathrin-coated (Daecke J et al. 2005) or calveolae (Hovanessian AG et al. 2004). Reduction 

of host membrane glycosphingolipid (Hug P et al. 2000) and cholesterol (Manes S et al. 2000) content 

is known to reduce HIV-1 infection, suggesting a role of lipid rafts. 

Uncoating refers to post-entry changes in the protein composition of the intact viral core as it becomes 

first a reverse transcription complex in which viral DNA synthesis occurs, and then a preintegration 

complex which is competent for integration into the host genome. Uncoating, reverse transcription and 

nuclear transport appear to be related processes. RT, IN, the nucleocapsid, the phosphorylated matrix 

protein (Kaushik R and Ratner L 2004), and Vpr have been detected in the HIV-1 reverse transcription 

and preintegration complexes, while CA appears to rapidly dissociate (Bukrinsky MI et al. 1993; 
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Miller MD et al. 1997; Fassati A and Goff SP 2001). Reverse transcription and preintegration 

complexes are thought to migrate toward the nucleus via interactions with the host cytoskeleton, and 

more precisely via actin microfilaments (Wilk T et al. 1999; Towers GJ 2007) and microtubules (de 

Soultrait VR et al. 2002; McDonald D et al. 2002). 

The requirement for reverse transcription during the replicative cycle is the defining feature of 

retroviruses. The essential activities for this process are provided by the viral reverse transcriptase, 

which has two major activities. Its N-terminal portion carries out RNA- or DNA-dependent 

polymerization, while its C-terminal portion has RNase H activity. DNA synthesis is thought to be 

relatively error-prone, with estimates mutation rates of 10
-4

 to 10
-5

 mutations per base-pair per cycle 

(reviewed in (Laakso MM and Sutton RE 2006)). The primer for minus-strand DNA synthesis is a 

host-derived tRNA
lysine-3

 (Ratner L et al. 1985), which is annealed to the primer binding site (PBS) 

(Lanchy JM et al. 1998). Minus-strand DNA synthesis proceeds to the 5’-end of the viral genomic 

RNA and is followed by transfer of the minus-strand cDNA to the RNA 3’-end (Varmus HE et al. 

1978), which occurs through interactions between the cDNA and the 3’ RNA 5 sequences. The 

transferred minus-strand DNA acts as a primer for continued DNA synthesis up to the 5’-end of the 

remaining RNA (5’-end of the PBS). This process creates an RNA:DNA duplex, which is cleaved by 

the RT via its RNase H activity. The PPT, located upstream the 3’ LTR, is then specifically cleaved, 

resulting in the formation of primer used for plus-strand DNA synthesis by RT (reviewed in (Rausch 

JW and Le Grice SF 2004)). The RNA-DNA junction at the 3’-end of the PPT is then cleaved by a 

second RT enzyme (Gotte M et al. 1999), and Plus-strand synthesis continues until the end of the 

tRNA PBS. The tRNA is then removed by RT RNase H activity (Pullen KA et al. 1992). The 

completion of the plus-strand DNA is followed by its transfer, which occurs through base-pairing of 

the PBS on the two DNA strands (Wakefield JK and Morrow CD 1996). The DNA synthesis is then 

continued to the end of both LTR. The presence of a second central PPT (cPPT) is an original feature 

of lentiviruses, including HIV-1 (Charneau P and Clavel F 1991), and it acts as a second primer for 

plus-strand synthesis. 

Lentiviruses such as HIV-1 can efficiently infect non-dividing cells (Lewis PF and Emerman M 1994), 

while γ-retroviruses such as MoMLV cannot (Roe T et al. 1993). This observation led to postulate that 

γ-retroviruses are unable to cross the nuclear envelope and so can only access to chromosomes for 

integration when the nuclear envelope breaks during mitosis. Yamashita and Emerman showed that an 

HIV-1-based virus in which Vpr was removed, the cPPT was inactivated by mutations, and the HIV-1 

In and matrix protein were replaced with their MoMLV counterparts has no difference in infectivity 

between dividing and nondividing cells (Yamashita M and Emerman M 2005), implying that the 

ability of lentiviruses to infect nondividing cells is not induced by these nuclear-localizing factors. The 

authors argued instead that CA is the key determinant, as HIV-1 particles carrying MoMLV CA 

protein are unable to infect nondividing cells (Yamashita M and Emerman M 2004). The suggested 

process involves the nondissociation of CA from the MoMLV cores that could impede it to enter the 

nucleus may be by its too large size. 

Integration of viral DNA into a host chromosome (reviewed in (Hindmarsh P and Leis J 1999)) is 

catalyzed by the integrase (IN), which contains three domains: an N-terminal domain with an HHCC 

zinc finger motif (Engelman A and Craigie R 1992); the catalytic core domain in which a DDE motif 

coordinates the Mg
2+

 ions that catalyze integration (Gao K et al. 2004); and a C-terminal domain 
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which contains an SH3 fold involved in the sequence-nonspecific DNA binding (Engelman A et al. 

1994). Linear viral DNA in the nucleus may be converted to 1-LTR or 2-LTR circles by homologous 

recombination (HR) or NHEJ in the nucleus, but unlike the linear form, they are not efficient 

substrates for integration (Brown PO et al. 1987; Lobel LI et al. 1989). Two nucleophilic attacks are 

involved in the integration mechanism and each takes place at each end of the linear DNA molecule. 

This process is initiated by the Mg
2+

 ion of IN and is known as 3’-end processing (Van Maele B et al. 

2006). The 3’ hydroxyl group formed on processed viral LTR is sufficiently nucleophilic to attack the 

target DNA once the IN has bound a host cell chromosome, and both LTRs attack the target DNA, 

resulting in a joining intermediate (Craigie R et al. 1990), which is subsequently resolved by unpairing 

the target strand bases between the two positions at which the strands are joined. The two sections of 

complementary, unpaired sequence at either end of the proviral insertion are most likely repaired by 

host DNA repair factors (Yoder KE and Bushman FD 2000). 

 A number of host proteins are thought to participate in HIV-1 integration such as barrier to 

autointegration factor, High Mobility Group A1, EED, p300 (reviewed in (Turlure F et al. 2004) and 

(Van Maele B et al. 2006)), and the chromatin-tethering lens epithelium-derived growth factor 

LEDGF/p75, which has an major role in HIV-1 integration (reviewed in (Engelman A and 

Cherepanov P 2008)). In addition to its tight association with chromatin throughout the cell cycle, 

LEDGF binds to HIV-1 integrase via a C-terminal (Cherepanov P et al. 2004). Knockdown of LEDGF 

expression or overexpression of dominant negative LEDGF containing an integrase binding domain 

but no chromatin binding domain severely inhibits HIV-1 integration (Llano M et al. 2006). It has 

been suggested that chromatin-associated LEDGF acts as a chromosomal receptor for the HIV-1 

preintegration complex, tethering it to the chromosome and thereby promoting the strand transfer 

reaction. 

 The pattern of chromosomal integration by HIV-1 and other retroviruses was for many years 

believed to be virtually random. More recently, the occurrence of severe adverse events related to 

retroviral integration during gene therapy, combined with the availability of methods to clone, 

sequence, and map integration sites, has led to a greater understanding of retroviral integration site 

preferences. Retroviral integration is not thought to be strongly dependent upon primary sequence, but 

weak palindromic consensus sequences have been detected at HIV-1 integration sites (Holman AG 

and Coffin JM 2005. The weakness of the consensus sequences suggests that the contribution of 

primary sequence to HIV-1 integration site selection is not one of specific recognition of base pairs by 

integrase, but rather that particular sequences result in local physical properties of DNA such as 

bendability and protein deformability that are conducive to the mechanism of integration {Bushman, 

1994 #564; Wu X et al. 2005). On a larger scale, HIV-1 displays a preference for integration into 

actively transcribing genes (Wang GP et al. 2007). The mechanism by this preference comes about is 

not well understood (reviewed in (Bushman F et al. 2005)). Knockdown of LEDGF/p75 in target cells 

biases HIV-1 integration away from active genes and towards CpG islands and transcription start sites, 

suggesting a role for this factor in HIV-1 integration site selection (Ciuffi A et al. 2005). Although 

there is a high degree of sequence homology between retroviral integrases, γ-retrovirus and foamy 

virus integrases do not interact with LEDGF/p75 and integrate preferentially near CpG islands and 

transcription start sites. Following integration, the presence of a provirus may disrupt nearby host 

genes or regulatory elements with potentially deleterious effects on host cell function, as described 

thereafter in Introduction section 2.2 -. 
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The abilities of retroviruses to efficiently infect target cells via receptor-mediated uptake and to 

integrate their viral genome into a host chromosome have made them attractive tools for gene transfer 

and gene therapy. To date, retroviral vectors remain the most commonly used vectors in gene therapy 

trials with adenoviral vectors (Fig. I-7).  

 

Figure I-7: Vectors used in gene therapy clinical trials. 

Source: The Journal of Gene Medicine; Clinical Trials database (www.wiley.co.uk/genmed/clinical ; update June 

2012). Unknown corresponds to clinical trials for which information of the vector type used is missing. 

 

Retroviral vector based on the γ-retroviruses MoMLV were one the earliest viral vector developed for 

gene therapy (See Introduction section 1 -) and lentiviral vectors based on HIV-1 were developed later 

using many of the principles of the original γ-retroviral system. The major structural change in moving 

virus to vector was to split the genome into the non-coding sequences required in cis for gene transfer 

and the viral coding sequences required only in trans in the producer cell. This separation renders the 

vector capable of only one round of infection, since no viral proteins will be produced in the target 

cell. Three generations of HIV-1-based lentiviral vectors have been developed successively to increase 

their level of safety. Only the last generation of lentiviral vector is thereafter described. 

The system is composed by four plasmids: a transfer vector containing the essential cis elements and 

the transgene; a packaging plasmid expressing Gag and Gag-Pol; a plasmid expressing Rev; and a 

plasmid expressing the envelope pseudotype (Fig. I-8). Separation of the genome onto multiple 

plasmids reduces the risk of recombination resulting in the production of replication-competent 

retroviruses. This was historically a significant safety concern for early retroviral vector production 

systems which routinely gave rise to replication competent viruses through recombination (Donahue 

RE et al. 1992) but has not been observed with modern split-genome systems. 

http://www.wiley.co.uk/genmed/clinical
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Figure I-8: HIV-1 provirus and third generation lentiviral vectors. 

(A) Map of a wild-type HIV-1 provirus. LTR: long terminal repeat (subdivided into U3, R and U5 regions); 

PBS: tRNA primer binding site; ψ: RNA packaging signal; gag: polyprotein encoding virion structural proteins; 

pol: polyprotein encoding viral enzymes; vif/vpr/vpu/nef: genes encoding accessory proteins; rev and tat: genes 

encoding regulatory proteins; PPT: polypurine tract. (B) Map of a four plasmid third generation lentiviral vector 

system. RSV-U3: U3 region of the Rous sarcoma virus (RSV); RRE: Rev response element; cPPT: central 

polypurin tract; Pr: promoter; WPRE: woodchuck hepatis virus posttranscriptional regulatory element; SIN 3’ 

LTR: Self-inactivating LTR; ΔU3: deleted U3 region lacking promoter activity; sPr: strong promoter; pA: 

polyadenylation signal; Pseudo-Env: envelope pseudotype. The function of all components of the lentiviral 

vector system is described in the text. 

The transfer vector consists of the viral LTRs, the RNA packaging signal (ψ), and the transgene 

expression cassette. The viral LTRs, containing essential sequences for transcription, reverse 

transcription and integration, has been modified in order to enhance the safety of lentiviral vector 

system. The 5’ LTR U3 region can be replaced by strong viral promoters such as the Rous sarcoma 

virus (RSV) U3 region, thus enabling this third generation vectors to be Tat-independent (Dull T et al. 

1998; Kim VN et al. 1998). The 3’ LTR of the transfer vector is also mutated, so that almost all of U3 

region is removed in order to eliminate its promoter/enhancer activity (Zufferey R et al. 1998). This 

mutation is duplicated in the 5’ LTR during reverse transcription, and thus is present on both LTRs of 

the proviral DNA. This Self-inactivating mutation (SIN) thus reduces drastically the propagation of 

spontaneously produced replication-competent recombinant HIV-like viruses, due to the inability of 

transcribing the full viral genome. It also reduces insertional activation of cellular oncogenes by 

residual promoter activities of integrated LTRs (See Introduction section 2.2 -) and mobilization of 

integrated vectors by wild-type virus. Other improvements include the insertion of the cPPT element 
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to improve the transduction efficiency of nondividing cells (Follenzi A et al. 2000; Demaison C et al. 

2002; Van Maele B et al. 2003), and a woodchuck posttranscriptional regulatory element (WPRE) 

which increases the amount of unspliced RNA in both nucleus and cytoplasm (Zufferey R et al. 1999; 

Ramezani A et al. 2000; Brun S et al. 2003). It was reported that a short “X-protein” encoded within 

WPRE might be oncogenic (Kingsman SM et al. 2005), so inactivation of the “X-protein” by mutation 

in WPRE was performed and was shown to unaffect WPRE function (Zanta-Boussif MA et al. 2009). 

Though strong constitutive promoter are commonly used to drive transgene expression, regulated 

expression from transfer vectors can be achieved to some extend with the use of endogenous 

promoters {Martin, 2005 #669}(Dupre L et al. 2004), tissue-specific promoters (Hioki H et al. 2007; 

Richard E et al. 2008), inducible promoters (Benabdellah K et al. 2011) or even with the insertion of 

microRNA (miRNA) target sequences to impede transgene expression in unwanted cells (Brown BD 

et al. 2006; Brown BD et al. 2007; Papapetrou EP et al. 2009). 

In this third generation vector system, Rev is encoded in a separate plasmid. Rev/RRE is required for 

optimal lentivector production, as it overcomes the nuclear retention of the lentiviral genomic RNA, 

which is mediated by inhibitory sequences involving the splice donor and gag. Alternative Rev/RRE-

independent systems have been developed, such as the use of codon-optimized gag-pol genes 

(Kotsopoulou E et al. 2000), or the use of the constitutive transport element of Mason-Pfizer monkey 

virus (Wagner R et al. 2000; Wodrich H et al. 2001). 

Retroviral vectors are able to incorporate envelope proteins from a wide range of enveloped viruses if 

they are co-expressed in producer cells, a phenomenon known as pseudotyping. The choice of 

envelope pseudotype alters the target cell specificity and physical properties of the virion (Cronin J et 

al. 2005). The most commonly used envelope protein is the vesicular stomatitis virus glycoprotein 

(VSV-G) which confers stability and broad tropism to viral particles (Burns JC et al. 1993). However, 

VSV-G-pseudotyped vectors at high concentrations can represent immunostimulatory elements at high 

concentrations (Pichlmair A et al. 2007), whereas the non-specific tropism may pose some safety 

concerns due to gene transfer into undesired cell types. In this context, envelope glycoproteins from 

other retroviruses having broadly but less ubiquitously tropism are exploited, such as the feline 

endogenous retrovirus RD114 Env or the gibbon ape leukemia virus (GALV) Env, which allow 

efficient transduction of CD34
+
 hematopoietic progenitors (Hanawa H et al. 2002; Relander T et al. 

2005). In addition, some efforts are made to generate targeting lentiviral vectors using a ligand protein 

or antibody fused to viral glycoproteins to retarget the lentiviral particles to specific cell-surface 

molecules (Yang L et al. 2006; Frecha C et al. 2008; Funke S et al. 2008; Gennari F et al. 2009).  

The level of expression from integrated retroviral vectors is subject to positional effects whereby 

adjacent chromosomal elements modulate the level of transgene expression (Lewinski MK et al. 

2005). This positional effect can induce a transcriptional silencing of the integrated provirus, which 

may involve methylation and histone deacetylation (Ellis J and Yao S 2005), thus limiting the 

potential therapeutic benefit. The use of chromatin insulators in the vector backbone can reduce these 

effects (Emery DW et al. 2000; Knight S et al. 2012). 

The safety concerning the use of retroviruses-derived vectors in gene therapy is discussed in section 

2.2 -. 
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2.1.3 - Recombinases 

Recombinases are specialized proteins which catalyze site-specific recombination between short 

recognition sites present on two DNA molecules. Many recombinases have been identified in a large 

number of prokaryotes and eukaryotes, but almost all fall into two families, namely the tyrosine and 

serine recombinases. 

The tyrosine recombinase family (also known as λ integrases) include the Cre recombinase from 

bacteriophage P1 (Sternberg N et al. 1986) and Flp recombinase from the yeast Saccharomyces 

cerevisiae (Hartley JL and Donelson JE 1980), while the serine recombinase family includes ΦC31 

integrase from the bacteriophage of Streptomyces species (Kuhstoss S and Rao RN 1991; Rausch H 

and Lehmann M 1991). The mechanism of recombination used by each family has been well-studied 

(reviewed in (Smith MC and Thorpe HM 2002; Grindley ND et al. 2006)). Although the two are 

mechanistically quite distinct, there are similarities between the two recombination processes. Both 

tyrosine and serine recombination sites contain two inverted recombinase binding sites. The size of the 

total recombination site varies between recombinases but is greater than 30bp for the most commonly 

used systems. A number of recombinases have been investigated for use in gene therapy, and the most 

studied is the ΦC31 integrase. This section describes in more details the mode of action, the 

applications and the safety of ΦC31. 

In its natural host bacterial cell, ΦC31 integrase catalyzes the integration of the ΦC31 phage genome 

into the bacterial genome in a precise and undirectionaly way. Integration is mediated by a binding of 

ΦC31 integrase to its attachment sites, named attB (bacterial attachment site) and attP (phage 

attachment site), which are present on both DNA molecule and are approximately 50% identical. This 

process is only phage-dependent and does not require any host cell cofactors. The integration leads to 

the formation of two hybrid sites, attL and attR, which are not substrates of ΦC31 (Thorpe HM and 

Smith MC 1998). During recombination, serine recombinases introduce one nick into each of the four 

DNA strands, which are subsequently resolved with integration of the DNA. When at least one 

parental molecule is circular (e.g. a plasmid) and the other is linear (e.g. a chromosome), the net result 

of recombination is the insertion of the circular parent into the recombination site of the linear parent. 

The different properties of serine recombinase such as unidirectional integration, large recognition 

sites and the absence of cofactors have made of ΦC31 integrase an attractive tool for gene 

engineering. 

A significant limitation is the requirement for target recombination sites in genome. Although human 

cells contain no perfectly matched recombination sites for ΦC31, divergent pseudo-attP sites are 

present, and can be used by ΦC31 integrase with reduced efficiency (Groth AC et al. 2000). A survey 

of the integration sites used by ΦC31 integrase in human cell lines found that several hundred 

potential sites exist, but the majority of integrations take place at a small subset of these (Chalberg TW 

et al. 2006). Of these hotspots, 19 integrations sites accounted for approximately 56% of the 

integration events. These hotspots are located across intergenic regions, introns, and exons in 

approximately the same proportion, with a slight preference for transcribed regions. An enhanced 

ΦC31 integrase has recently been developed which is 2-fold more efficient than the wild-type ΦC31 

(Keravala A et al. 2009). 
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Numerous proofs of concept have been reported for the use of ΦC31 as non-viral gene therapy vector 

system. In an hemophilia B animal model, a hydrodynamic tail injection of an attB-containing plasmid 

flanking the human factor IX and a ΦC31 integrase expressing plasmid was performed in knockout 

mice for factor IX, and approximately 10% of normal factor IX activity level was shown, well above 

the therapeutic level (Keravala A et al. 2011). The Duchenne muscular dystrophy (DMD) mouse 

model mdx was transplanted with muscle precursor cells (MPCs), which had been previously 

transfected with a ΦC31 vector system integrating a mini-dystrophin gene (Quenneville SP et al. 

2007). The modified MPCs transplantation leads to the expression of the mini-dystrophin in muscle 

fibers and to the reconstitution of the dystrophin complex.  

The genotoxicity of ΦC31 vector system was recently evaluated in cord-line epithelial cells (CECLs) 

isolated from the outer membrane of human umbilical cords (Sivalingam J et al. 2010). The cells were 

found to have a ΦC31 integrase-mediated integration efficiency of 3.0%. The analysis of 44 

independent integration events from polyclonal population revealed 18 distinct loci with 8p22 pseudo-

attP site most frequently recovered. The analyses of individual clones showed that most integrations 

events are found in endogenous retrovirus element (Weiss RA 2006), and it was also shown by 

analysis of genome copy number on a polyclonal population that loci copy gain and loss could occur 

through the use of ΦC31, as well as translocations. 

Even if there are no reports of oncogenic transformation due to ΦC31 integrase expression in vivo 

(Sivalingam J et al. 2010), safety concerns have been raised following reports that the enzyme can 

cause chromosomal rearrangements in mammalian cells (Liu J et al. 2006). 

While the use of ΦC31 integrase-mediated non-viral vector system seems to be promising, extensive 

further studies are needed to enhance the integration efficiency and evaluate more precisely the safety 

of these vectors. It is noteworthy that even under optimal specific conditions, the ΦC31 system could 

not allow integration at a unique and precise site of the genome. 

2.2 - INSERTIONAL MUTAGENESIS 

Vector integration into host chromosomes is necessarily a mutagenic event in that it alters the primary 

DNA sequence of the host. Insertion of DNA may affect functional elements already present at the 

integration site in a number of ways. Firstly, vectors may contain promoters and/or enhancers able to 

transactivate neighbouring host genes or dysregulate host promoters at long distances in either 

direction from the integration site. Secondly, vectors may insert into and disrupt coding sequences, 

resulting in abnormal or prematurely terminated transcripts. Thirdly, vector insertion may disrupt other 

regulatory elements such as miRNA cistrons.  

Transactivation of neighboring genes by integrated vector 

The first insertional mutagenesis event following a gene therapy protocol was obtained during the two 

principal trials for gene therapy of SCID-X1, which have been performed on a total of 10 patients 

(Cavazzana-Calvo M et al. 2000; Gaspar HB et al. 2004). The conduct of these two trials was very 

similar. Autologous bone marrow was extracted from patients, selected for CD34
+
 to enrich for HSCs 

and hematopoietic progenitors, and transduced ex vivo with a MoMLV-derived γ-retroviral vector 

carrying the IL2RG cDNA. Cells were then infused back into patients. Both trials were highly 

successful, resulting in engraftment and expansion of modified cells, correction of γc signaling, and 
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significant immune reconstitution. However, four patients in the French trial and one in the English 

trial experienced a serious adverse event in the form of a dysregulated expansion similar to T-cell 

acute lymphoblastic leukemia (T-ALL) 2-6 years after treatment (Hacein-Bey-Abina S et al. 2003a; 

Howe SJ et al. 2008). One of these patients subsequently died, but the others responded well to 

standard anti-leukemia chemotherapy and retained a functioning adaptive immune system after 

treatment. The initiating event in these leukemic events appears to have been integration of the γ-

retroviral vector into host chromosomes nearby known T-ALL proto-oncogenes leading to 

dysregulation of their expression (Hacein-Bey-Abina S et al. 2003b).  

 In all cases, a latent period on the order of years was observed between transplantation of gene 

modified cells and subsequent leukemic expansions. At the time of expansion, the polyclonal T-cell 

population displays a clonal dominance of one or few T-cell clones. In four of the five leukemic 

patients, dominant clones were found to contain retroviral insertions within or near the known T-ALL 

proto-oncogene LMO2 (Pike-Overzet K et al. 2007; Hacein-Bey-Abina S et al. 2008). This gene was 

overexpressed in mature T lymphocytes, probably as a result of the enhancer activity of the vector 

promoter. Insertions near other T-ALL proto-oncogenes such as SPAG6, CCND2, and LYL1 have 

also been identified. A general model has been proposed in which insertional mutagenesis leads to 

continued expression of developmental genes which are normally expressed in HSCs but normally 

downregulated during immature T-cell development, and this continued expression disrupts the 

normal T-cell expansion and maturation processes in the thymus (Rabbitts TH 1998). However, the 

vector-mediated transactivation on proto-oncogenes is still in debate. Several reports postulate that the 

IL2RG expression from the vector could cooperate with oncogenic transformation (Dave UP et al. 

2004; Pike-Overzet K et al. 2007). 

Other insertional mutagenesis events have been reported. A recent report of a leukemia apparition in a 

WAS gene therapy trial using a retroviral-derived vector showed an association to a LMO2 insertional 

activation (Trobridge GD 2011). Retroviral vector-mediated clonal proliferation of gene-corrected 

myeloid cells in patients treated for CGD was also reported (Ott MG et al. 2006). In the dominant 

clones, clusters of vector integrations were found in MDS1/EVI1, PRDM16 and SETBP1 loci. 

Paradoxically, this clonal dominance is thought to have contributed to the success of the therapy, 

increasing the proportion of corrected cells. However, silencing of the transgene has occurred and 

three patients developed myelodysplasia with monosomy 7. It was postulated that the insertional 

activation-mediated overexpression of EVI1 gene was the cause of a genomic instability, aberrant 

expansion, and myelodysplasia (Stein S et al. 2010). In the case of the CGD insertional mutagenesis, 

the strong enhancer activity of the spleen focus-forming virus (SFFV) LTR is thought to have induce 

the transactivation of EVI1, as the use of a γ-retroviral vector that do not contain SFFV LTR in 

another clinical trial did not induce clonal expansions while therapeutic benefit in all treated patients 

was obtained (Kang EM et al. 2010).  

All these clonal expansions resulted from a transactivation of proto-oncogenes by enhancer/promoter 

activities of the integrated vector. This can be induced by the vector LTRs in the case of retroviral 

vectors or by the internal promoter/enhancer used to express the transgene. 

Several approaches are currently developed to overcome this enhancer activity of retroviral vector 

LTRs. The use of SIN vectors with internal promoter expressing the transgene has been shown to 

reduce genotoxicity, as this type of vector design was less prone to cause tumors in a tumor-prone 

mouse model (Montini E et al. 2009; Montini E and Cesana D 2012). In hematopoietic cells, SIN-
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lentiviral vectors integrate near oncogenes at least twice less than LTR-driven γ-retroviruses (Cattoglio 

C et al. 2007). The transactivation of neighboring genes with SIN-lentiviral or SIN-γ-retroviral vectors 

is largely dependent on the type of vector’s internal promoter (Hargrove PW et al. 2008) and the use 

of physiological promoters reduces genotoxicity (Zychlinski D et al. 2008; Modlich U et al. 2009). 

SIN-vectors with internal physiological promoters have been evaluated in numerous clinically relevant 

models such as WAS, CGD, X1-SCID, recessive dystrophic epidermolysis bullosa, ADA-SCID, or 

junctional epidermolysis bullosa (Di Nunzio F et al. 2008; Thornhill SI et al. 2008; Trinh AT et al. 

2009; Titeux M et al. 2010; Avedillo Diez I et al. 2011; Papanikolaou E et al. 2012; van der Loo JC et 

al. 2012a; van der Loo JC et al. 2012b).  

In the case of DNA transposon vectors, it was shown that the terminal inverted repeats of the SB 

transposon have very low intrinsic promoter/enhancer activity and thus cannot activate endogenous 

genes near its integration site (Walisko O et al. 2008). However, transactivation of neighboring genes 

can still occur via internal promoter/enhancer activity.  

A promising strategy to reduce vector-mediated genotoxicity is the incorporation of enhancer-

blocking insulators into the vector. Insulators are DNA sequences that block the activity of enhancers 

on promoters when located between them (Bushey AM et al. 2008). Insulators have several 

advantageous functions. Firstly, they can protect the neighboring genes of integrated vector from its 

potential enhancer activities. They can also homogenize the expression of the transgene irrespective of 

the chromosomal insertion site and even reduce silencing of the transgene. The protective function of 

the chicken hypersensitive site-4 insulator has been evaluated in several studies using retroviral 

vectors (Malik P et al. 2005; Aker M et al. 2007; Arumugam PI et al. 2007; Evans-Galea MV et al. 

2007; Li CL and Emery DW 2008; Arumugam PI et al. 2009; Li CL et al. 2009; Gaussin A et al. 

2012) and DNA transposons (Walisko O et al. 2008), with promising results.  

Alteration of host gene transcripts  

The integration of the vector in gene therapy can also alter the nature of nearby genes transcripts. An 

example is observed in a gene therapy trial for β-thalassemia using a lentiviral vector (Cavazzana-

Calvo M et al. 2010). A clonal expansion was caused by alteration of the HMGA2 gene expression. In 

this case, the integrated vector leads to expression of a novel HMGA2 transcript resistant to 

degradation. As in a CGD trial, the clonal expansion in treated patients is thought to have contributed 

to the therapeutic benefit. To date, neither clinical evidences supporting the existence of a preleukemic 

state nor significant alteration of hematopoietic imbalance were found.  

Genotoxicity of integrated vectors can thus be induced by posttranscriptional deregulation of host gene 

expression. This includes the generation of chimeric, read-through viral and cellular transcripts, 

expressed when the transcription from a provirus inserted into a transcription unit bypass the 

polyadenylation signal and continues into the cellular gene (Zaiss AK et al. 2002; Schambach A et al. 

2007; Almarza D et al. 2011), aberrant splicing (Moiani A and Mavilio F 2012; Moiani A et al. 2012), 

and premature transcript termination. These chimeric viral-cellular transcripts are subsequently 

processed by splicing involving both viral and cellular acceptor and donor sites (Uren AG et al. 2005). 

Read-through fusion transcripts have been shown to cause tumors in experimental models using non-

SIN-retroviral vectors (Li Z et al. 2002; Montini E et al. 2009). SIN-lentiviral vectors was also found 

to induce read-through transcripts (Almarza D et al. 2011; Cesana D et al. 2012), although with less 

frequency than non-SIN-lentiviral vectors. The recoding of vector splice sites together with the use of 
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strong polyadenylation signal can drastically reduce read-through transcripts and improve the safety of 

the vectors. 

This mechanism of read-trough is also observed with the use of DNA transposons (Kool J and Berns 

A 2009) and could be potentially found for any integrative vectors. Careful attention must thus be 

provided on this issue.  

Disruption or alteration of the expression of regulatory elements 

Another possibility of insertional mutagenesis-mediated oncogenesis is a dysegulation of the 

expression of regulatory elements. A high proportion of the genome is transcribed and generates non-

coding elements such as miRNAs and long non-coding RNAs. MiRNAs are known to regulate gene 

expression either by translational repression or mRNA cleavage (Du T and Zamore PD 2005). Several 

studies have shown that miRNAs may have either proto-oncogenesis properties (Hayashita Y et al. 

2005; He L et al. 2005) or tumor suppressor activity (O'Donnell KA et al. 2005). The dysregulation of 

the expression of oncogenic miRNAs either by transactivation of by read-through may induce 

tumorigenesis mechanism, as well as disruption of tumor suppressor miRNAs. In fact, oncogenic 

miRNA cistron activation has already been observed in tumors generated in mice by MoMLV provirus 

integration (Wang CL et al. 2006). This highlights that vectors integration sites must be analyzed 

extensively and that insertions in non-coding regions are not necessarily synonym of safety. 

Evaluation of the safety of vectors by analyzing vector integrome  

It is now recognized that events of clonal dominance in vivo is associated to vector insertion sites 

(Montini E et al. 2006; Kustikova OS et al. 2007; Montini E et al. 2009). Indeed, early integration site 

profiling from clinical trials showed clusters of insertions in vivo from treated patients correlating with 

the occurrence of adverse events (Deichmann A et al. 2007; Schwarzwaelder K et al. 2007). The 

presence of specific target regions (CIS: common integration sites) in dominant myeloid clones was 

also observed in the two patients treated for CGD (Ott MG et al. 2006) and similar finding was 

recently shown in the WAS clinical trial (Boztug K et al. 2010), supporting the idea of a potential 

correlation between the presence of CIS and an increased risk of aberrant clonal expansion in vivo. A 

recent study exploiting integration site profiles from experimental models and ALD lentiviral gene 

therapy trial showed that the distribution of integration sites along the CIS could predict their 

genotoxic potential (Biffi A et al. 2011). Another recent study analyzed more than 7000 insertion sites 

retrieved from multiple clinical trials and showed the presence of shared CIS among the trials as well 

as restricted number of specific loci as preferential targets for retroviral integrations in vitro and in 

vivo (Deichmann A et al. 2011).  

However, it remains undefined to what extend the presence of CIS is the result of positive clonal 

selection in vivo after cell infusion in the patient, or if it derives from preferential targeting sites at the 

time of transduction (Cattoglio C et al. 2007). Integration sites selection during in vitro transduction 

seems to be influenced by cellular determinants. The presence of CIS in patient’s sample could not be 

per se responsible for abnormal expansion. Indeed, CIS involved in the genotoxic integrations in the 

SCID-X1 trials were also found at the same frequency in a ADA-SCID trial without leading to 

leukemic clonal expansions in patients (Aiuti A et al. 2007). Other factors including disease 

background (Kustikova O et al. 2010), the nature of the transgene, and the occurrence of additional 

mutations unrelated to vector insertions are also involved in aberrant expansions of transduced clones.  
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In ADA-SCID, a comparison of vector insertion sites retrieved from pre- and post-transplantation in 

two gene therapy approaches using either HSC or T-cells target cells showed that vector integration 

preferences is cell-specific and is related to both epigenomic state and expression profile of the cell 

type at the time of transduction (Biasco L et al. 2011). These types of bioinformatics strategies with a 

comprehensive analysis of insertion sites profiles coupled with analyses of epigenome and 

transcriptome (Cattoglio C et al. 2010a; Cattoglio C et al. 2010b) will be helpful to determine the 

nature of CIS detection in gene therapy applications and predict genotoxic risk in gene therapy. 

 All integrating approaches using non-targeting vector integration displays inherent mutagenesis risk. 

The development of targeting integrative strategies could represent an attractive alternative in gene 

therapy protocols. Numerous strategies and tools have been evaluated since the past two decades and 

some of them were found to be promising. Three parameters have to be carefully evaluated during the 

development of gene targeting tools: the efficiency of integration, the specificity of integration and the 

genotoxicity induced by the strategy adopted. Several strategies developed for oriented or targeted 

insertion are described thereafter. 

2.3 - ORIENTED INTEGRATION 

An approach to target DNA insertion into a chosen location of the genome is to retarget an existing 

semi-random integration mechanism. Several approaches have been evaluated in this attempt. The first 

involve the direct fusion of the transposase/integrase to sequence specific DNA-binding domains 

(DBDs) for retarget the preintegration complex (Fig. I-9A). Another approach consists in tethering the 

preintegration complex using a DNA-binding proteins that interact with either the DNA to be 

integrated (Fig. I-9B) or with the recombinase/transposase/integrase (Fig. I-9C). 

 

Figure I-9: DBDs-mediated strategies to target gene insertion illustrated for DNA transposon system. 

The DNA transposon system is composed of the transposable element containing the gene of interest and flanked 

by inverted repeats (IRs, blue arrows). The transposase (green rectangle), which binds the IRs, catalyzes the 
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transposition. (A) The targeting of a specific DNA site (dark gray rectangle) is achieved by using a DBD (dark 

blue circle) recognizing the target site and fused to the transposase. (B) Targeting is achieved by using two 

DBDs fused, one recognizing the DNA target site (dark blue circle) and the other binding the transposable 

element (light blue circle). (C) Targeting is achieved by using a protein interacting with the transposase (red 

rectangle) fused to a DBD recognizing the DNA target site (Dark blue circle).  

2.3.1 - Direct fusion of a DNA-binding domain to transposase/integrase 

The feasibility of a system involving the fusion of a DBD to transposase/integrase was firstly 

evaluated in vitro. The integrase of avian sarcoma virus fused to the DBD of the E. coli LexA protein 

showed an alteration of the integration profile with hot spots of integrated vector near a region 

containing LexA operators without altering the processivity of the integrase (Katz RA et al. 1996). 

The HIV-1 IN fused to DBD of the phage λ repressor was also able to target integrations near the λ 

repressor binding sites in vitro with no changes in the activity of HIV-1 IN (Bushman FD 1994). The 

three ZF DNA binding domain of the transcription factor Zif268 fused to HIV-1 IN showed a bias in 

the integration patterns near its specific binding sites in vitro (Bushman FD and Miller MD 1997). 

However, the infectivity of HIV-1 vector encoding this fusion IN was totally abolished. This strategy 

was applied to synthetic E2C six-finger ZF domain recognizing a 18 bp DNA site within the 5’-

untranslated region of the erbB-2 human gene. In vitro study showed that fusion HIV-1 IN-E2C is able 

to target integrations near the 18 bp E2C binding site and the fusion protein with an efficiency of up to 

60% and retains its processivity (Tan W et al. 2004). 

The fusion HIV-1 IN-E2C was subsequently tested for retargeting provirus integration to the human 

chromosomal E2C binding site in vivo in HeLa cell line, and it was shown an 10-fold increase of 

insertions near E2C binding site (Tan W et al. 2006), with however a drastically lower infectivity of 

viruses carrying fusion HIV-1 IN-E2C of 1 to 24% compared to wild-type IN viruses.  

 Retargeting using Fusion transposases was also evaluated. The PB transposase was fused to the 

DNA-binding domain of the Gal4 transcription factor, recognizing a 17 bp DNA site called upstream 

activating sequence (UAS). Retargeting of PB-Gal4 mediated transposition was evaluated in mosquito 

embryos on a plasmid target (Maragathavally KJ et al. 2006). The authors demonstrated that 67% of 

transpositions have occurred into a TTAA site (natural PB target site) located 1 kb upstream of the 

UAS plasmidic sequence. The SB transposase was fused to either Gal4 DBD or E2C DBD and 

retargeting of transposition was evaluated on plasmid DNA target sites in HeLa cell line (Yant SR et 

al. 2007). The authors showed that both SB-Gal4 and SB-E2C induce respectively an 11-fold increase 

and 8-fold increase of transpositions in the region surrounding the corresponding DNA target site, 

while fusion transposases activities were decreased to 26% and 20% of the wild-type, respectively. 

The targeting activity of fusion SB to the artificial three-finger ZF binding domain of the Jazz protein 

to the 9 bp Jazz binding site located in the utrophin gene (Corbi N et al. 2000) was evaluated in human 

HeLa cells (Ivics Z et al. 2007). While the fusion SB-Jazz transposase retained only 15% of activity 

compared to the wild-type SB transposase, no targeted events near the Jazz binding site in HeLa 

genome could be identified.  

Direct fusions of DBDs to transposase/integrase have shown to be challenging. It appears that this type 

of direct fusion is deleterious to the structure of the protein, generally leading to the decrease of the 

fusion protein activity. In the case of integrase-DBD fusions, the infectivity of virions is also altered. 
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Further improvements in the fusion protein design are still needed to impede a too drastic alteration of 

the structure/activity of the transposase/integrase. 

2.3.2 - Use of a DNA-binding domain fusion of a partner protein 

The strategy of using a DBD fusion to a partner protein that interact either with transposase/integrase 

or directly with the DNA to be integrated should be less deleterious regarding the 

transposase/integrase activity as those proteins are not modified. 

Ciuffi et al engineered an artificial tethering factor based on LEDGF/p75, which naturally directs 

HIV-1 intergation into transcription units. The strategy consists on the construct of the integrase 

binding domain of LEDGF/p75 fused to the DNA-binding domain of the phage λ repressor. An in 

vitro integration reaction was performed using purified LEDGF- λ repressor tethering factor and HIV-

1 integrase to catalyze integration into DNA containing the λ repressor target site. The presence of the 

fusion tethering factor was found to increase the rate of integration at sites surrounding the target site 

(Ciuffi A et al. 2006). This alteration of HIV-1 integration preferences using LEDGF/P75 fusion 

proteins was recently confirmed in vivo (Gijsbers R et al. 2010; Silvers RM et al. 2010). The transient 

overexpression of a fusion protein composed by the integrase binding domain of LEDGF/p75 to 

heterochromatin protein 1α in HEK 293 cells modify the integration profile of an HIV-1-based 

lentiviral vector from transcription units to heterochromatin (Silvers RM et al. 2010). The same results 

were found with the use of fusion protein composed of the integrase domain of LEDGF/p75 and the 

heterochromatin protein 1β (Gijsbers R et al. 2010), which induce a shift in HIV-1 lentiviral vector 

integration to heterochromatin regions in HeLaP4-CCR5 cells. 

 

The modification of a partner of the SB transposase has also been tested to evaluate the potential of 

tethering-mediated targeting (Ivics Z et al. 2007). The authors used the protein-protein interaction 

domain of the SB transposase called N57 (Izsvak Z et al. 2002) to construct an artificial fusion protein 

composed by N57 and the tetracycline repressor, which binds the tetracycline response element DNA 

sequence. A transgenic HeLa cell line containing a TRE-driven eGFP gene was created. It was shown 

the targeting efficiency was about 10% with integrated SB transposons spanning in a 2.5 kb region 

around the TRE-eGFP locus (Ivics Z et al. 2007). 

The retargeting of SB transposition was also achieved using a fusion protein composed of two 

DBDs: the tetracycline repressor, which recognizing the tetracycline response element of the 

transgenic HeLa cell line, and LexA, which recognize the LexA operator sequence inserted in the SB 

transposon (Ivics Z et al. 2007). In this experiment, 2 integrations out of 400 in total were identified 

around the TRE-eGFP locus. The authors also used another tethering protein consisting in a fusion of 

LexA and a SAF-box domain, which binds specifically to scaffold/matrix attachments regions (Kipp 

M et al. 2000). These sequences are involved in the modulation of chromatin structure and localization 

within the nucleus, allowing a regulation of gene expression by the formation of chromatin loops that 

become accessible to the transcription machinery. The use of a LexA-SAF-box fusion protein was 

shown to increase by 4-fold the frequency of SB transposon insertions near scaffold/matrix 

attachments regions (Ivics Z et al. 2007). 

The use of DBDs fusion proteins that tether the integration complex is actually not enough efficient 

for therapeutic applications and non-targeted integration still occur at a high frequency. In one hand, 

the binding of the endogenous LEDGF/p75 to HIV-1 IN will compete to those of the DBD-
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LEDGF/p75; and in the other hand, the natural DNA-binding of SB transposon will compete to the 

tethering activity of DBDs fusion protein. Several studies are again needed to overcome these off-

target issues before considering the use of these strategies on gene therapy. 

2.4 - TARGETED INTEGRATION 

The development of targeting vectors that can integrate the DNA sequence of interest at a precise and 

unique location in the human genome is the ultimate goal in gene therapy. In gene targeting, a DNA 

fragment introduced into cells is able to replace a portion of endogenous chromosomal DNA through 

homologous recombination (HR). For example, mouse ES cells can be transfected with partially 

homologous template DNA in order to produce specific genomic alterations (Doetschman T et al. 

1987). This has contributed greatly to basic biological research as it enables the production of adult 

mice carrying specific genomic alterations (Capecchi MR 2001). Gene targeting is a highly attractive 

approach to gene therapy as it offers the potential to insert therapeutic DNA at a known, “safe” 

location, or even to correct disease-causing mutations in situ. However, gene targeting in mammalian 

cells is extremely inefficient, with just 1 in 10
6
 mouse ES cells carrying the desired insertion and 100 

to 1000-fold more carrying background integrations elsewhere in the genome. 

It was shown first in yeast (Kostriken R et al. 1983) and later in mammalian cells (Rouet P et al. 1994) 

that the efficiency of gene targeting could be enhanced by the introduction of a double strand DNA 

break (DSB) at the target site using a site-specific endonuclease. The free ends at DSBs mark them as 

substrates for host DNA repair pathways, stimulating HR between the target and template DNA 

(reviewed in (Sung P and Klein H 2006)). Rouet et al reported that the expression of a targeting 

endonuclease increased the rate of gene targeting by 100- fold. 

Several nucleases have been evaluated since and display different features. 

2.4.1 - Meganucleases 

Meganucleases are naturally-occurring site-specific nucleases. The first two meganucleases, HO 

(Kostriken R et al. 1983) and I-SceI (Jacquier A and Dujon B 1985) have been identified in yeast 

mobile genetic elements. HO is known to naturally induce mating type switching in yeast by cleavage 

at the nuclear MAT locus followed by recombination. I-SceI is encoded by a mitochondrial group I 

intron and participate of the spreading, also called homing, of this intron to intronless copy of the gene 

(Jacquier A and Dujon B 1985; Chevalier BS and Stoddard BL 2001). For both proteins, their 

recognition sequences are known to be 18 bp long (Nickoloff JA et al. 1986; Colleaux L et al. 1988). 

Since then, hundreds of meganucleases have been identified in eukaryotes, bacteria and archae 

(Chevalier BS and Stoddard BL 2001). A large number of meganucleases are encoded by mobile 

genetic element such as group I introns or inteins and several have been shown to participate in the 

homing of mobile elements, so that they have been named Homing endonucleases (HEs).  

All HEs recognize long DNA cleavage sequence (> 12 bp). This length of recognition site is usually 

sufficient to be unique in mammalian cells. However, as with recombinases, none of these enzymes 

have useful target sites in human cells. Retargeting their substrate specificity by protein engineering 

was needed for their use in human gene therapy. The crystal structure of the I-CreI HE (Heath PJ et al. 

1997), and the structure of the protein bound to its target (Jurica MS et al. 1998) were resolved in the 

late nineties. HEs are classified into four families of proteins: the His-Cys box family, the GIY-YIG 
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family, the HNH family and the LAGLIDADG family. This latter is the well characterized, with nine 

members which have been crystallized. These studies allow the identification of a conserved core 

structure, characterized by a αββαββα fold. Generally, two αββαββα folds are facing each other and 

contribute to the active center. LAGLIDADG HEs can be homodimeric such as I-CreI, targeting a 

palindromic or pseudopalindromic DNA sequence, or monomeric such a I-SceI, targeting non-

palindromic sequences. Within each αββαββα fold, two relatively independent subdomains were 

identified. 

The analysis of HEs crystal structures allowed the engineering by combinatorial approaches of several 

mutants with a define cleavage specificity (Steuer S et al. 2004; Chen Z and Zhao H 2005; Arnould S 

et al. 2006; Ashworth J et al. 2006; Rosen LE et al. 2006; Silva GH et al. 2006; Smith J et al. 2006; 

Eastberg JH et al. 2007; Eklund JL et al. 2007; Niu Y et al. 2008). The coexpression of two I-CreI 

variants yields a heterodimeric species with a specific cleavage target (Arnould S et al. 2006; Smith J 

et al. 2006). However, the co-production of two I-CreI variants may result in the formation of 

homodimers rather than expected heterodimers. A possible strategy for overcoming this issue involves 

the engineering of the protein interface between the two monomers to impair the formation of 

functional homodimers and thus favor heterodimer formation (Fajardo-Sanchez E et al. 2008). 

Another strategy involves the creation of single-chain molecules adapted from natural monomeric HEs 

(Epinat JC et al. 2003; Li H et al. 2009). The use of either I-CreI variants (Smith J et al. 2006) or I-

CreI variants with improved specificity (Grizot S et al. 2009; Grizot S et al. 2010) has been recently 

shown to induce targeted recombination in human HEK 293 cells at the clinically relevant RAG1 loci, 

which is mutated in SCID-X1. The improved I-CreI variants could induce 3-6% of targeting RAG1 

recombination in transfected cells (Grizot S et al. 2009; Grizot S et al. 2010). Other clinically relevant 

loci have been successfully targeted by engineered HEs, such as XPC gene, involved in the 

Xenodrema Pigmentosum disease (Arnould S et al. 2007; Grizot S et al. 2009; Grizot S et al. 2010). 

These frequencies should be sufficient for gene repair strategies when the corrected cells subsequently 

display a selective advantage. However, many diseases are not on this particular case and require 

much higher levels of efficacy. 

Recent studies analyzing the potential impact of chromosomal context and epigenetics on the 

efficiency of meganucleases-mediated genome editing has shown that the chromatin accessibility 

modulates the efficacy of meganucleases (Daboussi F et al. 2012; Valton J et al. 2012). The efficiency 

of targeting mutagenesis (0.1% to 6%) was strongly correlated with the subsequent homologous gene 

targeting (<0.1% to 15%) (Daboussi F et al. 2012). The chromatin state of the cell thus appears to play 

a major role in the targeting efficiency. This was further confirmed by the identification of genes 

regulating gene targeting in a high-throughput approach (Delacote F et al. 2011). The authors showed 

that siRNAs directed against the ATF7IP gene, encoding a protein involved in chromatin remodeling, 

stimulated by 3- to 8-fold homologous gene targeting in various loci and cell types. These findings 

could explain the variation of homologous gene targeting efficiency observed in different cell types 

and cell cycle phases and open the way to the development of strategies improving homologous gene 

targeting. 

Meganucleases-induced DSBs can also be repaired by NHEJ, an error-prone process that frequently 

results in micro-insertions or micro-deletions (INDELs) at the cleavage site (Liang F et al. 1998). The 

propensity of a cell to use either NHEJ of HR varies with the cell type (Paques F and Duchateau P 



Introduction – Integrative approaches 

 

32 

2007) and also with the cell cycle (Kadyk LC and Hartwell LH 1992; Takata M et al. 1998; Gasior SL 

et al. 2001; Rothkamm K et al. 2003). Although NHEJ repairing of meganuclease-induced DSB can be 

an issue to gene therapy protocols; it can be used per se to correct a mutated gene. This was evaluated 

in human myoblasts nucleofected with several engineered meganucleases targeting different sites of 

the dystrophin gene carrying an out-of-frame deletion (Rousseau J et al. 2011). Mutations in the 

dystrophin gene are involved in DMD. It was shown that the use of a meganuclease targeting the exon 

50 of the dystrophin resulted in INDELs for which 44% of them would have permit the restoration of 

the dystrophin reading frame in DMD patients with deletions of exons 51, 51-53 or 51-60. Moreover, 

approximately 36% of the INDELs produced would have permit restoration of normal dystrophin 

reading frame in DMD patients with a deletion of exons 51-56. 

The parameters that remain to be improved when using meganucleases in therapeutic applications are 

the level of specificity and the level of induced homologous recombination while minimizing the 

frequency of NHEJ DSB-mediated repair. Meganucleases are promising tools as they exhibit high 

sequence specificity, cleaving as few as 1 in 10
8
-10

9
 random DNA sequences (Gimble FS et al. 2003; 

Scalley-Kim M et al. 2007). However, several meganucleases have been shown to cause some 

genomic instability as a result of NHEJ-mediated DSB repair (Rouet P et al. 1994; Monnat RJ, Jr. et 

al. 1999; Allen C et al. 2003; Guirouilh-Barbat J et al. 2004; Weinstock DM et al. 2006). Further 

studies on the potential genotoxicity of meganucleases inducing DSBs have to be conducted in 

clinically relevant animal models. The use of homing endonucleases that induce nicks in target DNA 

instead of DSBs is currently under development (Niu Y et al. 2008; McConnell Smith A et al. 2009) 

and could reduce genomic instability associated with DSBs. 

2.4.2 - Zinc-Finger nucleases 

Zinc-finger nucleases (ZFNs) are versatile and effective targeting reagent, which have separate DNA-

binding and DNA cleavage domains. The development of ZFNs was initiated by the observation that 

the natural restriction enzyme FokI has physically separable binding and cleavage domains (Li L et al. 

1992), with no apparent sequence specificity for the cleavage domain. It was also shown that the 

cleavage site could be redefine by changing the site recognition domain (Kim YG and Chandrasegaran 

S 1994; Kim YG et al. 1996; Kim YG et al. 1998).  

The crystal structure of the DNA binding domain from a zinc finger transcription factor (Pavletich NP 

and Pabo CO 1991) showed a relatively simple recognition motif in which a series of looped 

polypeptides, or “fingers”, contact three DNA bases per finger using three amino acids within each 

finger. The structure suggested that zinc finger transcription factors were in fact modular, and that the 

fingers could be interchanged to alter the DNA binding site specificity. It has been shown that 

endonuclease domains such as that of FokI can be fused to zinc finger DNA binding domains to 

construct ZFNs artificial endonucleases which can be targeted against an extremely large number of 

chromosomal sites (Kim YG et al. 1996).The FokI cleavage domain must dimerize to achieve DNA 

cleavage (Bitinaite J et al. 1998; Smith J et al. 2000), and the best way to induce this dimerization is 

the construction of two sets of fingers recognizing neighboring sequences, each fused to a monomeric 

FokI cleavage domain (Fig. I-10A). The optimum configuration involve the introduction of a short 

linker between the FokI cleavage domain and the zinc fingers with a spacer of 5 or 6 bp between the 

two ZF recognition sites that are in inverted orientation (Fig. I-10A). As meganucleases, ZFNs induce 

DSBs, which are then repaired either by NHEJ or HR pathways (Fig. I-10B). 
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Figure I-10: Schematic representation of ZFNs bound to DNA and ZFNs cleavage repair pathways. 

(A) Schematic representation of ZFNs DNA recognition. Zinc-fingers contacts with the DNA sequence are 

indicated thin lines. The spacer between the two zinc-finger binding sites are usually 5-6 bp. (B) After ZFNs 

DNA cleavage inducing a DSB, two repairing pathways can be used by the cell: Non-homologous end-joining 

(NHEJ) pathway, which usually incorporate mutations such as micro-deletions or micro-insertions and result to a 

targeted mutagenesis, and homologous recombination (HR) if a donor DNA containing sequences homologous 

to the DNA targeted site is added, resulting in an homologous targeted gene intergration. 

The “modular assembly” approach stimulated the collection of libraries of fingers, each finger 

recognizing a different DNA triplet (Segal DJ et al. 1999; Dreier B et al. 2005). Construction of 

artificial zinc finger domains proceeds by assembly of fingers to give the desired binding specificity 

(18-24 bp target site) followed by in vivo selection of functional domains (Maeder ML et al. 2008). 

ZFNs are not thought to be more efficient than natural endonucleases at stimulating gene targeting, but 

their flexibility of specificity has raised the prospect of useful applications. 

The first successful gene targeting using ZFNs in human cells pair was performed in HEK 293 cell 

line co-transfected with a ZFN expressing plasmid and a donor plasmid with an efficiency of 

approximately 1.8 gene targeting events per 10,000 cells (Porteus MH and Baltimore D 2003). Using 

ZFNs and template DNA delivered by plasmid transfection, Urnov and coworkers were also able to 

introduce small sequence changes into the endogenous IL2RG locus in 20% of K562 cells and 5% of 

primary human CD4
+
 T lymphocytes (Urnov FD et al. 2005). It was later shown that up to 8 kb of 

heterologous sequence can be inserted into this locus in cell lines by flanking it with 750 bp sequences 

homologous to the sequence surrounding the DSB (Moehle EA et al. 2007). Gene addition of this type 

was shown at the CCR5 locus in 35% of human hematopoietic K-562 cells, 39% of Jurkat cells, and 

up to 0.11% of primary CD34
+
 hematopoietic progenitor cells transduced with a ZFN-expressing 

integrase-defective lentiviral vector (Lombardo A et al. 2007). Human embryonic stem cells (hESCs) 

and human induced pluripotent stem cells (hiPSCs) were also genetically modified using ZFN 
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targeting different loci, such as OCT4 gene or PITX3 gene (Hockemeyer D et al. 2009). Although, it 

appear that HR-mediated gene targeting using ZFNs in hESCs and hiPSCs is poorly efficient (Zou J et 

al. 2009).  

 ZFNs can also be used to targeted mutagenesis of a gene of interest, as the DSB induced by ZFNs 

can be repaired by the error-prone NHEJ pathway (Fig. I-10B) (Bibikova M et al. 2002). This strategy 

has been used to knock out expression of CCR5, a major co-receptor for HIV-1 infection of T 

lymphocytes, in order to protect these cells from HIV infection (Perez EE et al. 2008). The authors 

used an adenoviral vector to transiently express the ZFN targeting the CCR5 locus in order to enhance 

the ZFN delivery in targeted cells. Gene disruption of CCR5 in human primary CD4
+
 T cells was 

achieved with an efficiency of up to 50%. In February 2009, Sangamo Biosciences has begun a 

clinical trial using this system (http://www.sangamo.com/pipeline/index.html). The ZFN-mediated 

CCR5 gene disruption system is also in a pre-clinical phase for ex vivo anti-HIV therapy, using C34
+
 

hematopoietic progenitors as the target cells (Holt N et al. 2010), and the evaluation of ZFN-mediated 

CXCR4 gene disruption system is under study (Yuan J et al. 2012). Functional correction of the factor 

IX gene was also demonstrated in vivo in a humanized mouse model of hemophilia B using an intra-

peritoneal (I.P.) injection of two adeno-associated virus vectors, serotype 8 (AAV8) expressing a ZFN 

targeting the factor IX gene and the DNA sequence to be integrated (Li H et al. 2011), resulting in the 

restoration of a plasma factor IX level of approximately 2-3% of normal. 

One concern with the application of nucleases for gene addition or knockout is the cytotoxicity 

observed with intracellular endonuclease expression (Alwin S et al. 2005; Porteus MH 2006). In 

general, endonuclease toxicity is thought to be due to off-target DNA cleavage. Recent improvements 

have been made by redesigning the dimer interface to prevent unwanted homodimerization (Miller JC 

et al. 2007; Szczepek M et al. 2007; Sollu C et al. 2010). ZNF architecture modification is also being 

addressed to further enhance the efficiency and specificity of ZFNs (Doyon Y et al. 2011). Even 

though off-target cleavage has been much reduced by these latter techniques, it is difficult to anticipate 

the occurrence of adverse events, as very low frequency of deleterious events can be amplified by 

selection based on growth advantage. Development of highly sensitive methods for the detection of 

DSBs in ZFN expressing cells is currently under study ((Gabriel R et al. 2011; Pattanayak V et al. 

2011) and reviewed in (Mussolino C and Cathomen T 2011)). 

Another inherent problem with the use of nucleases inducing DSB is the repairing by the error-prone 

NHEJ pathway, at least in the case where an HR-mediated gene integration is wanted. Inducing new 

mutations at the target site in a high proportion of the cell (e.g. NHEJ is more efficient than HR) could 

be problematic. However, some cases may tolerate new mutations, as long as a sufficient number of 

cells are well corrected, as it could be the case of IL2RG targeting. The use of ZFNs technology for 

therapeutic applications has thus to involve extensive analyses of the frequency of off-target and 

NHEJ-mediated mutagenesis to avoid any potential deleterious genome alteration events. 

2.4.3 - TALENs 

The major hurdle of using either meganucleases or ZFNs in genomic targeting is the challenge of 

engineer new nucleases with wanted DNA binding specificities. Although some improvements have 

been made to facilitate the design, the techniques used require labor-intense selection and still 

empirical. An alternative class of engineered nuclease, which has several advantages over 

meganucleases and ZFNs, have been developed recently and is based on the identification of novel 

http://www.sangamo.com/pipeline/index.html
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DNA-binding proteins called Transcription activator-like effectors (TALEs) (Boch J et al. 2009; 

Moscou MJ and Bogdanove AJ 2009). 

TALEs are proteins produced by Xanthomonas pathogens during host plant infection and delivered to 

the nucleus of the plant cells. The TALEs proteins act as transcription factors by binding to specific 

DNA sequences and activating gene expression. The central region of the protein is composed by 

tandem repeats of 34 amino acids sequences, named monomers, which are involve in the DNA 

recognition and binding (Kay S et al. 2007; Romer P et al. 2009) (Fig. I-11A). The sequence of each 

monomer is highly conserved, except in two positions at amino acids 12 and 13, named repeat variable 

diresidues (RVDs). The identity of these RVDs determines the nucleotide-binding specificity of each 

monomer, with one monomer binding one nucleotide of the DNA target (Boch J et al. 2009; Moscou 

MJ and Bogdanove AJ 2009). It was shown that a simple cipher specify the target base of each RVDs 

(NI target nucleotide A, HD target nucleotide C, NG target nucleotide T and NN target nucleotides G 

or A). The linear sequence of monomers in TALEs thus determines the target DNA sequence bound 

by TALEs. The only fixed position is a thymine at the beginning of the DNA target site, which is 

probably bound by a region of the protein within the nonrepetitive N-terminus domain. Each natural 

TALEs is thus able to specifically bind a DNA sequence of 35 bp long beginning with a T. This 

modular architecture of TALEs has been used to design site-specific nucleases by fusing the cleavage 

domain of FokI to the TALEs monomers, creating TALE nucleases (TALENs) (Christian M et al. 

2010) (Fig. I-11B). 

 

 

Figure I-11: Schematic representation of TALEs and TALENs 

(A) Structure of natural TALEs from Xanthomonas pathogen. Each DNA binding monomer (colored rectangles) 

consists of 34 amino acids highly conserved except amino acid in position 12 and 13 which varies among 

TALEs monomers (repeat variable diresidus, RVDs). Each RVDs determines the bounded nucleotide (NG = T; 

HD = C; NI = A; NN = G or A). The amino acid sequence of the adjacent monomers specifies the sequence of 
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targeted DNA, which always begin with a T (in bold letter). (B) Schematic representation of engineered TALE 

nucleases (TALENs). TALEs monomers are fused to FokI cleavage domain using a linker. Each TALENs is 

engineered to recognize specific sequences separated by a spacer for which the length (from 12 to 40 bp) 

depends directly on the length of the linker (from 17 to >200 amino acids). The left TALEN binds the top strand 

of its DNA target site and the right TALEN binds the bottom strand of its DNA target site. The binding of each 

TALENs to their DNA target site induce a dimerization of FokI domain and a DSB at the DNA target site. 

 

The fact that TALEs monomers target only one nucleotide makes them the most modular site-specific 

nucleases. This way, TALENs can theoretically target any DNA sequence. To date, several locus of 

the human genome have been successfully targeted by TALENs. 

TALENs were used in human K-562 cell line to induce gene modification in CCR5 locus by HR-

mediated repair pathway with a frequency of up to 16% (Miller JC et al. 2011). Another group has 

demonstrated TALENs mediated site specific genome modifications in hESCs and hiPSCs at OCT4, 

PITX3, and AAVS1 loci by HR-mediated repair (Hockemeyer D et al. 2011), but targeting efficiency 

in non-selected population was not determined. The DNA target sites chosen by this group have 

already been targeted by ZFNs in a previous study (Hockemeyer D et al. 2009), and the TALENs 

targeting efficiency was approximately the same than those of ZFNs, with also low frequency of off-

targets. Another comparison between well-characterized ZFNs targeting CCR5 locus (used in the 

clinical trial initiated by Sangamo Biosciences; see Introduction section 2.4.2 -), ZFN targeting IL2RG 

locus, and engineered TALENs targeting the same DNA sites was also performed in HEK 293 cells 

(Mussolino C et al. 2011). In this study, the targeted efficiency of nucleases was assayed by analyzing 

the frequency of DSB repaired by error-prone NHEJ pathway. They showed that TALEN was about 

half as effective that ZFN on IL2RG locus, with frequencies of targeted genomic modifications of up 

to 14% for TALEN and 37% for ZFN, and slightly more efficient than ZFN on CCR5 locus, with 

frequencies of targeted genomic modifications of up to 17% for TALEN and 14% for ZFN. Moreover, 

off-target activity to the CCR2 locus was as low as 1% for TALEN while it was about 11% for ZFN. 

The cytotoxicity of TALEN was also shown to be lower than those of ZFN (~ 80% of cell survival) 

than with ZFN (~40% cell survival). 

The construction of TALENs expressing constructs has very recently been improved by the 

development of new methods (Cermak T et al. 2011; Li T et al. 2011; Morbitzer R et al. 2011; Zhang 

F et al. 2011; Briggs AW et al. 2012; Sanjana NE et al. 2012), and guidelines for design of TALENs 

are also available (Doyle EL et al. 2012). TALENs have been showed to display less off-target activity 

than ZFNs (Mussolino C et al. 2011). A possible explanation to this difference is the existence of the 

conserved 5’ T nucleotide in all natural TALEs DNA binding sites. It has been postulated that this 5’ 

T nucleotide could pair with an unknown region of the N-terminal domain of TALEs and it was shown 

that this T position is critical for TALE-DNA interaction. Thus, this fixed and obligate 5’ T nucleotide 

binding could represent a great impede to off-target TALENs binding and cleavage. It is also likely 

that the high length of TALENs target site (usually 34-38 bp) compared to that of ZFNs (18-24 bp) 

will also contribute to the higher specificity and thus lower toxicity of these new site-specific 

nucleases. However, further studies are still needed to fully assess the specificity and efficiency of 

TALENs, in particular in human primary cells and in animal models. 
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2.5 - COMBINATORIAL APPROACHES 

An alternative approach to retargeting integration is to provide a given vector with an entirely new 

integration mechanism. A number of such hybrid vectors have been investigated which combine the 

gene transfer activity of one vector with the integration activity of another (Table I-12). This 

combination is particularly useful when either the gene transfer vector is normally non-integrating 

(Adenoviral vectors or AAV vectors) or when the delivery of the gene transfer vector system to target 

cells is poorly efficient (non-viral based delivery of transposases, recombinases, ZFNs or 

meganucleases). In this way, it is possible to generate vectors which combine desirable cell tropism 

and integration properties for particular gene therapy applications. 

Gene transfer 

vector 

Integration 

mechanism 
Integration profile References 

Ad AAV-Rep Site-specific 

(Recchia A et al. 1999; Recchia A et 

al. 2004; Goncalves MA et al. 2005; 

Goncalves MA et al. 2006; Wang H 

and Lieber A 2006; Goncalves MA et 

al. 2008) 

Ad 

SB transposase random 
(Yant SR et al. 2002; Hausl MA et al. 

2010) 

ΦC31 integrase 
Pseudo-random  

(into pseudo attP sites) 

(Ehrhardt A et al. 2007) 

MoMLV intergrase 
Semi-random  

(into active genes) 

(Zheng C et al. 2000; Murphy SJ et 

al. 2002) 

Foamy virus integrase Random (Picard-Maureau M et al. 2004) 

HSV-1 AAV-Rep Site-specific 
(Heister T et al. 2002; Wang Y et al. 

2002; Liu Q et al. 2006) 

HSV-1 

SB transposase Random 
(Bowers WJ et al. 2006; de Silva S 

and Bowers WJ 2011) 

MoMLV integrase 
Semi-random  

(into active genes) 

(de Felipe P et al. 2001) 

IDLV ZFN Site-specific 
(Lombardo A et al. 2007; Cornu TI et 

al. 2008) 
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Gene transfer 

vector 

Integration 

mechanism 
Integration profile References 

SB transposase Random 
(Staunstrup NH et al. 2009; Vink CA 

et al. 2009; Moldt B et al. 2011) 

   IDLV Meganuclease Site-specific (Cornu TI and Cathomen T 2007) 

AAV Meganuclease Site-specific 
(Miller DG et al. 2003; Porteus MH et 

al. 2003) 

Table I-12: Hybrid vector systems. 

Ad: adenoviral vector; HSV-1: herpes simplex virus type 1 vector; IDLV: integrase-deficient lentiviral vector; 

AAV: adeno-associated viral vector; AAV-Rep: AAV Rep protein involved in the AAV site-specific integration 

into the AAVS1 locus; SB: Sleeping Beauty; MoMLV: Moloney murine leukemia virus. 

 

AAV-Rep mediated integration 

AAV is a single-stranded, non-enveloped DNA virus belonging to the family Parvoviridae. Unlike 

retroviruses, AAV does not require chromosomal integration for progression through the virus 

replication cycle. Perhaps as a consequence, the efficiency of AAV integration is considerably lower 

than that of retroviruses. Nonetheless, AAV can integrate into the host genome by a Rep-mediated 

mechanism. In the presence of AAV large replication protein Rep78 or Rep68, wild-type AAV 

integrates preferentially into a site on human chromosome 19 known as AAVS1 (Kotin RM et al. 

1990).  

 The large Rep proteins are essential non-structural proteins with helicase and strand and sequence-

specific endonuclease activities (Im DS and Muzyczka N 1990). During replication of the AAV DNA 

genome, Rep binds to a (GAGC)3 Rep binding element present in the virus inverted terminal repeats 

and nicks the double-stranded DNA genome at a terminal resolution site. A Rep binding element is 

also present at the AAVS1 site on chromosome 19, and Rep is able to tether the AAV genome to the 

AAVS1 site (Weitzman MD et al. 1994). However, most intracellular wild-type AAV genomes do not 

integrate, and the efficiency of Rep-mediated integration is about 10-15%. In recombinant AAV 

vectors lacking Rep, integration occurs at a very low frequency and randomly throughout the genome 

(Miller DG et al. 2005).  

The construction and production of recombinant AAV vectors containing Rep expressing cassettes 

and allowing transgene site-specific integration is impractical and uneasy because of the very limited 

packaging size of AAVs and also because of the deleterious effect that Rep is known to have on viral 

replication. To overcome these issues, hybrid vectors were designed using either Adenoviral vector or 

Herpes simplex virus (HSV)-1 vector as gene transfer vector. 

 

 Adenoviruses are double-stranded DNA non enveloped viruses with a virus genome from 26 to 45 kb. 

Recombinant adenoviral vectors are currently the most efficient vectors for gene transfer into a high 

number of cells. However, Ad viruses induce acute toxicity, inflammatory and cytotoxic immune 

response against viral proteins, and the Ad genome predominantly persists as an episomal state and is 

not integrated into host cell chromosome, thus impeding a long-term expression of the transgene in 
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mitotic cells. The last generation of recombinant Adenoviral vector is the Helper-dependent adenoviral 

vector (HD-Ad), which lacks all viral genes and only retain the adenoviral inverted repeat sequences 

and the packaging signal (Andrews JL et al. 2001). The production of HD-Ad requires a helper virus 

vector containing all the viral genes for replication and production and in which the packaging signal 

is excisable (Parks RJ et al. 1996). The absence of all viral genes in HD-Ad induces a high cloning 

capacity of up to 37 kb and significantly reduces the limitations associated with immune responses and 

limited transgene expression (Morral N et al. 1998; Morsy MA et al. 1998; Schiedner G et al. 1998; 

Thomas CE et al. 2000). HD-Ad was thus used to create hybrid vectors using the AAV-rep mediated 

integration system (Recchia A et al. 2004). 

 In 1999, Recchia et al. developed a two-vector HD-Ad system. The first HD-Ad vector carries the 

Rep78 gene under the control of either T7 (with the phage λ DNA for expression of the T7 RNA 

polymerase) or α-1-antitrypsin liver specific promoter, which both allows overcoming the negative 

effects of Rep expression during vector production. The other HD-Ad vector carries the transgene 

flanked by AAV inverted terminal repeats. They showed that up to 35% of the insertions occurred into 

the AAVS1 site in human hepatoma HepG2 cell line. The tropism of HD-Ad hybrid vectors was later 

broaden with the generation of fiber-modified Ad capsids (Goncalves MA et al. 2006; Wang H and 

Lieber A 2006; Goncalves MA et al. 2008). Indeed, several clinically relevant cell types, such as 

human hematopoietic stem and progenitor cells or mesenchymal stem cells and myoblasts are 

refractory to transduction by conventional HD-Ad vectors, due to the absence of the Ad (and 

Coxsackie B virus) CAR receptor on the cell surface of these cells (Shayakhmetov DM et al. 2000; 

Knaan-Shanzer S et al. 2001; Knaan-Shanzer S et al. 2005; Goncalves MA et al. 2006). Using fiber-

modified Ad capsid, human muscle cells (Goncalves MA et al. 2006; Goncalves MA et al. 2008) and 

human hematopoietic cells (Wang H and Lieber A 2006) were successfully transduced and Rep-

mediated site-specific integration of large transgenes (14 or 27 kb) into AAVS1 was demonstrated.  

The HSV is also used to develop hybrid vectors. HSV is an enveloped virus which belongs to the 

family herpesviridae. Its genome is approximately 152 kb in size. Replication-defective HSV 

amplicon vectors based on HSV-1 serotype are usually used for gene delivery (Cuchet D et al. 2007). 

HSV-1 amplicons are helper-dependent vectors carrying a DNA plasmid containing the HSV-1 origins 

of replication, the packaging signal and the gene of interest (Spaete and Frenkel 1982). They have a 

high packaging capacity of up to 100 kb (Wade-Martins et al. 2001) and are able to transduce a large 

number of dividing and non-dividing cells, with a high tropism for neuronal cells (Sena-Esteves et al. 

2000). As adenoviral vectors, they persist as episomes into transduced cells. They are also able to 

establish latency while maintaining some transcriptional activity. However, some hurdles has to be 

overcome, such as the silencing of most viral and non-viral promoters after injection of the vector in 

the brain (Suzuki M et al. 2006), which limit the duration of the transgene expression. The strategy 

consisting in using genetic elements from AAV that confer genetic stability by integrating the 

transgene into host chromosome is one of the approaches being developed.  

 Gene integration in AAVS1 site was also showed using HSV-1/AAV hybrid two-vector system 

(Heister T et al. 2002; Wang Y et al. 2002). The system was further improved by using a tetracycline-

regulated Rep expression system to tightly control Rep expression and allowed the design of a one-

vector system (Recchia A et al. 2004). Site-specific AAVS1 integrations were shown into human 

primary cells (0.1 to 16%) and transgenic mice (0.2% to 2% in mice liver hepatocytes). To further 

improve the production of Rep-containing hybrid vectors, Liu et al. placed the rep promoter upstream 
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of the transgene and the Rep coding sequence downstream of the transgene and the whole integrating 

cassette was flanked first with AAV inverted terminal repeats and then with LoxP sequences (Liu Q et 

al. 2006). Rep is thus not expressed during hybrid vector production, yielding titers as high as standard 

HSV-1 amplicons vectors. However, the expression of the Cre recombinase in transduced target cell 

induces a circularization to the LoxP sequences allowing the Rep coding sequence to become close to 

its promoter and thus expressed. The integration of the AAV inverted terminal repeat-cassette induces 

a termination of the Rep expression. The integration efficiency was about 20% in HEK 293 cells 

expressing Cre with 70% of correctly targeted integrations. However, this system can only be used in 

cells expressing the Cre recombinase, so that adaptations are needed to its use in common gene 

therapy applications. 

Although the Rep-mediated hybrid vector systems have been shown to be very promising, several 

hurdles to their use in therapeutic applications still exist. The genotoxic risk induced by non-targeted 

integrations has to be carefully evaluated. Indeed, the mechanism of Rep-mediated integration 

frequently results in multiple insertions as well as significant and unpredictable rearrangements to both 

vector and host DNA (reviewed in (McCarty DM et al. 2004)). As with other proteins that induce 

double-strand beaks into the host genome, the risk of chromosomal rearrangements and genomic 

mutations is the major issue to be addressed. In addition, the poor efficiency of Rep-mediated 

integration, in particular in human primary cells, limits its use in clinical applications. Further 

improvements are thus required before considering the use in clinic of Rep-mediated site-specific 

integrations with hybrid vectors. 

Hybrid vectors for efficient delivery of transposase/ recombinase/nucleases 

Efficient delivery of transposase, recombinase or site-specific nucleases systems into target cells using 

naked DNA remains a tough challenge. In this context, the integration machineries based on 

transposase, recombinase, and site-specific nucleases have been used together with non-integrating 

virus vectors in order to obtain hybrid vectors combining the efficiency of virus vectors to transduce 

target cells as well as deliver genes into the host nucleus and the integration machinery of 

transposase/recombinase /nucleases. 

The SB transposase was used in hybrid vector either to allow transgene integration in the case of 

hybrid vectors using non-integrating viral vector such as adenoviral vectors (Yant SR et al. 2002; 

Hausl MA et al. 2010) or HSV-1 viral vectors (Bowers WJ et al. 2006; de Silva S and Bowers WJ 

2011), or to overcome the genotoxic effect of semi-random integration pattern into active genes of 

HIV-1-based lentiviral vectors (Staunstrup NH et al. 2009; Vink CA et al. 2009; Moldt B et al. 2011). 

 Yant et al. developed a two-vector system using the HD-ad gene delivery system (Yant SR et al. 

2002). The first HD-Ad vector contains the SB transposon carrying the human factor IX gene flanked 

with Flp recombinase recognition target. These sequences are used to circularize the DNA because the 

SB transposase is more efficient on circular DNA than on linear DNA and the HD-Ad packaged DNA 

is predominantly linear. The second HD-Ad carries Flp and SB transposase coding sequences. In order 

to evaluate the possible long-term expression of the human factor IX, which is the missing protein in 

hemophilia B patients, systemic in vivo delivery of these two hybrid vectors was performed in mice. It 

showed efficient transduction of mouse hepatocytes (up to 45%) and stable integration of the 

transgene leading to the expression of human factor IX at therapeutic levels in mice undergoing rapid 
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liver cell cycling (Yant SR et al. 2002). The same system was used in a recent study and those results 

were confirmed with therapeutic level of factor IX of approximately 2-4% of normal in mice (Hausl 

MA et al. 2010). This last study also evaluated the system in a dog model form hemophilia B with the 

canine factor IX gene used as the transgene. The authors observed high levels of circulating canine 

factor IX in treated dogs one week post-injection followed by a drop to low but therapeutic levels after 

two weeks (Hausl MA et al. 2010). However, an adaptive immune response against the adenoviral 

vector capsid epitopes was observed by an increase level of anti-adenoviral neutralizing antibodies. 

 Bowers et al. used the SB transposon in a hybrid vector based on HSV-1 gene delivery to target 

neuronal cells and achieve transgene integration and long-term expression (Bowers WJ et al. 2006). 

The HSV-1 viral vector was also used because it induces only a mild inflammatory response 

(Olschowka JA et al. 2003). The system was based on two hybrid vectors, one carrying the SB 

transposase gene under the control of HSV immediate early 4/5 promoter, and the other carrying the 

SB transposon containing a β-galactosidase-neomycin resistant fusion gene under the control of the 

Rous sarcoma virus LTR promoter element. In contrast to the HD-Ad system, in which the packaged 

DNA is linear, the HSV-1 system allows the packaging of circular DNA. The efficiency of 

transposition in baby hamster kidney cultured cells was approximately 10 to 15% (Bowers WJ et al. 

2006). The intracranially injection of the two hybrid vectors in mice embryos in utero resulted in the 

neuronal expression of the fusion β-galactosidase-neomycin protein in all brain sections of treated 

mice sacrificed 97 days post-transduction (Bowers WJ et al. 2006), suggesting that neuronal 

precursors cells have underwent SB transposition (reviewed in (de Silva S and Bowers WJ 2011)). 

 The hybrid lentiviral vector/SB transposon was used to both efficiently deliver the SB transposon 

system into the cells and overcome the biased integration pattern of lentiviral vectors to active 

transcription units. The lentiviral vector used is a HIV-1-based integrase-defective lentiviral vector 

(IDLV). The integrase activity of IDLVs is abolished through the introduction of the D64V mutation 

in the integrase (Vargas J, Jr. et al. 2004). After transduction with these IDLVs/SB hybrid vectors, SB 

transposition occurs from 1-LTR or 2-LTR circles, naturally formed. Staunstrup et al. designed a two 

hybrid vectors system, one carrying the SB100X transposase under the control of a phosphoglycerate 

kinase (PGK) promoter, and the other carrying the two SB transposon inverted repeats together with a 

puromycin reporter gene (Staunstrup NH et al. 2009). They showed that SB transposition from LTR 

circles was efficient in HEK 293 cell line; although the number of puromycin resistant clones was 

approximately 12-fold lower than with a conventional integrase-proficient LV. They also 

demonstrated that the integration profile using IDLV/SB hybrid vector was identical to those of the SB 

transposon, with a random integration pattern, as previously shown (Yant SR et al. 2005). This latter 

results was also confirmed using the less active SB11 transposase (Vink CA et al. 2009). Stable and 

random integrations were also observed in human primary fibroblasts and keratinocytes (Moldt B et 

al. 2011), but transposition efficiency was significantly lower than in human cells lines, with up to 

0.03% of transposition in primary cells compared to up to 10% of transposition in cell lines. 

 The use of hybrid vectors using SB transposons is promising but the efficiency of transposition in 

human primary cells still needs to be improved. 

The integration machinery of the ΦC31 integrase has been used to design an HD-Ad/ΦC31 hybrid 

vector, evaluated in mice (Ehrhardt A et al. 2007). The ΦC31-mediated integration of human factor IX 

gene in mice liver was demonstrated by injection of a two HD-Ad vector system followed by rapid 

cell cycling of mouse hepatocytes and resulted in the expression of human factor IX at therapeutic 
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level (12% of normal) until 122 days post-injection (Ehrhardt A et al. 2007). The authors also shown 

that the integration pattern of the transgene was not site specific, with only one insertion into a 

previously characterized ΦC31 hot spot (Olivares EC et al. 2002) on 40 analyzed integration sites. 

This suggests that the ΦC31-mediated integration mechanism is not as specific as it was thought to be.  

Hybrid vector are also used to efficiently deliver site-specific nucleases such as ZFNs and 

meganucleases. Two examples of IDLV-based hybrid vectors are described.  

Firstly, Lombardo et al. generated IDLVs able to integrate by homologous recombination a donor 

DNA consisting of the GFP gene flanked by IL2RG or CCR5 homologous regions. In this study, 

homologous recombination was stimulated by ZFN. Three IDLV were used, two for expression of 

each half of the ZFN dimer and one for the delivery of the donor DNA template and cells were 

analyzed by FACS about 15 days post-infection. When using a ZFN targeting the IL2RG locus, up to 

6.3% of K562 cells infected by the three IDLV were GFP positive, while 1.1% of cells became GFP 

positive in absence of the ZFN (Lombardo A et al. 2007). When the authors used a ZFN targeting the 

CCR5 locus, gene addition occurred in up to 44% of K562 cells with a 2% background integration rate 

and in up to 0.06% of CD34
+
 hematopoietic progenitor cells with a 0.005% background integration 

rate (Lombardo A et al. 2007). 

Secondly, Cornu et al. reported a lentiviral vector able to undergo gene targeting by homologous 

recombination stimulated by the meganuclease I-SceI (Cornu TI and Cathomen T 2007). In this study, 

the I-SceI expression cassette and the homologous repair template were cloned into two separate 

IDLVs and co-transduced into target cells previously transduced with either retroviral vector or 

lentiviral vector encoding the eGFP gene. Gene conversion at a chromosomal eGFP target was 

observed in approximately 1% of HEK 293 cells transduced with both IDLVs and 0.03% of cells 

transduced with the template IDLV only. 

The major limitation in these approaches is thus the efficiency of the HR-mediated repair of DSBs 

induced by the nucleases, as discussed in Introduction section 2.4 -. 

2.6 - SUMMARY AND ALTERNATIVE STRATEGY 

The different approaches actually used and developed to integrate a transgene into a host chromosome 

can be split into two major groups. The first group is composed of integration systems that cannot 

target the integration at a unique site of the genome, such as retroviral vectors, DNA transposons and 

recombinases. The major limitation of their use is the risk of insertional mutagenesis. The DNA 

transposon system is thought to be less genotoxic than retroviral vectors because of their random 

integration pattern. Still, the insertional mutagenesis risk is not overcome, as approximately 35% of 

DNA transposons-mediated integrations occur in gene (Vigdal TJ et al. 2002). This limitation leads 

researchers to develop other integration systems, which compose the second group of approaches. 

Engineered site-specific nucleases which can induce homologous recombination by creating a double-

strand break at a specific location of the genome are thus evaluated, as well as AAV-Rep-mediated 

site-specific integration. Although being attractive and promising, these two strategies also imply 

some adverse events that have to be faced out. The occurrence of off-target integrations is obviously a 

major limitation, even though much effort has been made to increase the specificity of the nucleases to 

their target site. Moreover, all site-specific integration systems currently developed involve the 

creation of a double-strand break (DSB) into the genome, which can be repaired by the error-prone 
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non-homologous end joining (NHEJ) pathway. DSB are thus mutagenic and can also induce 

chromosomal recombination. 

The safety concerns related to the use of both of these approaches lead to the development of new tool 

that could target integration with a radically different mechanism. In this context, the use of group II 

introns could represent an attractive alternative. 
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3 - GROUP II INTRONS 

3.1 - GENERAL INTRODUCTION 

Introns constitute the DNA regions in a gene that are excised from precursor mRNA (pre-mRNA) by 

the process of splicing. Introns can be divided into four major classes: spliceosomal introns, tRNA 

introns, group I introns, and group II introns. Additional classes have also been reported in the 

literature (i.e. group III introns in Euglena gracillis, tRNA-like introns in archae) (reviewed in (Michel 

F and Ferat JL 1995) and (Abelson J et al. 1998)). Each class of intron is characterized by a unique 

biochemical mechanism for splicing. It appears that the actual splicing reaction for most introns may 

be catalyzed by an RNA component rather than a protein enzyme.  

Some classes of introns such as group I, group II and tRNA introns can be folded into characteristic 

structures. Group I and group II introns were initially found in yeast mitochondrial genome and were 

classified into two separate groups, based on sequence and/or secondary structural characteristics 

(Michel F et al. 1982). Several introns in other organisms were subsequently identified using RNA 

structural conservation pattern. These two groups appear to be unrelated, even though some 

similarities exist between them. 

Some members of group I and group II introns have been shown to self-splice in vitro under specific 

conditions in the absence of any proteins or RNAs. The catalytic function required for splicing resides 

in the RNA molecule itself and thus these catalytic RNA molecules have been called “ribozymes”. 

Group I introns were among the first ribozymes to be identified and Thomas Cech was awarded the 

Nobel Prize in chemistry for the discovery in 1989 (Kruger K et al. 1982). Other naturally occurring 

ribozymes such as group II introns were subsequently identified. The self-splicing observed for 

members of both of them occurs via two transesterification steps. However, the splicing of group I 

introns differ from those of spliceosomal and group II introns. The initiation of the first splicing step is 

carried out by an external guanidine nucleotide (exoG) that acts as the nucleophile in the first 

transesterification step (reviewed in (Woodson SA 2005) and (Stahley MR and Strobel SA 2006)). 

The reaction of splicing liberate a linear form of the group I intron, which sometimes can be 

circularized in a secondary reaction. In contrast, the splicing of spliceosomal and group II introns 

involves an internal nucleotide (bulged adenosine) that acts as the nucleophile in the first 

transesterification step.  

 In some cases, these group I and group II introns contain an open-reading frame (ORF). The splicing 

of group I and group II introns in vivo have been shown to involve these intron-encoded proteins 

(IEP). The IEPs are capable of assisting in the splicing of the intron in which they are found and have 

also additional functions in the intron mobility.  

Indeed, group I (Jacquier A and Dujon B 1985; Dujon B 1989) and group II introns have spread 

among different species by a mobility mechanism called homing. Group I intron homing is initiated by 

the recognition of the target sequence (the junction of the two exons in an intronless genome) by its 

IEP, called homing endonuclease (HE) or meganuclease (See Introduction section 2.4.1 -). HE then 

creates a double-strand break, subsequently repaired by homologous recombination using the intron-

containing copy of the gene as a template. The mechanism of group II intron homing is quite different: 

the DNA target site, which naturally corresponds to the junction of the two exons in an intronless 
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genome, is recognized mainly by base-pairing with the intron RNA. The intron RNA can subsequently 

reverse splice into the sense strand at the junction of the two exons. The IEP then cleaves the antisense 

strand downstream of the junction and reverse transcribe the intron RNA. A double strand cDNA copy 

of the intron is then integrated by DNA repair mechanism. These site-specific homing mechanisms 

have been adapted to practical applications, as described with the engineering of meganucleases for 

targeted gene integration (See Introduction section 2.4.1 -), and more recently with the development of 

retargeted group II introns as gene targeting vectors. 

In the next chapters, the different characteristics of group II introns such as their structure, folding, 

splicing, and mobility mechanisms are described, followed by a description of the Pylaiella littoralis 

Pl.LSU/2 group II intron studied in this work.  

3.2 - STRUCTURE AND FOLDING OF GROUP II INTRONS 

3.2.1 - Intron RNA structure 

The secondary structure of group II intron was first determined based on two intron sequences from 

yeast mitochondria (Michel F et al. 1982). This model was later supported by comparative analysis 

when more genome sequences became available and also by biochemical studies, with however some 

minor modifications (Michel F et al. 1989; Kwakman JH et al. 1990; Chanfreau G and Jacquier A 

1994; Michel F and Ferat JL 1995). Group II intron secondary structure consists of six helical domains 

(I to VI) radiating from a central wheel (Fig. I-13) and bringing the 5’ and 3’ splice sites in close 

proximity (Michel F and Ferat JL 1995; Qin PZ and Pyle AM 1998). These domains of group II 

introns have specific roles in folding, conformational rearrangements, and/or catalysis.  

It exist several interactions between the different group II intron domains (Fig. I-13: indicated by 

Greek letters) that allow the formation of a conserved tertiary structure, juxtaposing distant sequences 

to form an active site. Strikingly, even though these RNA elements show a high conservation in 

structure features and organization, they have only few conserved primary sequences. The few strictly 

conserved sequences are the consensus at the 5’ (…↓GUGYG…) and 3’ (…AY↓…) splice site, some 

nucleotide on the linker region (between introns domains), a large part of the domain V, some regions 

of domain I and the bulged adenosine of the domain VI. 

Even though all group II introns fold into a similar overall secondary structure, they can be divided 

into three major subclasses, IIA, IIB and IIC by correlating specific secondary structural features 

(Toor N et al. 2001; Toro N 2003; Simon DM et al. 2008). Elements of the IIA and IIB classes are 

almost twice the size (~ 800 nt, excluding the IEP ORF) of those from the IIC class (~ 450 nt), which 

are presumed to be more ancient (Toor N et al. 2001; Toro N 2003). The subgroups IIA and IIB 

introns were later subdivided in subfamilies (IIA1 and IIA2; IIB1 and IIB2). The characteristics of all 

group II intron domains are presented thereafter, with the description of structural specificities 

associated with the different subclasses. 



Introduction – Group II introns 

 

46 

 

Figure I-13: Representation of a group IIA intron RNA secondary structure. 

Intron domains I to VI are indicated, as well as DI subdomains I(i), I(ii), Ia, Ib, Ic, and Id. Notable variations in 

IIB and IIC introns (noted in blue) are indicated in circles. Boxes indicate sequences involved in tertiary 

interactions (Greek letters, EBS, IBS). The structure of DIV is not represented here. The open reading frame 

encoding the IEP is indicated by dotted line in DIV. Adapted from (Lambowitz AM and Zimmerly S 2011). 

 Domain I is the largest domain of the RNA structure divided into four subdomains (Ia-Id) and 

serves as a scaffold for the assembly of other domains into a catalytically active tertiary structure. 

Indeed, it was shown that the domain I is the first to fold, followed by sequential folding of the other 

domains (reviewed in (Pyle AM et al. 2007)). Thus, the folding of DI appears to be the rate-limiting 

step of the overall intron folding (Su LJ et al. 2005). DI is essential for catalysis (Michel F and Ferat 

JL 1995) and exon recognition, which explains its necessity for both splicing and mobility. 

DI is held together through the α-α’ Watson-Crick base-pairing interaction, identified by 

phylogenetic analyses (Jacquier A and Michel F 1987; Michel F et al. 1989), and shown to be 

functionally important for self-splicing in vitro (Harris-Kerr CL et al. 1993). An additional β-β’ 

pairing takes part in the preorganization of the intron structure to the active form (Toor N et al. 2001; 

Simon DM et al. 2008). In group IIC introns, a ω-ω’ interaction is also involved in the folding of DI. 

DI folds independently of the other domains (Fedorova O and Zingler N 2007). It has been 

demonstrated that a small substructure/region in domain Id is crucial for compaction and folding. This 

region, designated as “folding control element”, is composed of κ and ζ elements involved in the κ-κ’ 

and ζ-ζ’ interactions important for the docking of the domains V (Costa M and Michel F 1995; 

Boudvillain M and Pyle AM 1998) (Keating KS et al. 2008). Indeed, as mentioned above, DI is the 

scaffold for all other domains, with DV in the middle and the other domain structures stacking upon 

each other (Dai L et al. 2008; Toor N et al. 2008a; Toor N et al. 2008b; Michel F et al. 2009; Toor N et 

al. 2009). Other motifs that are essential in the formation of the active site are the ε-ε’ and  λ-λ’ 

interactions that place the 5’ splice site near the DV and are involved in catalysis either directly or in 
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positioning the conserved first intron nucleotide (G) to promote the nucleophilic attack (Jacquier A 

and Michel F 1990; Boudvillain M et al. 2000; de Lencastre A et al. 2005; de Lencastre A and Pyle 

AM 2008). The X-ray crystal structure of the Oceanobacillus iheyensis IIC intron has revealed that the 

ε’ and λ are components of a functional substructure in subdomain Ic, called the z-anchor, that makes 

multiple contacts with the subdomain domain I(i) forming a binding interface for domain V and 

nucleotides at the 5’-end of the intron, thereby mediating the structural integrity of the core (Toor N et 

al. 2008a). They are also a strong binding site for divalent metal ion such as Mg
2+

, and thus are 

suggested to contribute to the intron structure stabilization. In addition, the θ-θ’ tetraloop-receptor 

interaction with DII is thought to be involved in the stabilization of the intron native structure (Costa 

M et al. 1997a), and also in the recruiting of DIII and the linker J2/3 into the active site (Podar M et al. 

1998b). 

In class IIB and IIC introns, DI also contains an internal asymmetric loop in subdomain Id, which 

is referred to as the coordination loop. It has been proposed that this loop supports the docking of the 

branch-point of DVI and all other components essential for splicing (de Lencastre A et al. 2005; 

Hamill S and Pyle AM 2006). Indeed, the coordination loop contains EBS3 involved in the 

EBS3/IBS3 interaction, and the δ’ nucleotide involved in the δ-δ’ base-pairing with the δ base located 

upstream of EBS1 (sequences involved in the intron/exons interactions; see following section). These 

studies have thus postulated that all reaction components are aligned in close proximity in a single 

active site prior to splicing and that the configuration of the core is maintained throughout the whole 

splicing process. The docking of DVI and its static nature is however questioned (Michel F et al. 

2009). It was suggested that DVI could be positioned between the Ic subdomain and the coordination 

loops (Pyle AM 2010). The lack of information on DVI in the crystal structure of O. iheyensis group II 

intron also supports the dynamic nature of DVI (Toor N et al. 2010). In addition, a recent study 

proposed a different receptor for the docking of DVI than the one previously suggested (coordination 

loop; (Hamill S and Pyle AM 2006)), which is located in subdomain Ic (Li CF et al. 2011), also 

supporting the idea of a major translocation of DVI between the two splicing steps of the branching 

pathway. 

 Domain II is mainly involve in tertiary interactions within the intron and in conformational changes 

of the intron during splicing (Fedorova O et al. 2003; Fedorova O and Pyle AM 2005). In addition to 

the θ-θ’ interaction with DI, DII harbors the η-η’ tetraloop-receptor interaction with DVI (Costa M et 

al. 1997a). The η-η’ interaction is suggested to induce a conformational change of the intron between 

the two transesterification steps that moves the DVI out of the overall intron structure (Chanfreau G 

and Jacquier A 1996; Costa M et al. 1997a). 

 Domain III has been shown to enhance the catalytic efficiency, but is not absolutely essential for 

catalysis (Koch JL et al. 1992; Qin PZ and Pyle AM 1998). DIII has been shown to interact with DV 

via the μ-μ’ interaction (Fedorova O and Pyle AM 2005). 

 The intron domain IV is the most varying region in secondary RNA structure, and can contain the 

ORF encoding a multifunctional protein called IEP (intron-encoded protein). This structure does not 

directly contribute to catalysis, but when present it influences both splicing and mobility (Fedorova O 

and Zingler N 2007). 
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 Domain V is one of the smallest domains (usually 34 nt) and represents the main catalytic center of 

group II introns. Almost every nucleotide in DV has a major role in the intron’s function and this 

domain is the most phylogenetically conserved primary sequence of the entire intron (Michel F and 

Ferat JL 1995; Fedorova O and Zingler N 2007). At the 5’-end of DV is located the catalytic triad 

AGC (or CGC) which forms together with a highly conserved dinucleotide bulge at the 3’-end of DV 

a negatively charged pocket that binds two coordinating metal ions (usually Mg
2+

) required for 

catalysis (Sigel RK et al. 2000; Zhang L and Doudna JA 2002; Sigel RK et al. 2004; Toor N et al. 

2008a; Toor N et al. 2008b). The dinucleotide bulge forms with the J2/3 linker and the DV catalytic 

triad a triple helix, bringing together the catalytic essential residues of the intron (Toor N et al. 2008a). 

DV and DI form together the catalytic core and are the only elements that are absolutely required for 

minimal catalytic activity of the intron (Koch JL et al. 1992; Michels WJ, Jr. and Pyle AM 1995). The 

aforementioned κ-κ’, μ-μ’, λ-λ’, and ζ-ζ’ interactions involve sequences of DV. 

 Domain VI is necessary for the splicing via the branching pathway, as it contains the bulged 

adenosine that serves as the branch point. It was shown that the flipping of the bulged adenosine is the 

crucial feature that enables the intron to splice via branching rather than hydrolysis (Chu VT et al. 

1998). Indeed, the first step of group II introns splicing can be initiated by either the bulged adenosine, 

leading to the formation of a branched intron lariat (See Introduction section 3.3.1 -), or by external 

H2O molecule or hydroxyl (OH
-
), leading to linear spliced intron (See Introduction section 3.3.2 -). 

Mutations in either the bulged adenosine or in surrounding G/U wooble pairs impede the branching 

pathway and the intron splicing occurs via the hydrolytic pathway.  

 Lastly, the linker regions between the different domains have been shown to have an important role 

in several aspects of intron folding and catalysis (de Lencastre A and Pyle AM 2008).  

During evolution, group II introns have developed different modes of target site recognition, 

especially IIC intron group. 

3.2.2 - Intron/exons boundaries 

Two types of tertiary interactions exist for group II introns: the ones between intron and exon 

sequences and the ones between two intron sequences. These interactions are involved in both forward 

and reverse splicing reactions and in the overall tertiary structure of the intron.  

Group II introns RNAs indeed recognize their targets sites, either RNA or DNA, via specific base-

pairing with the exon sequences (Fig. I-14). 

 

Figure I-14: Base-pairing interactions used by IIA, IIB and IIC introns with the exons at the target site. 

EBS: exon-binding site; IBS: intron-binding site. The junction between 5’ and 3’ exons is represented by the 

black line. Taken from (Lambowitz AM and Zimmerly S 2011). 
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For group IIA and IIB introns, the 5’ exon is defined through two interactions with the intron domain 

I. The exon-binding sites (EBS) 1 and 2 of the intron (See Fig. I-13) pair to their corresponding intron-

binding sites (IBS) 1 and 2 located in the 3’-end of the 5’ exon, thus forming a 12-15 bp interaction 

with the 5’ exon (Fig. I-14) (Qin PZ and Pyle AM 1998; Boudvillain M et al. 2000; Costa M et al. 

2000). The resulting two recognition duplexes mediate the high-interaction specificity and cleavage-

site fidelity, giving the proper conformation of the 5’ splice site for transesterification or hydrolytic 

cleavage (Jacquier A and Michel F 1987). The affinity of binding between the 5’ exon and intron DI 

via EBS/IBS interactions was shown to be strongest when the intron is completely folded and the 

catalytic core correctly folded (Costa M and Michel F 1999). It has been suggested that a premature 

exon binding could prevent or delay the correct folding of the intron into its active state. Class IIC 

introns differ from IIA and IIB introns with respect to 5’ exon definition, as they preferentially insert 

downstream of a transcriptional terminator stem-loop structure which is thought to substitute in part 

for the missing IBS2/EBS2 interaction (Fig. I-14) (Toor N et al. 2006; Fedorova O and Zingler N 

2007; Robart AR et al. 2007).  

The 3’ exon is defined by two single-base-pair interactions, which also vary between the RNA 

structural classes. The first is the γ-γ’ interaction, which involve a nucleotide located in the J2/3 linker 

region between domains II and III (γ) and the last intron base (γ’) (See Fig. I-13). The second 

interaction is either δ-δ’ for class IIA introns or EBS3/IBS3 for IIB and IIC introns where δ /EBS3 are 

in different locations in domain I and δ’/IBS3 is the first base of the 3’ exon (See Fig. I-13) (Jacquier 

A and Michel F 1990; Costa M et al. 2000). Class IIB and IIC introns also have δ-δ’ interactions, but 

with a different δ’ nucleotide positioned in the coordination loop of domain I and involved in a 

different aspect of exon recognition. The γ-γ’ and EBS-IBS3 interactions seem to play a minor role in 

the splice site recognition for IIB introns, as disruption of these interactions affect mainly the 

efficiency of the second splicing step but not the fidelity of 3’ splice site selection (Costa M et al. 

2000). In contrast, IIA introns appear to be somewhat more sensitive to substitutions in γ-γ’ 

nucleotides, which can lead to the use of cryptic 3’ splice sites. Furthermore, domain VI is thought to 

guide the 3’ intron-exon junction into the catalytic active site in a passive way, ensuring an efficient 

second splicing step with high fidelity (Jacquier A and Jacquesson-Breuleux N 1991). 

Class IIA and IIB introns form a continuous binding interface to 5’ and 3’ exons with EBS1 and the δ 

nucleotide that respectively binds IBS1 and the first 3’ exon nucleotide δ’ (Fig. I-14) (Jacquier A and 

Jacquesson-Breuleux N 1991). The main difference is that the exons are largely internalized for the 

class IIB introns as opposed to class IIA introns, for which they are mostly bound to the surface of the 

ribozyme (Dai L et al. 2008). In 2008, the X-ray crystal structure of the O. iheyensis class IIC intron in 

a post-catalytic state with ligated exon substrate has revealed that the exon junction is presented as a 

continuous strand over the important active sites in domain V (Toor N et al. 2008a; Toor N et al. 

2008b; Toor N et al. 2009; Toor N et al. 2010). This study also confirms that EBS1 and EBS3 motifs 

are linked together in a common exon binding interface by the δ- δ’ interaction (Fig. I-14). The crystal 

structure of the O. iheyensis group IIC intron in a pre-catalytic state has been published very recently 

(Chan RT et al. 2012). It was observed that the overall structure of this pre-catalytic intron was quite 

similar to those of the post-catalytic intron previously determined (Toor N et al. 2008a), suggesting 

that no drastic conformational changes of DI to DV occur during the splicing. This structure together 

with the previous one allows the authors to build a theoretical model of the splicing pathway (Chan 

RT et al. 2012). The next section describes the different splicing pathways used by group II introns. 
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3.3 - SPLICING MECHANISM 

Group II intron splicing is catalyzed by the intron RNA molecule itself. This reaction requires the 

correct folding of the RNA molecule into its catalytically active secondary and tertiary structures, 

forming the active site described above which binds catalytically essential Mg
2+

 ions.  

Some group II introns have been naturally split into segments by genomic rearrangements and can be 

separated in two or more distinct transcribed segments (Glanz and Kuck 2009). However, these 

segments can reassociate via tertiary interactions between group II intron domains and trans-splice to 

produce a functional mRNA. This trans-splicing mechanism is observed in several species, and 

particularly in plant mitochondria and chloroplasts (Goldschmidt-Clermont et al. 1991; Bonen 1993; 

Knoop et al. 1997; Qiu and Palmer 2004; Bonen 2008) 

Three different mechanisms of splicing have been described so far, leading to different forms of 

spliced intron molecules (Fig. I-15). 

 

Figure I-15: Schematic representation of group II introns splicing reactions. 

Red line: group II intron; Dark blue line: 5’ exon; light blue line: 3’ exon. The bulged adenosine residue and the 

water molecule acting as nucleophiles are represented with their 2’ hydroxyl groups that initiate the first step of 

branching and hydrolysis splicing, respectively. Base-pairing between the 5’ exon and the intron are indicated by 

dotted lines. The minor reaction leading to the formation of intron circle is also represented. This reaction is 

thought to result from the spliced exons reopening (SER). Nucleophilic attacks are indicated by thin black 

arrows. Thick solid black and gray arrows indicate forward and reverse direction of the corresponding reaction, 

respectively. Details of each reaction are in the text. Adapted from (Lehmann K and Schmidt U 2003). 
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3.3.1 - Branching pathway 

Ribozyme activity was the first property assigned to group II introns (van der Veen R et al. 1986; 

Peebles CL et al. 1987). A major pathway by which group II introns excise themselves from the pre-

mRNA is the branching pathway. Branching splicing occurs by two transesterification reactions as a 

two-step process (Fig. I-15; left panel) (reviewed in (Lehmann K and Schmidt U 2003)). The 5’ splice 

site is put by several interactions in close proximity to the 2’-OH group of a specific bulged adenosine 

in domain VI (Fig. I-15; left panel, 2’OH-A), which performs a nucleophilic attack and breaks the 

phosphodiester bond of the 5’ junction in a classical SN2 displacement mechanism (Padgett RA et al. 

1994; Podar M et al. 1995). It results the formation of a 2’-5’ bond between the first nucleotide of the 

intron and the bulged adenosine, and the release of the 5’ exon. The 3’-end of the intron remains 

covalently bound to the 3’ exon, forming an intron-exon splicing intermediate (van der Veen R et al. 

1986; Lehmann K and Schmidt U 2003). After the first cleavage reaction, the 5’ exon is still tightly 

linked to the intron via base-pairing interactions (Fig. I-15; dotted lines) (Jacquier A and Michel F 

1987; Jacquier A and Jacquesson-Breuleux N 1991). This way, its 3’-OH group is correctly positioned 

to attack the 3’ splice site in the second transesterification reaction. This leads to the release of a free 

intron lariat and ligated exons. This second step also proceeds via a SN2 displacement mechanism, but 

a phosphate substitution at the two splice sites has revealed inverted stereoisomeric preferences 

(Padgett RA et al. 1994; Podar M et al. 1995). Group II introns are dependent on divalent metal ions 

for folding and catalysis and have a two-metal ion coordination for the leaving groups at the catalytic 

center (Piccirilli JA 2008; Toor N et al. 2008a). 

Both of the two transesterification reactions are reversible (Fig. I-15). The first step is the splicing 

rate-limiting for most self-splicing group II introns (Daniels DL et al. 1996). The rate constant of this 

first step is equal in the forward and reverse direction (Chin K and Pyle AM 1995). The intermediates 

are usually not detected as the second forward reaction is much faster than the reverse and thus drives 

the forward reaction to completion. The reverse splicing reaction is considerably slower, although 

under suitable reaction conditions, reverse splicing can be quite efficient (Muller MW et al. 1991; 

Aizawa Y et al. 2003). Reverse splicing of group II intron is not limited to RNA substrates as they can 

also reverse splice into DNA molecules and thus provides the basis for intron mobility ((Zimmerly S 

et al. 1995a; Yang J et al. 1996; Cousineau B et al. 1998); reviewed in (Lambowitz AM and Zimmerly 

S 2004)). 

3.3.2 - Hydrolytic pathway 

In addition to the lariat splicing pathway, where the nucleophile is internal, group II introns splicing 

can be performed via a hydrolytic pathway where the nucleophile attacking the 5’exon-intron junction 

in the first step is water or a hydroxyl ion (Lehmann K and Schmidt U 2003). This hydrolysis step 

releases the 5’ exon and a linear intron attached to the 3’ exon (Fig. I-15; middle panel). The second 

step is identical to that of the branching pathway and the final products are ligated exons and a linear 

intron. In vitro, the balance between the branching and hydrolysis reactions is strongly influenced by 

the choice of monovalent cation used (Daniels DL et al. 1996). This balance may also differ depending 

on the subclass of group II intron. Some introns have been shown to splice in vitro only through the 

hydrolytic pathway (Granlund M et al. 2001), and in vivo the hydrolytic reaction is an active pathway 

for introns lacking the branch-point nucleotide (Podar M et al. 1998a; Vogel J and Borner T 2002). It 
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has recently been shown that a linear intron can catalyze efficient reverse splicing, suggesting an 

alternative pathway for mobility (Roitzsch M and Pyle AM 2009). 

3.3.3 - Circle formation 

Both lariat and linear introns have been shown to be involved in the spliced exons reopening in vitro 

reaction (Jarrell KA et al. 1988; Daniels DL et al. 1996). This alternative reaction, shown for some 

group II introns, consists in the hydrolysis of the 5’-3’ exon junction after recognition by excised 

intron molecule (Lehmann K and Schmidt U 2003; Fedorova O and Zingler N 2007). This reaction, 

while leaving the intron unchanged, occurs with same stereo chemistry as splicing and the cleavage is 

performed at the exact junction position (Lehmann K and Schmidt U 2003; Michel F et al. 2009). This 

spliced exon reopening (SER) reaction is thought to be involved in the generation of intron circles. A 

fully circular intron form, first discovered as a by-product of in vitro splicing, has been shown in vivo 

in bacteria and plant mitochondria (Murray HL et al. 2001; Li-Pook-Than J and Bonen L 2006; 

Molina-Sanchez MD et al. 2006). In the circularization pathway, a free 5’ exon is suggested to attack 

the 3’ splice site of an unspliced precursor mRNA, leaving a 5’ exon still covalently linked to the 

intron. The 2’-OH group of the intron 3’-end subsequently attacks the 5’ splice site, releasing the 5’ 

exon and a circular intron with a 2’-5’ linkage at the circle junction (Murray HL et al. 2001). 

3.4 - INTRON-ENCODED PROTEINS 

3.4.1 - Description of IEPs 

Almost all bacterial group II introns and about half in chloroplasts and mitochondria contain an open-

reading frame usually located in the loop of domain IV. These intron-encoded proteins, called IEP, 

have generally several conserved domains, and are involved in the splicing of their corresponding 

intron in vivo (See Introduction section 3.4.3 -) as well as in their mobility (See Introduction section 

3.5 -). To date, the best characterized IEP, named LtrA, is encoded by the Lactococcus lactis Ll.LtrB 

group II intron (Matsuura M et al. 1997).  

In general, group II intron-encoded proteins contain four major conserved domains: RT (reverse 

transcriptase), X (maturase), D (DNA-binding), and En (DNA endonuclease) (Fig. I-16). Each domain 

shows different level of phylogenetical and functional conservation. 

 

Figure I-16: Schematic representation of intron-encoded protein conserved domains. 

The 5’ and 3’ exons are indicated in dark and light blue rectangles, respectively. The intron is represented by a 

red line, with intron domains I to VI. The intron ORF, located in the domain IV, is characterized by four 

different conserved domains: reverse transcriptase (RT), containing the RT blocks 0-7; maturase (X), DNA-

binding (D) and endonuclease (En) domains. 
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At the N-terminal of IEP is located the typical RT domain, divided into eight blocks (RT0 and 

RT1-7). RT blocks 1-7 are common segments to all retroelements and correspond to the palm and 

finger structure of HIV-1 RT (Kohlstaedt LA et al. 1992). The RT5 block contains the highly 

conserved YNDD motif (where N can be any amino acid), identified as part of the RT active site 

(Xiong Y and Eickbush TH 1990; Steitz TA et al. 1993), where X is more frequently an alanine, but 

can also be another amino acid. The RT0 block can be considered as an N-terminal extension of the 

RT domain and this subdomain is conserved among RTs of non-LTR retrotransposons (Malik HS et 

al. 1999). In contrast to retroviral RTs, group II introns and non-LTR retrotransposons RTs contain 

some sequences between the different RT blocks which can present structural conserved features 

potentially important for the RT function (Malik HS et al. 1999; Blocker FJ et al. 2005). The first 

biochemical evidence of an RT activity of group II intron IEP has been demonstrated for the 

mitochondrial aI1 and aI2 of Saccharomyces cerevisiae (Kennell JC et al. 1993). Subsequently, RT 

activity of IEPs from bacterial group II introns such as Ll.LtrB (Matsuura M et al. 1997), RmInt1 from 

Sinorhizobium meliloti (Martínez-Abarca F et al. 1999), or G.st.I1 from Geobacillus 

stearothermophilus (Vellore J et al. 2004; Moretz SE and Lampson BC 2010) has been demonstrated. 

The domain X, usually referred as maturase domain, is involved in the splicing activity of group II 

introns. Indeed, mutations in this domain affect the splicing activity of its corresponding intron in vivo 

(Moran JV et al. 1994). Although this domain is poorly conserved in sequence, it is present in all 

known IEPs. It is characterized by three predicted α-helices, which are structures found in the thumb 

domain of retroviral RTs (Blocker FJ et al. 2005). Together with the RT domain, the X domain 

participates in the binding of the intron RNA and promotes the folding of the intron into its 

catalytically active structure (Saldanha R et al. 1999; Wank H et al. 1999; Cui X et al. 2004).  

Domain D was functionally defined for Ll.LtrB group II intron. Although this domain is not 

conserved in sequence among introns ORF, it is characterized by two pairs of cysteines residues that 

fit the consensus of a class of Zinc finger DNA binding motif. Several studies have shown that these 

conserved cysteine pairs seem to maintain the structure of the DNA endonuclease region (San Filippo 

J and Lambowitz AM 2002). Domain D and domain En participate in the binding of the IEP to the 

target DNA during the mobility of the intron.  

The En domain is a DNA-dependent endonuclease domain of the HNH family (Shub DA et al. 

1994) which functions with Mg
2+

 to cleave the target DNA antisense strand during intron mobility to 

prime the reverse transcription (Zimmerly S et al. 1995a; Guo H et al. 1997; Singh NN and 

Lambowitz AM 2001; San Filippo J and Lambowitz AM 2002).  

While all IEPs characterized are shown to contain the conserved X domain, several IEP sequences 

have derived and lost some conserved sequences in the RT and En domains. Some group II intron 

IEPs do not contain the required sequences for RT activity, but conserved their function in RNA 

splicing. This can be represented by the loss of some RT blocks such as the chloroplast MatK IEP of 

Nicotiana tabacum (presence of RT5-7 blocks) (Mohr G et al. 1993) or the mitochondrial MatR IEP of 

Arabidopsis Thaliana (presence of RT6 block). This type of proteins with degenerated RT domains is 

rarely found in bacterial group II introns, suggesting a higher mobility than organellar group II introns. 

The En domain is frequently absent in group II introns. It was shown that RmInt1, which encodes an 

IEP lacking the En domain, uses a different mechanism to prime the reverse transcription (See 

Introduction section 3.5.1 -). 



Introduction – Group II introns 

 

54 

A small group of fungal mitochondrial group II introns are shown to encode IEP belonging to the 

LAGLIDADG DNA endonucleases, often encoded by group I introns (See Introduction section 2.4.1 -

). It was recently shown that the LAGLIDADG IEP from a functional group II intron located in the rns 

gene of Leptographium truncatum was able to create a DSB at the splice site, but does not enhance the 

intron splicing in vitro and does not appear to bind the intron RNA precursor transcript (Mullineux ST 

et al. 2010). The evolutionary relationships between this IEP and the group II intron remain an open 

question. 

The IEPs can be either translated from their start codon located within the intron domain IV such as 

Ll.LtrB IEP, or they can be translated in frame with the 5’ exon, as IEP of aI1 and aI2 from S. 

cerevisiae COX1 gene. These latter chimeric IEPs are only found among mitochondrial introns 

(Zimmerly S et al. 2001; Dai L et al. 2003). The analyses of the proteins have however revealed that 

these chimeric proteins are rapidly processed by proteolytic cleavage (Moran JV et al. 1994; Zimmerly 

S et al. 1999), probably by a protease encoded in the nucleus and addressed to mitochondria (Van 

Dyck E et al. 1995; Arlt H et al. 1998).  

3.4.2 - IEP Lineages 

Phylogenetic analysis of IEP ORFs identified from the growing number of intron sequences has shown 

that group II introns can be further subdivided into nine classes: mitochondrial-like (ML), chloroplast-

like 1 (CL1), chloroplast-like 2 (CL2), and bacterial A, B, C, D, E1/E2, F classes (Fig. I-17). The CL1 

and CL2 classes are not monophyletic, but split into four clades (CL1A, CL1B, CL2A and CL2B). 

Introns from all phylogenetic classes can be found in bacteria, while only classes ML and CL are 

found in organelles. Each IEP lineage is associated with a distinct RNA secondary structure: ML with 

IIA, CL1 with IIB1, CL2 with IIB2, bacterial class C with IIC, while bacterial class A, B, D, E and F 

and associated with different IIB structures (Fig. I-17) (Michel F et al. 1989; Simon DM et al. 2008; 

Simon DM et al. 2009) (Toor N et al. 2001; Zimmerly S et al. 2001; Toro N 2003). 
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Figure I-17: Group II intron IEP ORF lineages. 

The lineages of group II intron IEP are indicated by blue sectors (mitochondrial-like [ML], chloroplast-like 1 

[CL1], chloroplast-like 2 [CL2], and bacterial A, B, C, D, E1/E2, F) (Simon DM et al. 2009). Sublineages 

(CL1A, CL1B, CL2A, CL2C, and bacterial C for which the intron inserts after attC sites) are shown in dark blue 

sectors. Corresponding RNA structural subgroup are indicated in purple. IEP lineage found in mitochondria and 

chloroplast are indicated by green arcs. Figure taken from (Lambowitz AM and Zimmerly S 2011). 

The different subclasses can be found in a mix of host organisms, although some subclasses seem to 

be somewhat restricted to particular bacterial phylogenetic groups. Single species can harbor introns of 

several subclasses clearly showing that the introns are mobile elements or that there has been a lot of 

horizontal transfers of introns (Dai L and Zimmerly S 2002b; Robart AR and Zimmerly S 2005; 

Simon DM et al. 2009). Interestingly, comparison of RNA secondary structures between the different 

subclasses indicates that the catalytic RNA has specific features that are unique to each group and 

strongly suggests that RNA structure has coevolved with the sequences of the IEP (Toor N et al. 2001; 

Simon DM et al. 2009). The coevolution is suggested to be due to the strong biochemical interactions 

that exist between the IEP and the catalytic RNA. This relies on the fact that both the protein and 

ribozyme RNA are required for the splicing reaction and the mobility event of group II introns in vivo. 

3.4.3 - IEP-mediated splicing 

Most studies of the mechanism of group II intron folding and catalysis in vitro are conducted in 

relatively extreme reaction settings, with high salt and Mg
2+

 concentrations (> 50 mM) and elevated 

temperature (> 40°C) to reach optimal conditions, compared to the physiological conditions in the cell 

(Peebles CL et al. 1986; van der Veen R et al. 1986; Jarrell KA et al. 1988; Matsuura M et al. 1997). 

This is necessary to ensure high enough splicing reactivity. Under near-physiological conditions, 

intron folding is very slow and the structure is unstable (Fedorova O et al. 2007; Fedorova O and 

Zingler N 2007). Therefore, most or all group II introns probably require protein factors to stabilize 

active structure and/or resolve misfolded intermediates to allow efficient splicing in vivo (Lehmann K 

and Schmidt U 2003; Fedorova O et al. 2007). The best-characterized protein factors that participate in 
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intron splicing in vivo are the intron-encoded proteins. The first proof of maturase function of the IEP 

was determined by the genetic analyses of intron mutants aI1 and aI2 of COX1 intron from S. 

cerevisiae (Carignani G et al. 1983; Moran JV et al. 1994). This dependence of the in vivo splicing 

reaction from the IEP was also demonstrated for the bacterial Ll.LtrB intron, where deletions or 

missense mutations into the LtrA ORF lead to a complete block of the intron splicing in vivo. In 

addition, it was shown that the LtrA-mediated in vitro splicing was ATP-independent and can be 

achieved at low Mg
2+

 concentrations (5 mM) (Matsuura M et al. 1997; Saldanha R et al. 1999). At 

those ionic conditions, the Ll.LtrB intron is unable to fold alone into its catalytically active structure. 

The IEP has thus a “chaperone” activity on the intron RNA and promote its correct folding into its 

catalytically active structure in vivo (Fig. I-18). 

 

Figure I-18: IEP-dependent intron splicing in vivo. 

The ionic strength in vivo induces a very slow folding of group II introns (red line), which could accumulate as 

misfolded intermediates. The major splicing factor in vivo is the IEP (gray ellipse), which binds the intron and 

promotes its folding into the catalytically active structure, leading to the intron splicing and the ligation of the 

exons (dark and light blue rectangles). This raises to the formation of a ribonucleoparticle (RNP) composed of 

the intron lariat and the IEP. 

The LtrA protein was shown to bind tightly and specifically to several part of intron RNA, leading to a 

stabilization of its active structure (Matsuura M et al. 2001; Noah JW and Lambowitz AM 2003). The 

main contact between LtrA and the intron RNA is done at an idiosyncratic stem-loop structure located 

at the beginning of Ll.LtrB intron domain IV and was called DIVa (Wank H et al. 1999) (Fig. I-19).  
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Figure I-19: Representation of the Ll.LtrB DIV secondary structure. 

Initiation (AUG) and termination (STOP) codons of LtrA translation are boxed. RBS: putative Shine Dalgarno 

sequence. The stem-loop structure of DIVa is represented. The rest of the DIV sequence is depicted by dotted 

line. Adapted from (Wank H et al. 1999). 

This binding involves the recognition of specific bases in the terminal loop and helical bulges 

(Watanabe K and Lambowitz AM 2004). Additional contacts are made with the conserved core 

regions that further stabilize the active RNA structure (Wank H et al. 1999; Matsuura M et al. 2001; 

Dai L et al. 2008). The deletion of DIVa does not impede the maturase activity of the protein, 

suggesting that LtrA can bind directly to the core regions. It was postulated that the binding of LtrA to 

DIVa represents an auto-regulation system, as Ll.LtrB DIVa contains the Shine-Dalgarno sequence 

and the start codon of the LtrA. However, it was also shown that the aI2 IEP, which is translated as a 

chimeric protein with exons 1 and 2 of the COX1 gene in S. cerevisiae, also binds both DIVa and 

catalytic core regions (Huang HR et al. 2003), suggesting a conserved interaction mode rather than a 

specific auto-regulation. The aI2 intron is also able to splice in vivo in an IEP-dependent manner in 

absence of DIVa and without a drastic loss of efficiency (Huang HR et al. 2003). Other studies show 

that introns deleted of the binding site in DIV retain residual maturase-dependent splicing in vitro and 

in vivo, suggesting that the contacts to other regions are sufficient to promote the splicing even in 

absence of the DIVa primary binding site (Wank H et al. 1999; Matsuura M et al. 2001). The mapping 

of the binding sites between LtrA and its intron reveals several positions spanning from DI to DVI 

(Matsuura M et al. 2001; Dai L et al. 2008). The mapping of these sites onto a three dimensional 

model of the Ll.LtrB structure indicates that they form a large binding surface, extending from DIVa 

to contiguous DI, DII and DVI regions (Dai L et al. 2008). The mapping of the regions of LtrA 

required to the intron RNA binding onto a three dimensional model of the protein indicates that an 

RNA-binding surface extends from the RT to the X domain and also includes the N-terminal extension 

of the protein, which is thought to bind the intron DIVa region (Cui X et al. 2004; Blocker FJ et al. 

2005; Gu SQ et al. 2010).  

The IEP-dependent splicing of group II intron appears to be specific for some group II introns. For 

example, the LtrA protein is able to promote the splicing of its corresponding intron, Ll.LtrB, but not 

of other self-splicing introns such as the yeast aI2 and aI5γ as well as the E. coli IntB (Saldanha R et 

al. 1999). In contrast, other maturases in different plastid systems have evolved to become general 

group II intron splicing factors. The MatK protein of the tnrKI group II intron that represents the only 
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known putative maturase in chloroplasts of higher plants is thus able to bind and promote the splicing 

of multiple ORF-less chloroplastic introns IIA (Ems SC et al. 1995; Vogel J et al. 1999; Zoschke R et 

al. 2010). Another interesting example is provided by the nuclear encoded n-Mat proteins of flowering 

plants. Evolutionary progressions have brought these mitochondrial IEPs to loss mobility functions 

and splice multiple introns (Nakagawa N and Sakurai N 2006; Keren I et al. 2009).  

3.4.4 - Nuclear-encoded accessory factors 

Accessory factors involved in group II splicing are also encoded by nuclear genes. These factors may 

assist in splicing directly by binding to the group II intron and either stabilize the active structure or 

resolve misfolded intermediate structures (Huang HR et al. 2005; Kohler D et al. 2010). They also 

may have indirect effects. For example, the MW3 and ME4 genes encode mitochondrial carrier 

proteins which are suggested to suppress group II splicing defects by altering the ionic balance within 

the mitochondrion (Grivell LA 1995). In contrast, the yeast Mss116p protein, which is a member of 

the DEAD-box family of ATP-dependent RNA helicases, is thought to promote the splicing of 

mitochondrial introns (Seraphin B et al. 1989; Huang HR et al. 2005). Indeed, MS116 null mutants are 

defective in splicing of all four mitochondrial group II introns, as well as in the splicing of all 

mitochondrial group I introns and other RNA process. Interestingly, other DEAD-box proteins are 

shown to compensate for the Mss116p loss of function (Huang HR et al. 2005). It is now know that 

the DEAD-box proteins are able to unwind the RNA (Mohr S et al. 2006; Del Campo M et al. 2007; 

Halls C et al. 2007; Del Campo M et al. 2009), which is also a system used by proteins of the 

spliceosome to improve specific structuration during splicing. 

3.5 - MOBILITY OF GROUP II INTRONS 

Group II introns are mobile genetic elements that can insert into a specific DNA sequence, which 

corresponds to the junction of the two exons (from which they splice) in an intronless genome. This 

mobility occur by a mechanism, called retrohoming (or target-primed reverse transcription), and is 

mediated by the ribonucleoparticle (RNP) formed after the IEP-dependent intron splicing in vivo and 

consisting of the IEP bound to the intron lariat RNA (See Fig. I-18). Group II intron mobility occurs 

either at a specific target site with a high efficiency (retrohoming), but can also occur at ectopic sites 

with a low frequency (retrotransposition). 

3.5.1 - Retrohoming 

The first demonstration of the mobile nature of group II introns was obtained by genetic analyses of S. 

cerevisiae (Meunier B et al. 1990). During crossing between haploid strains, the authors observed that 

aI1 and aI2 mitochondrial group II introns have homed into intronless alleles at a frequency of about 

90%, and that this homing was abolished by mutations of either the IEP or the intron RNA inhibiting 

intron splicing. Retrohoming is a multistep process, involving the reverse splicing of the intron RNA 

into the sense strand of the DNA target site, the cleavage of the antisense strand by the endonuclease 

activity of the IEP, the reverse transcription of the intron RNA by the reverse transcriptase activity of 

the IEP and the integration of double-stranded cDNA copy of the intron by DNA repair mechanisms 

(Fig. I-20). Retrohoming rely on the formation of the RNP after IEP-mediated intron splicing. The 

DNA target site for retrohoming, usually extending to 30-35 bp, is recognized by both the IEP and the 

intron RNA (See following section). The IEP promotes local unwinding of the DNA target site, so that 

the intron RNA can base pair with the target site (Singh NN and Lambowitz AM 2001; Aizawa Y et 
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al. 2003). The first step of retrohoming consists of the reverse splicing of the intron RNA into the 

sense strand of the DNA target site at the exact junction of the two exons (Zimmerly S et al. 1995a; 

Yang J et al. 1996). This mechanism of reverse splicing into double-stranded DNA involves the same 

EBS-IBS and δ-δ’ interactions required for splicing and reverse splicing into RNA (Mohr G et al. 

2000; Singh NN and Lambowitz AM 2001). Then, the endonuclease (En) domain cleaves the 

antisense strand 9-10 bases downstream the exons junction, generating a primer used for reverse 

transcription (RT) of the inserted intron RNA (Zimmerly S et al. 1995b). The resulting cDNA is 

finally integrated by cellular DNA repair mechanisms. 

 

Figure I-20: General group II intron retrohoming mechanism. 

The spliced intron RNA lariat (thin red line) forming with the IEP a RNP particle, which recognizes the DNA 

target site (Exons 5’ in dark blue, and exon 3’ in light blue).. The intron RNA is reverse spliced into the sense 

strand at the junction of the two exons. After cleavage of the antisense strand downstream of the exon junction 

(En activity), the IEP (gray ellipse) reverse transcribe the intron RNA into cDNA (thick red line) via its reverse 

transcription activity (RT) and a double-stranded cDNA copy of the intron is integrated by cellular DNA repair 

mechanisms. Adapted from (Lambowitz AM and Zimmerly S 2004). 
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Many IEPs in bacteria lack the En domain, and the corresponding introns use another mobility 

pathway that requires a primer provided by the DNA replication fork (Ichiyanagi K et al. 2003; Zhong 

J and Lambowitz AM 2003). The S. meliloti RmInt1, a bacterial IIB intron whose IEP lacks the En 

domain uses two endonuclease-independent retrohoming pathways. A major pathway occurs by 

reverse-splicing of the intron RNA into single-stranded DNA at the replication fork and the nascent 

lagging strand is used as a primer for reverse-transcription (Fig. I-21A) (Martinez-Abarca F et al. 

2004). Another process involves retrohoming before the replication fork and reverse transcription is 

primed using the nascent leading strand (Fig. I-21B) (Martinez-Abarca F et al. 2004). For both 

endonuclease-independent mobility pathways, the intron recruits several host factors to complete the 

integration into the new genomic location (Beauregard A et al. 2008). 

 

Figure I-21: Endonuclease-independent homing pathways. 

The nascent strand in the DNA replication fork is used as primer for reverse transcriptase. In pathway (A) the 

intron reverse splices into single-stranded DNA at the replication using the lagging strand as a primer, while in 

pathway (B) the intron inserts into double-stranded DNA before passage of the replication fork. In the pathway 

(B) represented, the primer is leading strand, but the lagging strand can be used if the replication fork is in the 

opposite direction. These pathways are used for retrohoming by introns whose IEP lacks the En domain, or for 

retrotransposition into ectopic sites (See Introduction section 3.5.3 -). The black arrow indicates the direction of 

replication. The 5’ exon and 3’ exon are indicated in dark and light blue lines, respectively. Adapted from 

(Lambowitz AM and Zimmerly S 2004). 

3.5.2 - DNA target site recognition 

The DNA target site recognition during homing has been studied for the L. lactis Ll.LtrB (Guo H et al. 

2000; Mohr G et al. 2000; Perutka J et al. 2004), the S. cerevisiae aI1 (Yang J et al. 1998) and aI2 
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(Guo H et al. 1997), the S. meliloti RmInt1 (Jimenez-Zurdo JI et al. 2003), and bacterial class C 

(Granlund M et al. 2001; Dai L and Zimmerly S 2002a) introns (Fig. I-22), and more recently for the 

E. coli EcI5 intron (Garcia-Rodriguez FM et al. 2011).  

 

Figure I-22: DNA target site recognition. 

IBS and δ’ regions of the DNA target site recognized by base pairing with EBS and δ regions of the intron RNA 

are indicated for the L. lactis Ll.LtrB, the S. cerevisiae aI1 and aI2, the S. meliloti RmInt, and bacterial class C 

introns. In addition, the inverted repeat of Rho-independent transcription terminator, after which bacterial class C 

introns insert if followed by an IBS1, is also indicated. Figure taken from (Lambowitz AM and Zimmerly S 

2004). 

In each case, both components of group II intron RNPs recognize the DNA target site. The intron 

RNA pairs to the 5’ and 3’ exons via EBS/IBS and δ-δ’ pairing previously described, and the IEP 

interacts with several downstream and upstream nucleotides (Guo H et al. 1997; Mohr G et al. 2000; 

Singh NN and Lambowitz AM 2001; Jimenez-Zurdo JI et al. 2003). The pairing between the intron 

RNA and the DNA target site appears to be crucial for the reverse splicing and homing as mutations in 

the DNA target impede those mechanism, which are rescued with compensatory mutations of the 
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intron RNA (Guo H et al. 1997). We can observe that a relatively limited number of positions are 

recognized by the IEP, and most of the target specificity rely on base pairing with the intron RNA. 

However, for Ll.LtrB, aI1 and aI2 introns, mutations of the nucleotides recognized by the IEP in the 5’ 

exon inhibit both reverse splicing and antisense strand cleavage, while 3’ exon mutation impede only 

the antisense strand cleavage. Detailed analyses of the mechanism of DNA recognition by Ll.LtrB 

have revealed that RNPs first bind nonspecifically to the DNA and scan the sequence until DNA target 

specific binding (Aizawa Y et al. 2003). Initial contacts are thus made by the IEP through interactions 

with nucleotides of the 5’ exon at the sense strand, and these contacts promote a local unwinding of 

the DNA (Singh NN and Lambowitz AM 2001). This unwinding allows an efficient pairing of the 

intron RNA to the target site via EBS-IBS and δ-δ’ and reverse splice (Singh NN and Lambowitz AM 

2001). It has been showed that these primary contacts are crucial for unwinding, as mutations of 

critical bases in the 5’ exon do not inhibit reverse splicing into single-stranded DNA target (Zhong J 

and Lambowitz AM 2003). Second strand cleavage requires additional contacts of the IEP to the 3’ 

exon (Singh NN and Lambowitz AM 2001), with one critical base for Ll.LtrB target site.  

3.5.3 - Retrotransposition 

While retrohoming is the predominant mobility pathway, at a much lower frequency (typically 10
-4

, 

10
-5

) group II introns are also able to invade noncognate (ectopic) sites through retrotransposition 

(Dickson L et al. 2001; Ichiyanagi K et al. 2003). The retrotransposition mobility events of Ll.LtrB in 

L. lactis follow the same mechanism as the main retrohoming pathway described above for RmInt1 

with insert into single-stranded DNA (Ichiyanagi K et al. 2002; Ichiyanagi K et al. 2003). The target 

sequences usually have good match for IBS1, but not for IBS2 neither for the sequences recognized by 

the IEP. Different host organism may also influence which mobility pathways introns use, as the 

Ll.LtrB intron in E. coli retrotransposition by inserting into double-stranded DNA with varying 

priming mechanism (Coros CJ et al. 2005). The retrotransposition, with its lower sequence specificity, 

is evolutionary important and has allowed the spread of group II introns to new and different genomic 

locations. The reverse splicing step during the mobility event ensures that the intron will be excised 

from the mRNA transcript, thereby minimizing the damage on the host. 

3.5.4 - Applications in targeted genome editing 

The mode of DNA target site recognition by group II intron, involving largely base-pairing between 

the intron RNA and the DNA target site, and the finding that mutations in the DNA target site could be 

compensate by mutations in the intron (Guo H et al. 1997) have led to the development of engineered 

group II introns for gene targeting. It is indeed possible to retarget the insertion of group II intron at a 

chosen specific DNA site by simply modifying the base pairing sequences EBS of the intron (Eskes R 

et al. 1997; Guo H et al. 2000; Karberg M et al. 2001; Zhuang F et al. 2009a; Garcia-Rodriguez FM et 

al. 2011).  

The development of these so called “targetrons” has first been achieved with the L. lactis Ll.LtrB 

group IIA intron for gene targeted disruption or insertion in bacteria (Karberg M et al. 2001; Frazier 

CL et al. 2003; Zhong J et al. 2003; Perutka J et al. 2004). The system used is now commercially 

available (TargeTron® Gene Knockout System, Sigma-Aldrich). Retargeted Ll.LtrB intron is usually 

deleted for the LtrA (IEP) ORF and is expressed from a donor plasmid with short flanking exons (Guo 

H et al. 2000; Zhong J et al. 2003). The IEP is expressed from a position just downstream of the 3’ 
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exon. It was indeed shown that the homing efficiency could be significantly increased by deleting the 

LtrA ORF from the intron (Guo H et al. 2000). It was suggested that this Ll.LtrB intron-ΔORF is more 

resistant to the nucleolytic cleavage (Matsuura M et al. 1997). This way, the Ll.LtrB intron-ΔORF 

cannot splice once integrated without the expression of LtrA in trans. Retargeted introns are designed 

by computer program that search within the selected gene for best matches to the fixed positions 

recognized by the IEP and to the δ nucleotide recognized by the δ’ nucleotide of the intron (Perutka J 

et al. 2004). The small number of fixed position (< 5) enables the targeting of several sites into any 

gene of E. coli. Once potential DNA target sites are found, the EBS1 and EBS2 of the intron are 

modified to match with the selected DNA target site. The IBS1 and IBS2 sequences of the 5’ exon are 

also modified to pair with EBS1 and EBS2 intron sequences. Indeed, EBS/IBS pairing is required for 

the intron splicing in E. coli, which induces the formation of the homing catalytic RNP molecules. The 

retargeting of the Ll.LtrB intron is made by PCR amplification of an intron PCR template, which 

contains a part of the 5’ exon with IBS1 and IBS2, and the beginning of the Ll.LtrB intron with EBS1 

and EBS2 (Fig. I-23). Primers allowing IBS and EBS sequences modification are designed using an 

associated computer program and the PCR product amplified is subsequently ligated in the plasmid 

encoding the Ll.LtrB intron and LtrA intron-encoded protein (Fig. I-23; pACD4K-C). 
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Figure I-23: Retargeting of Ll.LtrB intron in the TargeTron® Gene Knockout System. 

A computer program is used to identify target sites in the gene of interest, and indicates the primers sequences 

that will be used to retarget the intron by PCR. The retargeted fragment also contains a part of the 5’ exon 

sequence with retargeted IBS1 and IBS2. Retargeted intron segment is ligated into a linearized vector that 

contains the remaining intron components (Ll.LtrB intron sequence in yellow; 5’ and 3’ exon sequences in 

orange; LtrA protein in blue). IBS: intron-binding site; EBS: exon-binding site; H: Hind III restriction site; B: 

BsrG I restriction site; designed primers for retargeting: blue arrow; supplied primer for retargeting: black arrow; 

PT7: T7 promoter; 5’ ex: 5’ exon sequence; Kan
R
-td: Kanamycin resistance gene interrupted by the td group I 

intron; 3’ ex: 3’ exon sequence; LtrA: Ll.LtrB intron-encoded protein; T1T2: T1-T2 transcription terminators; 

Cam
R
: chloramphenicol resistance gene; p15A ori: p15A low-copy replication origin. Adapted from 

“TargeTron® Gene Knockout System” manual. 

The plasmid pACD4K-C encoding the retargeted Ll.LtrB group II intron is then transformed into E. 

coli, the retargeted intron and LtrA are expressed, leading to the formation of the RNP and the 

integration of the intron into the DNA target site. E. coli cells in which the intron has been integrated 

can then be selected by kanamycin resistance. 
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Using this retargeted group II introns system, insertion at the chromosomal target site occurs at 

frequencies of about 1% in E. coli without selection. However, the method using selection of the 

homing event with the Kan
R
-td retrotransposition-activated selectable marker (RAM marker) has been 

developed (Zhong J et al. 2003) and is based on a previously retrotransposition-indicator gene marker 

system (Ichiyanagi K et al. 2002). The strategy uses a Kan
R
 gene marker inserted in the DIV loop of 

Ll.LtrB, previously deleted for LtrA ORF, in the reverse orientation with respect to the Ll.LtrB group 

II intron orientation. The Kan
R
 gene is interrupted by the efficient self-splicing td group I intron, 

inserted in the forward orientation. During retrohoming (or retrotransposition), the td group I intron is 

excised from the RNA intermediate, enabling selection of the Kan
R
 marker after integration of the 

Ll.LtrB group II intron into a DNA target site. Nearly 100% of selected colonies using this RAM 

marker method have the desired targeting insertion. 

Several applications of this gene knockout system in various Gram-negative or –positive bacteria 

species have been published (Chen Y et al. 2005; Yao J et al. 2006; Heap JT et al. 2007; Pearson MM 

and Mobley HL 2007; Yao J and Lambowitz AM 2007) (Malhotra M and Srivastava S 2008; 

Rodriguez SA et al. 2008; Sayeed S et al. 2008). In addition, Jones et al. have shown that retargeted 

group II introns could be used to insert a functional copy of a gene into the defective gene, or insert 

functional exons preceded by a splice acceptor site to overcome defective downstream exons (Jones 

JP, 3rd et al. 2005) in E. coli. However, the target DNA sites used in this study were inserted into 

plasmids rather than be chromosomal targets. Indeed, the efficiency of group II intron homing in 

plasmid target is much higher than in chromosomal DNA sites. 

Recently, other group II introns such as the EcI5 group IIB intron from E. coli (Zhuang F et al. 

2009a) and the RmInt1 group IIB intron from S. meliloti (whose IEP lacks the D and En domains) 

(Garcia-Rodriguez FM et al. 2011) have been used for gene targeting in E. coli. EcI5 was shown to be 

significantly more active than Ll.LtrB with specific chromosomal integration efficiencies of up to 98% 

without any selection (Zhuang F et al. 2009a). These new retargeted group II introns extend the range 

of accessible target sites for gene targeting in E. coli and other bacteria. 

These successful gene targeting applications in bacteria have led to evaluate the use of group II introns 

as gene targeting vectors in eukaryotes (Guo H et al. 2000; Mastroianni M et al. 2008; Zhuang F et al. 

2009b). The first attempt was performed in human HEK 293 and CEM T cell lines with the Ll.LtrB 

group II intron, retargeted to insert into CCR5 human gene and HIV-1 provirus (Guo H et al. 2000). 

The targets, inserted in plasmids, were co-transfected with RNP particles, previously reconstituted 

with in vitro self-spliced Ll.LtrB intron RNA and purified LtrA (Saldanha R et al. 1999) and packaged 

into liposomes. Although no information on the efficiency of targeted integration has been provided, 

the authors demonstrated intron insertion into the plasmid target DNA sites by PCR analyses. It is 

possible that the authors have to transfect RNP particles rather than express the intron and IEP into the 

human cells because of inefficient or inexistent splicing of the intron into human cells, even in 

presence of the IEP. In addition, in these initial experiments, group II intron integration into plasmid 

targets sites in human cells appear to be much less efficient than in bacteria, as detection of integration 

events required nested PCR analysis. To date, this work is the only attempt of a direct use of group II 

intron for gene targeting in human cells. To further increase the homing efficiency in an eukaryotic 

environment, Mastroianni et al. used additional MgCl2 during microinjection of retargeted RNP 

particles into Xenopus laevis oocytes, and Drosophilia melanogaster and zebrafish (Danio rerio) 

embryos (Mastroianni M et al. 2008). Indeed, as mentioned previously, the splicing and homing of 
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group II intron are dependent on Mg
2+

. It was shown that mutations in mitochondrial Mg
2+

 transport 

proteins in yeast strongly inhibited the splicing of all mitochondrial group II introns (Wiesenberger G 

et al. 1992; Gregan J et al. 2001a; Gregan J et al. 2001b). The authors postulated that the free Mg
2+

 

concentration available in eukaryotic cells could be insufficient to permit the Ll.LtrB intron homing, 

as 10 mM of Mg
2+

 are required for its reverse splicing into DNA target sites (Saldanha R et al. 1999). 

The authors showed that the use of MgCl2 during microinjection of retargeted RNP could enhance 

Ll.LtrB intron homing into its natural DNA site located in a plasmid, with integration efficiency of up 

to 27% in X. laevis oocytes (Mastroianni M et al. 2008; Zhuang F et al. 2009b). Specific insertion of a 

retargeted Ll.LtrB intron into a chromosomal target in D. melanogaster was also demonstrated, but 

again detection required nested PCR, implicating a very low homing efficiency.  

The use of group II introns in human genome engineering could thus represent an attractive alternative 

to currently used strategies. Such group II intron mediated gene targeting is likely to be very specific, 

as group II intron mobility requires a base pairing with the target site of usually 12-16 bp, with 

additional contacts between the IEP and the DNA target site, extending the DNA target site selection 

to 30-35 bp. The design and production of engineered group II introns would be much easier and faster 

than those of site-specific nucleases. However, some hurdles are to be overcome. One of the most 

important is the problem of the very low efficiency of homing (and probably splicing) of the group II 

introns used in eukaryotic and human cells.  

3.6 - DISTRIBUTION, CLASSIFICATION AND EVOLUTIONARY HYPOTHESES  

Since the identification of group II introns as independent structural intron class (Michel F et al. 1982), 

the number of known group II introns has grown to hundreds of members. They are in low frequency 

in mitochondria of fungi, sporadically found in organellar genomes of algae, while numerous group II 

intron are found in organellar genomes of higher plants (Michel F et al. 1989). An exceptional 

example of a specie in which group II intron are overrepresented is Euglena gracilis with as much as 

91 group II introns identified (Doetsch NA et al. 1998). Group II introns were also identified in 

proteobacteria and blue algae and are thought to be “ancestors” of mitochondrial and chloroplasts 

group II introns (Ferat JL and Michel F 1993; Ferat JL et al. 1994; Mills DA et al. 1996; Shearman C 

et al. 1996). Sequencing projects of bacterial genomes have revealed that group II introns are also 

widespread in eubacteria and a few members are found in archeabacteria (Martinez-Abarca F and Toro 

N 2000; Dai L et al. 2003; Toro N et al. 2007; Valles Y et al. 2008). 

The close relationship between the IEP and intron RNA structure and the presence of the IEP in all 

intron subclasses have also led to the hypothesis that the group II intron ancestor was essentially a 

retroelement (Toor N et al. 2001; Dai L and Zimmerly S 2002b). The presence of the IEP in a quite 

conserved location in domain IV suggests that the IEP was acquired once by insertion of a 

retroelements into an already catalytic ribozyme. Alternatively, the self-splicing ability might have 

been developed later by a retroelement in order to prevent host damage. The “retroelement ancestor 

hypothesis” predicts that the various structural lineages of group II introns arose by coevolution with 

the IEP from an ancestor intron in bacteria, which had an RNA structure characterizing by a mix of the 

different known structural features and a compact reverse transcriptase ORF (Toor N et al. 2001; 

Robart AR and Zimmerly S 2005). Bacterial introns are usually not found in important housekeeping 

genes, but rather in intergenic regions or other mobile elements (Dai L and Zimmerly S 2002b; 

Ichiyanagi K et al. 2003; Robart AR and Zimmerly S 2005). These properties also support their 
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“selfish” retroelement character, as they insert in genomic locations that minimize their impact on the 

host and/or will favorer their spread. Two of the group II intron subclasses are predicted to have 

migrated to the organelles of eukaryotes (the mitochondrial and chloroplast-like lineages), which was 

followed by loss of the IEP and degeneration in several RNA features, especially in plants where 

almost all group II introns are ORF-less (Toor N et al. 2001). Organellar group II introns are inserted 

in many highly conserved genes essential for respiration and photosynthesis and therefore must retain 

efficient splicing properties. As opposed to the bacterial introns, organellar elements behave more like 

splicing-only elements and rely on host-encoded splicing factors (Toor N et al. 2001; Lehmann K and 

Schmidt U 2003; Robart AR and Zimmerly S 2005). 

There are also several similarities in RNA structure and splicing mechanism between group II 

introns and nuclear spliceosomal introns (Valadkhan S 2007). An evolutionary hypothesis is that 

group II introns invaded the eukaryotic nucleus and then have been successively fragmented, while 

retaining the fundamental catalytic mechanism of self-splicing with the evolution from cis-acting 

elements to trans-acting such as small RNAs that became dependent on host protein factors for the 

splicing reaction (Sharp PA 1991). This transition may have involved the split of ancestral group II 

introns in catalytically inactive spliceosomal introns and the catalytically active RNA moiety of the 

spliceosome (Martin W and Koonin EV 2006). This theory is based on the endosymbiosis between an 

ancestral α-proteobacterium and an archeal host. Several observations support this idea, as the fact that 

fragmented bacterial and organellar group II introns can perform efficient splicing in trans (Knoop V 

et al. 1997; Belhocine K et al. 2008). Some domains have been shown to act in trans on fragmented 

introns to promote the splicing, thus strongly suggesting a direct evolution connexion between group 

II introns and spliceosomal snRNA. Other clues such as the the presence of metal-ion binding sites in 

DV and U6 snRNA, the branch site motifs in DVI, similar to the U2-intron pairing, the structural 

similarities between terminal regions of spliceosomal introns and those of group II introns, and the 

structural and functional similarities between DV and U6 snRNA strongly support this hypothesis 

(Sharp PA 1985; Jacquier A 1990; Madhani HD and Guthrie C 1992; Shukla GC and Padgett RA 

2002; Villa T et al. 2002; Seetharaman M et al. 2006; Keating KS et al. 2010; Rogozin IB et al. 2012). 

There is also a relationship between group II introns and the non-LTR retroelements found in higher 

eukaryotes (Malik HS et al. 1999; Robart AR and Zimmerly S 2005). The RT segments of the protein 

of the two types of elements are phylogenetically and structurally related and both elements are mobile 

through a similar mechanism (Lambowitz AM and Zimmerly S 2004; Beauregard A et al. 2008).  

Altogether, this has put up the scenario that mobile group II introns may be the ancestors of 

spliceosomal introns and non-LTR retroelements, and therefore may have played a substantial role in 

the evolution of the eukaryotic genome as predecessors of the spliceosome and retrotransposons. 

3.7 - PYLAIELLA LITTORALIS PL.LSU/2 GROUP II INTRON 

The analysis of the mitochondrial genomic region encoding the large subunit ribosomal RNA (LSU 

rRNA) of the brown algae Pylaiella littoralis has revealed the presence of four group IIB introns in the 

gene (Fontaine JM et al. 1995). Interestingly, introns Pl.LSU/1 to Pl.LSU/3 were found to exhibit high 

canonical secondary and tertiary structure related to those of RNA structural class IIB1, while 

Pl.LSU/4 belongs to the RNA structural class IIB2. The first three introns are also closely related with 

regards to their primary sequences, suggesting that they have transposed in cis along the gene (Ferat 

JL et al. 1994). Moreover, when a LSU rRNA DNA probe was incubating with total RNA from the 

algae, a strong signal was observed corresponding to mature LSU rRNA, suggesting that those group 
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II introns are spliced correctly in their natural host (Fontaine JM et al. 1995). Several introns of the 

LSU rRNA gene are also not present in some other strains of P. littoralis originating from different 

geographic location (Fontaine JM et al. 1995; Ikuta K et al. 2008), suggesting that some of them are 

the result of recent invasion. The first two introns were found to contain an ORF encoding a RT-like 

protein located in the DIV loop and related to non-LTR retrotransposons RT (Michel F et al. 1982; 

Michel F and Lang BF 1985). An alignment of the amino acid sequence of those RT-like proteins 

revealed the presence of the conserved domains found in group II intron-encoded proteins, which are 

RT (reverse transcriptase), X (maturase), D (zinc-finger-like DNA binding), and En (endonuclease) 

domains (Fontaine JM et al. 1995). A phylogenetic analysis of these RT-like proteins revealed that 

they belong to the lineage of RT from plastid, cyanobacteria, and γ-proteobacterial (class CL1, See 

Fig. I-17), which is consistent with a co-evolution of the group II intron and their inserted RT, as the 

corresponding group II introns belong to the RNA structural class IIB1.  

The self-splicing ability in vitro of Pl.LSU/1 to Pl.LSU/3 group II introns was assayed under different 

conditions (Costa M et al. 1997b), and the results revealed that Pl.LSU/2 is a remarkably efficient 

ribozyme catalyst. Pl.LSU/2 was found to be highly reactive under most of the conditions tested. It 

was observed that no improvement of the catalytic activity was detected at high ionic strength (1 M of 

NH4Cl, (NH4)2SO4, or KCl) when magnesium concentration was raised from 10 mM to 100 mM 

(Costa M et al. 1997b), while most group II introns require high magnesium concentrations for 

efficient self-splicing in vitro (usually > 50 mM) (Peebles CL et al. 1986; van der Veen R et al. 1986; 

Jarrell KA et al. 1988; Matsuura M et al. 1997). More interestingly, the Pl.LSU/2 intron was shown to 

still function at the very low Mg
2+

 concentration of 0.1 mM in presence of 1 M NH4Cl, with a splicing 

of about 10% of precursor molecules in 1 hr (Costa M et al. 1997b). Pl.LSU/2 can also undergo self-

splicing by the branching pathway and the hydrolysis pathway in vitro, depending on the conditions 

used. It was also shown that a homogenous and correctly folded population of Pl.LSU/2 RNA could be 

obtained at low Mg
2+

 concentration and that a high proportion of intron lariat RNA could be obtained 

under optimal conditions. 

The secondary and tertiary structures of Pl.LSU/2 intron RNA were subsequently investigated by 

biochemical analyses (Costa M et al. 1998; Costa M and Michel F 1999; Costa M et al. 2000; Li CF et 

al. 2011). These studies allowed the refinement of the secondary structure of intron domain V and 

provided experimental evidence for a number of structural characteristics such as α-α’, θ-θ’, ζ-ζ’ 

tertiary interactions. In addition, requirements for efficient 5’ exon-intron binding were determined 

and correspond to EBS/IBS pairing as well as the presence of the intron domain V and the completion 

of the intron active site formation, and EBS3/IBS3 as well as δ-δ’ interactions were identified and 

their role in 5’ and 3’ exons binding to the intron were outlined. More recently, nuclear magnetic 

resonance (NMR) spectrometry studies were performed to further describe the overall structure of the 

catalytic domain V (Dayie KT 2005; Seetharaman M et al. 2006) and the dynamic profile of this 

domain (Eldho NV and Dayie KT 2007). The structure of the DV domain of Pl.LSU/2 group II intron 

was very recently refined in silico (Henriksen NM et al. 2012). The secondary structure of Pl.LSU/2 

group II intron with its known tertiary interactions is represented in Fig. I-24. 
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Figure I-24: Secondary structure of Pl.LSU/2 group II intron with tertiary interactions. 

EBS and IBS sequences are indicated and tertiary interactions involving intron sequences are noted by Greek 

letters. The remaining 1846 nt of DIV is represented by the black line and contains the IEP ORF. The figure was 

taken from the F. Michel lab website (http://www.cgm.cnrs-gif.fr/michel/) and contains minor modifications.  

In 2001, the complete sequence of the brown algae mitochondrial genome of P. littoralis (strain L. 

Kjellm) becomes available (Oudot-Le Secq MP et al. 2001). The amino acid sequence of the Pl.LSU/2 

IEP (gi|15150713) was thus annotated using previous results of Pl.LSU/2 IEP alignment with other 

intron-encoded protein amino acid sequences (Fontaine JM et al. 1995) (Fig. I-25). 

 

 

http://www.cgm.cnrs-gif.fr/michel/
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Figure I-25: Schematic representation of the Pl.LSU/2 IEP with its conserved domains. 

RVT-N: N-terminal domain of reverse transcriptase (Pfam 13655); RVT-1: RNA-dependent DNA polymerase 

(Interpro IPR000477, Pfam 00078); black rectangles: RT blocks 1 to 7; active site: putative active sites of the RT 

domain (See NCBI annotation); YADD: conserved RT catalytic motif; X (GIIM): Group II intron maturase-

specific domain (Interpro 013597, Pfam 08388); En (HNH): Endonuclease domain presenting the HNH 

endonuclease signature (Interpro IPR002711/IPR003615); ZF-like: DNA-binding domain with zinc-finger 

characteristic cysteines signature C(2-3)C. 

As mentioned above, the Pl.LSU/2 IEP sequence presents all the characteristic domains of group II 

intron-encoded proteins. The RT domain is here represented by the N-terminal RVT-N domain present 

in some reverse transcriptase proteins, such as bacterial reverse transcriptases, and the typical RVT-1 

domain (RNA-dependent DNA polymerase) found in all reverse transcriptase proteins. This latter 

domain contains the conserved RT blocks 1 to 7 and presents four putative active sites (putative NTP 

binding sites or nucleic acid binding site), including the highly conserved YNDD catalytic motif 

(YADD in Pl.LSU/2 IEP). The Pl.LSU/2 sequence also contains the conserved X domain, 

corresponding to the group II intron maturase-specific domain, and the endonuclease domain with the 

HNH endonuclease signature. The DNA-binding domain corresponding to the ZF-finger characteristic 

cysteines signature C(2-3)C has been defined by alignment of the Pl.LSU/2 IEP sequence with those of 

other group II intron-encoded proteins (Fontaine JM et al. 1995). 

Several observations show that the Pl.LSU/2 group II intron is a highly active ribozyme in vitro, and 

together with the observation of mature LSU rRNA in algae (Fontaine JM et al. 1995), the absence of 

degeneration of its IEP encoding sequence suggest that this protein could also be active in vivo. 

However, there is no experimental validation of the biochemical activities of the IEP and no direct 

proof of catalytic activity of the Pl.LSU/2 intron in vivo. 
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4 - AIM OF THE THESIS 

The literature review presented in introduction shows that several strategies are currently developed to 

achieve stable gene transfer in gene therapy. The most widely used integrative gene therapy vectors 

are those based on retroviruses. However, safety concerns with regards to potential insertional 

mutagenesis led to intensive research for the development of alternative tools. The ultimate goal in the 

gene therapy field would be the development of techniques enabling precise and highly specific gene 

repair (or gene disruption in the case of anti-viral therapies). To date, the use of site-specific nucleases 

is the only way to achieve site-specific gene repair. Although these approaches seem to be very 

promising, several hurdles still have to be overcome. The main concern in all the different gene 

targeting approaches developed so far is the safety of these new tools. Indeed, in most cases, these 

strategies involve a double-strand break of the DNA followed by DNA repair by homologous 

recombination. Such an approach is potentially mutagenic and could induce genomic rearrangements 

if off-targets are not avoided. The presence of off-target integrations is itself a concern, as the goal of 

these site-specific gene targeting approaches is precisely to induce DNA integration at a chosen and 

unique location of the genome. In addition, these targeting strategies are based on engineered proteins, 

whose design and production are often labor-intensive.  

Mobile group II introns are self-splicing ribozymes already used in gene targeting approaches in 

bacteria (Karberg M et al. 2001; Frazier CL et al. 2003; Zhong J et al. 2003; Perutka J et al. 2004). 

They can be retargeted to a chosen specific site of the genome by simply modifying the intron 

sequences involved in the recognition of their DNA target site. Indeed, as described in introduction, 

group II intron can integrate into double-stranded DNA at a specific and unique site, mainly 

recognized by base-pairing between the spliced intron RNA and the DNA target site. The mechanism 

of group II intron integration is highly specific, as it involve a base-pairing of about 12-15 nt, and 

additional contacts are made between the intron-encoded protein and the DNA target site, increasing 

the number of connected nucleotides to 15-21 nt (reviewed in (Lambowitz AM and Zimmerly S 

2004)). The design and production of these targeting tools are very easy and fast, as it can be 

performed by PCR amplification. However, the attempt of using group II introns for gene targeting in 

human cells has faced some important bottlenecks (Guo H et al. 2000). Indeed, the mostly used 

Ll.LtrB group II intron appears to be relatively inefficient for both splicing and homing in human 

cells, and more generally in eukaryotic cells . The main barrier seems to be the high requirement in 

Mg
2+

 ions of Ll.LtrB for catalysis (Mastroianni M et al. 2008; Zhuang F et al. 2009b). A general 

solution would thus be the use of a group II intron with a lower dependence on Mg
2+

 for catalysis.  

The mitochondrial Pl.LSU/2 intron from the brown algae Pylaiella littoralis has been shown to be a 

highly active catalyst in vitro and can retain catalytic activity even in presence of remarkably low 

Mg
2+

 concentration (Costa M et al. 1997b). The secondary and tertiary structures of this group II 

intron are also defined (Costa M et al. 1998; Costa M and Michel F 1999; Costa M et al. 2000; Li CF 

et al. 2011). In addition, this intron contains in its DIV loop an open-reading frame putatively 

encoding an IEP, whose sequence analysis reveals the presence of all conserved domains of group II 

intron-encoded proteins (Fontaine JM et al. 1995). We postulated that the unusually low requirement 

of Mg
2+

 for the Pl.LSU/2 intron catalytic activity, which is a unique feature, could make this intron a 

good candidate for specific genetic engineering in human cells. To use this intron as a site-specific 
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vector, two molecules have to be functionally active in vivo: the Pl.LSU/2 intron RNA and the 

Pl.LSU/2 IEP. Although the catalytic activity of the intron was well defined in vitro, its catalytic 

activity in vivo was not reported yet, and the biochemical activities of the IEP were not determined. In 

this context, the aim of this study was to further characterize this intron in order to evaluate its 

potential use for gene targeting in human cells. The Pl.LSU/2 intron-encoded protein was expressed 

and purified in order to assay its potential biochemical activities. Several expression hosts and 

purification systems were used to achieve the purification of catalytically active IEP. The reverse 

transcriptase activity of the IEP was subsequently assayed. In addition, the Pl.LSU/2 intron splicing, 

mediated or not by the IEP, was evaluated in vivo first in S. cerevisiae, and then in a human cell line. 

Ultimately, the homing capacity of Pl.LSU/2 intron into its natural DNA target site was evaluated in 

E. coli and S. cerevisiae. 

Even though site-specific gene therapy vectors could represent safer strategies and open the way of 

dominant gene disorders treatment, their development is still under study. To date, successful clinical 

trials using retroviral vectors have highlighted the usefulness of these integrating vectors for gene 

therapy (Mavilio F et al. 2006; Aiuti A et al. 2009; Cartier N et al. 2009; Boztug K et al. 2010; 

Cavazzana-Calvo M et al. 2010; Hacein-Bey-Abina S et al. 2010; Gaspar HB et al. 2011). Although 

much effort has been made to increase the safety of retroviral vectors such as the development of SIN-

vectors, it seems necessary to assay their safety in gene therapy protocols. The risk of insertional 

mutagenesis is directly correlated with the number of integrated vector copies into transduced cells, 

and a too high number of insertions per cell has more probability of inducing abnormal clonal 

expansions, as usually more than one transforming event is required for tumorigenesis (Moolten FL 

and Cupples LA 1992; Du Y et al. 2005a; Du Y et al. 2005b; Modlich U et al. 2005).  

During my thesis, I had the opportunity to participate to a work developing and validating a simple 

method to quantify the vector copy number at the single-cell level. This study was conducted by the 

Anne Galy’s team at Genethon with the aim of determining vector safety and optimizing protocols of 

gene therapy using HIV-1-based lentiviral vectors, and in particular for the treatment of the Wiskott-

Aldrich syndrome. This work has been published in 2011 in Gene therapy (Charrier S et al. 2011) and 

is summarized in the following section. 
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1 - SUMMARY OF THE WORK 

The Wiskott-Aldrich syndrome (WAS) is a rare (1/200,000 male births) X-linked immunodeficiency 

due to mutation in the WAS gene encoding a protein named WASp (for Wiskott-Aldrich syndrome 

protein) (Derry JM et al. 1994). WASp is a major regulator of the cytoskeleton expressed in 

hematopoietic cells (reviewed in (Bouma G et al. 2009)). This disease is characterized by several 

clinical manifestations such as micro-thrombocytopenia (diminution of the number of platelets), 

recurrent infections caused by the immunodeficiency, eczema, etc. (Sullivan KE et al. 1994). When 

HLA-compatible donors exist, WAS patients can be treated by allogenic hematopoietic stem cells 

transplantation (reviewed in (Pai SY and Notarangelo LD 2010)). However, patients without HLA-

compatible donors and presenting a mutated form of the WAS gene associated with severe clinical 

manifestations have no other therapeutic option than gene therapy (reviewed in (Galy A and Thrasher 

AJ 2011)).  

As mentioned in Introduction section 1 -, a first gene therapy clinical trial has been opened recently in 

Germany for the treatment of WAS patients using (non-SIN) γ-retroviral vectors (Boztug K et al. 

2010). Although clear success was demonstrated, one patient developed a vector-induced T-cell 

leukemia, due to vector insertion near the proto-oncogene LMO2. In addition to this adverse event, 

several hurdles inherent to the use of γ-retroviral vectors for gene therapy have led to the development 

of lentiviral vectors (LV) with improved safety for gene therapy of WAS (reviewed in (Galy A et al. 

2008)). Indeed, encouraging results were obtained from preclinical studies using recombinant HIV-1-

derived (rHIV) SIN lentiviral vectors (LV) encoding WASp (Dupre L et al. 2006; Marangoni F et al. 

2009; Zanta-Boussif MA et al. 2009; Scaramuzza S et al. 2012). The assessment of the vector safety 

was done by analyzing the insertional pattern (Mantovani J et al. 2009), which showed usual rHIV 

insertion profile, as well as evaluating the vector-mediated transformation ability in vitro (Modlich U 

et al. 2009) and in vivo in an animal model (Marangoni F et al. 2009), demonstrating a higher safety of 

rHIV LV compared to γ-retroviral vectors with regards to insertional mutagenesis. These results led to 

the opening of a international multicenter phase I/II clinical trial (Galy A and Thrasher AJ 2011). 

To set up a gene therapy protocol, two parameters have to be equilibrated: a sufficient transduction 

level needs to be achieved to obtain the required therapeutic level of protein expression, and on the 

other hand, the number of vector insertions per cell has to be kept as low as possible to reduce the risk 

of insertional mutagenesis. The insertional mutagenesis risk increases as the integrated virus copy 

number rises (Moolten FL and Cupples LA 1992; Du Y et al. 2005a; Du Y et al. 2005b; Modlich U et 

al. 2005). The toxicity of multiple vector insertions may also result in the apoptosis of transduced cells 

at high vector dose (Arai T et al. 1999). Increasing the vector dose or the number of transduction 

round to improve the transduction efficiency could thus not be appropriate in terms of safety 

(Kustikova et al. 2003). Hence, for each clinical application, retroviral transduction methods require 

optimizations not only to maximize the transduction efficiencies but also to deliver a narrow range of 

integrated copies per cell. A quantitative analysis of both transduction efficiency and vector copy 

number (VCN) per cell should provide insights to assist the optimization of gene therapy protocols. 

In the case of hematopoietic stem/progenitors cells transduction, the initial frequency of transduced 

cells and the number of vector integrations in individual cells can be assessed on colony-forming cells 

(CFC), which are formed by hematopoietic progenitor cells during a low cell density culture. Thus, a 
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comparison of the number of transgene-positive CFC to the total can estimate the transduction 

efficiency of the hematopoietic progenitor cells population. The quantification of VCN in CFC can 

also provide information on multiple vector copies, in contrast to the quantification of an average 

VCN in a heterogenous cell population. A VCN quantification method on CFC by Q-PCR was already 

proposed, although not experimentally validated (Schuesler T et al. 2009). 

In this work, Charrier et al. developed and validated a simple method to quantify VCN in individual 

CFC relying on a single-step genomic DNA extraction and a duplex Q-PCR analysis. Three control 

cell clones with known VCN and integration sites (Mantovani J et al. 2009) were generated. In this 

study, I confirmed by Southern blot the VCN of these control cells clones. These clones were then 

used to assess the sensitivity, accuracy and reproducibility of the developed method. It was shown that 

the Q-PCR method was sufficiently sensitive to determine VCN per cell of as low as 100 cells. 

Although the range of VCN determined was similar to expected values, VCN of these control clones 

was underestimated by 30-40%. However, this method still provides dose-dependent results and can 

thus evaluate the distribution of VCN at the single-cell level. This Q-PCR technique was then used to 

evaluate the transduction efficiency of CD34
+
 hematopoietic progenitor cells by a LV encoding the 

GFP (GFP-LV). Positive correlation was found between CFC positives for vector and CFC expressing 

the GFP. In addition, the number of CFC positive for vector obtained by Q-PCR was very similar to 

theoretical data estimated from the average mean transduction rate using the Poisson distribution and 

corresponding to the probability of transduction of single hematopoietic cells (Fehse B et al. 2004). 

Altogether, these data contributed to validate the method consisting of the determination of VCN on 

CFC by Q-PCR to quantify the frequency of transduction of hematopoietic progenitor cells and 

determine the distribution of VCN per cell on the transduced cell population. 

  

This method was subsequently used to evaluate various conditions of hematopoietic progenitor cells 

transduction by a GFP-LV and a clinically relevant LV encoding WASp (WASP-LV). The effect of 

the vector concentration and the number of round of transduction were evaluated. It was shown that 

for the GFP-LV, the frequency of transduced cells significantly increased with higher vector dose and 

that the distribution of VCN was modified, with a higher median values and range of VCN. On the 

other hand, the use of two hits of transduction with the GFP-LV had only a little effect on the 

improvement of the frequency of transduced cells, but resulted in a clear modification of VCN 

distribution, with an increased number of cells with high VCN. The results were not similar when 

using the WASP-LV. The frequency of transduced cells was also increased when using higher vector 

doses but the distribution of VCN was not significantly impacted.  

Interestingly, this Q-PCR method was applied to evaluate the activity of a WASP-LV purified by 

chromatography with clinical grade manufacturing techniques (Merten OW et al. 2011) and used in 

current WAS gene therapy clinical trials (Galy A and Thrasher AJ 2011). Indeed, high concentrated 

rHIV particles are usually required for efficient transduction of primary cells (Haas DL et al. 2000) 

and a common concentration technique rely on ultracentrifugation of vector-containing cell extracts. 

However, such materials contain contaminating elements as cellular debris, membrane fragments and 

proteins, which can be toxic to target cells (Selvaggi TA et al. 1997; Reiser J 2000; Tuschong L et al. 

2002; Baekelandt V et al. 2003). Thus, alternative methods to concentrate and extensively purify gene 

therapy vector, allowing its clinical use, were developed in the context of the WAS gene therapy 

clinical trial. Comparable levels of transduction were determined between WASP-LV purified by 
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chromatography and the previously evaluated WASP-LV purified by ultracentrifugation. As for 

WASP-LV purified by ultracentrifugation, it was shown that increasing the vector concentration 

improved the transduction efficiency without modifying the VCN distribution. The effect of two hits 

of transduction was also evaluated and showed an increase of the frequency of transduced cells, with a 

better improvement than those observed with the use of higher vector dose. The modification of the 

VCN distribution described with the GFP-LV showing an increase in the number of cells with high 

VCN does not occurred with two hits of transduction by WASP-LV. Altogether, these data indicate 

that different preparations of LV could have different behavior impacting on the transduction 

efficiency and on the level of integrated vector copies per cell.  

This study also reveals a bias in the VCN distribution among different types of cells, with higher VCN 

values in erythroid colonies than in myeloid colonies, probably due to the experimental conditions that 

favored preferential transduction of erythroid progenitor cells. 

To conclude, a simple method based on Q-PCR for analyzing vector copy number in individual CFC 

has been developed and validated, and has determined the frequency of transduction and the 

distribution of vector copies in hematopoietic progenitor cell population. This work demonstrated the 

influence of experimental conditions as well as the vector type on these two parameters. Such a 

method would provide important data for optimizing gene therapy protocols and can be used together 

with vector insertion site analyses to assess vector safety. 
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1 - INTRODUCTION 

As mentioned in introduction, the development of new tools for site-specific genomic engineering is 

an active research area in the field of gene therapy. Mobile group II introns genetic elements represent 

an attractive strategy, as they can integrate into a specific DNA site by the homing mechanism, which 

is not based on a double-strand break in contrast to all currently used tools. 

To date, group II introns as gene targeting vectors are only used in prokaryotes, due to their inefficacy 

in eukaryotes. In the attempt of developing an efficient group II intron as a gene targeting tool in 

human cells, we decided to evaluate and characterize the Pylaiella littoralis Pl.LSU/2 group II intron. 

This intron was indeed shown to efficiently self-splice in vitro at low Mg
2+

 concentrations (Costa M et 

al. 1997b). The major hurdle of the use of group II introns in eukaryotes, and in particular in human 

cells, appears to be due to at least unfavorable ionic environment that impede intron catalytic activity 

(Mastroianni M et al. 2008; Zhuang F et al. 2009b). We thus postulated that Pl.LSU/2 group II intron, 

which is active in vitro even under remarkably stringent ionic conditions, could be more efficient in 

eukaryotic cells than other group II introns.  

The Pl.LSU/2 intron contains in its domain IV an ORF encoding a protein that presents all group II 

intron-encoded protein (IEP) conserved domains (Fontaine JM et al. 1995; Fontaine JM et al. 1997). 

However, no report on the biochemical activities of this protein was available at the beginning of the 

work. The first aim of the project was thus to characterize the biochemical activities of the Pl.LSU/2 

IEP. Group II intron IEPs are required to the intron homing into target DNA. It was thus crucial to 

determine if the Pl.LSU/2 could be active. To perform biochemical analyses on Pl.LSU/2, it was 

necessary to produce and purify this protein. Several strategies were thus attempted, such a 

chromatography purifications and centrifugation in a sucrose cushion. Much effort was made to purify 

the protein by chromatography, because this system is easily scalable so that various studies could be 

considered, such as biochemical and structural studies. The results are described in the following 

section. The purification of Pl.LSU/2 IEP by sucrose centrifugation was successful and allowed the 

characterization of the reverse transcriptase activity of the protein. These results are included in article 

2. 

To further characterize both the Pl.LSU/2 intron and IEP, we evaluated the splicing capacity of the 

Pl.LSU/2 intron in eukaryotes. Indeed, in an ideal gene targeting system based on group II intron, the 

intron would be expressed directly into the cells and would splice in the nucleus. The expression of the 

IEP in trans, addressed to the nucleus, would then allow the RNP formation and the homing 

mechanism. Both components of this system could be delivered with the use of non-integrating virus-

derived vectors. In this context, the characterization of the in vivo Pl.LSU/2 splicing ability was a 

prerequisite to the development of Pl.LSU/2 intron as gene targeting tool. Because of the facility to 

perform genetic and mechanistic studies in Saccharomyces cerevisiae, we first evaluated both the 

splicing capacity of intron Pl.LSU/2 and the maturase activity of the IEP in that host. We then assayed 

the intron catalytic activity in a human cell line. The results are described in article 2. 

Finally, we attempted to evaluate the homing capacity of Pl.LSU/2 in its natural target site first in E. 

coli and then in S. cerevisiae. The results of these preliminary assays are described in section 4 -. 
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2 - DEVELOPMENT AND OPTIMIZATION OF PURIFICATION 

STRATEGIES FOR PL.LSU/2 INTRON-ENCODED PROTEIN 

The Pl.LSU/2 intron-encoded protein (IEP) sequence analysis reveals the presence of conserved 

catalytic domains shared by other group II intron-encoded proteins: reverse transcriptase (RT), 

maturase (X) and endonuclease (En). The first putative activity of the Pl.LSU/2 IEP that we evaluated 

was the reverse transcriptase. Indeed, several published methods that allow the testing of an RT 

activity are available and easily realizable.  

Production of proteins, whether for biochemical analysis, therapeutics or structural studies, requires 

the success of three individual factors: expression, solubility and purification. Although a number of 

expression hosts are available for protein production, the standard still remains E. coli (Baneyx F 

1999; Goulding CW and Perry LJ 2003). However, the percentage of soluble heterologous proteins 

expressed in E. coli is usually less than 23% (Chambers SP et al. 2004; Marblestone JG et al. 2006). 

There is a general perception that solubility problems can often be solved by using eukaryotic hosts, 

such as insect cells (with the baculovirus expression system), yeast or mammalian. Another promising 

alternative is the cell-free protein synthesis, which has been improved dramatically in recent years. In 

this work, I have used E. coli, insect cells and cell-free expression systems in order to express the 

Pl.LSU/2 IEP in a properly folded and soluble form. 

Unlike many other enzymes, the RT activity of a protein could not be assayed directly from cell 

extracts. This is due to the fact that unfractionated extracts are likely to contain contaminating RNases 

and DNases naturally produced by the host in which the expression is performed. The RNases could 

degrade the RNA template required for the cDNA synthesis during the reverse transcriptase activity 

assay and the DNases could degrade the cDNA produced, thus biasing the reaction analysis. 

Moreover, cells extracts may also contain contaminating RNA-dependent DNA polymerases which 

could also lead to misinterpretation of the results. Purification of the IEP from these contaminants is 

therefore necessary before assaying its RT activity.  

Different purification approaches can be considered to purify a protein. The most used purification 

method is the chromatography. However, almost all proteins lose their activity during manipulation. It 

is thus important to purify the protein as quick as possible. Highly specific methods, such as those 

based on bioaffinity (antibody-antigen interaction) or those based on the use of fusion tags such as 

6xHis or glutathione-S-transferase (GST), allow in some cases the purification of a highly pure protein 

in a single step. As no antibody directed against the Pl.LSU/2 IEP is yet available, we decided to use 

both GST and 6xHis (metal binding) as tags for IEP purification. 

2.1 - GST-TAGGED IEP IN E. COLI 

The GST protein is a 26-kDa eukaryotic protein, which is well expressed in E. coli and was shown to 

improve the solubility and enhance the expression of some target proteins (Smith DB and Johnson KS 

1988; Kim S and Lee SB 2008). GST has a biospecific affinity for glutahione ligand and can thus bind 

to resin-immobilized glutathione. The GST tag has to be properly folded to bind glutathione, thus the 

fusion protein needs to be soluble and in non-denaturing conditions for efficient purification. GST-

tagged proteins can be eluted under mild conditions using free reduced-glutathione at neutral pH. 
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The plasmid pGST-IEP (See plasmid map), derived from pGEX-4T1 (See Appendix plasmid map), 

was constructed to express the GST-IEP fusion protein. The GST protein is less efficient at improving 

protein solubility when positioned at the C-terminal end of the target protein even if it still functions as 

an affinity tag (Smith DB and Johnson KS 1988). We have thus tagged the IEP in N-terminal to ensure 

maximal improvement of the solubility. The IEP sequence was inserted in frame with the GST just 

downstream of a thrombin recognition site (Fig. R-1; T). The Thrombin protease can be used to 

release the IEP from the GST. GST-IEP expression is driven by an IPTG (Isopropyl β-D-1 

thiogalactopyranoside)-inducible tac promoter (Fig. R-1; tac). The translation initiation codon is 

located upstream the GST ORF (Fig. R-1; ATG), and a ribosome binding site (Fig. R-1; RBS) is 

present to allow efficient translation of the fusion protein. 

 

Figure R-1: Schematic representation of GST-IEP expression cassette.  

tac: tac promoter; RBS: Ribosome Binding Site; ATG: translation initiation codon; GST: Glutathione-S-

transferase coding sequence ; T: Thrombin protease recognition site; Term: transcription terminator. 

2.1.1 - Expression in BL21 Star (DE3) and purification 

The GST-IEP protein fusion protein was first expressed in the E. coli strain BL21 Star (DE3), 

available in the laboratory. BL21 is a protease-deficient strain engineered to maximize expression of 

full-length protein. Its derivative BL21 Star strain contains a mutation in the gene encoding RNase E 

(rne131), which is one of the major sources of mRNA degradation (Kido M et al. 1996; Lopez PJ et al. 

1999). E. coli BL21 Star (DE3) was transformed with pGST-IEP, grown at 37°C until OD600nm reached 

0.5 and GST-IEP expression was induced for 3 hrs with 0.1 mM of IPTG. This first purification 

experiment was performed on 100 ml of E. coli culture using the batch purification method (use of the 

resin without column). The culture was pelleted and lysed to obtain the total protein fraction (T). The 

soluble protein fraction (S) was then loaded onto the Glutathione-Sepharose resin. The flow-through 

(Ft) was collected and the resin was washed thrice (W1, W2 and W3). Purified protein fraction (P) was 

finally obtained by an elution at room temperature for 10 min with 10 mM of reduced glutathione. The 

Glutathione-Sepharose resin (R) was also analyzed to evaluate the amount of proteins that remain 

bound to the resin after elution. The GST-IEP molecular mass is expected to be around 91-kDa. All 

protein fractions were analyzed by SDS-PAGE (Sodium dodecyl sulfate polyacrylamide gel) with 

Coomassie blue staining (Fig. R-2). 

 



Part II – Pl.LSU/2 group II intron characterization: IEP expression and purification 

 93 

 

Figure R-2: Expression of GST-IEP in BL21 Star (DE3) and purification.  

GST-IEP expression was induced from 100 ml E. coli culture at OD600nm 0.5 with 0.1 mM of IPTG at 37°C for 3 

hrs. A negative control was also performed from 10 ml of E. coli culture without IPTG induction (-). T: total 

protein fraction (1/47 of T(-) fraction and 1/470 of T(0.1 mM) fraction); S: soluble protein fraction (1/47 of S(-) 

fraction and 1/470 of S (0.1 mM) fraction); Ft: Flow-through from the Glutathione-Sepharose resin after binding 

of GST-IEP (1/470 of the fraction); W1 to W3: wash protein fractions 1 to 3 (1/190 of the fractions); P: purified 

protein fraction eluted from the resin (1/19 of the fraction); R: proteins which remain bound to the resin after 

elution (1/7 of the fraction). Numbers at left indicate molecular mass marker. 

SDS-PAGE shows no detectable over-expression of the GST-IEP (Fig. R-2; fraction T). However, a 

protein that ran between the 75-kDa and the 100-kDa markers at the approximate size of the GST-IEP 

was found in the purified and resin fractions (Fig. R-2; fractions P and R). Those fractions were highly 

contaminated with a lot of E. coli proteins and/or degradation products. It became apparent that the 

GST-IEP expression and purification were not optimal.  

2.1.2 - Expression in BL21 Star (DE3) pRARE, purification, and RT activity assay 

When we analyzed the protein sequence of the GST-IEP, we found that it contains several codons 

underrepresented in E. coli. Indeed, most amino acids are encoded by more than one codon, and each 

organism carries its own bias in the usage of the 61 available amino acid codons. In each cell, the 

tRNA population closely reflects the codon bias of the mRNA population (Ikemura T 1981; Dong H et 

al. 1996). When the mRNA of an heterologous target gene is overexpressed in E. coli, differences in 

codon usage can impede translation due to the demand for one or more tRNAs, which may be rare or 

lacking in the tRNAs population of the host (Goldman E et al. 1995; Kane JF 1995; Kurland C and 

Gallant J 1996). Examination of codon usage in all 4,290 E. coli genes reveals a number of codons 

that are underrepresented in E. coli (Nakamura Y et al. 2000) (Table R-3; indicated in red).  
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amino acid codon fraction in all 

genes 

fraction in highly 

expressed genes 

Arg 

AGG 0.022 0.003 

AGA 0.039 0.006 

CGG 0.098 0.008 

CGA 0.065 0.011 

CGU 0.378 0.643 

CGC 0.398 0.330 

Gly 

GGG 0.151 0.044 

GGA 0.109 0.020 

GGU 0.337 0.508 

GGC 0.403 0.428 

Ile 

AUA 0.073 0.006 

AUU 0.507 0.335 

AUC 0.420 0.659 

Leu 

UUG 0.129 0.034 

UUA 0.131 0.055 

CUG 0.496 0.767 

CUA 0.037 0.008 

CUU 0.104 0.056 

CUC 0.104 0.080 

Pro 

CCG 0.525 0.719 

CCA 0.191 0.153 

CCU 0.159 0.112 

CCC 0.124 0.016 

Table R-3: Codon usage in E. coli of five amino acids.  

Arg: arginine; Gly: glycine; Ile: isoleucine; Leu: leucine; Pro: proline. Codon usage is indicated as the fraction of 

all possible codons for a given amino acid. “All genes” is the fraction represented in all 4,290 coding sequences 

of E. coli (Nakamura Y et al. 2000). “Highly expressed” genes is the fraction represented in 195 genes highly 

and continuously expressed during exponential growth (Henaut A and Danchin A 1996). In red are indicated 

codons that are underrepresented in E. coli. 

In particular, arginine codon AGA, AGG and CGA, isoleucine codon AUA and leucine codon CUA 

represent less than 8% of their corresponding population of codons (Table R-3; in red and underlined). 

The codon usage of highly expressed genes in E. coli demonstrates a more extreme bias. Indeed, in 

addition of the codons mentioned before, codon GGA for glycine, CGG for arginine and CCC for 

proline fall to less than 2% of their respective populations (Table R-3; in red and bold letters). Under 

growth conditions used to overexpress target genes in E. coli, it is likely in many cases that the 

resident tRNA population available for target protein synthesis would resemble to that of highly 

expressed genes in Table R-3. We then analyzed the IEP sequence to determine the content of 

“problematic” codons (Fig. R-4).  
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               ---------|---------|---------|---------|---------|---------|---------|---------| 80 

             1 AUGAGUAUUCCAUAUAUAAUUCCUUUCAAUUGGCAUGACAUAGAUUGGGCUAACGUCCAGUCGAAAGUCUGUUAUUAUCA 

             1 M  S  I  P  Y  I  I  P  F  N  W  H  D  I  D  W  A  N  V  Q  S  K  V  C  Y  Y  Q  27 
 

               ---------|---------|---------|---------|---------|---------|---------|---------| 

            81 AAAUAACCUCGCAGUAGCCGAACUAAAAGGUGAUUCUGGUUUAGUUACCAAACUACAAAGAAAUCUCGUAAAUUCCUUUG 160 

            28  N  N  L  A  V  A  E  L  K  G  D  S  G  L  V  U  K  L  Q  R  N  L  V  N  S  F  A 54 
 

               ---------|---------|---------|---------|---------|---------|---------|---------| 

           161 CUGGACGAGCCCUUGCAGUACGUGCCAUCACGACUAACAAGGGUAAGAACACACCAGGAAUCAAUGGGGAGAUUUGGGAC 240 

            55   G  R  A  L  A  V  R  A  I  U  U  N  K  G  K  N  U  P  G  I  N  G  E  I  W  D   80 
 

               ---------|---------|---------|---------|---------|---------|---------|---------| 

           241 ACAUCUAUUAAGAAAUUGGAUGCAAUCCACAGGUUAGGGAGAGUAUCAAAUUACUCUUGUUCCCCUGUAAAAAGAGUAUA 320 

                81 U  S  I  K  K  L  D  A  I  H  R  L  G  R  V  S  N  Y  S  C  S  P  V  K  R  V  Y  107 
 

           ---------|---------|---------|---------|---------|---------|---------|---------| 

           321 CAUACCAAAGUCCGGUGGAAAACUUCGUCCGCUAGGUAUACCUAAUAUGUAUGAUCGAGGAUUGCAGUAUUUAUGGAAAU 400 

           108  I  P  K  S  G  G  K  L  R  P  L  G  I  P  N  M  Y  D  R  G  L  Q  Y  L  W  K  L 134 
 

               ---------|---------|---------|---------|---------|---------|---------|---------| 

           401 UGGCUCUGGACCCAAUAGCUGAGUGUCGGGCUGACCGGCAUUCCUAUGGGUUUCGAAAGGGUAGGAGCACGCAGGACGUU 480 

           135   A  L  D  P  I  A  E  C  R  A  D  R  H  S  Y  G  F  R  K  G  R  S  U  Q  D  V   160 
 

               ---------|---------|---------|---------|---------|---------|---------|---------| 

           481 CAUACGAUACUGCAUUUGCUUCUUAGCCCCAAAAGUAGAUGUGAUUGGGUUUUGGAAGCUGAUAUCAGGGGCUUCUUUGA 560 

           161 H  U  I  L  H  L  L  L  S  P  K  S  R  C  D  W  V  L  E  A  D  I  R  G  F  F  D  187 
 

               ---------|---------|---------|---------|---------|---------|---------|---------| 

           561 UAACAUCAACCAUGACUGGAUCAUACAGAAUAUACCAAUGGACAAAAAUAUUCUUCGGGAAUGGUUAAAAGCAGGUGCUC 640 

           188  N  I  N  H  D  W  I  I  Q  N  I  P  M  D  K  N  I  L  R  E  W  L  K  A  G  A  L 214 
 

               ---------|---------|---------|---------|---------|---------|---------|---------| 

           641 UAGAAACAACAACUCAGGAGUUUCAUAAGGGUAUUGCUGGAGUACCACAAGGAGGACCAAUUUCACCUUUAAUUGCAAAC 720 

           215   E  U  U  U  Q  E  F  H  K  G  I  A  G  V  P  Q  G  G  P  I  S  P  L  I  A  N   240 
 

               ---------|---------|---------|---------|---------|---------|---------|---------| 

           721 AUGACGUUGGAUGGUUUAGAAGUUUGGGUGGCUAACUCUGUUAAACAUCUCUAUAAAAAGAGUAAAGAAACUAGUUGGUC 800 

           241 M  U  L  D  G  L  E  V  W  V  A  N  S  V  K  H  L  Y  K  K  S  K  E  U  S  W  S  267 
 

               ---------|---------|---------|---------|---------|---------|---------|---------| 

           801 CCCGAAAGUAAACGUGGUAAGGUAUGCGGAUGACUUCGUCGUUACCGCUGCAACAAAACGAAUACUCGAGGAUAUAGUGA 880 

           268  P  K  V  N  V  V  R  Y  A  D  D  F  V  V  U  A  A  U  K  R  I  L  E  D  I  V  K 294 
 

               ---------|---------|---------|---------|---------|---------|---------|---------| 

           881 AACCGUCAAUUCAAGAUUUCCUGGCUUCUCGUGGCCUAGUUCUUAAUCAAGAGAAGACUUGCAUCACUAGCGUAAAGAAA 960 

           295   P  S  I  Q  D  F  L  A  S  R  G  L  V  L  N  Q  E  K  U  C  I  U  S  V  K  K   320 
 

               ---------|---------|---------|---------|---------|---------|---------|---------| 

           961 GGCUUCGAUUUUGUUGGGUUUAACUUCCGGGUUUACCCCGAUAAGUCUGGUCCGAAAGGCGCAAAAUCGAUUGUUAAACC 1040 

           321 G  F  D  F  V  G  F  N  F  R  V  Y  P  D  K  S  G  P  K  G  A  K  S  I  V  K  P  347 
 

               ---------|---------|---------|---------|---------|---------|---------|---------| 

          1041 GACAAAAGAAGGCAAAAGAAGGCUCCGAUCCAAGAUAAGAAAUGCUGUGAAGACAAAUAAAAGCUCUGGAGAAAUUAUAG 1120 

           348  U  K  E  G  K  R  R  L  R  S  K  I  R  N  A  V  K  U  N  K  S  S  G  E  I  I  V 374 
 

               ---------|---------|---------|---------|---------|---------|---------|---------| 

          1121 UGGAGUUAAACCCAAUCCUUCGAGGUUGGGCUAAUUACUAUAAGGCGACCUCAGCAAAGAAAGUCUUUACAUCGAUUGGU 1200 

           375   E  L  N  P  I  L  R  G  W  A  N  Y  Y  K  A  U  S  A  K  K  V  F  U  S  I  G   400 
 

               ---------|---------|---------|---------|---------|---------|---------|---------| 

          1201 AAAUAUGUAUGGGAUAAAACCUGGACAUGGGCCAAAAGAAAGCAUAGGCAAUUAAAUUUCCGUGACCUUGCGAAGUUAUA 1280 

           401 K  Y  V  W  D  K  U  W  U  W  A  K  R  K  H  R  Q  L  N  F  R  D  L  A  K  L  Y  427 
 

               ---------|---------|---------|---------|---------|---------|---------|---------| 

          1281 UUAUACACGACGCAAGAAAAGGAAAUGGAUCUUCAAAGGAGAAUGGAUGGACAAGGAAUUGACUAUUUUCUUGAUAGAUA 1360 

           428  Y  U  R  R  K  K  R  K  W  I  F  K  G  E  W  M  D  K  E  L  U  I  F  L  I  D  S 454 
 

               ---------|---------|---------|---------|---------|---------|---------|---------| 

          1361 GUGUUGCGAUUAGGCGACAUUCUCUGGCAAGGAAUUACAACCCUUAUCUGCUUGACAACGAAGAUUACUUUAUCGAGCGA 1440 

           455   V  A  I  R  R  H  S  L  A  R  N  Y  N  P  Y  L  L  D  N  E  D  Y  F  I  E  R   480 
 

               ---------|---------|---------|---------|---------|---------|---------|---------| 

          1441 AACAAAAGACUUUCCUCAUCGAACCUUUGGAACGAGAGACAUAGUAAGUUGUUGCGUAGGGAUAAGUAUAAAUGUAAAGU 1520 

           481 N  K  R  L  S  S  S  N  L  W  N  E  R  H  S  K  L  L  R  R  D  K  Y  K  C  K  V  507 
 

               ---------|---------|---------|---------|---------|---------|---------|---------| 

          1521 AUGUAACGAAUACAUUUGUGGUGAGGAUAAAGUUGAAAUUCAUCACAUCAAACCUAAAAGUUUAGGUGGUGAUGAUGCUA 1600 

           508  N  E  Y  I  C  G  E  D  K  C  V  E  I  H  H  I  K  P  K  S  L  G  G  D  D  A  I 534 
 

               ---------|---------|---------|---------|---------|---------|---------|---------| 

          1601 UAUCCAAUAACGUGGUUUUACACGCGGAGUGUCAUAAACAGCUGACACACACUAAAUCAAGAAGCCUUUUGGCUCGAUUU 1680 

           535   S  N  N  V  V  L  H  A  E  C  H  K  Q  L  U  H  U  K  S  R  S  L  L  A  R  F   560 
 

               ---------|---------|---- 

          1681 GAAAGAGGCAAGAUCUUGAACAUU 1704 

           561 E  R  G  K  I  L  N  I   568 

 

Figure R-4: Underrepresented codons in E. coli in the IEP sequence.  

The IEP nucleotide sequence contains 64 of the “problematic” Arg, Gly, Ile, Leu and Pro codons (in red).  
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The IEP sequence contains 64 of these codons for which the corresponding tRNA is rare or lacking in 

the E. coli tRNA population (Fig. R-4; in red). It is likely that the low GST-IEP expression in E. coli is 

due to the lack of tRNA corresponding to these codons.  

To circumvent this problem, we decided to use the plasmid pRARE (See Appendix plasmid map). 

This plasmid carries tRNA genes for all of the “problematic” rarely used codons; Arg, Ile, Gly, Leu 

and Pro, except for Arg CGA and CGG. The expression of tRNAs in pRARE is driven by their native 

promoters. The pRARE plasmid, containing a p15a origin of replication, is compatible with the pGST-

IEP plasmid, which contain a ColE1 origin of replication. Numerous reports confirm the efficacy of 

plasmid-mediated tRNA supplementation (Baca AM and Hol WG 2000; Sorensen HP et al. 2003).  

(a) Expression and purification 

The pRARE plasmid was transformed in BL21 Star (DE3) and chemically competent BL21 Star 

(DE3) pRARE cells were then prepared. To evaluate the efficiency of GST-IEP expression in this 

novel strain, small-scale cultures were performed. A lower induction temperature (32°C) was also 

tested, as it was shown that it could improve the expression of soluble proteins in E. coli 

(Hammarstrom M et al. 2002). Cell pellets from 2 ml of expression samples induced at 37°C and 32°C 

for 3 hrs with or without 1 mM of IPTG were prepared. Total (T), insoluble (I) and soluble (S) protein 

fractions were loaded on a SDS-PAGE gel (Fig. R-5).  

 

Figure R-5: GST-IEP expression in BL21 Star (DE3) pRARE strain. 

 A 10 ml culture of BL21 Star (DE3) pRARE transformed with pGST-IEP expression plasmid was grown at 

37°C until OD600nm reached 0.5. The culture was then split into four 2.5 ml sample. GST-IEP expression was 

induced at 32°C or 37°C with 1 mM of IPTG for 3 hrs. Negative controls without IPTG induction (-) were also 

performed for both induction temperatures. Total (T, 1/20 of the fractions), insoluble (I, 1/8 of the fraction), and 

soluble (S, 1/20 of the fractions) protein fractions were analyzed on a 10% SDS-PAGE gel and stained with 

Coomassie blue. Numbers at left indicate molecular mass marker. 

SDS-PAGE gel shows that GST-IEP is over-expressed in E. coli BL21 Star (DE3) pRARE strain at 

32°C and 37°C (Fig. R-5; 1 mM IPTG, fractions T). The protein is at the expected size of 91-kDa. The 

efficiency of GST-IEP expression appears to be quite similar at 32°c and 37°C. Notably, the fraction 

of insoluble GST-IEP is lower when the culture is induced at 32°C rather than 37°C (Fig. R-5; 32°C, 1 

mM IPTG, fraction I). This result indicates that GST-IEP becomes less insoluble when the induction 

temperature is decreased. In this experiment, the low expression problem of GST-IEP in E. coli was 
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solved by the use of plasmid-mediated tRNA complementation. However, the GST-IEP is mainly 

found in the insoluble protein fraction. 

The purification of GST-IEP from the insoluble fraction is possible but would require a solubilization 

process under denaturing conditions followed by a refolding step. Those conditions do not ensure a 

correct protein structure in fine and this could affect both GST binding to the resin and biochemical 

activities of the fusion protein. The optimization of the solubility of GST-IEP is thus crucial. Factors 

such as drastically reduced temperature or induction conditions (lowering IPTG concentration and 

induction time, greater culture aeration) have in some specific cases lead to enhance soluble protein 

production in E. coli (Shirano Y and Shibata D 1990). Indeed, growth at a temperature range of 15-

23°C could lead to significant reduction in degradation of the expressed protein (Spiess C et al. 1999; 

Hunke S and Betton JM 2003). It has also been shown that heat shock proteases induced during over-

expression of proteins in E. coli are poorly active at lower temperature conditions. Moreover, 

macromolecular crowding of proteins at concentrations of 200-300 mg/ml in the cytoplasm of E. coli 

(inclusion bodies) suggests a highly unfavorable protein-folding environment, especially during 

recombinant high-level expression (van den Berg B et al. 1999). Lowering the expression rate by 

reducing the induction temperature would increase the available time for protein folding, thus 

minimize the formation of inclusion bodies containing unfolded/misfolded aggregated proteins. In this 

context, we have induced the expression of GST-IEP at 18°C with various IPTG concentrations. Total 

(T), soluble (S), and insoluble (I) protein fractions were analyzed by Coomassie blue staining and 

western blot using an HRP-conjugated anti-GST antibody (Fig. R-6). 

 

Figure R-6: GST-IEP expression in BL21 Star (DE3) pRARE at 18°C with various IPTG concentrations.  

BL21 Star (DE3) pRARE was transformed with pGST-IEP expression plasmid. 2 ml cultures were grown at 

37°C until OD600nm reached 0.5. Cultures were then transferred at 18°C and incubated for 20 min. GST-IEP 
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expression was then induced with 0.1, 0.2 or 0.5 mM of IPTG for 3 hrs at 18°C. Negative control was also 

performed from 2 ml of culture without IPTG induction (-). Total (T, 1/20 of the fractions), insoluble (I, 1/8 of 

the fractions) and soluble (S, 1/20 of the fractions) protein fractions were analyzed. (A) Coomassie blue SDS-

PAGE gel of proteins fractions. (B) Western blot analysis using an HRP-conjugated mouse anti-GST antibody. 

Numbers at left indicate molecular mass marker. 

The Coomassie blue stained gel shows that the GST-IEP is over-expressed in all conditions (Fig. R-

6A; 0.1 to 0.5 mM IPTG, fractions T). A significant amount of GST-IEP is found in insoluble 

fractions, whatever the IPTG concentration used (Fig. R-6A; 0.1 to 0.5 mM IPTG, fractions I). The 

soluble form of GST-IEP is difficult to detect by Coomassie staining, as an E. coli protein ran just 

below the GST-IEP (Fig. R-6A; fractions T - and S -). To verify the presence of the GST-IEP in the 

soluble fraction, a western blot analysis was performed (Fig. R-6B). It shows that the protein is 

expressed as a soluble form at all IPTG concentrations tested (Fig. R-6B; fractions S). The fraction of 

soluble GST-IEP is not increased when the IPTG concentration is decreased from 0.5 to 0.1 mM. 

Notably, GST-IEP is here subjected to degradation, as shown by the presence of multiple degradation 

products in all induced fractions (Fig. R-6B). The low induction temperature seems to enhance the 

solubility of GST-IEP but the variation of IPTG concentration does not appear to influence the 

solubilization of the protein.  

To ensure a good purification efficiency of GST-IEP, it is required to equilibrate the expression rate 

and the solubility of the protein in order to obtain a fair amount of soluble protein at the end of the 

purification process. A small-scale purification was performed at 4°C on a 20 ml E. coli culture 

induced with 1 mM of IPTG at 18°C for 3 hrs to ensure a good expression rate and maximize the 

solubility of the protein. All purification steps including the elution step were here performed at 4°C to 

minimize protein degradation. Protein samples were analyzed by SDS-PAGE with Coomassie blue 

staining and by western blot (Fig. R-7). 
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Figure R-7: Purification of GST-IEP expressed in BL21 Star (DE3) pRARE.  

A 20 ml culture of BL21 Star (DE3) pRARE transformed with pGST-IEP expression plasmid was grown at 

37°C until OD600nm reached 0.7. The culture was transferred at 18°C and continued for 20 min. GST-IEP 

expression was then induced with 1 mM of IPTG for 3 hrs. A negative control was also performed from 20 ml of 

E. coli culture without IPTG induction (-). T: total protein fraction (1/100 of the fraction); S: soluble protein 

fraction (1/100 of the fraction); I: insoluble protein fraction (1/20 of the fraction); Ft: Flow-through from the 

Glutathione-Sepharose resin after binding of GST-IEP (1/100 of the fraction); W1 to W3: wash protein fractions 

1 to 3 (1/50 of the fraction); P1 to P3: purified protein fractions successively eluted from the resin (1/5 of the 

fraction); R: proteins which remain bound to the resin after elutions (1/5 of the fraction). Numbers at left indicate 

molecular mass marker. (A) Coomassie blue stained 10% SDS-PAGE gel. (B) Western blot analysis using an 

HRP-conjugated mouse anti-GST antibody. 

Coomassie blue stained SDS-PAGE shows that GST-IEP is over-expressed in this experiment (Fig. R-

7A; 1 mM IPTG, fraction T), but is mainly found as an insoluble form (Fig. R-7A; 1 mM IPTG, 

fraction I). Nevertheless, a small fraction of soluble GST-IEP has bound to the resin (Fig. R-7A; 1 mM 

IPTG, fraction R). The western blot reveals also that the binding to the resin does not seem to be very 

strong as some non-negligible amount of the soluble GST-IEP is found in the flow-through and in the 

first wash fraction (Fig. R-7B; 1 mM IPTG, fractions Ft and W1). Eluted GST-IEP is not detectable on 

the Coomassie blue stained gel (Fig. R-7A; 1 mM IPTG, fractions P1 to P3) but is highlighted by 

western blot (Fig. R-7B; fraction P1 and P2). It becomes apparent that binding and elution steps require 

some optimizations.  

The loss of a high amount of soluble GST-IEP in the flow-through could be caused by a saturation of 

the resin. Therefore, the amount of resin was increased 3-fold in regards to the manufacturer’s 

instructions. To improve the elution efficiency, the concentration of reduced glutathione was increased 

from 10 mM to 50 mM (Fig. R-8). 
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Figure R-8: Purification of GST-IEP using 50 mM of reduced glutathione for the elution and 3-fold 

amount of resin.  

A 30 ml culture of BL21 Star (DE3) pRARE transformed with pGST-IEP expression plasmid was grown at 

37°C until OD600nm reached 0.6. The culture was transferred at 18°C and continued for 20 min. GST-IEP 

expression was then induced with 1 mM of IPTG for 3 hrs. A negative control was also performed from 30 ml of 

E. coli culture without IPTG induction (-). T: total protein fraction (1/100 of the fraction); S: soluble protein 

fraction (1/100 of the fraction); I: insoluble protein fraction (1/20 of the fraction); Ft: Flow-through from the 

Glutathione-Sepharose resin after binding of GST-IEP (1/100 of the fraction); W1 to W3: wash protein fractions 

1 to 3 (1/50 of the fraction); P1 to P3: purified protein fractions successively eluted from the resin (1/10 of the 

fraction); R: proteins which remain bound to the resin after elutions (1/3 of the fraction). Number at left indicate 

molecular mass marker. (A) Coomassie blue stained 10% SDS-PAGE gel. (B) Western blot analysis using an 

HRP-conjugated mouse anti-GST antibody. 

Coomassie stained gel shows that the GST-IEP is detected in the first purified protein fraction (Fig. R-

8A; 1 mM IPTG, fraction P1). The increase of reduced glutathione concentration has thus improved 

the GST-IEP elution efficiency, even if a non-negligible amount of GST-IEP still remains bound to the 

resin after elutions (Fig. R-8A; 1 mM IPTG, fraction R). Three successive elution steps were 

performed successively and showed that most of GST-IEP is eluted from the first elution step (Fig. R-

8A; 1 mM IPTG, fractions P1). Purified proteins fractions (Fig. R-8A; 1 mM IPTG, P1 and P2) and 

resin fraction (Fig. R-8A; 1 mM IPTG, R) are contaminated by E. coli proteins, which could have 

bound non-specifically to the resin, and/or GST-IEP degradation products. The presence of 

degradation products is confirmed by western blot (Fig. R-8B). Western blot also shows that the use of 

a greater amount of resin does not seem to circumvent the problem of the loss of GST-IEP during 
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purification. Indeed, the protein is still found in the flow-through and the first wash (Fig. R-8B; 1 mM 

of IPTG, fractions Ft and W1). The elution of GST-IEP was improved by the use of a greater 

concentration of reduced glutathione, but the low binding of GST-IEP to the resin was not solved.  

This low affinity binding of GST-IEP to the resin may be due to an altered conformation of the GST. 

To improve the binding of GST-fusion protein, it is usually recommended to perform this step at 4°C, 

which was already done in the protocol used before. Thus, it seems difficult to further optimize this 

step. The elution of the GST-IEP could also be optimized by using a greater glutathione concentration 

but this could lead to decrease the purity of the purified protein fraction and a relatively large amount 

of GST-IEP is already eluted. As the GST is a relatively large tag, it may interfere with the proper 

folding of the IEP, impeding its biochemical activities to be assayed. It could thus be necessary to 

remove it at the end of the purification process using thrombin cleavage. However, some groups have 

shown the possibility of generating proper crystal structures of fusion proteins (Smyth DR et al. 2003). 

In most cases, functional tests can be performed using intact GST-tagged fusion protein. GST removal 

is thus not always necessary. Reverse transcriptase activity assays can thus be considered on GST-IEP. 

For these assays, GST-IEP protein has to be formulated in a neutral storage buffer. GST-IEP 

purification was performed as previously on a 150 ml E. coli induced culture and a dialysis step was 

added at the end of the process. The ionic strength of the elution buffer was increased with the 

addition of 120 mM of NaCl to prevent the binding of the protein to the dialysis membrane. Each 

GST-IEP purified fractions were thus dialyzed against the elution buffer lacking reduced glutathione 

(Fig. R-9).  

 

Figure R-9: Purification of GST-IEP and dialysis.  

Coomassie blue stained SDS-PAGE gel containing 20 µl of each purification fractions. A 150 ml culture of 

BL21 Star (DE3) pRARE transformed with pGST-IEP expression plasmid was grown at 37°C until OD600nm 

reached 0.6. The culture was transferred at 18°C and continued for 20 min. GST-IEP expression was induced 

with 1 mM of IPTG for 3 hrs. A negative control was also performed from 10 ml of E. coli culture without IPTG 

induction (-). T: total protein fraction (1/35 of fraction T(-) and 1/535 of fraction T(1 mM)); I: insoluble protein 

fraction (1/22 of fraction I- and 1/350 of fraction I+); S: soluble protein fraction (1/35 of fraction S(-) and 1/535 

of fraction S(1 mM)); Ft: Flow-through from the Glutathione-Sepharose resin after binding of GST-IEP (1/535 

of the fraction); W1 to W3: wash protein fractions 1 to 3 (1/215 of the fraction); P1 to P3: purified protein 

fractions successively eluted from the resin (1/32 of the fractions); R: proteins which remain bound to the resin 

after elutions (1/16 of the fraction); D1 to D3: purified protein fractions after dialysis against elution buffer 

lacking reduced glutathione (1/30 of the fractions). Numbers at left indicate molecular mass marker. 

The SDS-PAGE gel shows that only a few amount of GST-IEP is lost during the dialysis step (Fig. R-

9; 1 mM IPTG, fractions D1 to D3). The dialyzed fraction (Fig. R-9; 1 mM IPTG, fraction D1) obtained 
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using the first purified fraction (Fig. R-9; 1 mM IPTG, fraction P1) contains a sufficient amount of 

GST-IEP, which is the predominant protein in the fraction. This purified and dialyzed fraction can be 

thus used in a reverse transcriptase (RT) assay.  

A negative control is required in the RT assay. Indeed, GST-IEP is only partially purified as some 

contaminating E. coli proteins (and/or GST-IEP degradation products) are still present and could bias 

the RT assay. A mutant form of the GST-IEP (GST-IEP mtDD-) was constructed by site-directed 

mutagenesis of the pGST-IEP plasmid (pGST-IEPmtDD-). The catalytic YADD motif contained in 

the RT5 domain of the IEP (See Fig. I-23) is mutated in YAAA. Mutation of these asparagine residues 

is commonly used to abolish the RT activity of other group II intron-encoded proteins (Matsuura M et 

al. 1997) and also abolish RT activity of HIV-1 reverse transcriptase (Larder BA et al. 1989). This 

GST-IEP mtDD- protein should thus be RT-defective. Several clones obtained by transformation of 

BL21 Star (DE3) pRARE with the pGST-IEPmtDD- were verified by sequencing the GST-IEP 

mutated sequence. Small-scale expression experiments were then performed on positive clones. One 

of these clones, which showed a good expression rate, was finally chosen to purify the GST-IEP 

mtDD- (Fig. R-10).  

 

Figure R-10: Expression and purification of the mutant GST-IEP mtDD-.  

Coomassie blue stained SDS-PAGE gel. A 100 ml culture of BL21 Star (DE3) pRARE transformed with pGST-

IEP mtDD- expression plasmid was grown at 37°C until OD600nm reached 0.6. The culture was transferred at 

18°C and continued for 20 min. GST-IEP mtDD- expression was then induced with 1 mM of IPTG for 3 hrs. A 

negative control was also performed from 50 ml of E. coli culture without IPTG induction (-). T: total protein 

fraction (1/175 of the fraction T(-) and 1/350 of the fraction T(1 mM)); S: soluble protein fraction (1/175 of the 

fraction S(-) and 1/350 of the fraction S(1 mM)); P: purified protein fraction eluted from the resin (1/21 of the 

fraction); R: proteins which remain bound to the resin after elution (1/11 of the fraction); D: purified protein 

fraction after dialysis against elution buffer lacking reduced glutathione (1/19 of the fraction). Numbers at left 

indicate molecular mass marker. 

In this experiment, only one elution step was performed, as most of the wild-type GST-IEP was shown 

to be recovered from the first elution. SDS-PAGE shows that GST-IEPmtDD- is overexpressed in 

BL21 Star (DE3) pRARE (Fig. R-10; 1 mM IPTG, fraction T) and about 50% is soluble (Fig. R-10; 1 

mM IPTG, fraction S). A relatively good amount of the mutant GST-IEP mtDD- is purified (Fig. R-

10; 1 mM IPTG, fraction P), even if a non-negligible amount is remains bound to the resin (Fig. R-10; 

1 mM IPTG, fraction R). In this experiment, about 50% of the protein is lost during dialysis (Fig. R-

10; 1 mM IPTG, fraction D). However, as for the wild-type GST-IEP, the mutant GST-IEP mtDD- is 
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the predominant protein found in the purified and dialyzed fraction, although some E. coli proteins 

and/or degradation products still contaminate the fraction. 

The wild-type and mutant mtDD- GST-IEP purified and dialyzed fractions obtained previously were 

subsequently used to assay the IEP reverse transcriptase activity. 

(b) Reverse transcriptase activity  

RT activity is assayed using the artificial template-primer substrate poly(rA)-oligo(dT)12-18. The RT 

activity is indicated by incorporation of [α-
32

P]dTTP during the reaction (See Material and methods 

section 3.5.4 -). The first experiment consisted in a time course of potential RT activity of the wild-

type GST-IEP using a fixed volume of dialyzed protein fraction, while the same volume of GST-IEP 

mtDD- dialyzed fraction was used at the maximal time point (Fig. R-11). 

 

Figure R-11: RT assay with GST-IEP and GST-IEP mtDD-.  

(A) Poly(rA)-oligo(dT)12-18 and 8 µl of dialyzed protein fractions were used. RT reactions with GST-IEP were 

performed at 37°C for 10, 30, 60, 90 and 120 min. Negative controls consisting of GST-IEP protein fractions 

incubated 10 min at 90°C before RT reactions were also subjected to the time course (boiled GST-IEP). RT 
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reactions without protein (No protein; background) and with GST-IEP mtDD- were performed at 37°C for 120 

min. (B) Data representing the number of pixels per spot were quantified with ImageQuant™ software and 

corrected to the background. Dark blue line: GST-IEP; light blue line: boiled GST-IEP; dark red spot: GST-IEP 

mtDD-. 

Figure R-11A shows the membrane image acquisition. The background, consisting in an assay using 

the dialysis buffer (Fig. R-11A; No protein), shows no signal. The data were then quantified and 

corrected to the background. Results are represented in figure R-11B. The time course performed 

using GST-IEP fraction shows an RT activity positively correlated to the reaction time (Fig. R-11B; 

GST-IEP, 10 to 120 min). This RT activity is abolished by denaturation of proteins contained in the 

dialyzed fraction (Fig. R-11B; boiled GST-IEP), indicating that these results are not artifacts from the 

experiment. Surprisingly, the GST-IEP mtDD- dialyzed fraction also shows an RT activity similar to 

that found for the wild-type GST-IEP dialyzed fraction (Fig. R-11B; GST-IEP mtDD-). This result 

was not expected, as this mutant should be RT-defective. It suggests that the RT activity found with 

these purifications does not depend on GST-tagged IEP, but probably reflects a bias induced by a 

contaminating E. coli protein presenting a reverse transcriptase activity and contained in dialyzed 

fractions. 

To further confirm or infirm these results, another strain of E. coli was used as the expression host and 

the RT activity of two additional control proteins was assayed. 

2.1.3 - Expression in ArcticExpress (DE3)RIL, purification, and RT activity assay 

The use of another E. coli strain could possibly circumvent the contamination problem highlighted in 

the previous experiment. We found at this time that the ArcticExpress (DE3)RIL strain, derived from 

BL21 (DE3) strain, was engineered to enhance protein solubility at low temperatures. Indeed, this 

strain co-expresses the cold-adapted chaperonins Cpn10 and Cpn60 from Oleispira Antarctica, which 

show high protein refolding activities at temperatures of 4-12°C (Ferrer M et al. 2003). The use of this 

strain could potentially increase the yield of active soluble recombinant protein, allowing better 

purification efficiency, and thus minimizing the amount of contaminating E. coli proteins. This strain 

also expresses tRNA for arginine codons AGG/AGA, isoleucine codon AUA and leucine codon CUA, 

overcoming codon usage bias. 

In addition, a second mutant form of GST-IEP was here introduced. This new mutant is deleted of the 

RT5 domain (GST-IEP ΔRT5). The corresponding protein is expected to have a molecular mass of 88-

kDa. The use of this mutant together with the GST-IEPmtDD- mutant, purified at different times, 

should allow us to conclude or not to a contamination of purified protein fractions by an E. coli 

reverse transcriptase protein. Indeed, as for the YAAA mutation, the deletion of the RT5 domain 

should abolish any RT activity of the IEP.  

We also included in our experiment another control consisting in the expression, purification, and 

RT activity assay of GST protein alone. The GST protein is expressed from the pGEX-4T1 plasmid. 

The use of this control should allow us to determine if the contaminant E. coli protein presenting the 

RT activity is co-eluted only when the IEP is present or not. Indeed, detection of RT activity with GST 

purified sample would indicate a direct or indirect binding of the contaminant to the resin or to the 

GST protein.  
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GST, wild-type GST-IEP and mutants GST-IEP mtDD- and GST-IEP ΔRT5 proteins were thus 

expressed in ArcticExpress (DE3)RIL strain. A 400 ml E. coli culture was induced at 15°C for 18 hrs 

with 0.1 mM of IPTG. Proteins were then purified as shown previously. Coomassie blue staining and 

western blot analyses of purified and dialyzed proteins fractions were performed (Fig. R-12A) and RT 

activity was subsequently assayed (Fig. R-12B). 

 

 

Figure R-12: RT assay with GST-IEP, GST-IEP mtDD-, GST-IEP ΔRT5 and GST.  

(A) 400 ml culture of ArcticExpress (DE3)RIL transformed with the appropriate expressing plasmid was grown 

at 32°C until OD600nm reached 0.6. The culture was transferred at 15°C and continued for 25 min. GST and GST-
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tagged proteins expression was then induced with 0.1 mM of IPTG for 18 hrs. Upper panel: Coomassie blue 

stained SDS-PAGE gel of purified protein fraction after dialysis against elution buffer lacking reduced 

glutathione (1/20 of the fraction loaded). Lower panel: Western blot analysis of protein fractions using an HRP-

conjugated mouse anti-GST antibody (1/20 of the fraction loaded). GST-tagged proteins degradation products 

are indicated by asterisks. Numbers at left indicate molecular mass marker. (B) RT assay with poly(rA)-

oligo(dT)12-18 and 5 µl of dialyzed protein fractions. RT reactions were performed at 37°C for 1 hr with GST-

IEP, GST-IEP mtDD-, GST-IEP ΔRT5 and GST. Negative controls consisting of dialysis buffer (No protein) 

and protein fractions incubated 10 min at 90°C (boiled proteins) were also subjected to RT reactions, as well as 

positive control consisting of the SuperScript II reverse transcriptase (0.5 units).  

Figure R-12A shows that GST and GST-tagged proteins (IEP and mutants), expressed in E. coli strain 

ArcticExpress (DE3)RIL, were purified with a relatively good efficiency (Fig R-12A; upper panel). 

GST protein is highly expressed in E. coli and highly soluble under conditions used, allowing the 

purification of a great amount of GST protein (Fig. R-12A; upper panel, GST). All GST-tagged 

purified and dialyzed protein fractions show a similar profile: full-length proteins are co-purified with 

contaminant proteins (Fig. R-12A; upper panel, GST-IEP, GST-IEP mtDD- and GST-IEP ΔRT5). 

Western blot analysis shows that a high amount of those proteins are degradation products (Fig. R-

12A; lower panel, indicated by asterisks). However, some proteins detected by Coomassie blue 

staining are not detected by western blot (Fig. R-12A), indicating the presence of some E. coli 

contaminant proteins. Even so, those purified and dialyzed protein fractions were used to assay the RT 

activity of IEP. As previously, the background showed no signal (Fig. R-12B; no protein) and wild-

type and mtDD- fractions have high RT activity (Fig. R-12B; GST-IEP and GST-IEP mtDD-). We 

also observed that the mutant GST-IEP ΔRT5 fraction presents an RT activity similar to those of wild-

type and mtDD- fractions (Fig. R-12B; GST-IEP ΔRT5). RT activity was abolished when proteins 

were denatured before the reaction (Fig R-12B; boiled proteins). Again, it indicates that signals found 

are not artifacts of the experiment. These results confirm those obtained before and indicate that a 

protein purified in all GST-tagged protein fractions is responsible for the RT activity in those assays. 

Interestingly, the assay using GST purified and dialyzed protein fraction shows no RT activity (Fig. R-

12B; GST). This suggests that the contaminating E. coli protein, responsible for the RT activity, is co-

eluted specifically with the IEP.  

To determine if the E. coli BL21 (DE3) strain contains an ORF encoding a reverse transcriptase 

protein, we used BLASTP (Altschul SF et al. 1997; Altschul SF et al. 2005) with the Pl.LSU/2 IEP 

protein sequence (gi|15150713) as a query. The E. coli BL21 (DE3) complete genomic sequence 

(Jeong H et al. 2009) was used in this research. The protein whom sequence produces the most 

significant alignment is a reverse transcriptase protein (gi|254287748) encoded by the retron EC86 

(Fig. R-13). 
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Figure R-13: BLASTP alignment result using the Pl.LSU/2 IEP sequence against the E. coli BL21 (DE3) 

complete genomic sequence. 

The BLASTP result represented here is the most significant alignment found (E-value 4 x 10
-8

).  

 

This E. coli reverse transcriptase presents a sequence similar to those of Pl.LSU/2 IEP on a portion of 

93 amino acids, with 53% of positive matches (Fig. R-13; positives 49/93). This protein corresponds 

to the reverse transcriptase encoded by the retron EC86 (Lampson BC et al. 2005). It contains two 

related reverse transcriptase domains: the Interpro IPR000477 domain, which is also present in 

Pl.LSU/2 IEP, and the IPR000123 domain, which contains a signature specific for the RNA-dependent 

DNA polymerase of bacterial retrons (Lim D and Maas WK 1989; Poch O et al. 1989; Inouye M and 

Inouye S 1991; Inouye S and Inouye M 1995).  

The alignment of amino acid sequences of Pl.LSU/2 IEP and the EC86 reverse transcriptase (RT) 

shows that the latter presents moderate to high conservation in seven RT blocks (Fig. R-14; RT blocks 

1 to 6). 
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Figure R-14: Alignment of Pl.LSU/2 IEP and EC86 RT amino acid sequences. 

The alignment was performed using ClustalW. Asterisks (*) indicate fully conserved residues, colons (:) indicate 

strong group (STA, NEQK, NHQK, NDEQ, QHRK, MILV, MILF, HY, FYW), points (.) indicate weak groups 

(CSA, ATV, SAG, STNK, STPA, SGND, SNDEQK, NDEQHK, NEQHRK, FVLIM, HYF). Pl.LSU/2 IEP RT 

blocks 1 to 7 are indicated by rectangles. The RT7 block presenting no conservation between the two sequences 

is indicated in black. 

E. coli BL21 (DE3) strain, from which are derived BL21 Star (DE3) and ArcticExpress (DE3)RIL 

strains, thus contains an ORF encoding an RNA-dependent DNA polymerase, which could correspond 

to the protein that bias the GST-tagged IEP RT activity assays. In these conditions, it is not possible to 

determine if the IEP presents an RT activity. Even though the contaminant E. coli protein shows an 

RT activity in our experiments, it does not necessarily imply that IEP is inactive. Moreover, the 

cleavage of GST from GST-tagged IEP should probably not overcome this problem, as the 

contaminating protein seems to co-eluate with IEP.  

To circumvent this contamination bias, we decided to express the IEP in other expression systems. We 

chose to evaluate the expression of the Pl.LSU/2 IEP with the cell-free and the Sf9/baculovirus 

expression systems. 
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2.2 - CELL-FREE EXPRESSION SYSTEM 

Cell-free protein synthesis is an attractive alternative to E. coli, since it offers a simple approach to 

rapid synthesis of properly folded proteins. Several improvements have been made in this field, 

allowing the production of large amount of functional proteins in a modified E. coli cell-free lysate 

(Klammt C et al. 2006). In addition, E. coli cell-free lysate allows a higher productivity than 

eukaryotes lysates, as it has been shown that the rate of peptide growth is five to ten times slower in 

eukaryotes (Netzer WJ and Hartl FU 1997; Hartl FU and Hayer-Hartl M 2002). We thus decided to 

evaluate the IEP expression with a cell-free system using an E. coli lysate. We used the p151-IEP 

expression plasmid (See Appendix plasmid map) initially constructed to express the IEP tagged in N-

terminal with an histidine tag in E. coli. This plasmid is compatible with the cell-free expression 

system as described in the manufacturer’s instructions (Expressway™ Cell-free E. coli expression 

system; Life Technologies, Invitrogen). 

The histidine tag (also called His-tag) is one of the most widely used purification tags. It generally 

consists in six (6xHis) histidine residues. The small size of the His-tag usually minimizes interference 

with the folding and structure of the target protein (Carson M et al. 2007). Histidine residues can 

readily coordinate with metal ions such as Ni
2+

 immobilized on a resin for purification. If exposed on 

the surface of the protein, it should bind to a Sepharose resin that has been charged with Ni
2+

 allowing 

non-tagged proteins to pass straight through. Elution can then be carried out by imidazole or low pH, 

allowing pure or nearly pure protein to be prepared. This purification method, called Immobilized 

Metal ion Affinity Chromatography (IMAC), can be performed under native and denaturing 

conditions, since the His-tag does not require a specific conformation for metal binding. The binding 

of His-tagged proteins to Ni
2+

-charged resins is usually more efficient under denaturing conditions as 

the His-tag becomes more exposed. However, purify a protein under denaturing conditions implies to 

refold the protein and this does not ensure a recovery of the catalytic protein conformation. 

In p151-IEP plasmid, the IEP sequence is placed downstream of a stretch of six histidine residues (Fig. 

R-15A; 6xHis) and a V5 epitope tag, allowing the expression of the IEP fused in N-terminus with His 

and V5 tags (HisV5-IEP). His and V5 tags can be removed from the IEP by the use of the Tobacco 

Etch Virus (TEV) protease that cleave at the TEV recognition site located between the HisV5 tag and 

the IEP sequence (R-15A, TEV). Expression of the fusion HisV5-IEP is driven by a T7 promoter (R-

15A; T7) recognized by the T7 RNA polymerase of the cell-free expression kit. The template was 

prepared according to the manufacturer’s instructions. The control plasmid pEXP5-NT/CALML3 (See 

Appendix plasmid map) supplied with the kit and expressing was used to express the control His-

tagged human calmodulin-like 3 protein (His-CALML3) (R-15A). The first aim was to determine if a 

sufficient yield of HisV5-IEP could be produced by this in vitro translation system. The expression of 

HisV5-IEP and His-CALML3 was performed according to the manufacturer’s instructions during 6 

hrs at 30°C (Fig. R-15B). 
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Figure R-15: Cell-free expression of HisV5-IEP.  

(A) Schematic representation of expression cassettes used. T7: T7 promoter; lacO: lac Operator; RBS: Ribosome 

Binding Site; ATG: translation initiation codon; 6xHis: Stretch of six histidine residues; V5: V5 epitope; TEV: 

Tobacco Etch Virus protease recognition site; T7 Term: T7 terminator; CALML3: human calmodulin-like 3 

protein. (B) Coomassie blue stained SDS-PAGE gel of total protein fractions. Cell-free expression of HisV5-IEP 

and His-CALML3 was performed as described by the manufacturer’s instructions during 6 hrs at 30°C. A 

condition without expression plasmid (No DNA) was also performed as a control. 

The HisV5-IEP fusion protein is expected to have a molecular mass of 69-kDa. Unfortunately, figure 

R-15B shows that no supplemental expressed protein is detected between the HisV5-IEP condition 

(Fig. R-15B; HisV5-IEP) and the negative control condition (Fig. R-15B; No DNA), in which no 

plasmid DNA was added. The HisV5-IEP fusion protein is not overexpressed by the cell-free system 

in the conditions used. In contrast, a protein that ran between the 15-kDa and the 20-kDa markers and 

probably corresponding to the control 19.5-kDa His-CALML3 protein is overexpressed with the 

control pEXP5-NT/CALML3 plasmid, as shown on the SDS-PAGE (Fig. R-15B; His-CALML3 

protein).  

We used here all conditions required to obtain the highest protein yield such as the incubation 

temperature and time used, as recommended by the manufacturer. Nevertheless, the cell-free 

expression system did not allow the expression of the HisV5-IEP in a sufficient yield that could be 

detectable by a Coomassie staining. Although a western blot analysis could have determined if the 

HisV5-IEP was expressed at a low level, it was decided to drop out these experiments, as high yield of 

protein is required for biochemical analyses, and further optimizations with this expression system are 

quite limited. We thus decided to evaluate the IEP expression in insect Sf9 cells using the baculovirus 

expression system. 
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2.3 - BACULOVIRUS EXPRESSION SYSTEM 

The baculovirus has been commonly used for the production of recombinant proteins in insect cells 

and baculovirus/insect cell expression system has been widely reviewed (Patterson RM et al. 1995; 

Kost TA et al. 2005). Recombinant baculoviruses allowing the expression of IEP in Sf9 insect cells 

were generated using a method based on site-specific transposition of an expression cassette into a 

baculovirus shuttle vector propagated in E. coli (Luckow VA 1993). We used the Bac-to-Bac® 

Baculovirus expression system (Life Technologies, Invitrogen): the Pl.LSU/2 IEP sequence was 

cloned into a baculovirus donor plasmid downstream of a stretch of six histidine residues (Fig. R-16A; 

6xHis) (pFastBacHT-IEP, See Appendix plasmid map), allowing the expression of the IEP fused in N-

terminal with a His tag (His-IEP). His-IEP molecular mass is expected to be around 69-kDa. The 

expression of His-IEP is driven by the strong polyhedrin promoter PPH (Fig. R-16A; PPH), which is 

activated in the very late phase of baculovirus infection, starting from 18-24 hrs postinfection. A TEV 

recognition site (Fig. R-16A; TEV) is located between the His-tag and the IEP sequence and could be 

used for the cleavage of the His-tag from the fusion protein. A donor plasmid supplied with the kit 

(pFastBac™HT-CAT, See Appendix plasmid map) containing the fusion protein His-CAT encoding 

sequence (Chloramphenicol Acetyltransferase) is also used as a control (Fig. R-16A). The protocol 

used to generate recombinant baculoviruses and express His-tagged proteins is described in Materials 

and methods. 

Sf9 cells were infected by recombinant baculoviruses at a multiplicity of infection (MOI) of 5. 

Seventy-two hours after infection, Sf9 cells were pelleted and lysed to obtain both soluble (S) and 

insoluble (I) protein fractions. Soluble fractions were used for His-IEP and His-CAT purification by 

IMAC. The soluble protein fraction was loaded onto a Ni
2+

-charged resin. The flow-through (Ft) was 

collected and the resin was washed four times using three wash buffers containing increasing 

concentrations of imidazole (W1, W2, W3 and W4). Eight fractions of purified proteins (P1 to P8) were 

collected from one elution with 1 M of imidazole. The Ni
2+

-charged resin (R) was also analyzed to 

evaluate the amount of proteins that remain bound to the resin after elution (Fig. R-16B). 
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Figure R-16: His-IEP expression by the baculovirus/Sf9 system.  

(A) Schematic representation of expression cassettes of pFastBacHT-IEP and –CAT vectors. Tn7R and Tn7L: 

mini Tn7 elements permitting site-specific transposition into baculovirus genome (bacmid DNA); Gentamicin: 

Gentamicin resistance gene used for selection recombinant bacmid DNA in E. coli; PPH: Polyhedrin promoter; 

ATG: translation initiation codon; 6xHis: Stretch of six histidine residues; TEV: Tobacco Etch Virus protease 

recognition site; Pl.LSU/2 IEP: Pl.LSU/2 IEP coding sequence; CAT: Chloramphenicol Acetyltransferase coding 

sequence; SV40 pA: SV40 polyadenylation signal. (B) Coomassie blue stained SDS-PAGE gel of purification 

fractions. Upper panel: His-IEP purification. Lower panel: His-CAT purification. S: soluble protein fraction 

(1/500 of the fraction); I: insoluble protein fraction (1/150 of the fraction); Ft: Flow-through from the Ni
2+

-

charged resin after binding of His-tagged protein (1/500 of the fraction); W1 to W4: wash protein fractions 1 to 4 

1/500 of the fractions); P1 to P8: purified protein fractions eluted from the resin (1/35 of the fractions); R: 

proteins which remain bound to the resin after elutions (1/70 of the fraction). His-IEP is indicated by red 

arrowheads. Numbers at left indicate molecular mass marker. 

Figure R-16B shows that His-IEP, expressed from Sf9 cells, is mainly found in the insoluble protein 

fraction (Fig. R-16B; upper panel, fraction I, indicated by the red rectangle). The protein is at the 

expected size of 69-kDa. The soluble protein fraction, used for His-IEP purification, contains almost 

no His-IEP: the protein is thus not detectable in any purification fractions, from the flow-through to 

the resin fraction (Fig. R-16B; upper panel). In contrast, the control His-CAT protein, which is at the 

expected size of 28-kDa, is mostly expressed in its soluble form (Fig. R-16B; lower panel, fraction S). 

The IMAC purification process was efficient to purify this protein, as observed by the SDS-PAGE 

analysis (Fig. R-16B; lower panel).  

The expression and solubility of His-IEP in Sf9 cells should be optimized in order to allow its 

purification under native conditions. Western blot analysis could also have determined if a small 
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amount of His-IEP is soluble and purified. However, I did not perform these experiments, because 

optimizations are again limited with the baculovirus/Sf9 expression system. Three major parameters 

can be adjusted, as the MOI, the time of cell harvest and the cell line, but these adjustments should 

mainly impact on the protein yield, not on its solubility. For this reason and also because of the great 

flexibility and facility to work with Escherichia coli, we have decided to evaluate the expression of a 

His-tagged IEP in E. coli.  

2.4 - HIS-TAGGED IEP IN E. COLI 

The results obtained for RT assays with GST-tagged IEP purified fractions showed a RT activity using 

both wild-type and mutants GST-IEP fractions. It was concluded that a contaminant E. coli reverse 

transcriptase protein, which has been co-purified with the GST-tagged proteins, has bias the RT 

reactions. The use of a different tag could induce a different conformation of the fusion protein and 

impede the purification of this contaminant protein and thus circumvent this problem. We chose the 

HisV5 tag, used in the cell-free expression system (See Results section 2.2 -), because of its small size 

which should not alter the IEP conformation. 

To evaluate the influence of GST and HisV5 tags on the IEP conformation, GST-IEP and HisV5-IEP 

tridimensional conformations were predicted using the I-TASSER server (Zhang Y 2008; Roy A et al. 

2010) (http://zhanglab.ccmb.med.umich.edu/I-TASSER/). The tridimensional model presenting the 

higher confidence level was retrieved for each protein. The modeling accuracy is indeed estimated by 

calculation of the C-score (-1.5 for GST-IEP and -1.00 for HisV5-IEP models). Models with C-score ≥ 

-1.5 are expected to have a correct fold (Roy A et al. 2010). The predicted 3D structure models were 

then analyzed using Jmol (Jmol: an open-source Java viewer for chemical structures in 3D. 

http://www.jmol.org/) and Vector NTI® (Life Technologies) softwares (Fig. R-17). 

 

http://zhanglab.ccmb.med.umich.edu/I-TASSER/
http://www.jmol.org/
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Figure R-17: Predicted 3D structures of GST-IEP and HisV5-IEP. 

The 3D structure models of GST-IEP and HisV5-IEP with the highest confidence level predicted using the I-

TASSER server were analyzed with the Jmol software (Jmol) and the 3D molecule viewer component of the 

Vector NTI® software (VNTI). Two views of each protein predicted structure are shown (views 1 and 2). In 

Jmol views, α-helixes are in magenta, 310-helixes are in purple, β-strands are in yellow, and turns are in blue. 

Atoms are not represented in Jmol views. In VNTI, the surface of each predicted molecule was calculated (+ 

calculated surface) or not (- calculated surface). Atoms are represented in the “ball and stick” style (carbon in 

gray, hydrogen in pale blue, nitrogen in pale purple, oxygen in red, and sulfur in yellow). The tag sequences 

(GST and HisV5) are colored in cyan. 

Figure R-17 shows that GST-IEP and HisV5-IEP predicted 3D structures are different. Indeed, GST-

IEP is predicted to contain only α- helixes, 310- helixes, and turns, while HisV5-IEP predicted structure 

shows three antiparallel β-sheets (Fig. R-17; Jmol views). The overall structures (Fig. R-17; - 

calculated surface, VNTI views) and the predicted protein surfaces (Fig. R-17; + calculated surface, 

VNTI views) seem quite different: GST-IEP presents a relaxed structure, while HisV5-IEP structure 

appears to be more compacted, forming a hole in the center of the structure. Although these results are 

only theoretical, the use of the small HisV5 tag could allow the IEP to adopt a different 

conformational structure and this feature may possibly overcome the co-purification of the E. coli 

contaminant protein showed in GST-IEP (WT and mutants) purified fractions.  

2.4.1 - Expression in BL21 Star (DE3) pRARE and purification under native 

conditions 

The plasmid p151-IEP was initially designed to express the Pl.LSU/2 IEP in E. coli. This plasmid 

places the IEP ORF, fused in its N-terminal to a 6xHis stretch and a V5 epitope, downstream of a 

T7/lac promoter (Fig. R-18A). The T7/lac promoter is specifically recognized by the T7 RNA 

polymerase, which is expressed by the DE3 bacteriophage lambda lysogenic. This bacteriophage must 
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be integrated in the used E. coli strain to express His-tagged protein. The expression of T7 RNA 

polymerase is driven by the lacUV5 promoter, inducible by IPTG. The T7/lac promoter contains also a 

lac operator sequence immediately downstream of the T7 promoter used to regulate basal expression 

of the protein (Fig. R-18A). A TEV recognition site (Fig. R-18A; TEV) is also located between the 

IEP sequence and the tags to allow their removal with the TEV protease. The expression and 

purification were first optimized with the wild-type version of HisV5-IEP before purification of 

mutants. The p151-IEP plasmid was transformed in the BL21 Star (DE3) pRARE E. coli strain. This 

strain was chosen according to the results obtained with the GST-IEP purification, which showed that 

a good yield of soluble GST-IEP could be expressed in this strain. HisV5-IEP expression was induced 

using several IPTG concentrations in order to determine the best induction conditions to obtain high 

amount of soluble proteins. Induction was performed, as for GST-IEP expression, at 18°C for 3 hrs 

(Fig. R-18B). 

 

 

Figure R-18: HisV5-IEP expression in BL21 Star (DE3) pRARE using different IPTG concentrations.  

(A) Schematic representation of HisV5-IEP expression cassette. T7: T7 promoter; lacO: lac Operator; RBS: 

Ribosome Binding Site; ATG: translation initiation codon; 6xHis: Stretch of six histidine residues; V5: V5 

epitope; TEV: Tobacco Etch Virus protease recognition site; T7 Term: T7 terminator. (B) Protein fractions were 

loaded onto a SDS-PAGE gel. HisV5-IEP expression was induced from 2 ml E. coli culture at OD600nm 0.5 with 
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0.1 mM, 0.2 mM or 0.5 mM of IPTG. A negative control was also performed from 2 ml of E. coli culture 

without IPTG induction (-). T: total protein fraction (1/20 of the fractions); S: soluble protein fraction (1/20 of 

the fractions); I: insoluble protein fraction (1/8 of the fractions). Upper panel: Coomassie blue stained SDS-

PAGE gel. Lower panel: Western blot analysis. A monoclonal mouse HRP-conjugated anti-V5 antibody was 

used to detect the IEP. Numbers at left indicate molecular mass marker. 

SDS-PAGE shows that a protein that ran below the 75-kDa marker is expressed in E. coli whatever the 

IPTG concentration used and is at the expected size of HisV5-IEP (69-kDa) (Fig. R-18B; upper panel, 

0.1 to 0.5 mM IPTG, fractions T). Western blot analysis confirms that this protein is HisV5-IEP (Fig. 

R-18B; lower panel, 0.1 to 0.5 mM IPTG). The amount of HisV5-IEP increases with the concentration 

of IPTG used (Fig. R-18B; upper panel, 0.1 to 0.5 mM IPTG, fractions T). But in the meantime, the 

protein becomes more insoluble (Fig. R-18B; 0.1 to 0.5 mM IPTG, fractions I). The soluble protein is 

detected by Coomassie blue staining at 0.1 mM of IPTG (Fig. R-18B, upper panel, 0.1 mM IPTG, 

fraction S) and its yield also increases with IPTG concentration. These results are confirmed by 

western blot analysis (Fig. R-18B; lower panel). HisV5-IEP is subjected to very little degradation (Fig 

R-18B; lower panel). Soluble HisV5-IEP can thus be expressed in E. coli under these conditions. 

To obtain high yield of soluble HisV5-IEP purified in native conditions, the expression rate has to be 

equilibrated. The solubility of the protein is improved by low expression rate; however it is important 

to maintain a sufficient E. coli growth to maximize the yield of expressed proteins. In this context, a 

small scale IMAC purification assay in native conditions was performed as described in Results 

section 2.2 -. Ten ml E. coli cultures transformed with p151-IEP were induced at 18°C for 3 hrs with 

0.2 mM or 1 mM of IPTG (Fig. R-19). 
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Figure R-19: Purification in native conditions of HisV5-IEP expressed from E. coli BL21 Star (DE3) 

pRARE.  

HisV5-IEP expression was induced from 10 ml E. coli culture at OD600 0.6 with 0.2 mM (A) or 1 mM (B) of 

IPTG. A negative control was also performed from 5 ml of E. coli culture without IPTG induction (-). Protein 

fractions were loaded onto SDS-PAGE gels. T: total protein fraction (1/35 for the T(-) fraction, 1/70 for the 

T(0.2 and 1 mM) fraction); S: soluble protein fraction (1/35 for the S(-) fraction, 1/70 for the S(0.2 and 1 mM) 

fraction); I: insoluble protein fraction (1/32 for the I- fraction, 1/64 for the I+ fraction); Ft: Flow-through from 

the Ni
2+

-charged resin after binding of HisV5-IEP (1/70 of the fraction); W1 and W2: wash protein fractions 1 

and 2 (1/35 of the fractions); P1 and P2: purified protein fractions successively eluted from the resin (1/3.5 of the 

fraction); R: proteins which remain bound to the resin after elutions (1/2 of the fraction). Upper panels: 

Coomassie blue stained SDS-PAGE gels. Lower panels: Western blots. A monoclonal mouse HRP-conjugated 

anti-V5 antibody was used to detect the IEP. Numbers at left indicate molecular mass marker. 

Coomassie blue stained gels show that HisV5-IEP is mainly insoluble, whatever the IPTG 

concentration used (Fig. R-19A and B; upper panels). As expected, the protein yield increases with 

IPTG concentration. It seems that all soluble HisV5-IEP comes out in the flow-through during the 

purification (Fig. R-19A and B; upper panels, fractions Ft). This result is confirmed by western blot 

analysis (Fig. R-19A and B; lower panels, fractions Ft). It is apparent that HisV5-IEP does not bind to 

the Ni
2+

-charged resin under conditions used. It suggests that the His-tag could be hidden inside the 

tertiary structure of the protein so that the binding to the resin cannot occur. We can also notice that 

HisV5-IEP is subjected to degradation in this experiment (Fig. R-19A and B; lower panels, fractions T 

and I). 

A purification of the protein under denaturing conditions could circumvent the non-binding issue. 

Indeed, the HisV5-tag would then be more exposed allowing the fusion protein to bind the resin. A 

refolding step must follow the purification in these conditions in order to characterize the biochemical 
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activities of the HisV5-IEP, but it is noteworthy that recovering of the protein in its proper catalytic 

conformation is not ensured.  

2.4.2 - Expression in BL21 Star (DE3) pRARE, purification in denaturing condition 

and RT activity assay 

The HisV5-IEP expressed in E. coli BL21 Star (DE3) pRARE strain was thus purified under 

denaturing conditions using either 6 M of guanidine hydrochloride (Gu-HCl) or 8 M of urea. 

Purifications were followed by a refolding step consisting in successive dialyses against buffers 

containing less and less denaturants (See Materials and methods section 3.4.2 -; Fig. R-20). This 

multi-step refolding strategy should allow a relatively slow refolding process, which would prevent the 

aggregation of improperly folded proteins.  

 

 

Figure R-20: Purification of HisV5-IEP under denaturing conditions.  

(A) HisV5-IEP expression was induced from 200 ml E. coli culture at OD600nm 0.6 with 1 mM of IPTG for 3 hrs 

at 18°C. A negative control was also performed from 10 ml of E. coli culture without IPTG induction (not 

shown). T: total protein fraction (1/300 of the fractions); S: soluble protein fraction (1/300 of the fractions); Ft: 

Flow-through from the Ni
2+

-charged resin after binding of HisV5-IEP (1/300 of the fractions); W1 to W5: wash 

protein fractions 1 to 5 (1/1000 of the fractions); P: purified protein fraction eluted from the resin (1/20 of the 

fractions). Upper panel: Coomassie blue stained SDS-PAGE gel of protein fractions collected during 

purifications of HisV5-IEP performed using guanidine hydrochloride (Gu-HCl) from 100 ml of induced E. coli 
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culture. Lower panel: Coomassie blue stained SDS-PAGE gel of protein fractions collected during purifications 

of HisV5-IEP performed using urea. (B) Coomassie blue stained SDS-PAGE gel of refolded protein fractions 

(1/20 of the fractions). Proteins purified under denaturing conditions, using either guanidine hydrochloride (Gu-

HCl) or urea, were refolded by a multi-step dialysis process. Numbers at left indicate molecular mass marker. 

Figure R-20A shows first that the HisV5-IEP solubilization efficiency depends on the denaturant used. 

Guanidine hydrochloride allows a high solubilization of HisV5-IEP (Fig. R-20A; upper panel, 

fractions T and S), while only a small amount of HisV5-IEP is solubilized with urea (Fig. R-20A; 

lower panel, fractions T and S). The HisV5-IEP denaturation induces an improvement of the binding 

of the protein to the Ni
2+

-charged resin, as the HisV5-IEP is not detected in the flow-through (Fig. R-

20A; fractions Ft). HisV5-IEP is found in the purified protein fractions when using GuHCl (Fig. R-

20A; upper panel, fractions P). The purity of this purified fraction is very high (Fig. R-20A; upper 

panel, fraction P). The fact that HisV5-IEP denatured by urea is not detectable in the purified fraction 

(Fig. R-20A; lower panel, fraction P) is due to the very low amount of HisV5-IEP in the soluble 

fraction used for purification. Those purified fractions were dialyzed by a multi-step dialysis process 

in order to refold the proteins (Fig. R-20B). SDS-PAGE of refolded proteins shows that almost no 

HisV5-IEP is lost during the process. Again, HisV5-IEP previously purified with Gu-HCl is well 

detected by Coomassie blue staining in contrast to HisV5-IEP purified by urea (Fig. R-20B) due to the 

difference of HisV5-IEP concentration in both purified fractions (Fig. R-20A; fractions P). These 

results showed that high yield of nearly pure HisV5-IEP can be purified under denaturing conditions 

using Gu-HCl. This highly pure fraction could thus be used to assay the RT activity of the IEP. 

The RT assay requires the use of a negative control protein. Thus, the control plasmid p151-

IEPmtDD- was constructed. This plasmid should express a mutant RT-defective HisV5-IEP (HisV5-

IEP mtDD-) in which the catalytic motif YADD is replaced by YAAA. HisV5-IEP mtDD- was 

subsequently purified under Gu-HCl denaturing conditions and refolded by the multi-step dialysis 

(Fig. R-21). 

 

Figure R-21: Purification of HisV5-IEP mtDD- under denaturing conditions using Gu-HCl.  

HisV5-IEP mtDD- expression was induced from 100 ml E. coli culture at OD600nm 0.6 with 1 mM of IPTG at 

18°C for 3 hrs. A negative control was also performed from 5 ml of E. coli culture without IPTG induction. Left 

panel: Coomassie blue stained SDS-PAGE gel of protein fractions collected during purifications of HisV5-IEP 

mtDD- performed using Gu-HCl. T: total protein fraction (1/20 of the T(-) fraction and 1/300 of the T(1 mM) 

fraction); S: soluble protein fraction (1/20 of the S(-) fraction and 1/300 of the S(1 mM) fraction); Ft: Flow-

through from the Ni
2+

-charged resin after binding of HisV5-IEP (1/300 of the fraction); W1 to W5: wash protein 

fractions 1 to 5 (1/1000 of the fractions); R: proteins which remain bound to the resin after elution (1/10 of the 
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fraction); P: purified protein fraction eluted from the resin (1/20 of the fraction); Ref: refolded protein fraction 

using multi-step dialysis process (1/20 of the fraction). Right panel: Western blot analysis of refolded protein 

fraction ((1/20 of the fraction) using a mouse anti-V5 antibody. Asterisk indicate HisV5-IEP mtDD- degradation 

product. Numbers at left indicate molecular mass marker. 

Figure R-21 shows that HisV5-IEP mtDD- is over-expressed in E. coli (Fig. R-21; left panel, 1 mM 

IPTG, fraction T) and well solubilized by GuHCl (Fig. R-21; left panel, 1 mM IPTG, fraction S). The 

YAAA mutation has no adverse impact on the protein expression. High yield of nearly pure HisV5-

IEP mtDD- can also be obtained in those denaturing conditions (Fig. R-21; left panel, 1 mM IPTG, 

fraction P) and the refolding step allow the recovery of all HisV5-IEP mtDD- (Fig. R-21; left panel, 1 

mM IPTG, fraction Ref). Notably, a protein that ran between the 37-kDa and the 50-kDa markers is 

co-purified in this experiment (Fig. R-21; left panel, indicated by asterisk). This protein appears to be 

a degradation product of the mutant IEP, as shown by western blot (Fig. R-21; right panel). Purified 

and refolded IEP (WT and mtDD-) protein fractions can thus be assayed for RT activity.  

The RT activity of HisV5-IEP and mutant HisV5-IEP mtDD-, purified under denaturing conditions 

with Gu-HCl and refolded by multi-step dialysis, was subsequently assayed in vitro using poly(rA)-

oligo(dT)12-18 template. RT activity is determined by incorporation of [α-
32

P]dTTP nucleotides. RT 

reactions were performed using either wild-type (WT) or mutant (mtDD-) HisV5-IEP as the source of 

reverse transcriptase. Control experiments were also performed using either the dialysis buffer 

corresponding to the background (No protein), or the SuperScript® II reverse transcriptase (SS II RT) 

as positive control. Radioactive products were spotted on DE81 filter and exposed on a phosphor 

screen. The Image obtained highlights the presence of radioactive products (Fig. R-22A). 

Quantification of reactions was then performed using image analysis software by determining the 

number of pixels per spot, which is correlated to the RT activity of the protein used (Fig. R-22B). 
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Figure R-22: RT assay with HisV5-IEP and HisV5-IEP mtDD- purified under denaturing conditions.  

(A) 8 µl of refolded protein fractions were used. RT reactions without proteins (No protein) and with HisV5-IEP 

and HisV5-IEP mtDD- mutant were performed at 37°C for 45 min. Positive control consists of 0.05 U of 

SuperScript® II reverse transcriptase (SS II RT). (B) Data, representing the number of pixels per spot, were 

quantified with ImageQuant™ software. Light gray bar: No protein; blue bar: HisV5-IEP; dark red bar: HisV5-

IEP mtDD-. 

Figure R-22A shows that the background condition (No protein) does not present any signal. Data 

were subsequently quantified (Fig. R-22B). No statistically significant differences could be observed 

between the wild-type IEP (Fig. R-22B; HisV5-IEP), the mutant IEP (Fig. R-22B; HisV5-IEP mtDD-) 

and the background (Fig. R-22B; No protein). This experiment was repeated and no RT activity could 

be demonstrated using purified protein fractions obtained under denaturing conditions. This result 

suggests that the conditions used to purify and/or refold HisV5-IEP did not allow the protein to 

recover its active conformation. In this context, we chose to test the purification of HisV5-IEP under 

non-denaturing conditions. 

2.4.3 - Expression in Rosetta-gami B (DE3), purification in non-denaturing conditions, 

and RT activity assay 

In the attempt to further optimize the expression of soluble HisV5-IEP in E. coli, we analyzed the 

predicted disulfide bonds formation in HisV5-IEP. Indeed, the proper folding of proteins containing 

cysteine residues may involve the formation of disulfide bonds. Notably, the prediction of disulfide 

bridges in HisV5-IEP using the DIpro software (http://scratch.proteomics.ics.uci.edu/) (Cheng J et al. 

2006) reveals that three disulfide bonds can occur (Table R-23). 

 

 

 

http://scratch.proteomics.ics.uci.edu/
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Bond number Cys1 Position Cys2 Position 

1 207 175 

2 133 57 

3 538 546 

 

Table R-23: Predicted disulfide bonds in HisV5-IEP sequence.  

The prediction was performed using DIpro 2.0 software (http://scratch.proteomics.ics.uci.edu/). The predicted 

disulfide bonds (Bond number 1 to 3) are ordered by probability in descending order. Cysteines predicted to be 

involved in these bonds (Cys1 and Cys2 position) are at position 57, 133, 175, 207, 538 and 546. The total 

number of cysteines in HisV5-IEP sequence is 9.  

Among the 9 cysteines contained in HisV5-IEP, 6 are predicted to form disulfide bonds (Table R-23). 

In this context, we decided to use a more adapted E. coli strain: Rosetta-gami B (DE3). This strain 

combines the key features of E. coli Tuner, Origami and Rosetta strains. E. coli Tuner strain, which is 

a derivative of BL21 strain, enables adjustable levels of protein expression throughout all cells in a 

culture. Indeed, this lacZY deletion mutant allows uniform entry of IPTG into all cells, which produces 

a homogeneous level of induction. The E. coli Rosetta strain carries the pRARE plasmid, thus 

overcoming the codon bias. Finally, E. coli Origami strain contains mutations in thioredoxine 

reductase and glutathione reductase that enhance disulfide bonds formation. Protein expression in 

Rosetta-gami B (DE3) strain is expected to yield about 10-fold more active proteins than in another 

host.  

HisV5-IEP and mutants HisV5-IEP mtDD- and HisV5-IEP ΔRT5 (plasmid p151-IEPΔRT5) were 

expressed in E. coli Rosetta-gami B (DE3). The induction was performed at 30°C for 4 hrs, which was 

shown to be the optimal condition to obtain large amount of soluble proteins in these cells. Proteins 

were subsequently purified under non-denaturing conditions with CHAPS. Indeed, the CHAPS 

zwitterionic detergent was used here to further improve the solubilization of proteins. CHAPS 

detergent is known to solubilize proteins in their native state and without altering their native charge. 

In order to formulate purified proteins in a neutral buffer, a final step consisting in a dialysis of 

purified protein fractions against elution buffer lacking CHAPS was performed (Fig. R-24). 

http://scratch.proteomics.ics.uci.edu/
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 Figure R-24: Purification of HisV5-IEP and mutants under non-denaturing conditions with CHAPS.  

HisV5-IEP and mutants (mtDD- and ΔRT5) expression was induced from 100 ml E. coli culture at OD600nm 0.8 

with 1 mM of IPTG for 4 hrs at 30°C. A negative control was also performed from 5 ml of E. coli culture 

without IPTG induction (not shown). Left panel: Coomassie blue stained SDS-PAGE gel of protein fractions 

collected during purifications performed with CHAPS. S: soluble protein fraction (1/450 of the fractions); Ft: 

Flow-through from the Ni
2+

-charged resin (1/450 of the fractions); W1 to W5: wash protein fractions 1 to 5 

(1/2500 of the fractions); P: purified protein fraction eluted from the resin (1/30 of the fractions); D: purified 

protein fraction after dialysis (1/30 of the fractions); R: proteins which remain bound to the resin after elution 

(1/15 of the fractions). Black arrowhead indicates E. coli co-purified protein contaminant. Right panel: Western 

blot analysis, using a mouse anti-V5 antibody, of purified protein fraction before (P; 1/30 of the fractions) and 

after (D; 1/30 of the fractions) dialysis. Numbers at left indicate molecular mass marker. 

Figure R-24 shows that soluble HisV5-IEP and mutants are expressed in E. coli Rosetta-gami B (DE3) 

(Fig R-24; left panel, fractions S). These proteins are also purified with a relatively good yield and 

purity (Fig. R-24; left panel, fractions P). Nonetheless, a contaminant E. coli protein that ran just 

above HisV5-tagged proteins is co-purified in this experiment (Fig. R-24; left panel, indicated by 
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black arrowhead). Moreover, HisV5-IEP and mutants seem to undergo degradation, as showed by 

Coomassie blue staining (Fig. R-24; left panel) and western blot (Fig R-24; right panel). A non-

negligible amount of HisV5-tagged proteins are also lost during dialysis (Fig. R-24; left panel, 

fractions D), probably because of a sticking of proteins to the dialysis membrane. These dialyzed 

protein fractions can still be used in an RT assay.  

We therefore assayed the RT activity of HisV5-IEP and mutants (mtDD- and ΔRT5) purified under 

non-denaturing conditions with CHAPS, as described previously (Fig. R-25). 

 

 

Figure R-25: RT assay with HisV5-IEP and mutants purified under non-denaturing conditions with 

CHAPS.  

(A) 8 µl of dialyzed protein fractions were used. RT reactions without proteins (No protein) and with HisV5-IEP, 

HisV5-IEP mtDD- mutant and HisV5-IEP ΔRT5 mutant were performed at 37°C for 45 min. Positive control 

consists of 0.5 U of SuperScript® II reverse transcriptase (SS II RT). Reactions using HisV5-IEP and mutants 

were performed in triplicates. (B) Data, representing the number of pixels per spot, were quantified with 

ImageQuant™ software. Light gray bar: No protein; blue bar: HisV5-IEP; dark red bar: HisV5-IEP mtDD-; 

Light red bar: HisV5-IEP ΔRT5. Data are the mean of experimental triplicates and standard deviation is 

represented by thin lines. 
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Membrane image analysis shows that the background condition does not present any signal (Fig. R-

25A; No protein). Data were subsequently quantified (Fig. R-25B). The RT assay using HisV5-tagged 

proteins purified under non-denaturing conditions with CHAPS (Fig. R-25B; HisV5-IEP) shows no 

significant differences of activity compared to the background or mutants (Fig. R-25B; HisV5-IEP 

mtDD- and HisV5-IEP ΔRT5). Again, this could be due to an inability of the IEP to achieve a correct 

folding and/or to an instability of its catalytic conformation in presence of CHAPS, even if CHAPS 

should theoretically not alter the native state of proteins. 

We thus have decided to perform a purification of HisV5-IEP and its mutants under completely native 

conditions. 

2.4.4 - Expression in Rosetta-gami B (DE3), purification in native conditions, and RT 

activity assay 

We used here the Rosetta-gami B (DE3) E. coli strain as the expression host. A final dialysis step was 

performed to remove imidazole used during the elution and formulate purified proteins in a neutral 

buffer (Fig. R-26; See Materials and methods section 3.4.2 -). 

 

Figure R-26: Purification under native conditions of HisV5-IEP and mutants, expressed in Rosetta-gami B 

(DE3).  

HisV5-IEP and mutants (mtDD- and ΔRT5) expression was induced from 100 ml E. coli culture at OD600nm 0.8 

with 1 mM of IPTG for 4 hrs at 30°C. A negative control was also performed from 5 ml of E. coli culture 

without IPTG induction. Left panel: Coomassie blue stained SDS-PAGE gel of protein fractions collected during 
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the purification. S: soluble protein fraction (1/25 of the S(-) fraction and 1/450 of the S(1 mM) fraction); Ft: 

Flow-through from the Ni
2+

-charged resin (1/450 of the fraction); W1 to W6: wash protein fractions 1 to 6 

(1/2500 of the fraction); P1 to P3: purified protein fractions successively eluted from the resin (1/30 of the 

fraction); R: proteins which remain bound to the resin after elution (1/15 of the fraction). Black arrowhead 

indicates E. coli co-purified protein contaminant. Right panel: Western blot analysis using a mouse anti-V5 

antibody. Numbers at left indicate molecular mass marker. 

Coomassie blue stained SDS-PAGE shows that wild-type HisV5-IEP and mutants (mtDD- and ΔRT5), 

expressed in Rosetta-gami B (DE3) E. coli strain, are successfully purified under native conditions 

(Fig. R-26; left panel, fractions P). The 75-kDa contaminant E. coli protein is also co-purified with 

HisV5-tagged proteins (Fig. R-26; left panel, indicated by black arrowhead). Almost all HisV5-tagged 

proteins are eluted during the first elution step (Fig. R-26; left panel, fractions P1). The western blot 

analysis demonstrates the presence of HisV5-IEP and mutants in purified fractions (Fig. R-26; right 

panel, fractions P). The identity of the two major proteins in those purified protein fractions was also 

determined by mass spectrometry analysis (See Results section 3.3.1 -). Notably, His-tagged proteins 

are not subjected to degradation under those conditions, as shown by western blot (Fig. R-26; right 

panel). 

These purified protein fractions were then used to assay the reverse transcriptase activity in vitro of 

HisV5-IEP and its derivative mutant proteins (Fig. R-27). 
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Figure R-27: RT assay with HisV5-IEP and mutants purified under native conditions.  

(A) 8 µl of purified protein fractions were used. RT reactions without proteins (No protein) and with HisV5-IEP, 

HisV5-IEP mtDD- and HisV5-IEP ΔRT5 mutants were performed at 37°C for 45 min. Positive control consists 

of 0.03 U of SuperScript® II reverse transcriptase (SS II RT). (B) Data, representing the number of pixels per 

spot, were quantified with ImageQuant™ software. Data are the mean of four different experiments and standard 

deviation is represented by thin lines. Light gray bar: No protein; blue bar: HisV5-IEP; dark red bar: HisV5-IEP 

mtDD-; Light red bar: HisV5-IEP ΔRT5.  

Figure R-27A shows the resulting membrane image of one experiment. Quantification of data for a 

total of four independent experiments was performed (Fig. R-27B). We observe that, even when 

purified under native conditions, the HisV5-IEP does not display any RT activity. Indeed, no 

statistically significant difference could be determined between all conditions (Fig. R-27B). This 

suggests that either the protein folding and/or stability are altered during the IMAC purification 

process or that the HisV5 tag impedes the proper folding of the IEP. It also indicates that the 

contaminant E. coli protein, which was co-purified with GST-tagged proteins and responsible for the 

RT activity in previous RT assays, is obviously not present in purified HisV5-tagged protein fractions. 

The purification process is very similar for His-tagged proteins and GST-tagged proteins. The 

conformation and activity of this contaminant E. coli protein should be not be altered by the IMAC 

purification. Thus, the lack of RT activity in IMAC purification fractions likely reflects the absence of 

this contaminant and in addition the absence and/or instability of the IEP active conformation. 

2.5 - CONCLUSION 

This chapter outlined the attempts to express and purify previously uncharacterized IEP from Pylaiella 

littoralis Pl.LSU/2 group II intron in order to assay its potential RT activity. The Pl.LSU/2 intron 

indeed contains an open-reading frame theoretically encoding a putative protein which presents 

reverse transcriptase, maturase and endonuclease domains shared by other group II intron-encoded 

proteins. 

We choose to express the IEP as a fusion protein tagged with either GST or HisV5 tags to purify the 

IEP by affinity chromatography. 
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The GST soluble protein, used as a tag for further purification, was first selected for the possibility of 

enhancing the overall solubility of the tagged IEP. GST-tagged IEP was expressed in BL21 Star (DE3) 

pRARE E. coli strain, after identifying problematic codons rarely used in E. coli. Protein expression 

studies revealed an overexpressed protein, running at the expected size of 91-kDa and mainly 

insoluble. Attempts were made to reduce the level of insoluble protein, including varying the 

temperature of induction, the concentration of IPTG and also use the ArcticExpress (DE3)RIL strain 

to express the protein. However, only little improvements were seen in the ratio of soluble protein to 

insoluble. Although the protein was at approximately 20% solubility, the overall expression yield of 

the protein was high, so it was deemed unnecessary to pursue any further work to enhance solubility as 

enough protein was soluble and further purified using Glutathione-Sepharose resin.  

Purified protein fractions were shown to be partially contaminated by E. coli proteins. Nonetheless, 

reverse transcriptase activity was still tested, as GST-tagged proteins (IEP and mutants) were always 

predominant in those fractions. In vitro RT assays revealed an RT activity using fractions containing 

GST-IEP but also with mutants GST-IEP mtDD- and GST-IEP ΔRT5 fractions. In contrast, no RT 

activity was found with the GST negative control. Mutants GST-IEP mtDD- and ΔRT5 were expected 

to be RT-deficient. Therefore, the activity showed in those assays could not be attributed to GST-

tagged proteins. We speculated that a contaminating E. coli reverse transcriptase protein, co-eluted 

along with the IEP, was responsible for this RT activity. 

To overcome this bias, we decided to evaluate other expression systems and host. 

We evaluated the expression of HisV5-IEP and His-IEP in the cell-free expression system and the 

baculovirus/Sf9 expression system, respectively. But these expression systems did not allow either a 

sufficient expression rate or solubility of the fusion protein and optimizations are limited in these 

systems, so that we did not pursue these experiments.  

Finally, the expression in E. coli and purification of HisV5-tagged IEP was tested. The HisV5-tag was 

chosen because of its small length so that the structure of the IEP should not be affected. The structure 

of the fusion HisV5-IEP can potentially be different than those of GST-IEP and this could possibly 

circumvent the problem of contamination with the E. coli protein co-eluted along with GST-IEP that 

showed an RT activity. 

The protein was first expressed in BL21 Star (DE3) pRARE and purified by IMAC under native 

conditions but results showed that HisV5-IEP could not bind to the Ni
2+

-charged resin. An internal 

position of the tag into the tertiary structure of the fusion protein could be the cause of this 

inconvenient. To overcome this problem, HisV5-IEP was purified under denaturing conditions. High 

yield of pure HisV5-IEP was obtained with those conditions. A refolding step consisting in a multi-

step dialysis process was performed in order to slowly remove the denaturant. Those conditions should 

theoretically avoid any protein precipitation, so that a correct refolding of proteins could be achieved. 

RT assays using refolded protein fractions were performed and showed no RT activity of wild-type 

HisV5-IEP. It suggests that proteins were not allowed to recover their correct catalytic conformation 

during the refolding process.  

We thus decided to use less stringent purification conditions while promoting the solubility of 

HisV5-IEP. HisV5-IEP was purified in non-denaturing conditions in presence of CHAPS. Another E. 

coli strain was also used in the following experiments. Rosetta-gami B (DE3) indeed contains 

mutations that enhance the disulfide bond formation. HisV5-IEP was predicted in silico to contain 

three disulfide bonds. The formation of these probable disulfide bonds could enhance the correct 
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tertiary conformation and/or stability of the protein. Using this strain could thus promote the correct 

folding of HisV5-IEP. High yield of nearly pure HisV5-IEP was obtained with those non-denaturing 

purification conditions. The protein was subjected to little degradation and a 75-kDa contaminant E. 

coli protein was also co-purified. Unfortunately, no RT activity of the wild-type HisV5-IEP could be 

detected. It suggests that the use of CHAPS detergent has impeded the correct HisV5-IEP 

conformation or has unstabilized the protein conformation. 

Therefore, HisV5-IEP expressed in Rosetta-gami B (DE3) was purified under native conditions. 

High yield of nearly pure HisV5-IEP was obtained, although the 75-kDa E. coli contaminant was also 

co-eluted. Unfortunately, those HisV5-IEP purified protein fractions showed no reverse transcriptase 

activity.  

The conducted experiments did not allow the characterization of the IEP RT activity. In GST-IEP RT 

assays, an E. coli contaminant protein seemed to bias the reactions, and HisV5-IEP RT activity could 

not be demonstrated. We decided to co-express HisV5-IEP with the Pl.LSU/2 intron RNA in E. coli in 

order to assay the RT activity of HisV5-IEP contained in RNP particles. RNPs were purified by two 

methods: IMAC and sucrose centrifugation. All the results obtained are briefly summarized in the next 

section and detailed in the submitted article 2. 
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3 - ARTICLE 2 

3.1 - SUMMARY OF THE WORK 

This article presents the results obtained on the characterization of Pl.LSU/2 IEP biochemical 

activities and on the in vivo splicing activity of the Pl.LSU/2 intron in yeast. We showed that Pl.LSU/2 

IEP presents an RT activity in vitro when expressed in presence or absence of the Pl.LSU/2 intron 

RNA in E. coli. We also demonstrated the maturase activity of Pl.LSU/2 IEP in vivo in S. cerevisiae, 

promoting the splicing of Pl.LSU/2 intron. Nevertheless, we failed to detect the splicing of Pl.LSU/2 

in a human cell line. 

In their natural environments, the transcription of group II introns is concomitant with the expression 

of the IEP that they carried. It has been shown that for the Lactococcus lactis Ll.LtrB group II intron-

encoded protein, the co-expression of the intron RNA is required for the proper folding and stability of 

the IEP in its active conformation (Matsuura M et al. 1997). The attempts to purify biochemically 

active IEP protein, tagged in N-terminal with either the GST protein or the HisV5 tag, and purify by 

IMAC were not conclusive, as described in the previous chapter. Thus, the purification of RNP 

particles containing the IEP and the spliced intron RNA could be required to allow the folding of the 

Pl.LSU/2 IEP in its active form. RNP particles can be purified by IMAC if the containing-IEP is fused 

to the His-tag. Another method consists in separate this ribonucleoprotein complex from host soluble 

proteins by a sucrose centrifugation process, which allows concentration of morphologically intact 

particles (Kennell JC et al. 1993; Matsuura M et al. 1997).  

. In this context, we used a plasmid which allows the co-expression of HisV5-IEP and Pl.LSU/2 intron 

in E. coli. Soluble protein extracts were then used to purify RNP particles potentially formed in E. 

coli. We tested both RNPs purification methods: IMAC (See Results section 3.3.2 -) and sucrose 

cushion centrifugation (See article 2). We showed that RNP particles containing HisV5-IEP were 

expressed and purified by both methods. The RT assay using both RNP particles preparations showed 

that HisV5-IEP contained in RNPs has an RT activity when RNPs are purified by sucrose cushion 

centrifugation (See article 2). In those experiments, mutations in the RT catalytic YADD motif of the 

IEP abolish its RT activity. In contrast, no RT activity of HisV5-IEP contained in RNPs purified by 

IMAC was found (See Results section 3.3.2 -). It suggests that the IMAC purification process alters 

the correct folding and/or stability of the IEP. This finding potentially explains the results obtained 

with HisV5-IEP purified by IMAC, showing an absence of activity. Altogether, these results led us to 

assay the RT activity of HisV5-IEP alone purified by sucrose cushion centrifugation (See article 2). 

We showed that HisV5-IEP can be purified by sucrose cushion centrifugation with a high yield of 

purity, and that, even in absence of co-expression of Pl.LSU/2 intron RNA, HisV5-IEP purified by 

sucrose cushion centrifugation has an RT activity in vitro. This indicates that the protein is able to 

achieve its correct folding by itself and does not necessarily require the intron RNA to be stabilized, in 

contrast to the Ll.LtrB IEP (Matsuura M et al. 1997). 

The determination of the Pl.LSU/2 IEP functionality in vitro marked another step of the Pl.LSU/2 

intron characterization. To further evaluate the Pl.LSU/2 intron catalytic activity, an experimental 

strategy was designed to evaluate its splicing in vivo in S. cerevisiae. We constructed a splicing 

reporter plasmid in which the intron, flanked by its two exons, is placed just downstream of the URA3 



Part II – Pl.LSU/2 group II intron characterization: Article 2 

 131 

gene lacking a transcription start codon. This construction should permit the transcription of a 

precursor mRNA from which the Pl.LSU/2 can splice. This way, the URA3 gene should be translated 

only upon precise Pl.LSU/2 intron splicing, leading to the production of the fusion E2-E3-Ura3p 

protein. This system can theoretically allow the rapid determination of the Pl.LSU/2 intron splicing 

using the URA3 selection. In addition, one of the aims of this study was to determine the maturase 

activity of the Pl.LSU/2 IEP. To do so, the IEP coding sequence of the intron, located in its domain 

IV, was here partially deleted, and the IEP was conditionally expressed from a separate plasmid. The 

ura3- S. cerevisiae strain harboring the splicing reporter plasmid was then transformed or not with the 

inducible IEP-expressing plasmid. The cells were then plated onto a minimum media lacking uracil; 

the growth of colonies on this medium indicating a Pl.LSU/2 intron splicing. In all experiments 

conducted, we repeatedly failed to detect any colonies on this selective medium. However, the 

analysis of RNAs showed the presence of spliced mRNA in all conditions and demonstrated that the 

Pl.LSU/2 splicing efficiency was significantly increased upon IEP expression in yeast cells. 

Nevertheless, in spite of the detection of the spliced mRNA, the E2-E3-Ura3p protein expression was 

not detected by western blot, explaining the absence of clones on –ura medium. The Pl.LSU/2 intron 

was thus shown to splice in yeast cells, and this splicing is promoted by the maturase activity of 

Pl.LSU/2 IEP. However, the system that we used is not convenient for the intron splicing detection, 

due to the failure of (sufficient) Ura3p expression.  

We finally evaluated the ability of the Pl.LSU/2 intron to splice in a human cell line. Four stable HCT 

116 human cell lines expressing different forms of the intron, whose domain IV was more or less 

deleted, were established by transducing HCT 166 with intron-expressing lentiviral vectors (LVs). 

LVs encoding the IEP, used or not in N-terminal with the GFP were also used. We demonstrated that 

the IEP was expressed in HCT 116 cell line and verified its nuclear localization. The four stable cell 

lines were then transduced or not with IEP-LVs and GFP-IEP-LVs. The analysis of RNAs extracted 

from the cells showed that the four forms of the intron used were transcribed, but we unfortunately 

failed to detect any trace of spliced mRNA in these human cell lines, even upon IEP expression. The 

Pl.LSU/2 intron was thus shown to be unable to (efficiently) splice in human cells. 

To conclude, we have characterized biochemical activities of the Pl.LSU/2 IEP and demonstrated the 

Pl.LSU/2 intron splicing in S. cerevisiae. The Pl.LSU/2 IEP was shown to have an RT activity both 

alone or when complexed in RNP particle. The splicing of Pl.LSU/2 intron was demonstrated in yeast 

and its efficiency was shown to increase upon IEP expression, indicating a maturase activity of the 

IEP in vivo. However, no Pl.LSU/2 splicing could be evidenced in human cells. Thus, further 

optimizations are required for the use of group II introns in human gene targeting. 
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ABSTRACT  

Group II introns are self-splicing mobile elements found in prokaryotes and eukaryotic organelles. 

These introns propagate by homing into precise genomic locations, following assembly of a 

ribonucleoprotein complex containing the intron-encoded protein (IEP) and the spliced intron RNA. 

Engineered group II introns are now commonly used tools for targeted genomic modifications in 

prokaryotes but not in eukaryotes. We speculate that the catalytic activation of currently known group 

II introns is limited in eukaryotic cells. The brown algae Pylaiella littoralis Pl.LSU/2 group II intron is 

uniquely capable of in vitro ribozyme activity at physiological level of magnesium but this intron 

remains poorly characterized. We purified and characterized recombinant Pl.LSU/2 IEP. Unlike other 

IEPs, Pl.LSU/2 IEP displayed high level of reverse transcriptase activity without intronic RNA. The 

Pl.LSU/2 intron could be engineered to splice accurately in Saccharomyces cerevisiae and splicing 

efficiency was increased by the maturase activity of the IEP. However, spliced transcripts were not 

expressed. Furthermore, intron splicing was not detected in human cells. While further tool 

development is needed, these data provide the first functional characterization of the PI.LSU/2 IEP 

and the first evidence that the Pl.LSU/2 group II intron splicing occurs in vivo in eukaryotes in an IEP-

dependent manner. 
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INTRODUCTION 

Prokaryotic and eukaryotic organelle introns are mobile elements able to integrate specifically in the 

exon junction of an intronless genome [1-3]. This property, called “homing”, contributes to the 

spreading of introns and has been used for precise in vivo genome engineering [4-13]. Two general 

homing mechanisms have been described depending on the type of intron: group I introns encode a 

very specific nuclease (meganuclease) to produce a double-strand break (DSB) in the intronless 

genome at the junction of exons. The DSB is then repaired by homologous recombination (HR) with a 

template DNA coming from the “invader” genome [14]. Group II introns are ribozymes that self-

splice from precursor RNA yielding excised intron lariat RNAs. The lariat splicing intermediate 

recognizes the DNA junction between the exons of the intronless genome and integrates the genome 

forming a DNA-RNA hybrid. After reverse transcription, the template intronic RNA is degraded and 

the gap is repaired by a DNA polymerase. In spite of very divergent mechanisms used for homing, 

both group I or group II introns rely on the expression of a protein coded by the intron itself (IEP, 

Intron-Encoded Protein) for the homing process [2]. These IEPs often carry different activities: 

maturase (to help the proper splicing of the intron) [15-22], double strand endonuclease (in group I 

introns) [17,18,20,22], single strand endonuclease and reverse transcriptase (in group II introns) [23-

28]. Homing always results in the incorporation of a copy of the intron into the intronless genome.  

The ability of group I and group II introns to recognize and to integrate into a specific genomic site 

has been exploited to generate various knock-out or knock-in models in mammalian cells 

[4,12,13,29,30], plants [31-33], and bacteria [5,34-38]. Specific genomic targeting is obtained by 

changing the native target recognition sequences using rational engineering or directed molecular 

evolution [13,39]. At present, group II intron-derived genomic targeting strategies are only used in 

bacteria. However, using group II introns in mammalian cells could represent some advantages over 

the currently existing technologies. In mammalian cells, meganucleases and strategies based on FokI 

restriction endonuclease coupled to engineered Zinc fingers [32] or Transcription Activator-Like 

Effectors [40,41] are used for specific genomic insertion. Both of these approaches utilize DSB repair 

processes which occur mainly by non-homologous end joining (NHEJ) or by HR in the presence of a 

DNA template [42-44]. These approaches are limited by low efficiency and safety concerns. The 

radically different homing mechanism of group II introns could be an alternative to DSB mediated 

gene engineering.  

There are only a few examples of the use of group II introns in eukaryotes. An initial proof of concept 

in mammalian cells has been reported by Guo et al. [4] using the Lactococcus lactis Ll.LtrB intron to 

target two genes carried into plasmids in HEK 293 human cells. These initial experiments showed 

homing into the plasmid as detected by PCR with specific oligonucleotides but efficacy was not 

measured. The splicing of the Ll.LtrB intron inside the HEK 293 cells was also not demonstrated since 

the authors introduced directly the purified LtrA-lariat ribonucleoparticles into the cell to obtain 

homing. However, it is known that the Ll.LtrB intron can acquire its correct tertiary structure in 

bacteria with the help of LtrA as used in commercial gene knock-out systems [5,45-47].  

Several elements may contribute to the limitations in the use of group II introns in eukaryotes. 

Ribozyme activity of group II introns depends on the correct folding of RNA into a specific tertiary 

structure [48]. This activity is necessary for both the intron splicing and its insertion into target DNA. 
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Most of group II introns are able to self-splice in vitro in the absence of proteins but have to be 

“chaperoned” by proteins in vivo [48,49]. These proteins may not function optimally in eukaryotic 

cells. Self-splicing of group II introns depends on the correct tertiary structure folding of the intronic 

RNA, and Mg
2+

 cations contribute to this folding by stabilizing the RNA tertiary structure [48,50]. 

Mg
2+

 is also required for catalysis of group II introns [51] and its concentration is critical for proper 

self-splicing in vitro. It is therefore possible that most group II intron cannot function optimally in 

eukaryotic cells where the free Mg
2+

 concentration is estimated to be around 1-2 mM [52]. For 

example, the optimal in vitro reaction conditions for the well-known bacterial Lactococcus lactis 

Ll.LtrB intron IEP-assisted RNA splicing use 5 mM Mg
2+

 and 10 mM of Mg
2+

 are required for an 

optimal reverse splicing reaction of RNPs into DNA target site [53]. The importance of Mg
2+

 

concentration is emphasized by a recent study showing that Ll.LtrB RNP particles were able to insert 

efficiently into a plasmid target in eukaryotic nuclei by providing MgCl2 during the microinjection of 

RNPs in Xenopus laevis oocytes, and Drosophilia melanogaster and zebrafish (Danio renio) embryos 

[29]. In this work, we have chosen to study the Pl.LSU/2 intron from the mitochondrial large subunit 

rRNA gene of the brown algae Pylaiella littoralis because of its ability to self-splice in vitro at 

unusually low Mg
2+

 concentrations (0.1 mM) [54]. We reasoned that this characteristic could make the 

Pl.LSU/2 intron a good candidate to be used as a tool for genome manipulation in eukaryotic cells. 

The Pl.LSU/2 intron structure presents a highly canonical secondary structure model consisting in six 

helical domains (I to VI) radiating from a central wheel [55,56]. Although the Pl.LSU/2 intron tertiary 

structure has been characterized [57-59], there is no report on the homing property of this intron nor 

on its potential biochemical activities in vivo. Moreover, the putative intron-encoded protein of 

PI.LSU/2 has not been described. The fact that the Pl.LSU/2 intron sequence presents in its domain IV 

an open reading frame containing putative domains of most group II intron IEPs [56] suggests that at 

least one of the Pl.LSU/2 IEP putative activities has been preserved by evolution. 

We have therefore characterized the biochemical activities of the Pl.LSU/2 IEP as well as the 

Pl.LSU/2 intron activity in vivo in eukaryotic cells in order to evaluate the possibility of using this 

intron in genome engineering. Here, we show that active recombinant Pl.LSU/2 IEP can be produced 

and purified in Escherichia coli. The purified IEP shows a reverse transcriptase activity in vitro both 

alone or when expressed together with the intronic RNA. The Pl.LSU/2 intron is able to splice 

properly in yeast cells helped by the maturase activity of its IEP.  
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MATERIALS AND METHODS 

Strains and human cell lines  

Pl.LSU/2 intron and Pl.LSU/2 intron-encoded protein were expressed in E. coli strain Rosetta-gami 

B(DE3) F
–
 ompT hsdSB (rB

–
 mB

–
) gal dcm lacY1 ahpC (DE3) gor522::Tn10 trxB pRARE (Cam

R
, Kan

R
, 

Tet
R
) (EMD4Biosciences, Novagen). This strain was grown in LB (Luria-Bertoni) medium with 50 

µg/ml of carbenicilin and/or 25 µg/ml of chloramphenicol. In vivo splicing of Pl.LSU/2 intron was 

evaluated in S. cerevisiae BY4742 MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 (S288C) [60]. This strain was 

grown in YPD (Yeast extract Peptone Dextrose) and/or in SD (Synthetic Dextose) medium containing 

dropout supplement mix (according to Molecular Cloning, A Laboratory Manual, by Sambrook J. & 

Russell D.). HEK 293T and HCT 116 human cells (obtained from ATCC (CRL-11268 and CCL-247 

respectively, American Type Culture Collection, Manassas, VA, USA) were grown in DMEM 

supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin (PS) (Life 

technologies, Invitrogen). Cells were passaged with TrypLE express 1X (Life technologies, 

Invitrogen). 

Plasmids and oligonucleotides 

Plasmids and oligonucleotides used in this study are listed in Supplemental information (Supplemental 

Tables S1 A and S1 B, respectively). 

Structure analysis 

Pl.LSU/2 intron secondary structure has already been described [55,56]. The secondary structure of 

the intron RNA domain IV was predicted with the sFold 2.2 software (http://sfold.wadsworth.org) 

[61,62] (Supplemental Figure S1). 

Expression of the Pl.LSU/2 intron-encoded protein (IEP) in E. coli 

E. coli strain Rosetta-gami B (DE3) was transformed with the appropriate expression plasmid and 

single colonies were inoculated into 4 ml of LB containing appropriate antibiotics. Precultures were 

shaken at 170 rpm at 32°C overnight, inoculated into 100 ml of LB medium without antibiotics and 

grown at 32°C for 3-6 hr, until OD600nm reached 0.4-0.8. Induction was started by addition of IPTG (1 

mM final), and the incubation was continued for 3 hr at 30°C. Cells were then collected by 

centrifugation (1,900g for 10 min at 4°C), and washed once with 20 ml of 150 mM NaCl. The washed 

cell pellet was stored at -80°C overnight. 

Purification of the Pl.LSU/2 IEP and RNP particles by sucrose cushion centrifugation 

The IEP, tagged in N-terminus with an histidine stretch (6xHis) and a V5 epitope 

(GKPIPNPLLGLDST) was purified by sucrose cushion centrifugation, as described [23]. The washed 

cell pellet was resuspended in 4 ml of ice-cold buffer A (50 mM Tris-HCl at pH 7.4, 1 mM EDTA, 1 

mM DTT, 10% (v/v) glycerol), and lysozyme was added to a final concentration of 4 mg/ml. After 45 

min of incubation on ice, cells were lysed by three cycles of freeze/thawing between -70°C and 37°C, 

followed by addition of 2.5 volumes of HKCTD buffer (25 mM Tris-HCl at pH 7.4, 500 mM KCl, 50 

mM CaCl2, 5 mM DTT). Lysate was then centrifuged (14,000g for 15 min at 4°C), and supernatant 

was layered over 5ml of 1.85 M sucrose containing HKCTD and centrifuged in a Beckman Type 70 Ti 

rotor (50,000g for 17h at 4°C). The resulting pellet was gently washed with 1 ml of ice-cold Milli-Q 

water and then dissolved in 25 µl of ice cold 10 mM Tris-HCl at pH 8.0, and 1 mM DTT. IEP mtDD- 

and RNP particles containing IEP WT or IEP mtDD- were purified according to the same procedure. 

http://sfold.wadsworth.org/
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Purified proteins and RNPs preparations were stored at -80°C. The yield of RNP particles was 25-90 

OD260nm units per 100 ml of culture, with 1 OD260nm unit of RNP containing 0.84 ± 0.12 µg of IEP. The 

yield of purified proteins was 55-150 µg per 100 ml of culture. Quantification of proteins was 

performed by using Bio-Rad DC Protein Assay Kit 1 (BioRad Laboratories) according to the 

manufacturer’s instructions. All protein fractions were analyzed by Coomassie-blue staining of SDS-

PAGE and western blotting. 

RNA extraction  

Total cellular RNA from yeast cells was extracted from 5 ml of mid-log phase cultures in SD minimal 

medium (minimal SD base or minimal SD base Gal/Raf, Clontech). After centrifugation (3,800g for 5 

min at 4°C), the cell pellet was washed with 1 ml of Milli-Q water and resuspended in 2 ml of buffer 

Y1 (1 M sorbitol, 0.1 M EDTA) supplemented with 0.1% β-mercaptoethanol and 300 U of lyticase 

(from Arthrobacter luteus, >2,000 units/mg protein, Sigma). After 30 min of incubation at 30°C on a 

rotary shaker, total cellular RNA was extracted from the resulting spheroplasts using the RNeasy Mini 

Kit (Qiagen) according to the manufacturer’s instructions. Total cellular RNA from human cells was 

isolated with RNeasy Mini Kit (Qiagen) according to the manufacturer’s instructions. In both cases, a 

DNase I treatment (RNase-free DNase set, Qiagen) was performed on-column during RNA 

purification according to the manufacturer’s instructions. 

Protein extraction  

To obtain yeast total proteins, 20 ml of the culture were centrifuged (3,800g for 5 min at 4°C). The cell 

pellet was washed with 5 ml of Milli-Q water, resuspended in CelLytic Y reagent (2.5 ml/g cell pellet, 

Sigma-Aldrich) supplemented with 7 mM DTT and incubated at 25°C for 20 min on a rotary shaker. 

The resulting lysate was centrifuged at 18,000g for 10 min at 4°C. Proteins were then precipitated with 

2 volumes of acetone for 1 hr at 4°C and recovered by centrifugation at 18,000g for 15 min at 4°C. 

Protein pellet was then washed with ethanol and resuspended in 0.5 volume of 50 mM Tris-HCl at pH 

8.5, 8 M Urea, and 10 mM DTT. 

Yeast nuclear proteins were extracted from 200 ml culture after centrifugation (4,000g for 5 min at 

4°C). Cell pellets were washed first with 25 ml of Milli-Q water and then with 3 ml of spheroplasting 

buffer (1 M Sorbitol, 50 mM K2HPO4 at pH 6.5, 0.018% β-mercaptoethanol). Cells were resuspended 

in 3 ml of spheroplasting buffer containing 500 U of lyticase and incubated 30 min at 30°C on a rotary 

shaker. The spheroplasts were collected by centrifugation (4,500g for 5 min at 4°C), washed with 3 ml 

of ice-cold spheroplasting buffer, resuspended in 8 ml of ice-cold buffer L (18% Ficoll 400, 20 mM 

K2HPO4 at pH 6.8, 1 mM MgCl2, 0.5 mM EDTA, 2 mM PMSF, 1 µg/ml aprotinin) and lysed on ice 

by 20 strokes of a dounce homogeneizer. The resulting lysate was then centrifuged (3,500g for 10 min 

at 4°C). The resulting supernatant was centrifuged in a Beckman SW 55Ti rotor (58,000g for 35 min 

at 4°C) and pelleted nuclei were resuspended in 200 µl of ice-cold buffer NP (0.34 M sucrose, 20 mM 

Tris-HCl at pH 7.4, 50 mM KCl, 5 mM MgCl2, 2 mM PMSF, 1 mg/ml aprotinin). Nuclear protein 

extracts were stored at -80°C.  

Human total protein extracts were prepared following washing of cells and lysis of the pellets in buffer 

containing 50 mM Tris-HCl pH7.5, 200 mM NaCl, 1 mM EDTA, 1 mM PMSF, 1% Triton X-100, 

0.1% SDS, 0.5% sodium deoxycholate, and 10% glycerol supplemented with protease inhibitors 

cocktail.  

Protein concentrations were determined with the Bio-Rad DC Protein Assay kit 1. 
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Western blot analyses 

Proteins were resolved on a denaturing 10% polyacrylamide-SDS gel (Criterion XT Bis-Tris gels, 

Biorad), transferred onto a nitrocellulose membrane (Hybond ECL, Amersham) and probed with the 

appropriate antibodies. 

Immunoblots of the 6xHis/V5-tagged Pl.LSU/2 IEP expressed in E. coli were probed with mouse anti-

V5 antibody (1:5,000 dilution, Life technologies, Invitrogen) followed by IRDye 680-conjugated goat 

anti-mouse antibody (1:8,000 dilution, LI-COR Biosciences) and immunoreactive bands were detected 

with the Odyssey infrared scanner (Li-Cor). 

Yeast total proteins (30 µg/lane) were immunoblotted with mouse anti-HA antibody (1:200 dilution, 

Santa Cruz Biotechnologies) and rat anti-Tub1p antibody (1:5,000 dilution, Abcam) to detect 

respectively the expressed IEP and Tubulin 1 protein (Tub1p), then with Horseradish peroxidase 

(HRP)-conjugated goat anti-mouse antibody (1:25,000 dilution, Jackson ImmunoResearch) and HRP-

conjugated rabbit anti-rat antibody (1:1,000 dilution, Dako). Bands were revealed by 

chemiluminescence (Supersignal West Dura Extended Duration Substrate, Thermoscientific). 

Yeast nuclear proteins (80 µg/lane) and human total proteins (30 µg/lane) were probed with an HRP-

conjugated mouse anti-c-Myc antibody (1:3,000 dilution, Life technologies, Invitrogen) to detect the 

myc-tagged NLS-IEP. For yeast nuclear proteins, a mouse anti-TATA binding protein (TBP) antibody 

(final concentration of 2 µg/ml, Abcam) was added and HRP-conjugated goat anti-mouse antibody 

(1:20,000 dilution) was used as secondary antibody. Bands were revealed by chemiluminescence. 

RT assays 

RT activity was assayed for 45 min at 37°C in 14 µl of reaction medium containing 10 mM KCl, 10 

mM MgCl2, 50 mM Tris-HCl at pH 8.0, 5 mM DTT, 0.05% NP40, 1 µg of poly(rA)-oligo(dT)12-18 

(Amersham), 10 µCi of [α-
32

P]dTTP (3,000 Ci/mmole, Perkin-Elmer) and 1 µg of RNase A (Sigma 

Aldrich), as described [23]. Reactions were started by the addition of either IEP or RNPs preparations 

and stopped by addition of EDTA (50 mM final). Radioactive products were spotted on a DE81 filter 

(Whatman) which was washed twice in 2X SSC. After an overnight exposure on a phosphor screen 

(Molecular Dynamics PhosphorImager System; GE Healthcare Bio-Sciences), radioactive spots were 

detected by the Storm system (GE-Healthcare Bio-Sciences) and data were analyzed with ImageQuant 

software (GE Healthcare Life Sciences). 

Reverse transcription 

Reverse transcription of yeast or human cellular RNA was carried out in 20 µl of reaction medium 

using the Verso cDNA Kit (Thermo Scientific). One microgram of total RNA was incubated for 5 min 

at 70°C and then mixed with 1X reverse transcription buffer, 0.5 mM of each dNTPs, 2 µM of RM-R 

oligonucleotide (yeast RNA; Supplemental Table S1 B) or 300 ng of random hexamers and 125 ng of 

anchored oligo dT (human RNA), 1 µl of RT Enhancer enzyme, and 1 µl of Verso reverse 

transcriptase. After incubation at 42°C for 1 hr, reaction was stopped by heating 2 min at 95°C. A 

control reaction without Verso reverse transcriptase was performed to ensure the absence of DNA 

contamination in the RNA samples (minus-Verso RT samples). 

PCR 

Two µl of yeast cDNA were used as a template for PCR in 50 µl of reaction medium containing 1 unit 

of Phusion high-fidelity DNA polymerase (Thermoscientific), 62.5 µM of each dNTPs, PCR buffer, 

and 0.2 µM of each p1 and p2 or p3 and p4 primers. The amplification consisted of 30 cycles at 98°C 
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for 30 sec, 70°C for 30 sec and 72°C for 30 sec. PCR products were analyzed on 12% polyacrylamide 

gels. 

Two µl of human cDNA were used as a template for PCR in 40 µl of reaction medium containing 0.8 

unit of Phusion high-fidelity DNA polymerase, 200 µM of each dNTPs, PCR buffer, and 0.25 µM of 

each p5 and p6 primers. The amplification consisted of 30 cycles at 98°C for 10 sec, 58°C for 20 sec 

and 72°C for 1 min 30 sec. PCR products were analyzed on 1.2% agarose gels. 

Quantitative PCR 

The qPCR consisted of a SYBR Green-based detection of cDNA with specific primers hybridizing E2 

and the E2-E3 junction or primers hybridizing E2 and the E2-Intron junction. Amplification reactions 

(25 µl) contained 5 µl of a 1/10 dilution of cDNA and 12.5 µl of qPCR buffer (Power SYBR Green 

PCR master mix, Applied Biosystems), 0.3 µM of each primers and consisted of 40 cycles at 95°C for 

15 sec then at 65°C for 1 min on a 7900HT Real-Time PCR System (Applied Biosystems). To ensure 

the absence of non-specific amplifications, a dissociation step was added consisting in a final cycle at 

95°C (15 sec) then 65°C (15 sec) and finally 95°C (15 sec). To quantify cDNA copy number obtained 

respectively from spliced or precursor mRNA, standard amplification curves were made by serial 

dilutions of appropriate linearized plasmids. All PCR measures were performed at least in duplicate. 

All qPCR experiments include samples from mock vector-transformed cells and minus-Verso RT 

samples as negative controls.  

Data were edited using the Sequence Detection Systems 2.3 software (Applied Biosystems) and 

interpreted in the linear portion of the standard curve. The following test acceptability criteria were 

used: linear regression coefficient of the standard curve >0.98; less than 0.5 CT variation for duplicate 

samples; CT comprised between 35 and 40 for H2O; mock vector-transformed cells and minus-Verso 

RT samples. 

Generation and titration of lentiviral vectors 

Recombinant lentiviral vectors (LVs) using the pRRL backbone plasmid [63] (Supplemental Table S1 

A) were constructed to express the indicated transgenes under the control of the human 

phosphoglycerate kinase (PGK) promoter. VSV-G-pseudotyped particles were produced by 

quadritransfection of HEK 293T cells (Supplemental Table S1 A) as previously described [63,64]. 

Harvested virus particles were concentrated by ultracentrifugation and titered in infectious genome 

particles (IG) as previously described [64].  

Lentiviral vector transduction of human cell lines 

HCT 116 cells were seeded at 10
5
 cells per well in 12-well plates 16-24 hrs prior transduction. Cells 

were transduced with LVs using concentrations ranging from 10
6
 to 10

8
 IG/ml in the presence of 6 

µg/ml of polybrene. Transduction medium was replaced with fresh medium 6 hrs after transduction. A 

second hit of transduction was performed the following morning in the same conditions using LVs 

encoding proteins. Cells were removed and analyzed 48 hrs later. For LVs stably expressing different 

forms of Pl.LSU/2 intron, cells were expanded for about 10 days. Vector copy numbers per cell were 

calculated by quantitative PCR on cell lines genomic DNA as previously described [64] (0.9 for 

intron-ΔDIV; 0.3 for intron-DIVa; 4.7 for intron-DIVab, and 1.2 for full length intron). 
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SUPPORTING INFORMATION 

Supplemental Figure S1 and Supplemental informations (Supplemental Table S1 and Supplemental 

references).  
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RESULTS 

Pl.LSU/2 IEP contained in RNP particles presents an RT activity in vitro 

The Pylaiella littoralis Pl.LSU/2 group II intron is located in the mitochondrial gene encoding the 

large ribosomal RNA (Fig. 1A; LSU rRNA gene). This intron contains in its domain IV an open-

reading frame presenting the predicted conserved domains of group II intron-encoded proteins which 

are the reverse transcriptase (RT), DNA-binding domain (D), maturase (X) and endonuclease (En) 

[15,23,25,28,53] (Fig. 1A). Subsequently, recombinant Pl.LSU/2 intron-encoded protein (IEP) was 

expressed and purified in order to measure its predicted biochemical activities. 

Expression of IEP in RNP particles. Group II intron-encoded proteins are known to be fully active 

when intron RNA is coexpressed with the IEP, as a result of stabilization of the protein in its active 

conformation [23]. To express the Pl.LSU/2 IEP in RNP particles, we designed the plasmid p151-

E+I+IEP for the induction of both the Pl.LSU/2 intron and IEP expression in E. coli (Fig. 1A). This 

plasmid contains the Pl.LSU/2 intron and its flanking exons (50 last nucleotides of exon 2 and 71 first 

nucleotides of exon 3) [54] cloned downstream of the phage T7 promoter in the expression vector 

pET151/D-TOPO (Supplemental Table S1 A). The IEP ORF is fused to a 6xHis and a V5 epitope tags 

in its N-terminus used to the detection of the protein by western blot. This vector could potentially 

allow the expression of both the intron RNA and the wild-type IEP ORF (IEP WT) with its own 

Shine-Dalgarno sequence for translation. We also constructed a derivative negative control plasmid 

(p151-E+I+IEPmtDD-) in which the catalytic YADD motif of the IEP RT domain is mutated to 

YAAA (Fig. 1A, position indicated by a diamond; Supplemental Table S1 A) [65]. This plasmid is 

expected to express a mutant RT-defective IEP (IEP mtDD-).  

The expression plasmids p151-E+I+IEP and p151-E+I+IEPmtDD- were transformed in E. coli 

Rosetta-gami B (DE3). After induction, soluble protein fractions were used to purify RNP particles by 

sucrose cushion centrifugation [23]. The SDS-PAGE analysis shows a major band at the expected size 

of IEP WT and mtDD- (Fig. 2A; Coomassie, 69 kDa, black arrow). Other bands are also detected by 

Coomassie staining and correspond to E. coli contaminant proteins and/or IEP (WT and mtDD-) 

degradation products. The western blot analysis confirms the presence of IEP WT and mtDD- at the 

expected size (Fig. 2A; WB) and shows the presence of some degradation products. A non-specific 

band is also detected by western blot at 150-kDa in the RNPs mtDD- preparation (Fig. 2A; WB). RNP 

particles containing either IEP WT or IEP mtDD- can thus be purified using sucrose cushion 

centrifugation. 

RT activity. The open reading frame of the intron Pl.LSU/2 contains a conserved RT domain. The RT 

activity of Pl.LSU/2 IEP (WT and mtDD-) in RNP particle preparations was assayed with the artificial 

template-primer substrate poly(rA)-oligo(dT)12-18. We show that RNP particles from cells expressing 

p151-E+I+IEP and purified by sucrose cushion centrifugation have an RT activity (Fig. 2B; RNP 

WT). Quantitatively, the RT activity of 0.1 OD260nm units of RNP particles is similar to that of 0.03 

units of the commercial SuperScript® II reverse transcriptase (SSII RT; Life technologies, Invitrogen). 

The time course of RT reactions shows that the RT activity of WT IEP-containing RNPs increases 

over incubation time (Fig. 2C) and is positively correlated with the amount of RNP particles (Fig. 2D). 

As expected, the RT activity of the Pl.LSU/2 IEP is abolished by point mutations in the conserved 

YADD motif (Fig. 2B, 2C and 2D; RNP mtDD- conditions) and is similar to that of the background 
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condition (Fig. 2C; No protein). The 6xHis tag was also used to purify RNP particles by immobilized 

metal-ion affinity chromatography (IMAC) on a Ni
2+

-charged column but no RT activity was ever 

detected in those RNP particle preparations (data not shown), suggesting that this purification process 

destabilizes the complex. These results indicate that the Pl.LSU/2 IEP in RNPs particles can be 

expressed in E. coli and purified by sucrose centrifugation thereby preserving its RT activity and thus 

its active conformation. 

Pl.LSU/2 IEP is active in vitro without the help of the intron RNA 

Isolated Pl.LSU/2 IEP has in vitro RT activity. To analyze the intrinsic property of the Pl.LSU/2 IEP, 

we expressed the IEP in E. coli without coexpressing the intron RNA. We used the plasmid p151-IEP 

(Fig. 1A) which places the IEP ORF fused to the 6xHis and V5 epitope tags immediately downstream 

of the phage T7 promoter and Shine-Dalgarno sequence of the vector. This plasmid version was also 

constructed with a mutation of the YADD motif (Fig. 1A; indicated by a diamond). Both WT and 

mutant proteins were expressed in E. coli and then purified by sucrose cushion centrifugation. SDS-

PAGE shows that the WT and the RT-defective IEPs (mtDD-) are successfully purified from E. coli 

lysates (Fig. 3A; Coomassie). No other proteins are detected by Coomassie staining. The identity of 

the purified proteins is verified by western blot (Fig. 3A; WB) and by mass spectrometry (data not 

shown). 

RT assays with Pl.LSU/2 IEP purified by sucrose cushion centrifugation show that the protein 

displays an intrinsic in vitro RT activity (Fig. 3B; IEP WT). This activity is abolished by mutations in 

the RT domain as expected (Fig. 3B; IEP mtDD-). The positive control SuperScript® II Reverse 

transcriptase (0.03 U) shows a number of pixels per spot of 18.1 x 10
6
 ± 5.78 (not shown). It is 

noteworthy that no RT activity is detected following IMAC purification of IEP (WT and mtDD-, data 

not shown), which is consistent with previous findings obtained with RNPs. These data suggest that 

purification in sucrose cushion preserves the activity of the IEP and thereby its correct folding. It also 

demonstrates that recombinant IEP has intrinsic RT activity and does not necessarily require the help 

of intron RNA to become active. 

Splicing assay of Pl.LSU/2 intron in S. cerevisiae 

In vitro self-splicing of Pl.LSU/2 has been demonstrated [54] using a deleted form of the intron in the 

domain IV (See Fig. 1B; intron-ΔDIV). However, most group II introns need the maturase activity of 

their IEP to achieve in vivo splicing. In Lactococcus lactis Ll.LtrB group II intron, the LtrA intron-

encoded protein interacts with a substructure located in the beginning of the domain IV, and other 

contacts are made with the conserved core regions of the intron [27,66]. In order to evaluate the 

influence of the IEP on the splicing of the Pl.LSU/2 intron in yeast, we included a part of the domain 

IV in our construction. This domain corresponds to DIVab indicated in the secondary structure of the 

domain IV (1870 nucleotides) predicted by the S-fold software (See Fig. 1B; Supplemental Fig. S1). 

This DIVab domain retains putatively most of the predicted secondary structure of domain IV (S-fold 

prediction, not shown).  

To study the expression and splicing of the Pl.LSU/2 intron in yeast, we developed a URA3-based 

intron-splicing reporter expressed from a 2-µ plasmid (Fig. 4A; pEgpIIE-URA3; Supplemental Table 

S1 A). The Pl.LSU/2 (DIVab) intron flanked by its natural exons (50 last nucleotides of exon 2 and 71 

first nucleotides of exon 3) [54] was fused to the coding sequence of URA3, which encodes a orotidine 

5-phosphate decarboxylase (Ura3p). The URA3 gene is read in-frame only upon precise Pl.LSU/2 
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splicing, which should lead to Ura3p expression and growth of an ura3- (ura3Δ0) strain of S. 

cerevisiae on minimal media lacking uracil (Fig. 4A). Expression of the Ura3p can be detected with an 

HA tag added upstream of the exon 2, generating the fusion HA-E2-E3-Ura3p. A control plasmid 

(pEE-URA3) was also used in this assay to ensure that the hybrid HA-E2-E3-URA3 protein is able to 

complement the ura3- mutation.  

Previous studies have shown that optimal splicing of the bacterial Ll.LtrB group II intron in 

bacteria and yeast requires the maturase activity of its encoded protein, LtrA, by promoting the folding 

of the intron RNA into its catalytically active structure. The open reading frame of Pl.LSU/2 intron 

contains a conserved X domain similar to that of LtrA. Therefore, to determine if Pl.LSU/2 IEP has 

maturase activity facilitating the splicing of its intron, we first attempted to demonstrate intron splicing 

through functional restoration of yeast growth in the URA3-based intron-splicing reporter assay. In this 

system, the IEP protein was conditionally expressed using an inducible GAL10 promoter plasmid 

(Fig. 4B; pNLS-IEP
co

) and intron sequences were delivered in trans. For these experiments, we used 

an IEP sequence that was codon-optimized for translation in human cells (IEP
co

) tagged in C-terminus 

with c-Myc epitopes, and containing nuclear localization signals (NLS) of the SV-40 T-antigen (Fig. 

4B) to address the protein to the nucleus. The inducible/repressible expression of the NLS-IEP
co

 was 

confirmed respectively in galactose (Gal) and glucose (Glc) media and nuclear localization of the 

protein was verified by western blot analysis on yeast nuclear protein extracts (data not shown). 

Yeasts were thus transformed with either the control pEE-URA3 plasmid or the pEgpIIE-URA3 

plasmid. Subsequently, the NLS-IEP
co

 expressing plasmid was transformed or not in yeast carrying 

pEgpIIE-URA3 and the number of colonies on medium containing or not uracil was determined for 

each condition (Fig. 4C). Functional restoration of growth could not be demonstrated in the URA3-

based intron splicing reporter assay. Yeasts expressing the EgpIIE-URA3 cassette repeatedly fail to 

grow on the –ura selective medium, even when EgpIIE-URA3 is coexpressed with NLS-IEP
co

 (Fig. 

4C). However, yeasts grow on minimal medium lacking uracil when the cells are transformed with the 

pEE-URA3 plasmid encoding the hybrid E2-E3-URA3 protein proving the orotidine 5-phosphate 

decarboxylase activity of the hybrid protein, as it confers the ability to complement the ura- mutation 

(Fig. 4C). Thus, the splicing of the Pl.LSU/2 intron could not be demonstrated through this assay into 

yeast cells.  

Pl.LSU/2 group II intron can splice in yeast in an IEP-dependent manner 

Since the assay reads-out both RNA splicing and translation of the spliced mRNA, further 

investigation was conducted to determine if RNAs were transcribed, spliced and translated. To 

determine if the Pl.LSU/2 intron was spliced from the precursor mRNA, an RT-PCR analysis was 

performed on RNA extracted from yeast cells harboring either pEE-URA3 or pEgpIIE-URA3 

expressed in the presence or absence of NLS-IEP
co

. Two different pairs of primers were used to 

specifically amplify cDNA obtained from precursor or spliced mRNA (Fig. 5A; Supplemental Table 

S1 B). We first show that the pEgpIIE-URA3 splicing reporter allows the expression of precursor 

mRNA in all conditions (Fig. 5B; precursor cDNA, pEgpIIE-URA3). As expected, the control plasmid 

pEE-URA3 allows the expression only of a mRNA corresponding to the spliced mRNA (Fig. 5B; 

pEE-URA3). In absence of NLS-IEP
co

, a poorly efficient splicing of Pl.LSU/2 can be detected from 

yeast harbouring the pEgpIIE-URA3 reporter (Fig. 5B; spliced cDNA, pEgpIIE-URA3). It is worth 

noting that splicing efficiency is significantly increased when NLS-IEP
co

 is expressed into yeast cells 

(Fig. 5B; spliced cDNA, Glucose- / Galactose+). Accurate Pl.LSU/2 splicing was verified by 
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sequencing across the splice junction of the RT-PCR spliced products (data not shown). These results 

were quantified using an RT-qPCR analysis performed on four independent experiments (Fig. 5C). 

Precursor and spliced cDNA copy numbers were calculated and ratios of spliced/precursor cDNA 

were determined to measure splicing efficiency. We confirm that in absence of NLS-IEP
co

 expression 

(Glc + / Gal -), the splicing of Pl.LSU/2 is poorly efficient while the Pl.LSU/2 intron splicing 

efficiency in yeast cells is significantly increased upon NLS-IEP
co

 expression (Fig. 5C; Glc- / Gal+; 

between 2.1 and 7.9 fold change compared to background; p < 0,032, t-test using a unilateral pair-wise 

comparison). These results indicate first that the Pl.LSU/2 intron can be expressed in yeast and also 

that the IEP presents a maturase activity in vivo. 

Spliced Pl.LSU/2 group II transcripts are not translated 

The results of the phenotypic analysis showing an absence of clones on medium lacking uracil (Fig. 

4C) and the level of splicing observed in yeast harboring the pEgpIIE-URA3 reporter and expressing 

the NLS-IEP
co

 (Fig. 5C) suggested a blockade in expression of the spliced messenger. Indeed, we had 

not been able to detect by western blot the Ura3p hybrid protein resulting theoretically from the 

Pl.LSU/2 spliced mRNA (Fig. 5D; pEgpIIE-URA3, Ura3p), even upon robust NLS-IEP
co

 expression 

(Fig. 5D). In contrast, high levels of Ura3p hybrid protein are expressed in yeast harboring pEE-URA3 

(Fig. 5D). The absence of detectable level of Ura3p in yeast carrying pEgpIIE-URA3 thus explains the 

failure of functional growth restoration in the URA3-based intron splicing reporter assay.  

Splicing assay of Pl.LSU/2 intron in human cells 

To study if the splicing of the Pl.LSU/2 intron could also occur in human cells, we first aimed to 

determine if the Pl.LSU/2 intron could be expressed in the colon carcinoma HCT 116 cell line. We 

tested various forms of the intron in which the domain IV was more or less extensively deleted (See 

Fig. 1B; ΔDIV, DIVa, DIVab and full length intron). To stably express the various intron sequences in 

human cells, we transduced HCT 116 cells with lentiviral gene transfer vectors (LVs) expressing the 

different forms of the PI.LSU/2 intron flanked by the last 50 nucleotides of exon 2 and the first 71 

nucleotides of exon 3 (Fig. 6A; upper panel; pRRL-intron +/- DIV). Transduced HCT 116 cells were 

expanded for at least ten days to establish stable cell lines expressing the different forms of the intron. 

RT-PCR using primers p5 and p6 hybridizing E2 and E3, respectively (Fig. 6A; upper panel; 

Supplemental Table S1 B) shows expression of the appropriate precursor transcripts in each stable cell 

lines (Fig. 6A; lower panel; amplicons of 736 bp for ΔDIV intron, 1020 bp for DIVa intron, 1472 bp 

for DIVab intron and 2534 bp for full length intron). Nevertheless, we did not find any trace of spliced 

mRNA in any of the stable cell lines analyzed (data not shown). These results suggest that Pl.LSU/2 

intron RNA can be expressed but does not splice in human cells. 

To determine if the intron-encoded protein could promote splicing of Pl.LSU/2 intron in human 

cells, we induced the expression of Pl.LSU/2 IEP
co

 or GFP-IEP
co

 fusion protein in human HCT 116 

cells by transduction with protein-expressing LVs (Fig. 6B; upper panel). Forty eight hours following 

transduction of HCT 116 cells with the LV, western blot analysis demonstrates expression of the IEP
co

 

or GFP-IEP
co

 in the cells (Fig. 6B; lower panel). GFP expression was also confirmed by western blot 

using an anti-GFP antibody and by evidence of nuclear localization following microscopy analysis 

(data not shown).  

The previously described Pl.LSU/2 intron expressing stable lines were then transduced by these 

LVs. Western blot analysis showed the expression of IEP
co

 and GFP-IEP
co

 in these cells (data not 
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shown). To determine the Pl.LSU/2 intron splicing capacity in the presence of IEP, RNAs were 

extracted and analyzed by RT-qPCR. Primers p7 and p4 (Supplemental Table S1 B), hybridizing E2 

and E2-E3 junction respectively, were used to detect the spliced mRNA. Primers p1 and p2 

(Supplemental Table S1 B), hybridizing E2 and E2-Intron junction respectively, were used to detect 

the precursor mRNA. Ratios of spliced/precursor cDNA copy number, which determine the splicing 

efficiency, are less than 2.10
-4

 in every condition tested and for every form of the Pl.LSU/2 intron 

tested (data not shown). This result shows that, in contrast to yeast, the Pl.LSU/2 intron is unable to 

splice efficiently in human cells in this context, even in presence of the intron-encoded protein that 

was codon-optimized for translation in human cells. 
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DISCUSSION 

This study provides the first functional description of the ribozyme activity of the Pl.LSU/2 group II 

intron in vivo. A catalytically-active recombinant PI.LSU/2 intron-encoded protein can be produced in 

E. coli and purified. This protein presents a reverse transcriptase activity in vitro both alone or when 

coexpressed with the intronic RNA. It also displays a maturase activity which facilitates the splicing of 

the Pl.LSU/2 intron in vivo in yeast in a IEP dose-dependent manner. 

These results contribute to characterize the poorly studied Pl.LSU/2 intron. Prior to our study, no 

information was yet available on the in vivo properties of this intron, neither in its natural environment 

nor in experimental systems. The description of the RT and maturase activities of the IEP confirms 

some of the predicted properties encoded by the domain IV of the intron which was known to contain 

an open reading frame theoretically encoding a protein presenting the four characteristic domains (RT, 

X/maturase, D and En) of other group II intron-encoded proteins [55,56]. 

One limitation of the use of group II introns in eukaryotes could be the requirement for a correct 

folding of both the IEP and the intron RNA, therefore it is important to assess the cooperation between 

the intron and IEP. Here, we show for the first time that the Pl.LSU/2 IEP displays a RT activity when 

complexed as RNP. In addition, unlike other group II introns IEP, the PI.LSU/2 IEP has an intrinsic 

RT activity in vitro in the absence of the intron RNA. In a previous study of the Lambowitz group 

[23], the Lactococcus lactis Ll.LtrB IEP (LtrA) correct folding was shown to be facilitated by the 

unspliced precursor or intron RNA: LtrA protein was less active and had unstable RT activity when 

the exon 1 and the 5’ end of the intron were missing from the expression plasmid. The intron RNA 

appeared to have a chaperone-like activity promoting the proper folding of the LtrA protein. In the 

case of Pl.LSU/2, the IEP reverse transcriptase activity could be clearly demonstrated even in the 

absence of co-expression with the intronic RNA. Similarly, Vellore et al. expressed in E. coli the 

G.st.I1 intron-encoded protein (called trt) from Geobacillus stearothermophilus fused to a 6xHis tag 

without co-expressing the intron RNA [67]. The authors showed an RT activity using partially purified 

protein fraction. However, it is noteworthy that the authors did not used the negative control consisting 

of the trt IEP mutated in the YADD catalytic motif. The data presented herein clearly demonstrate the 

PI.LSU2 IEP self-activation properties which may present an advantage for its use in heterologous 

systems. 

The particular biochemical properties of this IEP may also facilitate its use in vivo. The PI.LSU/2 

intron can be engineered to splice in vivo in yeast and this is facilitated in a dose-dependent manner by 

the Pl.LSU/2 IEP. Although the Pl.LSU/2 IEP encoding gene used here is a codon-optimized sequence 

for translation in human cells, IEP translation in yeast is enough efficient to improve splicing of 

Pl.LSU/2. Presumably the maturase activity of the PI.LSU/2 IEP promotes the folding of the intron 

RNA into its catalytic tertiary structure in vivo. Interestingly, a residual splicing could be detected by 

RT-PCR and RT-qPCR using RNA extracts from yeasts that do not express the IEP. This IEP-

independent splicing could have occur in vivo (which would be consistent with the ability of this 

intron to splice in vitro even under not optimal Mg
2+

 conditions [54]) or in vitro during the RT-PCR 

reactions precisely because this ribozyme is highly active in vitro. 

In spite of evidence of functional properties of the PI.LSU/2 intron, we failed to develop a 

productive system for genomic targeting at this stage. While we demonstrated the presence of a 

spliced mRNA in yeast cells, there was no translation of the spliced mRNA since restoration of the 

URA3 ORF did not lead to the expected growth on a minimal medium without uracil. It is possible 
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that the yield of spliced mRNA in yeast cells is not sufficient to the expression of a detectable amount 

of Ura3p proteins by western blot and that the yield of expressed Ura3p does not reach the required 

threshold for yeast growth on medium lacking uracil. However, the possibility of a translation 

blockade is reminiscent of results already reported by Chalamcharla et al. with the Ll.LtrB intron 

using different reporter genes [68]. The authors demonstrated that Ll.LtrB intron splicing occured 

predominantly in the cytoplasm of yeast cells and that precursor mRNA was subjected to nonsense-

mediated mRNA decay (NMD). They also showed that the spliced mRNA was subjected to an NMD-

independent translation blockade. However, the mechanism involved remains unknown. The authors 

speculated that the pairing mechanism between the intron lariat and the spliced mRNA via EBS (exon 

binding sites)/IBS (intron binding sites) interactions [6] could impede the spliced mRNA translation 

[68]. One would also postulate that the translation blockade could result from RNA sequestration to 

cytoplasmic microdomains such as P-bodies or stress granules that play important role in mRNA 

processing, including repression of translation and mRNA decay [69-71]. Anyway, the fact that this 

translation blockade also occurs through the use of Pl.LSU/2 group II intron supports the 

Chalamcharla et al. hypothesis that the mechanism involved is transposable to other group II introns 

and may has impeded their spread in eukaryotic nuclear genes.  

We then tested the ability of the intron to splice in human cells. Here, we used different forms of 

the Pl.LSU/2 intron with deletions of various sizes of the domain IV in order to determine if one of 

these parts are required for intron high-affinity binding to the IEP. The domain IV of the Ll.LtrB 

intron is known to bind its IEP [72], but is not needed for in vitro splicing, as in absence of it, a 

residual splicing occurs [27,66]. In the same way, the domain IV of the yeast coxI-I2 intron is required 

for stable binding of its IEP and additional contacts with the catalytic core of the intron promote the 

splicing [73]. The domain IV of group II introns appears to guide the interactions or anchor the IEP to 

catalytic core regions of the intron. In spite of the use of various domain IV coding regions, in spite of 

using a humanized codon-optimized IEP, in spite of evidence of expression of the IEP and intron in 

human cells and in spite of the expected nuclear localization of the recombinant IEP in human cells, 

we failed to detect any splicing of Pl.LSU/2 intron in human cells. Misfolding of IEP and/or intron 

RNA could explain this splicing defect, but alternatively, defective nuclear/cytoplasmic 

compartimentalization or inadapted environnement could also be implicated.  

The adaptation of group II introns homing mechanism could be considered in the context of a gene 

repair strategy approach in gene therapy. In current gene therapy assays, the transgene integration with 

retroviral vectors is not site-specific. Expression of therapeutic transgenes is sometimes unregulated 

due to cis-acting elements present in the neighbouring of the insertion site. Insertions near oncogenes 

also present a risk of activation by promoters or enhancers carried by the vector [74-79]. All of these 

issues could be circumvented by targeting the insertion into the original site (gene repairing). The 

repaired wild type copy will be under the control of original cis-regulating sequences. Strategies based 

on genome double strand breaks (DSB) in order to achieved reparation by homologous recombination 

are today thouroughly investigated. The use of group II intron could be an alternative approache 

avoiving the putative genotoxicity due to off-target DSB. 

We present encouraging data that suggest that PI.LSU/2 group II intron could have advantageaous 

qualities for engineering genomic targeting strategies. This intron and its IEP function in vivo in yeast. 

However, the use of Pl.LSU/2 and other group II introns in human genomic engineering will require 

further optimizations.  
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FIGURES LEGENDS 

Figure 1. Schematic representation of plasmids and Pl.LSU/2 intron domain IV used. (A) Gray 

rectangles: Predicted protein domains shared by other group II intron ORFs; E2 and E3: exons 

flanking the Pl.LSU/2 group II intron [56]; bold line: Pl.LSU/2 group II intron; broken line: vector 

sequences; PT7: Specific promoter of the T7 bacteriophage RNA polymerase; TT7: T7 bacteriophage 

RNA polymerase transcription terminator; 6xHis: histidine tag; V5: V5 epitope; hatched rectangles: 50 

last nt of E2 and 71 first nt of E3; diamond: position in which the RT catalytic motif YADD is mutated 

in YAAA on negative control plasmids (p151-E+I+IEPmtDD- and p151-IEPmtDD-). (B) Predicted 

RNA secondary structure of Pl.LSU/2 intron domain IV (DIV). Start and Stop codons of the IEP ORF 

are indicated. DIVa: section conserved in the intron-DIVa form (deletion from 244 to 1772 nt of DIV). 

DIVab: section conserved in the intron-DIVab form (deletion from 369 to 1446 nt of DIV). ΔDIV : 

section conserved in the intron-ΔDIV form (section highlighted in gray); the section from 8 to 1818 nt 

of DIV is replaced by the sequence CCTAGGATCT [54]. The detailed putative secondary structure is 

available in Supplemental Figure S1. 

Figure 2. RT activity of Pl.LSU/2 IEP in RNP particles purified from E. coli. (A) SDS-PAGE 

analysis of IEP-containing RNPs preparations by Coomassie-blue staining (Coomassie) and western 

blot (WB). Quantities of RNPs used were 9 OD260nm units for RNPs with IEP WT (RNP WT) and 18 

OD260nm units for RNPs with IEP mtDD- (RNP mtDD-). A monoclonal mouse anti-V5 antibody was 

used to detect the IEP by western blot. The IEP is indicated by the black arrow. Numbers at left 

indicate molecular mass markers in kilodaltons (KDa). (B) RT assays with 0.1 OD260nm units of RNPs. 

Dark gray bar: RNPs containing IEP WT; Light gray bar: RNPs containing IEP mtDD-; Hatched bar: 

control SuperScript® II reverse transcriptase (SS II RT). Data represent the number of pixels per spot 

indicating the [α-
32

P]dTTP incorporation for each reaction. Data are the means of at least three 

independent experiments with the standard deviation indicated by thin lines. Data were subjected to a 

t-test using a unilateral pair-wise comparison procedure. A highly significant difference is indicated by 

asterisks (p < 6 x 10
-4

). (C) Time course of RT reaction. RT activity of RNPs containing IEP (RNPs 

WT, dark gray dots) was assayed with 0.1 OD260nm units of RNPs. Reactions were performed using 

various incubation times. Experiments were also performed without RNP particles (No RNPs, light 

gray dots) or with RNP particles containing the mutant Pl.LSU/2 IEP mt DD- (RNPs mtDD-, gray 

dots). (D) Dose-dependent effect on RT activity. RT activity of RNPs containing IEP (RNPs WT, dark 

gray dots) or mutant IEP (RNPs mtDD-, light gray dots) was assayed with different quantities of RNPs 

for 45 min. 

Figure 3. RT activity of Pl.LSU/2 IEP purified from E. coli. (A) Analysis of IEP purification by 

SDS-PAGE with Coomassie-blue staining (Coomassie) and western blot (WB). Volumes loaded 

contain 5-10 µg of purified protein fraction. A monoclonal mouse anti-V5 antibody was used to detect 

the IEP by western blot. The IEP is indicated by the black arrow. Numbers at left indicate molecular 

mass markers in kilodaltons (KDa). (B) RT assays with 100 ng of IEP. Dark gray bar: IEP WT; Light 

gray bar: IEP mtDD-. Data are the mean of two independent experiments with the standard deviation 

indicated by thin lines. Data were subjected to a t-test using a unilateral pair-wise comparison 

procedure. A significant difference is indicated by asterisk (p < 0.036). 
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Figure 4. In vivo splicing assay of Pl.LSU/2 intron in Saccharomyces cerevisiae. (A) Schematic 

representation of the group II intron splicing reporter assay. PPGK: Phosphoglycerate kinase gene 

promoter; TPGK: Phosphoglycerate kinase gene transcription terminator; E2 and E3: 50 last nt of 

exon 2 and 71 first nt of exon 3; bold line: Pl.LSU/2 intron-DIVab; light gray rectangle: URA3 ORF; 

HA: HA epitope; AUG: Translation start codon. See text for detailed description of the assay. (B) 

Schematic representation of the NLS-IEP
co

 expressing plasmid. PGAL10: UDP-Galactose epimerase 

gene promoter; TGAL10: UDP-Galactose epimerase gene transcription terminator; dark gray 

rectangle: human codon-optimized Pl.LSU/2 IEP ORF (IEP
co

); 3xNLS: nuclear localization signals; 

Myc: stretch of 3 c-Myc epitopes. (C) Numbers of yeast colonies growing on appropriate minimal 

medium containing (+ura) or not (-ura) uracil. Strain carrying pEE-URA3 was used as a control. Strain 

carrying pEgpIIE-URA3 splicing reporter was transformed or not with the NLS-IEP
co

 expressing 

plasmid (pNLS-IEP
co

). Three resulting transformants were cultured until OD600nm reached 2.5 and 

applied on the appropriate minimal medium using a 10
-4

 dilution of the culture. Data indicate the 

numbers of yeast colonies on the plate per ml of the dilution. 

Figure 5. IEP-mediated Pl.LSU/2 splicing in vivo. (A) Schematic representation of amplification 

products from precursor and spliced cDNA obtained by RT-PCR. Black rectangle: Pl.LSU/2 intron-

DIVab; E2 and E3: 50 last nt of exon 2 and 71 first nt of exon 3; gray rectangle: URA3 ORF; black 

arrow: primer; p1 and p2: forward and reverse primers amplifying cDNA derived from the precursor 

mRNA (111 bp product); p3 and p4: forward and reverse primers amplifying cDNA derived from the 

spliced mRNA (77 bp product). (B) Acrylamide electrophoresis of RT-PCR products.Total RNA were 

extracted from yeast carrying pEE-URA3 or pEgpIIE-URA3 and transformed (+) or not (-) with the 

NLS-IEP
co

 expressing plasmid (pNLS-IEP
co

). Cells were grown in presence (+) or absence (-) of 

glucose or galactose (inducer of the NLS-IEP
co

 expression). P: amplification product from precursor 

cDNA; S: amplification product from spliced cDNA. Numbers at left indicate molecular mass marker 

in base pair (bp). (C) Quantification of the Pl.LSU/2 in vivo splicing by RT-qPCR. cDNA copy 

number obtained from spliced and precursor mRNA were calculated using standard amplification 

curves made by serial dilutions of SphI-linearized pEE-URA3 and pEgpIIE-URA3 plasmids, 

respectively. Ratios of spliced/precursor cDNA copy number were determined and data were 

normalized on condition 1 (pNLS-IEPco (-); Glc+ ; Gal-). Four independent experiments are 

represented (Exp 1 to Exp 4). (D) Western blot analysis of Ura3p made from pEE-URA3 or pEgpIIE-

URA3. Yeast strains were cultivated in glucose (Glc+ ; Gal-) or in galactose (Glc- ; Gal+) and in 

absence (-) or presence (+) of pNLS-IEP
co

. Tubulin 1 protein (Tub1p) expression was also determined, 

as well as nuclear expression of NLS-IEP
co

 and TATA-Binding protein (TBP). 

Figure 6. In vivo splicing assay of Pl.LSU/2 intron in human cell lines. (A) Upper panel. Schematic 

representation of Pl.LSU/2 intron transfer cassettes (pRRL-Intron +/- DIV) used in this study. Several 

sizes of the intron domain IV are used (See Fig. 1B; ΔDIV, DIVa, DIVab and full length DIV; 

Supplemental Table S1 A). HCT 116 cells were transduced by the corresponding VSV-G-pseudotyped 

lentiviral vectors (LVs) to establish stable cell lines expressing the four different forms of Pl.LSU/2 

intron. Light gray rectangle : chimeric 5’ LTR (RSV-R-U5); PPGK: phosphoglycerate kinase gene 

promoter; E2 and E3: 50 last nt of exon 2 and 71 first nt of exon 3; black rectangle : Pl.LSU/2 intron 

with various size of the DIV (See Fig. 1B); WPRE: Woodchuck hepatitis post-transcriptional 

regulation element; p5 and p6: forward and reverse primers amplifying cDNA derived from precursor 

and spliced RNA; dark gray rectangle : 3’ LTR (ΔU3-R-U5). Lower panel. Agarose electrophoresis of 
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RT-PCR products. HCT 116 cells were transduced with Pl.LSU/2 intron-expressing LVs (ΔDIV-LV, 

DIVa-LV, DIVab-LV or Full-LV) and stable cell lines were established. Total RNAs were extracted 

from the four stable cell lines expressing the different forms of the intron and  precursor mRNAs were 

detected by RT-PCR. (B) Upper panel. Schematic representation of Pl.LSU/2 IEP gene transfer 

cassettes used in this study. Black rectangle: codon-optimized sequence of Pl.LSU/2 IEP for 

translation in human cells, in frame with GFP encoding sequence (GFP-IEP
co

) or not (IEP
co

); 3xNLS: 

nuclear localization signals; Myc: stretch of 3 c-Myc epitopes. Lower panel. Western blot analysis. 

HCT 116 cell line was either untransduced (NT) or transduced with either IEP
co

-LV or GFP-IEP
co

-LV. 

Total proteins were extracted from lysates 48h after transduction and a monoclonal mouse anti-c-myc 

antibody was used to detect the IEP
co

 and the GFP-IEP
co

. 

Figure S1. Secondary structure of the Pl.LSU/2 intron domain IV predicted by sFold. Pl.LSU/2 

intron domain IV (DIV; 1870 nts) predicted RNA secondary structure obtained with the sFold 

software (http://sfold.wadsworth.org). The domain IV used is from nucleotide 494 to nucleotide 2363 

of the Pl.LSU/2 intron. 

  

http://sfold.wadsworth.org/
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Supplemental Figure S1 
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Supplemental Table S1. Plasmids and oligonucleotides used in this work 

A. Plasmids 

Plasmid Relevant characteristics Reference 

pET151/D-TOPO 
E. coli T7 expression vector allowing a directional TOPO 

cloning in frame of a 6xHis/V5 tag. 
Invitrogen 

p151-IEP 

Pl.LSU/2 IEP fused to a 6xHis/V5 tag in its N-terminus 

and expressed from a T7 promoter on the pET151 

plasmid. 

This work 

p151-IEPmtDD- 

p151-IEP derivative vector in which the conserved 

YADD motif of the IEP RT domain is changed in YAAA. 

The resulting IEP mtDD- protein should be RT-defective. 

This work 

p151-E+I+IEP 

Pl.LSU/2 full length group II intron expressed from a T7 

promoter on the pET151 plasmid and containing the IEP 

fused to a 6xHis/V5 tag in its N-terminus. 

This work 

p151-E+I+IEPmtDD- 
p151-E+I+IEP derivative in which the conserved YADD 

motif of the IEP RT domain is changed in YAAA. 
This work 

pBFG1 
2µ plasmid containing the LEU2 gene selection marker, 3 

HA epitopes and a PGK promoter. 

(Yelin et al. 

1999) 

pCI-neo 
Mammalian expression vector containing a neomycin 

phosphotransferase gene. 
Promega 

pCIneo-E2E3mGFP 

In frame Pl.LSU/2 flanking exons E2 (the last 50 nt) and 

E3 (the first 71 nt) containing a mutation that converts a 

STOP codon in E3 in tyrosine (E3m) and fused to the 5’-

end of the GFP ORF on the pCI-neo plasmid. 

This work 

pCIneo-

E2IntronDIVabE3mGFP 

pCIneo derived plasmid containing a Pl.LSU/2 intron 

deleted form in which section from nucleotide 369 to 

nucleotide 1446 of DIV domain was removed (intron 

DIVab), flanked by the last 50 nt of E2 and the first 71 nt 

of E3 with a mutation that converts a STOP codon in 

tyrosine (E3m) and fused to the 5’-end of the GFP ORF. 

This work 

pEE-URA3 

Pl.LSU/2 flanking exons (the last 50 nt of E2 and the first 

71 nt of E3m) fused to 3 HA epitopes in its N-terminus 

and to a URA3 gene lacking the start codon in its C-

terminus expressed from a PGK promoter on the pBFG1 

plasmid. 

This work 

pEgpIIE-URA3 

URA3-based PL.LSU/2 intron splicing reporter. The last 

50 nt of E2, the Pl.LSU/2 intron DIVab form, see above) 

and the first 71 nt of E3 with a mutation that converts a 

STOP codon in tyrosine (E3m) are cloned just 

downstream of a URA3 gene lacking the start codon. The 

whole cassette is expressed from a PGK promoter on the 

pBFG1 plasmid. 

This work 
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pNLS-IEP
co

 

Codon-optimized Pl.LSU/2 NLS-IEP fused to a c-myc 

epitope in its C-terminus and expressed from the GAL10 

promoter of the pYEF1 plasmid on the pRS413 plasmid. 

This work 

pPl.LSU/2 

Cloning plasmid containing the Pl.LSU/2 group II intron 

flanked by the last 50 nt of exon 2 and the first 71 nt of 

exon 3. 

(Costa et al. 

1997b) 

pPl.LSU/2-∆DIV 

pPl.LSU/2 derivative construct in which most of the 

intron DIV domain was removed : section from 

nucleotide 8 to nucleotide 1818 of the DIV domain was 

replaced by CCTAGGATCT. 

(Costa et al. 

1997b) 

pRRL-backbone 
Advanced generation SIN Tat-independent HIV lentiviral 

vector system. 

(Charrier et 

al. 2007) 

pRRL-intron-∆DIV 

pRRL-backbone derived plasmid containing containing 

the Pl.LSU/2 group II intron with ∆DIV deletion (see 

above) flanked by the last 50 nt of exon 2 and the first 71 

nt of exon 3. 

This work 

pRRL-intron-DIVa 

pRRL-backbone derived plasmid containing the last 50 nt 

of exon 2, a Pl.LSU/2 intron deleted form in which 

section from nucleotide 244 to nucleotide 1772 of DIV 

domain was removed, and the first 71 nt of exon 3. 

This work 

pRRL-intron-DIVab 

pRRL-backbone derived plasmid containing the last 50 nt 

of exon 2, the Pl.LSU/2 intron DIVab form (See above) 

and the first 71 nt of exon 3. 

This work 

pRRL-intron-Full 

pRRL-backbone derived plasmid containing Pl.LSU/2 

group II intron flanked by the last 50 nt of exon 2 and the 

first 71 nt of exon 3. 

This work 

pRRL-GFP pRRL-backbone derived plasmid containing GFP ORF This work 

pRRL-GFP-IEP
co

 

pRRL-backbone derived plasmid containing codon-

optimized Pl.LSU/2 IEP ORF fused to the GFP ORF in its 

N-terminus and to3 NLS and a c-myc epitope in its C-

terminus. 

This work 

pRRL-IEP
co

 

pRRL-backbone derived plasmid containing codon-

optimized Pl.LSU/2 IEP fused to 3 NLS and a c-myc 

epitope in its C-terminus. 

This work 

pRS413 ARS-CEN plasmid with the HIS3 gene selection marker. 

(Sikorski and 

Hieter 1989; 

Christianson 

et al. 1992) 

pRS426 2µ plasmid containing the URA3 gene selection marker. 
(Christianson 

et al. 1992) 

pUC57 E. coli cloning plasmid. Genescript 

pUC57-NLS-IEP
co

 
Codon-optimized Pl.LSU/2 IEP with 3 NLS and a c-myc 

epitope in its C-terminus. 
This work 
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pYEF1 
2µ plasmid containing the GAL10 promoter and 

terminator. 

(Cullin and 

Minvielle-

Sebastia 

1994) 

 

B. Oligonucleotides 

Oligonucleotide Sequence (5’ to 3’) Use 

BamHI-K-IEP 
GGGATCCACCATGAGTATTCCTTACATA

ATTCCG 

Amplification of IEP
co

 

ORF 

DM2 
GTAGCTTTCGAAGCTTTACCTGCCGGCAC

C 

Amplification of E2E3m 

and E2-IntronDIVab-E3m 

DM3 
GGTAAAGCTTCGAAAGCTACATATAAGG

AA 

Amplification of URA3 

ORF 

DM4 GAATTCAGTTTTTTAGTTTTGCTGG 
Amplification of URA3 

ORF 

EcoRI-Stop-Myc AGAATTCCTAGGCAGCGCCGTTCAG 
Amplification of IEP

co
 

ORF 

p1 CTTTTATCTTTGACACAAAATCGGGGG 
Amplification of the 

precursor cDNA (qPCR) 

p2 TCCTGAACTTCTTGTCGCACTTTTTA 
Amplification of the 

precursor cDNA (qPCR) 

p3 AGGATCCCAGCTTTTATCTTTGACACA 

Amplification of E2E3m, 

E2-IntronDIVab-E3m, and 

the spliced cDNA (qPCR) 

p4 CGAGTTAGCAGAGACCTGTGTTTTTA 
Amplification of the 

spliced cDNA (qPCR) 

p5 CTTTTATCTTTGACACAAAATCG 
Amplification of the 

precursor cDNA (PCR) 

p6 GCAGGTGTCAGTCCCTATACA 
Amplification of the 

precursor cDNA (PCR) 

p7 ATTCACGCGTGGTACCTCTAGAA 
Amplification of the 

spliced cDNA (qPCR) 

PlLSU2-AS2 TTAAATGTTCAAGATCTTGC Amplification of IEP ORF 

PlLSU2-S2 CACCATGAGTATTCCATATATA Amplification of IEP ORF 

PlLSU2-SacI-AS CGAGCTCTCGATAAGCTTTACCTGCCG 

Amplification of Intron 

(domains IVb, V and VI)-

E3 

PlLSU2-XbaI-AS 
GCTCTAGAGTTTTCAAAATGATTTCCTTA

GAGCAAG 

Amplification of E2-Intron 

(domains I, II, III and IVa) 

PlLSU2-XbaI-S 
GCTCTAGAACTAGTGGATCCCCCGGGCT

GCA 

Amplification of E2-Intron 

(domains I, II, III and IVa) 
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PlLSU2-XhoI-S 
AAACGAATACTCGAGGATATAGTGAAAC

CG 

Amplification of Intron 

(domains IVb, V and VI)-

E3 

RM-R GTGTGCATTCGTAATGTCTGCCCATTCT 
Reverse transcription of 

total yeast RNA 

Sal-GAL-F 
GTCGACCTAAACTCACAAATTAGAGCTT

C 

Amplification of the 

GAL10 promoter and 

terminator 

Xba-GAL-R TCTAGATGTGAGTTAGCTCACTCATTAG 

Amplification of the 

GAL10 promoter and 

terminator 

YAAA_F 
TGGTAAGGTATGCGGCTGCCTTCGTCGTT

ACCGC 

Site-directed mutagenesis 

of the YADD motif in the 

RT domain of IEP 

YAAA_R 
GCGGTAACGACGAAGGCAGCCGCATACC

TTACCA 

Site-directed mutagenesis 

of the YADD motif in the 

RT domain of IEP 

 

Supplemental references 

Christianson TW, Sikorski RS, Dante M, Shero JH, Hieter P. 1992. Multifunctional yeast high-copy-

number shuttle vectors. Gene 110: 119-122. 

Cullin C, Minvielle-Sebastia L. 1994. Multipurpose vectors designed for the fast generation of N- or 

C-terminal epitope-tagged proteins. Yeast 10: 105-112. 

Sikorski RS, Hieter P. 1989. A system of shuttle vectors and yeast host strains designed for efficient 

manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19-27. 

Yelin R, Rotem D, Schuldiner S. 1999. EmrE, a small Escherichia coli multidrug transporter, protects 

Saccharomyces cerevisiae from toxins by sequestration in the vacuole. Journal of bacteriology 

181: 949-956. 
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3.3 - ADDITIONNAL RESULTS 

3.3.1 - Mass spectrometry analysis of HisV5-IEP purified fractions 

The fusion HisV5-IEP and HisV5-IEP mtDD-, expressed in Rosetta-gami B (DE3), were purified 

using two methods: IMAC and sucrose centrifugation. In the case of IMAC purification, we showed 

that a 75-kDa E. coli contaminant protein was also co-purified with the 69-kDa HisV5-tagged proteins 

(See Fig. R-23). In contrast, the sucrose purifications of HisV5-tagged proteins were free of any 

contaminant proteins (See Fig. 3A of article 2; Coomassie). To confirm the identity of HisV5-IEP and 

HisV5-IEP mtDD- in both purification fractions and also identify the 75-kDa protein in IMAC 

purification fraction, we analyzed the purified proteins by mass spectrometry (MS). The 69-kDa and 

the 75-kDa bands were excised from SDS-PAGE gel stained with Coomassie blue, trypsin-digested in 

order to generate peptides and analyzed by MALDI-TOF/TOF. 

(a) MS spectra 

The first analysis consisted in peptide fingerprint mass mapping, as an initial identification of proteins 

in each sample. We used the search program MS-Fit (http://prospector2.ucsf.edu). This program 

allows to compare the experimental mass values of digested peptides with theoretical values from 

proteins databases, calculated using the cleavage specificity of the enzyme used (trypsin). We used 

here the UniProtKB/SwissProt annotated database in order to identify the 75-kDa E. coli contaminant 

protein and also determine if some E. coli proteins would be found in the 69-kDa bands, which are 

expected to contain HisV5-IEP or HisV5-IEP mtDD-. The results obtained for HisV5-IEP IMAC 

purification are described (Fig. R-28). 

 

69-kDa band 

Protein 

Hit 

Number 

# mat 

% mat 

% 

Cov 

Protein MW 

(Da)/pI 

Accession 

# 
Species Gene Protein Name 

1 16/10 35.3 66851/5.6 Q5PKV9  
SALPA glmS 

Glucosamine-fructose-6-

phosphate 

aminotransferase 

2 16/10 35.3 66878/5.6 Q8ZKX1 SALTY glmS 

Glucosamine-fructose-6-

phosphate 

aminotransferase 

3 15/10 31.0 66779/5.6 Q8FBT4  
ECOL6 glmS 

Glucosamine-fructose-6-

phosphate 

aminotransferase 

4 15/10 31.0 66867/5.6 Q83IY4  
SHIFL glmS 

Glucosamine-fructose-6-

phosphate 

aminotransferase 

5 15/10 31.0 66895/5.6 P17169  
ECOLI glmS 

Glucosamine-fructose-6-

phosphate 

aminotransferase 

1. SALPA: Salmonella paratyphi A.  

2. SALTY: Salmonella typhimurium.  

3. ECOL6: Escherichia coli O6.  

A 

http://prospector2.ucsf.edu/
http://www.uniprot.org/uniprot/Q5PKV9
http://www.uniprot.org/uniprot/Q8ZKX1
http://www.uniprot.org/uniprot/Q8FBT4
http://www.uniprot.org/uniprot/Q83IY4
http://www.uniprot.org/uniprot/P17169
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4. SHIFL: Shigella flexneri.  
5. ECOLI: Escherichia coli (strain K12).  
 

 
 

75-kDa band 

Protein 

Hit 

Number 

# mat 

% mat 

% 

Cov 

Protein MW 

(Da)/pI 

Accession 

# 
Species Gene Protein Name 

1 49/15 42.7 123725/9.5 Q44363  
RHIRD traA Conjugal transfer protein traA 

2 32/10 52.4 74290/6.4 C4ZU97  
ECOBW arnA 

Bifunctional polymyxin 

Resistance protein ArnA 

3 32/10 52.4 74290/6.4 B1X8W8 ECODH arnA 
Bifunctional polymyxin 

Resistance protein ArnA 

4 32/10 52.4 74290/6.4 B1IXT2 ECOLC arnA 
Bifunctional polymyxin 

Resistance protein ArnA 

5 32/10 52.4 74290/6.4 P77398 ECOLI arnA 
Bifunctional polymyxin 

Resistance protein ArnA 

1. RHIRD: Rhizobium radiobacter.  

2. ECOBW: Escherichia coli (strain K12 / MC4100 / BW2952).  

3. ECODH: Escherichia coli (strain K12 / DH10B).  

4. ECOLC: Escherichia coli (strain ATCC 8739 / DSM 1576 / Crooks).  

5. ECOLI: Escherichia coli (strain K12).  

 

© Copyright (1995-2011) The Regents of the University of California. 

Figure R-28: MS-Fit searches. 

The 75-kDa and 69-kDa bands detected in HisV5-IEP IMAC purification fractions were excised from SDS-

PAGE gel, trypsin-digested and analyzed by MADI-TOF/TOF. Resulting MS-data were subjected to MS-Fit 

searches. #mat: number of peptides of the MS-data query that matched with theoretical data of the protein hit; % 

mat: percentage of matches; % Cov: percentage of the protein hit covering by the matched peptides; MW (Da): 

protein molecular weight in Daltons; pI: protein isoelectric point; Accession#: UniProtKB/SwissProt accession 

number. (A) MS-Fit closest matches found with the 69-kDa sample as a query. (B) MS-Fit closest matches found 

with the 75-kDa sample as a query. Proteins with relevant molecular weight are highlighted in yellow. 

 

MS-Fit results show that relevant matches are found with MS data obtained with the 69-kDa sample of 

IMAC purification fraction (Fig. R-28A). The 5 closest matches correspond to the glucosamine-

fructose-6-phosphate aminotransferase protein, whose molecular weight is around 67-kDa and the 

third and fifth closest matches correspond to E. coli species (Fig. R-28A). The matched peptides cover 

31% of the protein hit, which is sufficient to be relevant and indicates that the 69-kDa band, expected 

to contain either HisV5-IEP is contaminated by the 67-kDa Glucosamine-fructose-6-phosphate 

aminotransferase E. coli protein. Same results were obtained with the 69-kDa sample of HisV5-IEP 

mtDD- IMAC purification fraction and HisV5-IEP sucrose cushion centrifugation fraction (data not 

shown).  

MS-Fit results obtained with MS-data of the 75-kDa sample show that the first closest match 

correspond to a 124-kDa Rhizobium radiobacter protein (Fig. R-28B; protein hit #1). The protein 

molecular weight is not relevant as the band excised from the gel was just below the 75-kDa marker. 

In contrast, the other closest matches correspond to a 74-kDa E. coli protein (Fig. R-28B; Bifunctional 

B 

http://www.uniprot.org/uniprot/Q44363
http://www.uniprot.org/uniprot/C4ZU97
http://www.uniprot.org/uniprot/B1X8W8
http://www.uniprot.org/uniprot/B1IXT2
http://www.uniprot.org/uniprot/P77398
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polymyxin Resistance protein ArnA, highlight in yellow). In each case, the matched peptides cover 

52.4% of the protein hit. These results indicate that the contaminant protein in the HisV5-IEP IMAC 

fraction corresponds to the 74-kDa E. coli Bifunctional polymyxin Resistance protein ArnA. Same 

results were obtained with the HisV5-IEP mtDD- IMAC fraction. 

The MS-Fit search cannot identify the Pl.LSU/2 IEP as a match. Indeed, the protein database used 

is UniProtKB/Swiss-Prot and the Pl.LSU/2 IEP sequence is not an entry in this database. The 

Pl.LSU/2 IEP sequence is so far unreviewed and thus appears as an entry only in the 

UniProtKB/TrEMBL database. 

In order to determine the presence and identity of HisV5-IEP and HisV5-IEP mtDD- in the 69-kDa 

bands, we have compared experimental MS-data obtained using MALDI-TOF/TOF to theoretical 

Pl.LSU/2 IEP MS-data. Therefore, we have performed an in silico MS-digest 

(http://prospector2.ucsf.edu) of HisV5-IEP. MS-digest is a program that determinates the theoretical 

fingerprint mass pattern of a protein. The program performs an in silico digestion of the query protein 

to obtain theoretical mass values of expected digested peptides (Fig. R-29). MS-digests of HisV5-IEP 

and HisV5-IEP mtDD- are identical because the YAAA mutation in HisV5-IEP mtDD- does not 

change the trypsin cleavage profile. 

HisV5-IEP in silico MS-Digest results 

Protease used: Trypsin 

pI of Protein: 9.8 

Protein MW: 69168 

1  MHHHHHHGKP  IPNPLLGLDS  TENLYFQGID  PFTMSIPYII  PFNWHDIDWA  

51 NVQSKVCYYQ NNLAVAELKG DSGLVTKLQR NLVNSFAGRA LAVRAITTNK 

101 GKNTPGINGE  IWDTSIKKLD  AIHRLGRVSN  YSCSPVKRVY  IPKSGGKLRP  

151  LGIPNMYDRG LQYLWKLALD  PIAECRADRH  SYGFRKGRST  QDVHTILHLL  

201  LSPKSRCDWV  LEADIRGFFD  NINHDWIIQN  IPMDKNILRE  WLKAGALETT 

251  TQEFHKGIAG VPQGGPISPL  IANMTLDGLE  VWVANSVKHL  YKKSKETSWS  

301 PKVNVVRYAD  DFVVTAATKR  ILEDIVKPSI  QDFLASRGLV  LNQEKTCITS  

351  VKKGFDFVGF  NFRVYPDKSG  PKGAKSIVKP  TKEGKRRLRS  KIRNAVKTNK  

401  SSGEIIVELN  PILRGWANYY  KATSAKKVFT  SIGKYVWDKT  WTWAKRKHRQ  

451 LNFRDLAKLY  YTRRKKRKWI  FKGEWMDKEL  TIFLIDSVAI  RRHSLARNYN  

501  PYLLDNEDYF  IERNKRLSSS  NLWNERHSKL  LRRDKYKCKV  CNEYICGEDK  

551  VEIHHIKPKS LGGDDAISNN  VVLHAECHKQ  LTHTKSRSLL  ARFERGKILN  

601 I     

http://prospector2.ucsf.edu/


Part II – Pl.LSU/2 group II intron characterization: Article 2 

174 

 

 



Part II – Pl.LSU/2 group II intron characterization: Article 2 

 175 

Figure R-29: HisV5-IEP in silico MS-digest. 

The protein sequence of HisV5-IEP was subjected to an in silico tryptic MS-digest to obtain theoretical mass 

values (m/z; mass/charge) of expected digested peptides. The trypsine cleaves predominantly after arginine (R) 

and lysine (K) residues (underlined in the sequence). mi: monoisotopic peptide mass calculated with the use of 

the lowest common isotope for each element (
12

C, 
1
H, 

14
N, 

16
O, 

32
S, 

31
P); Start: first amino acid of the expected 

peptide; End: last amino acid of the expected peptide. The expected peptide ions are listed by m/z values.  

 

We then compared theoretical peptide mass values of the in silico HisV5-IEP MS-digest (Fig. R-29) 

with the experimental mass values of digested peptides obtained using MALDI-TOF/TOF with the 69-

kDa samples. The results obtained with HisV5-IEP WT and mtDD- IMAC fractions are described 

below (Fig. R-30).  

 

Figure R-30: Identification of HisV5-IEP and HisV5-IEP mtDD- purified by IMAC using MALDI-

TOF/TOF. 

After IMAC purification and separation by SDS-PAGE, bands expected to contain HisV5-IEP and HisV5-IEP 

mtDD- were excised from the 69-kDa mass range, digested with trypsin and analyzed using MALDI-TOF/TOF. 

% Intensity: percentage of peaks intensity; a.u: arbitrary unit. HisV5-IEP (upper panel) and HisV5-IEP mtDD- 

(lower panel) lysis products identified by the in silico MS-digest (See Fig. R-29), are indicated by red rectangles. 

Peptides for which an MS/MS fragmentation will be performed are indicated by asterisks. The HCCA matrix 

peak is indicated by blue rectangle.  

 

MS spectra of the 69-kDa samples reveal the presence of 7 peptides whose mass values match with 

theoretical mass values of HisV5-IEP in silico digested peptides without missed cleavages (Fig. R-30; 

indicated by red rectangles). These results indicate the presence of HisV5-IEP and HisV5-IEP mtDD- 

in the 69-kDa band on IMAC purification fractions. The identity of HisV5-IEP WT and mtDD- 

purified by sucrose cushion centrifugation was also confirmed by MS spectra analysis (not shown). 

(b) MS/MS spectra 

To further confirm the identification of HisV5-IEP, four of the matched peptides (Fig. R-30; mass 

values of 1205.6342; 1539.9440; 1944.1689 and 2078.0486; indicated by asterisks), found using 

MALDI-TOF/TOF with HisV5-IEP IMAC purified fraction and theoretically corresponding to HisV5-

IEP peptides without missed cleavages, were analyzed by MS/MS fragmentation. MS/MS 

fragmentation is used here to produce sequence information of the 4 peptides, also called parental 
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ions, by fragmentation inside the mass spectrometer and analysis of the fingerprint pattern of resulting 

fragment ions. In parallel, theoretical fingerprint patterns of the expected GFDFVGFNFR peptide 1 of 

m/z 1205.5738, SSGEIIVELNPILR peptide 2 of m/z 1539.8741, ILEDIVKPSIQDFLASR peptide 3 

of m/z 1944.0801 and NYNPYLLDNEDYFIER peptide 4 of m/z 2077.9502, which were identified by 

the in silico MS-digest of HisV5-IEP (See Fig. R-29), are calculated. The comparison between 

theoretical and experimental patterns can then allow the identification of these four parental ions (Fig. 

R-31). 
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Figure R-31: MS/MS fragmentation of four peptides found by MALDI-TOF/TOF analysis of the 69-kDa 

sample in HisV5-IEP IMAC purified fraction. 

The peptides whose mass values match with theoretical data are indicated by black rectangles. MH
+1

 (mono): 

monoisotopic peptide mass; b: peptide fragment ion when charge is retained at the N-terminus; y: peptide 

fragment ion when charge is retained at the C-terminus. Theoretical fingerprint pattern of the GFDFVGFNFR 

peptide 1 of m/z 1205.5738 (A; left panel), SSGEIIVELNPILR peptide 2 of m/z 1539.8741 (B; left panel), 

ILEDIVKPSIQDFLASR peptide 3 of m/z 1944.0801 (C; left panel), and NYNPYLLDNEDYFIER peptide 4 of 

m/z 2077.9502 (D; left panel) were manually compared with MS/MS fragmentations performed by MALDI-

TOF/TOF on the parental ion of m/z 1205.6342 (A; right panel), 1539.9440 (B; right panel), 1944.1689 (C; right 

panel), and 2078.0486 (D; right panel) respectively. 

 

MS/MS fragmentation of the parental ions of m/z 1205.5738, 1539.9440, 1944.1689 and 2078.0486 

found by MALDI-TOF/TOF reveals the presence of fragment ions whose mass values match with 
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theoretical data of expected peptides (Fig. R-31; indicated by black rectangles). This confirms the 

identity of the parental ions analyzed and further demonstrates that HisV5-IEP and HisV5-IEP mtDD- 

are well contained in the 69-kDa band obtained by IMAC purification. 

In conclusion, the mass spectrometry analysis of the HisV5-IEP and HisV5-IEP mtDD- IMAC 

purification fractions allowed the identification of the 74-kDa E. coli Bifunctional polymyxin 

Resistance protein ArnA in the 75-kDa band. Moreover, we determined that the 69-kDa band observed 

in the IMAC and sucrose cushion purification fractions contains HisV5-IEP or HisV5-IEP mtDD- as 

well as the 67-kDa glucosamine-fructose-6-phosphate aminotransferase E. coli protein. Notably, the 

matched peptides found using MALDI-TOF/TOF analysis of the 69-kDa sample of IMAC purification 

fraction cover 18% of HisV5-IEP and are located all along the protein sequence from the RVT-1 

domain to the HNH domain of HisV5-IEP (Fig. R-32). It is accepted that a covering of about 20% is 

required to an identification of a protein by MALDI-TOF/TOF, and the correct identification of a 

minimum of 2 peptides by MS/MS further confirm the identification. We can thus admit that the 

HisV5-IEP is correctly identified under these criteria. 

 

 

Figure R-32: Schematic representation of the HisV5-IEP covering. 

Matched peptides found by MADLI-TOF/TOF analysis with the 69-kDa sample of HisV5-IEP IMAC 

purification fraction are represented by black lines and located on the HisV5-IEP sequence. The peptides m/z 

values are indicated for each peptide. 6xHis: Histidine tag; RVT-N: Pfam N-terminal domain of reverse 

transcriptase; RVT-1: Pfam reverse transcriptase domain (RNA-dependent DNA polymerase); GIIM: Pfam 

Group II intron, maturase-specific domain; HNH: Pfam HNH endonuclease domain; aa: amino acids. 

3.3.2 - RNP particles purification by IMAC 

As detailed previously (See Results section 2.4 -), the expression of HisV5-IEP in E. coli followed by 

purification using IMAC did not allow to demonstrate the RT activity of the IEP. We postulated that 

the Pl.LSU/2 intron RNA was required for the proper catalytic conformation of the IEP. Thus, we 

expressed both Pl.LSU/2 IEP and the Pl.LSU/2 intron in Rosetta-gami B (DE3) (See article 2). Before 

testing the centrifugation in sucrose cushion (See article 2), we first decided to use the IMAC 

purification process under native conditions to purify RNP particles. The same protocol than those 

used to purify HisV5-tagged proteins under native conditions (See Results section 2.4.4 -) was used to 

purify RNPs containing wild-type or mtDD- HisV5-IEP (Fig R-33A). The RT activity of purified RNP 

particles was then assayed (Fig. R-33B and R-33C) as described previously. 
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Figure R-33: RT activity of HisV5-IEP in RNP particles purified from E. coli by IMAC. 

(A) SDS-PAGE analysis by Coomassie blue staining (Coomassie) and western blot (WB) of HisV5-IEP-

containing RNPs purified by IMAC. Quantities of RNPs used were 9 and 18 OD260nm units for RNP containing 

wild-type HisV5-IEP (RNPs WT) and RNP containing mutant HisV5-IEP mtDD- (RNPs mtDD-), respectively. 

A monoclonal mouse anti-V5 antibody was used to detect the HisV5-IEP by western blot. The IEP is indicated 

by black arrow. The 75-kDa E. coli contaminant protein is indicated by black arrowhead. Asterisks indicate E. 

coli contaminant proteins and/or degradation products. (B) RT reactions without proteins (No protein) and with 

0.1 OD260nm unit of RNPs WT or RNPs mtDD- were performed at 37°C for 45 min. Positive control consists of 

0.03 U of SuperScript® II reverse transcriptase (SS II RT) diluted in the dialysis buffer used during RNPs 

purification. (C) Data, representing the number of pixels per spot, were quantified with ImageQuant™ software. 

Blue bar: RNPs containing HisV5-IEP; dark red bar: RNPs containing HisV5-IEP mtDD-; black bar: 

SuperScript® II reverse transcriptase. Data are the mean of three independent experiments and standard 

deviation is indicated by thin lines. 

Coomassie blue stained SDS-PAGE shows that four proteins are present in the RNPs purified fractions 

with one protein at the expected size of HisV5-IEP (WT and mtDD-) (Fig. R-33A, Coomassie, 

indicated by black arrow). The western blot analysis confirms the identity of this protein as HisV5-IEP 

(WT and mtDD-) (Fig. R-33A; WB). The 75-kDa E. coli contaminant protein, which was co-purified 

with HisV5-IEP during IMAC purification under native conditions (See Fig. R-24), is also co-purified 

with HisV5-IEP contained in RNPs (Fig. R-33A; indicated by black arrowhead). The other proteins 

(Fig. R-33A; indicated by asterisks) can be E. coli contaminant proteins and/or HisV5-IEP (WT and 

DD-) degradations products. Even if RNPs particles could only be partially purified, RT assays were 

performed using these RNPs preparations. Figure R-33B shows the resulting membrane image of one 

experiment. We observe that the HisV5-IEP contained in RNPs and purified by IMAC does not 

display any RT activity. Quantification of data of three independent experiments was performed and 
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shows that both RNPs containing wild-type and mutant HisV5-IEP have no RT activity (Fig R-33C). 

These results confirmed that the IMAC purification process alters the protein folding and/or stability. 

3.3.3 - Influence of RNase A on RT activity of Pl.LSU/2 IEP contained in RNPs 

In early RT assays using artificial exogenous RNA template, we have evaluated the influence of an 

RNase A treatment on the RT activity of Pl.LSU/2 IEP contained in RNPs. RNase A is a ribonuclease 

specific to single-stranded RNA. Previous studies have shown that an RNase A digestion of the 

endogenous RNA contained in RNPs could have different implications on the RT activity of the 

intron-encoded protein depending on the group II intron used. Unlike the Saccharomyces cerevisiae 

aI2 group II intron, for which an RNase A digestion of RNP particles is necessary to release the RT 

from endogenous RNA (Moran JV et al. 1995; Zimmerly S et al. 1999), the Lactococcus lactis Ll.LtrB 

group II intron-encoded protein has essentially the same RT activity in presence or absence of RNase 

A (Matsuura M et al. 1997). In the case of the aI2 intron, the endogenous RNA has to be digested just 

prior to in vitro RT reactions using exogenous templates. 

We thus evaluated the influence of an RNase A treatment on the RT activity of Pl.LSU/2 IEP 

contained in RNPs. In vitro RT assays were performed with HisV5-IEP-containing RNPs purified by 

sucrose centrifugation, as described in article 2, except that RNase A was added or not to the RT 

reaction medium (Fig. R-34).  
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Figure R-34: Influence of RNase A treatment on RT activity of Pl.LSU/2 IEP contained in RNPs purified 

by sucrose centrifugation. 

(A) RT reactions were performed without RNPs (No RNPs) or with 0.1 OD260nm units of RNPs purified by 

sucrose centrifugation and containing either wild-type HisV5-IEP (RNPs/HisV5-IEP) or mutant HisV5-IEP 

(RNPs/HisV5-IEP mtDD-). Positive control consists of RT assay using 0.03 U of SuperScript® II reverse 

transcriptase (SS II RT). RT activity was assayed in presence (with RNase A) or absence (without RNase A) of 

RNase A in the reaction medium. (B) Data, representing the number of pixels per spot, were quantified with 

ImageQuant™ software and corrected to the background. Data are the mean of three independent experiments 

with the standard deviation indicated by thin lines. Data were subjected to a t-test using a unilateral pair-wise 

comparison procedure. A highly significant difference is indicated by asterisks (p < 3.10
-3

). 

 

Figure R-34 shows that HisV5-IEP contained in RNPs particles has an RT activity in presence of 

RNase A in the reaction medium (Fig. R-34; RNPs/HisV5-IEP, dark gray bar). In contrast this activity 

is highly significantly impede in absence of RNase A (Fig. R-34; RNPs/HisV5-IEP, light gray bar, p < 

3.10
3
). As expected, the RT activity of the protein is abolished by point mutations in the catalytic 

YADD motif of the RT domain (Fig. R-34; RNPs/HisV5-IEP mtDD-). The SuperScript II reverse 

transcriptase has an RT activity both in presence and absence of RNase A (Fig. R-34; SSII RT), as the 

activity of the SuperScript II is not expected to be influenced by an RNase A treatment. These results 

indicate that, as for the S. cerevisiae aI2 intron-encoded protein, the RT activity of Pl.LSU/2 IEP using 

an exogenous RNA template requires the release of the IEP from the endogenous RNA. This could 

suggest that a high binding affinity occurs between Pl.LSU/2 IEP and intron RNA so that the binding 

of IEP to the artificial RNA template in RT assays would be too rare without digestion of endogenous 

RNA.
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4 - HOMING OF PL.LSU/2 GROUP II INTRON 

4.1 - INTRODUCTION 

The major aim of this work was to characterize the Pl.LSU/2 group II intron in order to evaluate its 

potential use in targeted genome engineering. This strategy relies on the ability of group II intron to 

transpose to a specific DNA target site by the homing mechanism. The homing of group II intron is 

achieved by RNP particles, formed after the IEP-mediated intron RNA splicing and composed by the 

IEP and the intron lariat. Both components of the RNP recognizes the DNA target site and the intron is 

integrated after several steps involving a “reverse splicing” of the intron into the sense strand of the 

DNA target site, the antisense-strand DNA cleavage and reverse transcription of the intron by the IEP, 

and finally the integration of a newly synthetized double-stranded cDNA copy of the intron into the 

DNA target site by cellular repair mechanisms. The homing property of several group II introns such 

as the bacterial Ll.LtrB and the yeast aI2 group II introns has been demonstrated. In contrast, the 

homing capacity of Pl.LSU/2 group II intron has never been characterized. 

The Pl.LSU/2 IEP catalytic activities and the ability of the Pl.LSU/2 intron to splice in vivo are 

required for the homing process. We have shown in article 2 that Pl.LSU/2 IEP has an RT activity in 

vitro either alone or contained in RNP particles. We also demonstrated that the Pl.LSU/2 IEP has also 

a maturase activity, promoting the Pl.LSU/2 intron splicing in yeast cells. Two of the three 

biochemical activities of the IEP were thus demonstrated and the in vivo splicing ability of Pl.LSU/2 

intron was also showed.  

It was then desirable to determine whether Pl.LSU/2 intron homing could be observed. We first 

evaluated the homing of Pl.LSU/2 intron in E. coli. In parallel, the demonstration of IEP-promoted 

Pl.LSU/2 intron splicing in S. cerevisiae led us to design an homing assay in yeast. 

4.2 - HOMING OF PL.LSU/2 IN E. COLI 

Because of the facility of performing mechanistic studies in E. coli, the evaluation of Pl.LSU/2 intron 

homing was first attempted in that host, even though the splicing of Pl.LSU/2 intron was not 

demonstrated in E. coli. The transcription and translation take place in the same cellular compartment 

in bacteria. We expected that this feature would be favorable to the homing mechanism. The E. coli 

homing assay was performed using the natural intron DNA target site inserted into a plasmid in order 

to increase the chance of homing detection. We used a strategy adapted from a commercially available 

gene knockout system (TargeTron™, Sigma-Aldricht) based on the homing property of Ll.LtrB group 

II intron. A retrohoming-activated marker (RAM)-twintron selective approach was thus designed to 

detect retrohoming of Pl.LSU/2 in E. coli (Fig. R-35). 
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Figure R-35: RAM-targetron strategy in E. coli. 

Pl.LSU/2 intron DIVa: deleted form of Pl.LSU/2 intron (See article 2; Fig. 1B); E2: 50 last nt of exon 2; E3: 71 

first nt of exon 3; Kan
R
: kanamycin resistance gene; Pint: internal kanamycin promoter; RBS: ribosome binding 

site; HisV5-IEP: Pl.LSU/2 IEP fused in N-terminal with 6xHis tag and V5 epitope; TT7: T7 transcription 

terminator; AmpR: ampicillin resistance gene; pBR322 origin: pBR322 high-copy replication origin; CamR: 
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Chloramphenicol resistance gene; p15A origin: p15A low-copy replication origin. The strategy is described in 

the text. 

This RAM-twintron strategy consists in the transformation of E. coli by two plasmids: a donor and an 

acceptor plasmid. The donor plasmid is a high-copy plasmid containing the Pl.LSU/2 group II intron 

with its flanking exons (E2 and E3) cloned downstream a T7lac promoter and upstream the HisV5-IEP 

encoding sequence. A ribosome binding site (RBS) is located just upstream of the HisV5-tag to allow 

its translation. The Pl.LSU/2 intron used in this assay contains a deletion of the domain IV (Pl.LSU/2 

intron-DIVa; See article 2) which removes a part of the IEP ORF. The intron contains in its domain IV 

the kanamycin resistance gene used as retrohoming-activated marker (Kan
R
) disrupted by the efficient 

self-splicing td group I intron. The Kan
R
 selectable marker is inserted in the reverse orientation into 

Pl.LSU/2 intron domain IV, and the self-splicing td group I intron is inserted in the forward 

orientation. The self-splicing td group I intron inserted into the Pl.LSU/2 intron forms a twintron. 

The acceptor plasmid is a low-copy plasmid containing the potential natural DNA target site of 

Pl.LSU/2, corresponding to the last 50 nt of exon 2 (E2) and the 71 first nt of exon 3 (E3).  

The donor and acceptor plasmids are co-transformed in E. coli BL21 Star (DE3) and the 

transcription of the donor cassette containing the RAM-twintron and the HisV5-IEP ORF is induced 

with IPTG. The self-splicing of intron td from this RNA intermediate restores the Kan
R
 ORF. The 

reverse orientation of the rescued Kan
R
 ORF on the td-spliced mRNA implies that the marker could be 

activated only upon Pl.LSU/2 intron integration into the acceptor plasmid via the homing mechanism 

(Fig R-35). Pl.LSU/2 homing events can thus be detected by the growth of kanamycin resistant E. coli 

colonies. The use of the twintron strategy allows to ensure that the homing mechanism rely on an 

RNA intermediate. 

Five independent homing assays were conducted as described thereafter. E. coli BL21 Star (DE3) was 

cotransformed with pDonor and pAcceptor plasmids. A 130 ml culture was then incubated at 32°C to 

OD600nm 0.4. The culture was then split in four equal parts which were either non-induced or induced 

for 30 min, 1 hr or 2 hrs with 2 mM of IPTG at 32°C. Two ml of each culture were then plated on LB-

agar containing either chloramphenicol (Cam) or chloramphenicol and kanamycin (Cam-Kan). E. coli 

cells that grow under Cam selection contain the pAcceptor plasmid with or without integrated 

Pl.LSU/2 intron, while cells that grow under Cam-Kan selection necessarily contains the pAcceptor 

plasmid in which Pl.LSU/2 intron has been integrated. The homing frequency can thus be calculated 

by the ratio of the number of Cam
R
-Kan

R
 colonies to the number of Cam

R
 colonies.  

Unfortunately, no Cam
R
-Kan

R
 colonies were found on 2.9 x 10

7
 (± 1.65 x 10

5
) Cam

R
 colonies (data 

representing the mean of five independent experiments). Several hypotheses have been formulated to 

explain these results: the HisV5-IEP could not been expressed from the pDonor plasmid, the Kan
R
 

marker could display an expression defect, or the Pl.LSU/2 intron could have not been integrated.  

To ensure that these results were not the consequence of an absence of HisV5-IEP expression, 

proteins were extracted from 20 ml of the uninduced and induced cultures and HisV5-IEP expression 

was verified by western blot (Fig. R-36). 
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Figure R-36: Western blot analysis of protein expressed in E. coli during RAM-targetron homing assay. 

1/70 of total (T) and soluble (S) protein fractions extracted from 20 ml cultures of E. coli transformed by both 

pDonor and pAcceptor plasmids and induced or not (-) at OD600nm of 0.4 with 2 mM of IPTG for 30 min, 1 hr 

and 2 hrs. Protein fractions are loaded onto SDS-PAGE gel and HisV5-IEP is detected using an anti-V5 

antibody. 

 

The molecular mass of HisV5-IEP is expected to be around 69-kDa. Figure R-36 shows that HisV5-

IEP is expressed at low levels in induced cultures and whatever the time of induction used (Fig. R-36; 

2 mM IPTG, 30 min, 1 hr and 2 hrs, fractions T). The protein is also detectable in the soluble fractions 

(Fig. R-36; 2 mM IPTG, fractions S). These results indicate that the expression cassette from pDonor 

is transcribed and translated. However, the yield of HisV5-IEP expression remains low, even though 

the mRNA is transcribed from a high-copy plasmid. Nevertheless, the absence of Cam
R
-Kan

R
 clones is 

probably not the consequence of a failure in HisV5-IEP expression. 

To determine if the absence of Cam
R
-Kan

R
 clones is due to a failure in the Kan

R
 marker expression in 

E. coli cells even upon Pl.LSU/2 homing, plasmid DNA were extracted from 10 ml of the uninduced 

and induced cultures and analyzed by restriction digestion using enzymes that give differential 

restriction profiles for pDonor, pAcceptor and pHoming product. SspI restriction enzyme was used to 

digest 1 µg of plasmid DNA. The detection of a 676 bp restriction fragment should conclude to the 

retrohoming of Pl.LSU/2 intron in the DNA target site of pAcceptor plasmid (Fig. R-37A; pHoming 

product, indicated in bold). Restriction fragments of each plasmid DNA sample were thus analyzed by 

electrophoresis on agarose gels (Fig. R-37B). 
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Figure R-37: Restriction digestions of plasmid DNA extracted during E. coli homing assay. 

(A) Expected restriction fragments for pAcceptor, pDonor and pHoming after SspI digestion. Restriction 

fragment that could conclude to the presence of a plasmid with integrated Pl.LSU/2 intron (pHoming product) is 

indicated in bold. (B) SspI restriction profiles. The length of restriction products observed are indicated at right: 

pDonor corresponding restriction products are in red and pAcceptor corresponding restriction products are in 

blue. Molecular mass marker is indicated at left. 

 

The analysis of plasmid DNA restriction profiles shows that restriction products of only pDonor and 

pAcceptor are detected (Fig. R-37B; indicated in red and blue, respectively). Restriction profiles are 

identical for each plasmid DNA extracted sample (Fig. R-37; - IPTG and 2 mM IPTG 30 min, 1 hr and 

2 hrs). The 676 bp fragment from the pHoming-product plasmid was not detected by restriction digest 

analysis. We subsequently confirm this result by the use of several other enzymes (Data not shown). 

This suggests that the homing of Pl.LSU/2 intron into its DNA plasmid target has not occurred. It 

could also indicate that the homing frequency is too low to be detected by restriction digestion.  

The homing of the Pl.LSU/2 intron could not been demonstrated in our E. coli assay. We did not 

perform further experiments principally because of a lack of time. In addition, another work that we 

conducted in parallel led us to evaluate the homing of Pl.LSU/2 intron in yeast. 

4.3 - HOMING OF PL.LSU/2 IN S. CEREVISIAE 

The study of the Pl.LSU/2 intron splicing in S. cerevisiae showed that Pl.LSU/2 intron can splice in 

yeast and that the splicing efficiency is increased when the IEP is expressed (See article 2). It could 

suggest that in yeast, the Pl.LSU/2 IEP and the intron lariat can form RNP particles, which are the 

catalytic molecules involved in the homing mechanism. Thus, we postulated that the Pl.LSU/2 intron 

homing could occur in yeast cells. The strategy used to evaluate the homing capacity of the Pl.LSU/2 

intron in yeast was directly adapted from the yeast splicing assay. The two plasmids constructed for 

the yeast splicing assay (Fig. R-38, pEgpIIE-URA3 and pNLS-IEP
co

) and an acceptor plasmid 

containing the potential natural DNA target site of Pl.LSU/2 (Fig. R-38; pE2E3) were used here. 
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Figure R-38: Yeast homing assay strategy. 

PPGK: PGK promoter; HA: stretch of 2 HA tags; Pl.LSU/2 intron-DIVab form: deleted form of Pl.LSU/2 intron 

(See article 2, Fig 1B); E2: 50 last nt of exon 2; E3: 71 first nt of exon 3; URA3: Ura3p encoding sequence; 

TPGK: PGK transcription terminator; LEU2: Leucine encoding selection gene; 2µ origin: 2µ high-copy 

replication origin; PGAL10: galactose-inducible GAL10 promoter; IEP
co

: IEP encoding sequence codon-optimized 

for translation in human cells; NLS: stretch of 3 nuclear localization signals; Myc: c-Myc epitope; TPGK: PGK 

transcription terminator; HIS3: Histidine encoding selection gene; ARS/CEN3 origin: Autonomously 

Replicating Sequence/yeast centromere low-copy replication origin; LYS2: Lysine encoding selection gene; 

PrimF/R: oligonucleotides. The strategy is described in the text. 

The strategy adopted here is not based on a retrohoming-activated marker as in the E. coli homing 

assay, so that the homing can only be detected by plasmid DNA analysis. The plasmid pEgpIIE-URA3 

is used as the Pl.LSU/2 intron donor plasmid, and pNLS-IEP
co

, allows the inducible Pl.LSU/2 IEP 

expression. The plasmid pE2E3 corresponds to the acceptor plasmid and contains the last 50 nt of 

exon 2 (Fig. R-38; E2) and the 71 first nt of exon 3 (Fig. R-38; E3), used here as the Pl.LSU/2 DNA 

target site. The expression of the Pl.LSU/2 IEP in yeast has previously been shown to promote the 

Pl.LSU/2 intron splicing from the precursor mRNA transcribed from the pEgpIIE-URA3 plasmid (See 

article 2), potentially leading to the formation of a ribonucleoparticle. This theoretically formed RNP 

could thus recognize its DNA target site located in the pE2E3 plasmid. The homing of Pl.LSU/2 intron 

should subsequently lead to the formation of the plasmid pE2-Int-E3 (Fig. R-38; homing product). 

S. cerevisiae BY4742 strain was first co-transformed by the donor (pEgpIIE-URA3) and acceptor 

(pE2E3) plasmids. Double transformants were then selected and transformed or not by the IEP 

expressing plasmid (pNLS-IEP
co

). As the Pl.LSU/2 IEP expression in S. cerevisiae BY4742 strain has 

already been demonstrated during the yeast splicing assay (See article 2), we have not verified the 

Pl.LSU/2 IEP expression in this homing assay. Yeasts were then cultured in either glucose- or 

galactose-containing medium in order to repress or induce NLS-IEP
co

 expression, respectively. After 

22 hrs of culture, plasmid DNA was extracted from yeast cells and analyzed by PCR amplifications. 
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PCR amplification analysis was chosen instead of restriction digestion, as used previously in the E. 

coli homing assay, because of the higher sensitivity of the PCR technique. Amplification primers 

PrimF and PrimR (See Fig. R-38) were used to specifically amplify the acceptor plasmid in which the 

Pl.LSU/2 intron would have been inserted, leading to the synthesis of a 485 bp amplification product 

(Fig. R-39). 

 

Figure R-39: Aragose electrophoresis of PCR amplifications of plasmid DNA extracted during yeast 

homing assay. 

S. cerevisiae harboring the pEgpIIE-URA3 donor plasmid and the pE2E3 acceptor plasmid were either 

transformed (+) or not (-) by pNLS-IEP
co

 and cultivated for 22 hrs at 28°C in glucose- (Glc) or galactose- (Gal) 

containing medium. Plasmid DNA was extracted from 4 ml of these cultures. 60 ng of plasmid DNA was used to 

specifically amplify the homing product (pE2-Int-E3) by PCR with primF and primR primers (See Fig. R-38). 

Amplification reactions without plasmid DNA (H2O), or with 20 ng of each pE2E3 (C1), pNLS-IEP
co

 (C2) and 

pEgpIIE-URA3 (C3) plasmid were also performed as controls. Non-specific amplification products obtained with 

C2 and C3 controls are indicated by black and gray arrowheads, respectively. Molecular mass marker is indicated 

at left. 

Figure R-39 shows that no DNA contamination during PCR amplification has occurred, as shown by 

the absence of amplifications product without plasmid DNA (Fig. R-39; H2O). We can also observe 

that non-specific amplification products are detected in the controls: a product of about 650 bp is 

found using the pNLS-IEP
co

 plasmid (Fig. R-39; C2, black arrowhead) and an approximately 2000 bp 

product is found using the donor pEgpIIE-URA3 plasmid (Fig. R-39; C3, gray arrowhead). The 2000 bp 

band is also detected in every condition of the homing experiment. Surprisingly, we observe the 485 

bp amplification product expected in presence of the homing product (pE2-Int-E3) in every conditions 

of the homing experiment (Fig. R-39; conditions 1 to 4, 485 bp product). This finding was not 

expected. Indeed, this indicates that the pE2-Int-E3 plasmid is present in yeast cells in which either the 

pNLS-IEP
co

 plasmid is absent (Fig. R-39; conditions 1 and 4) or the NLS-IEP
co

 expression is repressed 

(Fig. R-39; condition 2). In these cells, the homing process should not be permitted in absence of the 

IEP, as this mechanism theoretically involves the endonuclease and reverse transcriptase activities of 

the IEP.  

To confirm that these 485 bp products correspond to an amplification of the pE2-Int-E3 plasmid, the 

485 bp fragments were extracted from the gel and sequenced using the four oligonucleotides 
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represented in Figure R-40A. Sequences obtained were subsequently aligned with the expected pE2-

Int-E3 plasmid sequence (Fig. R-40B). 

 

Figure R-40: Sequencing analysis of the 485 bp amplification products obtained in yeast homing assay. 

(A) Schematic representation of the pE2-Int-E3 plasmid, expected upon the Pl.LSU/2 intron integration into the 

E2E3 target site in pE2E3 acceptor plasmid, with the sequencing primers used (primF, pSF, pSR and primR). (B) 

Representation of the alignment of the expected pE2-Int-E3 plasmid sequence (dark gray rectangle) and the 485 

bp products sequences obtained with primers primF, pSF, pSR and primR (light gray rectangle). The exon 2 

sequence (E2) is indicated by a black rectangle. Acceptor plasmid and Pl.LSU/2 intron-DIVab sequences are 

indicated with brackets. 

Figure R-40B shows that sequences obtained for all 485 bp amplification products are correctly 

aligned with the expected pE2-Int-E3 sequence. These results confirm that the plasmid pE2-Int-E3, 

resulting from the Pl.LSU/2 intron integration into the E2-E3 DNA target site at the junction of the 

two exons, is present in all conditions tested in the yeast homing assay.  

The detection of Pl.LSU/2 intron integration into the acceptor plasmid in yeast that either does not 

harbor the pNLS-IEP
co

 expressing plasmid or in which the NLS-IEP
co

 expression is repressed could 

have occur by homologous recombination, which is an efficient process in S. cerevisiae. Indeed, the 
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acceptor pE2E3 and the donor pEgpIIE-URA3 plasmids shared homologous DNA sequences. They 

both contain the last 50 nt of E2 and the 71 nt of E3. Only one nucleotide mispairing can occur, as the 

16
th
 nucleotide of E3 (adenine) is replaced by a thymine in pEgpIIE-URA3. The Pl.LSU/2 intron 

located in the pEgpIIE-URA3 donor plasmid is thus flanked by homology sequences of at least 50 bp, 

and this length of homology is sufficient to achieve efficient homologous recombination in S. 

cerevisiae (Manivasakam P et al. 1995). The strategy adopted here does not permit the distinction 

between Pl.LSU/2 intron retrohoming and homologous recombination events involving the donor and 

acceptor plasmids. Another strategy seems to be required to evaluate the Pl.LSU/2 homing in yeast.  
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The main goal of this thesis was to characterize the group II intron Pl.LSU/2 from the perspective of 

its use as a site-specific gene therapy vector.  

Integrative vectors currently used in clinical trials can induce insertional mutagenesis. The evaluation 

and optimization of the safety of integrative vectors such as retroviral vectors has been highlighted by 

adverse events encountered in different clinical protocols. During this thesis, I had the opportunity to 

collaborate on such a study conducted with the aim of evaluating the safety of a lentiviral vector used 

in a gene therapy clinical trial for the treatment of the hematopoietic WAS disorder. The results of this 

study are described in article 1. As discussed in this article, it seems required to combine analyses of 

vector insertion sites and vector copy number per corrected cell in order to assess the biological 

potency and the risk of genotoxicity of integrating vectors. 

A solution to further enhance the safety of clinical protocols would be the use of gene targeting 

systems. Several strategies based on the use of site-specific nucleases are currently developed to 

enable gene targeting. All these strategies start by generating a double-stand break of the host DNA at 

a specific site, which has to be repaired by homologous recombination with a provided template. 

Those approaches present an inherent mutagenesis risk due to off-target DSB or to the possibility of 

introducing some errors during the repair mechanism. The development of alternative strategies that 

would not be based on DSB would thus be of a great interest. In this context, we were interested in 

natural mobile group II introns that can transpose to a specific DNA target site by the homing 

mecnanism, and evaluated the possibility of the use of Pl.LSU/2 group II intron as gene targeting 

vector. For this purpose, we have characterized the biochemical activities of its encoded protein and 

evaluated the intron catalytic activities in vivo.  

A major part of this work consisted in the development of expression and purification strategies for the 

Pl.LSU/2 IEP biochemical characterization. The expression of soluble IEP was optimized and the use 

of classical methods relying on affinity chromatography allowed the protein to be partially purified. 

However, these purification methods were not conclusive as active IEP for reverse transcription could 

not be obtained. All these results are discussed in the following section, and further optimizations are 

proposed. 

The use of the Pl.LSU/2 intron as targeting vector assumes that the intron homing should occur. As the 

in vivo intron splicing is a prerequisite to its homing into DNA targets, the first study that we 

conducted was the characterization of the Pl.LSU/2 in vivo splicing. I designed a strategy based on a 

Pl.LSU/2 splicing-dependent Ura3p complementation in S. cerevisiae that should allow a direct 

determination of the Pl.LSU/2 splicing in yeast. I showed that the intron could splice in yeast and that 

the splicing efficiency was improved by the maturase activity of the IEP. However, translated proteins 

from spliced transcripts were not detected, and splicing of Pl.LSU/2 could not been demonstrated in 

human cells. These results are discussed in article 2, and further perspectives are proposed thereafter. 

Finally, we have attempted to evaluate the homing of Pl.LSU/2 in E. coli and S. cerevisiae. Two 

different strategies were used for this purpose. However, the Pl.LSU/2 homing could not been 

demonstrated in any of both hosts. These results and future perspectives are discussed hereafter. 
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1 - EXPRESSION AND PURIFICATION OF THE Pl.LSU/2 IEP 

The first step in the characterization of the Pl.LSU/2 group II intron was to assess the biochemical 

activities of its IEP. At the beginning of this work, no information was available on the potential 

activities of the putative Pl.LSU/2 IEP. The fact that the open-reading frame contained in Pl.LSU/2 

intron presented all conserved domains of intron-encoded proteins (See Fig. I-24) suggested that the 

functionality of this protein could have been preserved by evolution. In order to study the activities of 

the Pl.LSU/2 IEP, the protein must be first expressed and purified. We chose to first test for its reverse 

transcriptase activity, as a simple and fast method was already published and used to demonstrate the 

reverse transcriptase activity of the Ll.LtrB IEP. 

1.1 - CHOICE OF THE EXPRESSION HOST 

The Pl.LSU/2 IEP was expressed as a fusion protein using different tags to allow its subsequent 

purification. I tested several expression systems such as E. coli, Sf9/baculovirus, and cell-free, and we 

showed that the expression in E. coli has to be optimized to obtain sufficient amount of soluble IEP. In 

this purpose, I used tRNA complementation, several E. coli strains, I evaluated the influence of the 

growth temperature and IPTG concentration for the induction of IEP expression, and I tested different 

methods of lysis (not shown). Although it was observed that a non-negligible amount of IEP was 

always found to remain insoluble, expression conditions could be optimized enough to obtain 

detectable amount of soluble protein. However, it would be interesting to test the expression of the IEP 

in other hosts such as S. cerevisiae or mammalian cells. Indeed, E. coli does not support post-

translational modifications, and the Pl.LSU/2 IEP could be subjected to such modifications potentially 

affecting its overall folding and/or stability. If so, the expression of IEP in a host enable to perform 

post-translational modifications could improve the purification of active IEP. However, the IEP 

expression in insect cells showed that the IEP was mainly expressed in an insoluble form (See Fig. R-

16). It is worth noting that the promoter driving the transcription of the IEP in this experiment is 

considered as a strong promoter, so that fine regulation of the transcription rate, and more generally 

the protein expression rate, could not been achieved with this system. In contrast, several conditional 

expression systems can be used in yeast or in mammalian cells, such as the Tet-OFF/ON system, or 

inducible promoters as Gal1 in yeast. However, expression experiments in E. coli have showed that 

the main factor influencing the expression rate and solubility of the IEP was the growth temperature 

(and by extension the growth rate) of cells before and during induction of IEP expression (See Fig R-

6). In this context, S. cerevisiae could be a good candidate for the expression of soluble IEP, as the 

growth rate of yeast is easily adjustable by changing the incubation temperature. 

1.2 - PURIFICATION OF TAGGED IEP  

According to the results obtained for the expression of soluble IEP, I attempted to purify active GST- 

or His-tagged IEP expressed in E. coli. However, both attempts were unsuccessful. Although partially 

purified protein fractions could be obtained for both GST-IEP (See Fig. R-9) and HisV5-IEP (See Fig. 

R-20, R-24, and R-26), the results of RT assays using these purified protein fractions were not 

conclusive. 
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1.2.1 - Contamination of GST-IEP purified fractions 

In the case of the GST-IEP purification, both wild-type GST-IEP and mutants GST-IEP IEP (mtDD- 

and ΔRT5) fractions showed RT activity (See Fig. R-12). Both mutants are expected to be RT-

defective so that the activity highlighted with those latter fractions necessarily relies on a 

contaminating protein co-eluted during the purification. We speculated that a contaminant E. coli 

reverse transcriptase, potentially corresponding to a retron reverse transcriptase (See Fig. R-13) was 

co-eluted with the GST-tagged, biasing RT reactions. To confirm this hypothesis, it would be 

interesting to determine if this retron reverse transcriptase could be identified in those fractions, for 

instance by a mass spectrometry analysis.   

To avoid those contaminations, an additional purification step could have been tested, such as gel 

filtration. However, the contaminant protein was shown to be co-eluted specifically in presence of the 

IEP, as no RT activity was detected using GST purified fraction (See Fig. R-12). This result could be 

explained by the presence of a binding (direct or indirect) between the contaminant protein and the 

IEP, which therefore render useless this additional step. One could speculate that the IEP and the E. 

coli contaminant, being both RNA binding proteins, could be co-eluted through indirect binding to 

nucleic acids. The precipitation of nucleic acids, for instance using polyethyleneimine, as an initial 

step prior to purification could release IEP from nucleic acids and limit contaminations with E. coli 

proteins that interact with RNAs.  

Those experiments demonstrating the co-purification of a contaminant reverse transcriptase protein 

highlighted the necessity of identifying this protein. Indeed, the presence of an active reverse 

transcriptase in E. coli should be carefully tested as it could bias biochemical studies and induce false 

positive results when appropriate controls are missing. 

1.2.2 - Purification of HisV5-IEP 

With regards to the results obtained with GST-IEP purification, we thought that the use of a different 

tag could overcome the contamination encountered. The 6xHis and V5 tags were chosen because of 

their small length, potentially inducing a different tridimensional conformation of the fusion protein 

(See Fig. R-17) with regards to GST-IEP conformation. In contrast to the results obtained with the 

purification of GST-IEP by affinity chromatography, we showed that no RT activity was detected 

using HisV5-IEP purified fractions obtained by IMAC. Several purification conditions were tested but 

none allowed obtaining active HisV5-IEP (See Fig. R-22, R-25, and R-27). It is likely that those 

purification fractions are free of the E. coli contaminant found in GST-IEP purified fractions and this 

could be due to a different tridimensional conformation between GST-IEP and HisV5-IEP. However, 

we can also speculate that the conditions used during IMAC purification are deleterious to the E. coli 

contaminant, impeding it to retain its RT activity. It could be interesting to analyze the HisV5-IEP 

purified fraction by a mass spectrometry analysis to determine the presence or absence of a 

contaminating RT protein. 

The demonstration of the RT activity of the HisV5-IEP purified by ultracentrifugation in a sucrose 

cushion (See Fig. 2 and 3, article 2) revealed that the absence of HisV5-IEP activity when purified by 
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IMAC is not due to the presence of the HisV5 tag, but to the experimental conditions used during the 

IMAC process. It would have been interesting to purify a control reverse transcriptase, such as the 

SuperScript II reverse transcriptase, under the same conditions and assay its RT activity to evaluate the 

potential deleterious impacts of the process on a different protein. Several factors are determinant to 

successfully purify active proteins, such as the temperature during the process, the length of the 

process, the composition of all buffers used, the presence of contaminant proteins, etc. We showed 

that experimental conditions used during IMAC were not appropriate to purify active IEP, in contrast 

to the ones used during ultracentrifugation in sucrose. Other methods could thus be tested in order to 

purify active IEP.  

1.2.3 - Alternative methods of purification 

Among existing purification methods, ion exchange chromatography or affinity chromatography on 

heparin columns can be considered for IEP purification. 

Ion-exchange chromatography could be an efficient method to purify IEP expressed in E. coli. Indeed, 

the isoelectric point (pI) of the Pl.LSU/2 IEP is predicted to be around 10.5 ((EMBOSS iep 

application, (Rice P et al. 2000)), which could be an advantage for purification from background E. 

coli proteins. Most E. coli proteins have a theoretical pI around 6 (Fig. D-1) and therefore will not be 

positively charged at pH 8.75. At this pH, the Pl.LSU/2 IEP should bind a cation exchange column 

while the majority of E. coli proteins would come straight through or eluate at low NaCl 

concentrations. 
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Figure D-1: Scatter graph plotting theoretical molecular weight against theoretical pI of E. coli proteins 

and Pl.LSU/2 IEP. 

The majority of E. coli proteins have a theoretical pI value around 6.0. Pl.LSU/2 IEP (65 kDa) is depicted by a 

red star, and has a theoretical pI value of 10.5. Black arrow indicates the 8.75 threshold. Mw: molecular weight 

(in Daltons).  ((EcoProDB online protein database, (Yun H et al. 2007)). 

An anion-exchange column can also be used. Due to its high pI value, the IEP should not bind to this 

column at pH 8.75 and thus be present in the flow-through, in contrast to the majority of the E. coli 

proteins and negatively-charged nucleic acids. This method could thus serve as a purification step 

whereby nucleic acids are removed along with many contaminating proteins. However, it is also 

possible that the binding of the IEP to nucleic acids alters the overall charge of the protein, thus 

impeding its purification through those processes. In this case, a release of the IEP from nucleic acids 

would thus be required prior to downstream ion-exchange purification.  

The binding of the Pl.LSU/2 IEP to nucleic acids could also be used as an advantage for its 

purification. Heparin columns could make use of this property: the IEP, along with other nucleic acid 

binding proteins in the protein lysate should bind heparin column, while other proteins will pass 

through. Elution could subsequently be carried out with a NaCl gradient in an attempt to separate the 

IEP from other nucleic acid binding proteins. However, if the IEP has a higher affinity to the nucleic 

acids in the protein lysate over the affinity to the heparin column, this could prevent an efficient 

binding. In this case, nucleic acid removal might be required as an initial step before purification. 
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1.2.4 - Pl.LSU/2 IEP activity: nucleic acid binding required for stability? 

The finding that IEP displays an RT activity when purified by ultracentrifugation in sucrose cushion 

but not when affinity chromatography is used suggested that the IEP catalytic conformation was not 

achieved during this latter purification process. This could be due to several factors such as non-

adapted purification conditions that impede the correct folding and/or stability of the IEP and/or to the 

absence of the Pl.LSU/2 intron RNA as “chaperone”. Indeed, a previous study showed that the 

Lactococcus lactis Ll.LtrB group II intron-encoded protein LtrA was fully active when Ll.LtrB intron 

RNA was co-expressed, as a result of stabilization of the protein in its active conformation (Matsuura 

M et al. 1997). 

According to this latter hypothesis, we coexpressed the HisV5-IEP with the Pl.LSU/2 intron in E. coli 

and purified the RNP particles theoretically formed in bacteria using both IMAC and 

ultracentrifugation in a sucrose cushion. We showed that HisV5-IEP contained in RNP particles 

purified by IMAC does not display RT activity (See Fig. R-33) in contrast to HisV5-IEP contained in 

RNP particles purified using ultracentrifugation in sucrose cushion (See Fig. 2, article 2). These results 

demonstrated the deleterious effects of the IMAC purification conditions on the activity of the IEP. 

These results led us to evaluate the RT activity of HisV5-IEP expressed alone in E. coli and purified 

by sucrose cushion ultracentrifugation. The purification experiment showed that nearly pure HisV5-

IEP could be purified in those conditions (See Fig. 3, article 2). We also observed that this fraction 

contained non negligible amount of nucleic acids (data not shown). We can speculate that HisV5-IEP 

is able to bind nucleic acids of E. coli lysate, and that the complexes formed can be isolated by 

classical sucrose cushion centrifugation. It was subsequently showed that HisV5-IEP has the RT 

activity in vitro. It thus seems that this is not presence of the Pl.LSU/2 intron RNA that is required for 

the stability of HisV5-IEP, but that more generally nucleic acid can stabilize the HisV5-IEP activity.  

Interestingly, RNP particles were shown to have RT activity only in presence of RNase A in the 

reaction medium (See Fig. R-34). This result indicates that the IEP has to be released from the 

endogenous RNA to access the exogenous RNA template used in RT reactions. In contrast, the 

Ll.LtrB IEP contained in RNP does not require RNase A to display a RT activity (Matsuura M et al. 

1997). We can speculate that the Pl.LSU/2 IEP has a higher affinity for its intron RNA than Ll.LtrB 

IEP for its intron RNA. It could be interesting to perform similar experiment on the purified fraction 

containing HisV5-IEP alone to determine if the protein is able to display RT activity in absence of 

RNase A. Moreover, nucleic acids in HisV5-IEP purified fraction obtained by sucrose cushion 

ultracentrifugation could be removed to determine if HisV5-IEP is able to retain RT activity when 

formulated in nucleic acid-free storage buffer. It is possible that removal of nucleic acids may be 

deleterious to the stability of the IEP, as nucleic acids (and more probably RNA) seem to act as 

“chaperone” on HisV5-IEP.  

It was previously shown that the Ll.LtrB IEP has RT activity only when copurified with nucleic 

acids, which could be either Ll.LtrB intron RNA coexpressed with the IEP, or artificial poly(rA)-

oligo(dT) supplemented during the purification process (Matsuura M et al. 1997; Saldanha R et al. 

1999; San Filippo J and Lambowitz AM 2002). It is likely that this IEP needs high amount of RNA in 
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its environment to be correctly folded and retain biochemical activity. In contrast to Ll.LtrB IEP, the 

purification of active Pl.LSU/2 IEP does not require additional RNA to be added during the process. 

This could potentially support the hypothesis that Pl.LSU/2 IEP has higher affinity to RNA than 

Ll.LtrB IEP. To test this hypothesis, biochemical analyses on the interaction between RNA and 

Pl.LSU/2 IEP or Ll.LtrB IEP could be achieved, as well as a study of the interaction kinetic. 

To conclude, we demonstrated the RT activity of the Pylaiella littoralis Pl.LSU/2 IEP in RNP 

particles, as it was shown for the S. cerevisiae aI1 and aI2 (Kennell JC et al. 1993), the L. lactis 

Ll.LtrB (Matsuura M et al. 1997) and the S. meliloti RmInt1 (Martínez-Abarca F et al. 1999) IEPs. 

Moreover, we demonstrated the RT activity of the Pl.LSU/2 IEP expressed without its intron RNA, as 

for the G. stearothermophilus G.st.I1 IEP (Vellore J et al. 2004), and without the need of supplemental 

RNA during the purification, in contrast to Ll.LtrB IEP (Saldanha R et al. 1999).  

All those results constitute the first functional characterization of the Pl.LSU/2 IEP.  
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2 - SPLICING OF THE Pl.LSU/2 INTRON 

2.1 - SPLICING IN YEAST 

To evaluate the splicing of the Pl.LSU/2 intron and the maturase activity of the IEP in vivo, we used a 

strategy based on a Pl.LSU/2 splicing-activated selectable marker in S. cerevisiae (See Fig. 4, article 

2). A plasmid has been designed to contain the Pl.LSU/2 intron flanked by its two exons and located 

between an HA tag and the sequence encoding the Ura3p protein. The strategy relies on the expression 

of the fusion protein, composed of the flanking exons of Pl.LSU/2 intron and the Ura3p protein, which 

can occur only upon precise Pl.LSU/2 intron splicing. A mutant strain of S. cerevisiae in which the 

URA3 gene is defective has been used, and the idea is that the splicing of the Pl.LSU/2 intron should 

allow the growth of S. cerevisiae on selective medium lacking uracil. To evaluate the maturase activity 

of the Pl.LSU/2 IEP, the protein should be conditionally expressed. For this purpose, the intron 

domain IV, containing the IEP ORF, was partially deleted, and the IEP encoding sequence was cloned 

on a separate plasmid downstream of an inducible promoter. According to our aim to use this intron in 

genomic targeting, the IEP was here addressed to the yeast nucleus by using nuclear localization 

signals. 

In this splicing assay, we demonstrated the Pl.LSU/2 intron splicing in vivo in yeast (See Fig. 5, article 

2). The IEP was shown to promote the splicing of Pl.LSU/2 intron in S. cerevisiae. In spite of evidence 

for splicing properties of Pl.LSU/2 intron, the system that we designed to directly detect the splicing 

using an Ura3 complementation system was unsuccessful (See Fig. 5, article 2). Indeed, the fusion 

protein theoretically translated from the spliced mRNA was not detected by western blot, explaining 

the failure of the Ura3p complementation (See, Fig. 5, article 2). Similar results were also obtained in 

a previous study using the Ll.LtrB intron with another reporter gene (Chalamcharla VR et al. 2010). 

The authors proposed a model in which transcripts bearing the group II intron are subjected to 

nonsense-mediated decay that lowers the amount of available transcripts for splicing and translation. 

They also speculated that translation of spliced transcripts could be blocked by a binding of the intron 

lariat to the spliced transcripts via EBS/IBS interactions. In their study, it appears that the Ll.LtrB 

splicing is predominantly cytoplasmic, although the possibility that some group II intron splicing 

could occur in the nucleus could not be eliminated. It is thus intriguing that they did not show any 

improvement of the Ll.LtrB intron splicing when the IEP was not addressed to the nucleus. The more 

probable hypothesis that could explain the absence of detection of translated protein from spliced 

mRNA is that intron splicing efficiency could be too low to generate sufficient amount of spliced 

mRNA, thus keeping translated protein yield too low to be detected by western blot. 

Nevertheless, it was clearly demonstrated that the Pl.LSU/2 intron could splice in yeast, and that this 

splicing was improved by the maturase activity of the IEP probably by enhancing the proper folding of 

the intron into its catalytically active structure. The IEP thus seems to be able to fold correctly in yeast 

and bind the intron RNA. 
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2.2 - SPLICING IN HUMAN CELLS 

According to the results obtained in yeast, the strategy used to assay the intron splicing in human HCT 

116 cells was not based on a splicing-activated selectable marker. The splicing of Pl.LSU/2 intron was 

here evaluated by RNA analysis. Again, to evaluate the IEP maturase activity, the IEP was expressed 

separately and the Pl.LSU/2 intron domain IV was partially deleted or not. Different sizes of domain 

IV deletion were used in order to evaluate the requirement in domain IV sequences in the IEP-

mediated Pl.LSU/2 intron splicing (See Fig. 1, article 2) to determine if some regions of the domain IV 

participate in the binding to the IEP, as it was shown for the Ll.LtrB group II intron. To ensure a 

correct expression level of the different forms of the intron in the cells, we used intron-expressing 

lentiviral vectors to establish stable cell lines. IEP-expressing lentiviral vectors, encoding either the 

fusion GFP-IEP or the IEP both addressed to the nucleus, were subsequently used to transduce intron-

expressing stable cell lines. The analysis of RNA by quantitative RT-PCR revealed that all precursor 

mRNA were expressed in these cells, however we did not detected any trace of spliced mRNA, even 

upon IEP expression. This absence of detectable spliced mRNA could be explained by a failure of the 

protein to fold correctly in human cells, or by differential IEP and intron RNA nuclear localizations 

that impede their binding. Precise evaluation of IEP and intron RNA nuclear localizations should be 

conducted to address this question. It is likely that the intron splicing efficiency in human cells is 

lower than in yeast cells, impeding the detection of spliced mRNA by quantitative RT-PCR analysis. It 

would be interesting to determine if an analysis of RT-PCR followed by an additional nested PCR 

could enhance the sensitivity sufficiently to allow the detection of spliced mRNA. Indeed, this 

technique of nested PCR was already used in a previous study to show Ll.LtrB homing on a plasmid 

target in human cells (Guo H et al. 2000).  

2.3 - ENHANCING THE EFFICIENCY OF PL.LSU/2 INTRON SPLICING IN VIVO ? 

In spite of a probably low efficient splicing in yeast, it is worth noting that residual spliced mRNA is 

observed in absence of IEP expression (See Fig. 5B, article 2). In our case, it is difficult to fully 

establish the intron ability to self-splice in yeast in the absence of IEP. Indeed, this intron is 

particularly active in vitro even at very low Mg
2+

 concentrations (Costa M et al. 1997b). It is therefore 

possible that spliced mRNA detected by RT-PCR and RT-qPCR in RNA extracts from yeast cells that 

were either not transformed by the IEP-expressing plasmid or in which the IEP expression was 

repressed could have been generated by an intron splicing in vitro after RNA extraction. However, the 

fact that no spliced mRNA was observed in RNA extracts from human HTC 116 cells expressing or 

not the IEP using very similar experiment conditions suggests that the residual splicing observed in 

yeast in absence of the IEP has likely occurred into the cells. This result is in fact consistent with the 

highly catalytic activity of the Pl.LSU/2 intron in vitro under stringent conditions. It could thus 

indicate that the Pl.LSU/2 intron is able to fold into its catalytically active conformation in an 

eukaryotic cell even in absence of its encoded protein. This feature could thus be of a great interest if 

the efficiency of the splicing reaction could be improved. 

We designed the strategy based on a splicing-activated selectable marker to easily detect Pl.LSU/2 

intron splicing in yeast with the attempt to perform selection of more efficient ribozyme mutants using 
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random mutagenesis (Fig. D-2). The strategy was based on error-prone PCR amplification of the 

Pl.LSU/2 intron from the pEgpIIE-URA3 plasmid used in the yeast splicing assay using the 

GeneMorph II random mutagenesis kit (Agilent Technologies). The error rate of this amplification 

step could be adjusted, and a library of mutated introns should be obtained. The transformation of 

yeasts by linear pEgpIE-URA3 plasmid (Fig. D-2; NcoI-digested pEgpIIE-URA3) along with PCR 

products lead to the insertion of mutated intron sequence into the linear plasmid by homologous 

recombination.  

 

Figure D-2: Random mutagenesis strategy for selection of efficient Pl.LSU/2 ribozyme in yeast. 

The plasmid pEgpIIE-URA3, called donor plasmid, is used in the yeast splicing assay. The error-prone PCR 

amplification is performed using primers Pf and Pr (red arrows) and introduces some mutations during DNA 

synthesis (black diamonds). The mutated intron is then integrated by homologous recombination (represented by 
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red crosses). PPGK: PGK promoter; NcoI: NcoI restriction site; HA: stretch of 2 HA tags; Pl.LSU/2 intron-DIVab 

form: deleted form of Pl.LSU/2 intron (See Fig. 1B, article 2); E2: 50 last nt of exon 2; E3: 71 first nt of exon 3; 

URA3: Ura3p encoding sequence; TPGK: PGK transcription terminator; LEU2: Leucine encoding selection gene; 

2µ origin: 2µ high-copy replication origin. 

Some preliminary experiments were conducted during this thesis (data not shown), unfortunately 

without success. However, as it is possible that spliced mRNA is subjected to a translation blockade, it 

seems required to design a new system to select mutant forms of the Pl.LSU/2 intron by their ability of 

efficient splicing in vivo. A high throughput analysis of RNA by quantitative RT-PCR could be 

considered. Recently, such a method has been developed and consist in a genome-wide reverse genetic 

screen in S. cerevisiae that couples robotic RNA isolation and cDNA synthesis, followed by 

quantitative PCR (Albulescu LO et al. 2012). Alternatively, the Pl.LSU/2 IEP could also be randomly 

mutated with the aim of select highly catalytic IEP. 

To conclude, the splicing of Pl.LSU/2 intron has been demonstrated in S. cerevisiae and the Pl.LSU/2 

IEP was found to display a maturase activity by promoting the intron splicing. However, we failed to 

detect the fusion protein theoretically translated from the spliced mRNA by western blot, so that 

Ura3p complementation could not been achieved. In contrast, the Pl.LSU/2 intron splicing could not 

be demonstrated in human cells. Although further experiments and optimizations are required to allow 

efficient splicing of the Pl.LSU/2 in eukaryotic cells, this study brings the first proof of the ribozyme 

activity of the intron and the maturase activity of the IEP in vivo. 
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3 - HOMING OF THE Pl.LSU/2 INTRON 

3.1 - HOMING IN E. COLI 

To further characterize the Pl.LSU/2 intron, we first evaluated its capacity to transpose into its natural 

DNA target by retrohoming in E. coli. For this purpose, we developed a strategy based on a 

retrohoming-activated selectable marker adapted from a commercial kit based on Ll.LtrB intron 

homing (See Fig. R-35). A donor plasmid was constructed and contained the Pl.LSU/2 intron flanked 

by its two exons and placed just upstream of the HisV5-IEP encoding sequence. The IEP encoding 

sequence located in the intron domain IV was partially deleted and the kanamycin resistance gene 

(Kan
R
) was cloned in replacement in the opposite orientation with regards to the Pl.LSU/2 intron 

orientation. The Kan
R
 gene is disrupted by the self-splicing td group I intron cloned in the same 

orientation than those of the Pl.LSU/2 intron. The splicing of the td intron from the precursor RNA 

restitutes the frame of the Kan
R
 gene, which can be expressed upon Pl.LSU/2 intron transposition into 

DNA. The donor plasmid was co-transformed in E. coli with an acceptor plasmid containing the 

natural E2-E3 DNA target site of Pl.LSU/2 intron homing. In this way, homing events can 

subsequently be detected by the presence of bacterial clones on selective medium containing 

kanamycin. 

In spite of HisV5-IEP expression in E. coli (See Fig. R-36), we did not observe any clones on the 

kanamycin selective medium. Plasmidic DNA were extracted from E. coli culture before kanamycin 

selection and analyzed by restriction digestion (See Fig. R-37). Again, we could not detect the 

presence of homing events using this technique.  

The absence of clones on kanamycin selective medium suggests that either the Pl.LSU/2 intron does 

not transpose into E. coli, or the homing efficiency is too low to be detectable. A PCR analysis of 

plasmid DNA extracted from E. coli may enhance the retrohoming detection. Indeed, this 

amplification technique should be more sensitive than the analysis of plasmid DNA by restriction 

digestion. To further enhance the homing detection, an additional step could also be included in the 

protocol. After induction of both RAM-containing Pl.LSU/2 intron and IEP expression, plasmid DNA 

could be extracted and digested with enzymes that specifically cut the donor plasmid. Digested 

plasmid extracts would thus be used to transform E. coli, and phenotypic analysis, as well as PCR 

analysis would be performed. This way, homing products could be enriched, potentially allowing their 

subsequent detection. This method has already been used to evaluate the homing of Ll.LtrB intron into 

a plasmid target in E. coli (Cousineau B et al. 1998). The authors found that the Ll.LtrB intron 

retrohoming could be detected with an efficiency of 1.3 x 10
-3

 (homing product per recipient).  

The E. coli homing assay should also be performed in E. coli Rosetta-gami B (DE3). Indeed, several 

results suggest that the IEP is correctly folded in Rosetta-gami B (DE3), as showed by the 

demonstration of the HisV5-IEP RT activity after expression in this strain. Moreover, there is some 

indications that the protein could adopt a different tridimensional conformation when expressed in 

BL21 Star (DE3) or in Rosetta-gami B (DE3). Indeed, HisV5-IEP expressed in Rosetta-gami B (DE3) 
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was able to bind a Ni
2+

-charge resin during IMAC purification under natives conditions (See Fig. R-

26), in contrast to HisV5-IEP expressed in BL21 Star (DE3) (See Fig. R-19), The absence of 

retrohoming products in BL21 Star (DE3) could thus be due to an incorrect folding of HisV5-IEP in 

this strain. 

We speculated that the exon sequence requirement for Pl.LSU/2 intron retrohoming would be limited 

to the RNP recognition sequence of the homing site, as shown for Lactococcus lactis Ll.LtrB intron 

(Guo H et al. 1997; Matsuura M et al. 1997; Cousineau B et al. 1998) and yeast aI1 and aI2 introns 

(Yang J et al. 1998). They span from -25 to +10 for the Ll.LtrB intron, from -21 to +9 for the aI1 

intron, and from -19 to +6 for the aI2 intron (See Fig. I-21). So far, those sequences are not defined for 

the Pl.LSU/2 intron. We postulated that the size of the Pl.LSU/2 intron target used in our homing 

assay, from -50 to + 71, would be sufficient to allow the homing site recognition by RNPs. However, 

the length of the target site could be further optimized. 

It could also be necessary to first demonstrate the ability of Pl.LSU/2 intron to splice in E. coli before 

assaying its homing capacity. Indeed, we have not demonstrated the Pl.LSU/2 intron splicing ability in 

E. coli while the IEP-dependent splicing of Pl.LSU/2 intron was observed in S. cerevisiae. 

All those adjustments could contribute to the development of a more relevant protocol that could 

permit the detection of the Pl.LSU/2 intron homing in E. coli if it exists.  

3.2 - HOMING IN S. CEREVISIAE 

Although the homing of Pl.LSU/2 intron could not been demonstrated in E. coli, the finding that 

Pl.LSU/2 intron is able to splice in S. cerevisiae led us to postulate that the formation of the RNP 

particle could occur in yeast and induce the Pl.LSU/2 intron retrohoming into its natural target. We 

thus developed a yeast homing assay directly based on the use of the two constructions that allowed 

the detection of spliced mRNA in yeast (See Fig. R-38). A homing acceptor plasmid was added in this 

assay and contains the E2-E3 natural DNA target site of Pl.LSU/2 intron. Yeasts were cotransformed 

by the acceptor plasmid and the donor plasmid expressing the Pl.LSU/2 intron. Recombinant yeast 

cells were subsequently transformed or not with the IEP expressing plasmid and grown in presence of 

glucose or galactose to repress or induce the IEP expression, respectively.  

Homing events in yeast were analyzed by PCR on plasmid DNA extracted from the cells. We 

observed the presence of the amplification product specific to a homing event in all conditions, even in 

absence of IEP expression in yeast cells, where homing could not have occurred. We thus speculated 

that these plasmids, which was showed to contain integrated Pl.LSU/2 intron, could be the result of 

homologous recombination events between the donor and the acceptor plasmids, which both share 

homologous regions of at least 50 nt. Indeed, homologous recombination is a very efficient 

mechanism in S. cerevisiae. The acceptor plasmid contains the last 50 nucleotides of exon 2 and the 

first 71 nucleotides of exon 3, exactly as the donor plasmid does, except for the mutation of the 16
th
 

nucleotide of exon 3 (A), which is replaced by a thymidine in the donor plasmid. These homologous 
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regions are sufficiently long to induce highly efficient homologous recombination (Manivasakam P et 

al. 1995).  

The adaptation of the twintron strategy used in the E. coli homing assay would have overcome this 

issue. The insertion of the td intron sequence into Pl.LSU/2 intron might help to distinguish between 

retrohoming products and homologous recombination. Indeed, td intron splice from an RNA 

intermediate. The retrohoming of the Pl.LSU/2 intron into its DNA target would thus be performed 

from RNA in which the td group I intron would have been excised. The detection of this td-less 

Pl.LSU/2 intron integrated copy would thus permit to establish the Pl.LSU/2 retrohoming capacity 

over homologous recombination integration. The use of this twintron strategy in E. coli with the 

Ll.LtrB group II intron and td group I intron has showed that almost 80% of integrated events detected 

were free of group I intron td (Saldanha R et al. 1999). 

The design of the strategy used for determining the homing in S. cerevisiae should thus be carefully 

assess to overcome these issues due to the high efficiency of homologous recombination in this 

organism. 
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4 - CONCLUSION 

In this work, I have further characterized the Pylaiella littoralis Pl.LSU/2 group II intron with the aim 

of developing a novel site-specific vector for genomic targeting. 

During this thesis work, I have conducted several studies, and in some cases, additional or alternative 

experiments could not have been performed due to a lack of time.  

Nevertheless, recombinant Pl.LSU/2 IEP was expressed and purified both alone and with intronic 

RNA, and its RT activity was demonstrated. The splicing of the Pl.LSU/2 intron was showed in S. 

cerevisiae, and the IEP maturase activity was found to improve the intron splicing efficiency. 

However, we have not been able to detect any splicing of the Pl.LSU/2 intron in human cells, and the 

homing of the intron in E. coli and S. cerevisiae was not evidenced.  

The results presented herein provide new information on the behavior of the Pl.LSU/2 group II intron 

and contribute to a further comprehension of this catalytic ribozyme. While confirming some findings 

obtained with the extensively studied Ll.LtrB intron, it emphasize the fact that the use of those 

evolutionary conserved ribozymes in gene therapy still requires much optimizations, research and 

time. 

The ideal gene therapy vector, that could combine efficiency and safety, remains to be developed.  
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1 - CELLULAR BIOLOGY 

1.1 - BACTERIA 

1.1.1 - Escherichia coli strains 

 One Shot® TOP10 (Life Technologies; Invitrogen):  

Genotype: F
-
 mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 recA1 araD139 Δ(ara-leu)7697 

galU galK rpsL (Str
R
) endA1 nupG λ

-
. 

This strain was used for routinely subcloning. Incubation temperature for growth was 37°C. 

 XL10-Gold® (Agilent Technologies; Stratagene): 

Genotype: Tet
R
 Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1gyrA96 relA1 lac 

Hte [F’ proAB lacI
q
ZΔM15 Tn10 (Tet

R
) Amy Cam

R
]. 

This strain was used for cloning of large DNA molecules and all final steps of cloning. Incubation 

temperature for growth was 32°C. 

 MAX Efficiency® Stbl2™ (Life Technologies; Invitrogen): 

Genotype: F
-
 mcrA Δ(mcrBC-hsdRMS-mrr) recA1 endA1lon gyrA96 thi supE44 relA1 λ

-
 Δ(lac-

proAB). 

This strain was used for cloning of retroviral sequences, as well as Pl.LSU/2 intron and IEP sequences. 

Incubation temperature for growth was 30°C. 

 MAX Efficiency® DH10Bac™ (Life Technologies; Invitrogen): 

Genotype: F
-
 mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 recA1 endA1 araD139 Δ(ara, 

leu)7697 galU galK λ
-
 rpsL nupG /bMON14272 / pMON7124. 

This strain was used to produce recombinant bacmid DNA for expression of Pl.LSU/2 IEP by the 

baculovirus/Sf9 system. It contains the parent bacmid (bMON14272) and the helper plasmid 

(pMON7124). Incubation temperature for growth was 37°C. 

 One Shot® BL21 Star™ (DE3) (Life Technologies; Invitrogen): 

Genotype: F
-
 ompT hsdSB (rB

- mB
-) gal dcm rne131 (DE3). 

This strain was used to express the fusion GST-IEP protein. Incubation temperature for growth and 

protein expression was 37°C. 

 Rosetta™ (EMD Biosciences; Novagen): 

Genotype: F
-
 ompT hsdSB (rB

- mB
-) gal dcm pRARE (Cam

R
). 

This strain was used to purify the pRARE plasmid encoding tRNAs for AGG, AGA, AUA, CUA, 

CCC and GCA codons. Incubation temperature for growth was 37°C. 

 ArcticExpress™ (DE3)RIL (Agilent Technologies; Stratagene): 

Genotype : F
–
 ompT hsdS (rB

–
 mB

–
) dcm

+
 Tet

R
 gal λ(DE3) endA Hte [cpn10 cpn60 Gent

R
] [argU ileY 

leuW Str
R
].  
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This strain was used to express GST-tagged proteins. Incubation temperature for growth and protein 

expression was 32°C and 15°C, respectively. 

 Rosetta-gami™ B (DE3) (EMD Biosciences; Novagen): 

Genotype: F
–
 ompT hsdSB (rB

– 
mB

–
) gal dcm lacY1 ahpC (DE3) gor522::Tn10 trxB pRARE (Cam

R
, 

Kan
R
, Tet

R
). 

This strain was used to express HisV5-tagged proteins and RNP particles. Incubation temperature for 

growth and protein expression was 32°C and 30°C, respectively. 

1.1.2 - Growth and maintenance 

All E. coli strains were grown in LB (Luria-Bertoni) broth with shaking at 180 rpm or streaked on 

solid LB agar plates and maintained at appropriate temperature. LB broth or agar containing 

appropriate antibiotics were used (50 µg/ml of carbenicillin, 34 µg/ml of chloramphenicol, 50 µg/ml 

of kanamycin, 7 µg/ml of gentamicin, 10 µg/ml of tetracycline). When blue/white selection could be 

performed, 30 µg/ml of X-Gal and IPTG were added on agar plates. 

1.1.3 - Production of chemically competent E. coli BL21 Star (DE3) pRARE strain 

BL21 Star (DE3) strain was transformed with the pRARE plasmid purified from Rosetta strain. A 10 

ml starter culture of LB broth containing chloramphenicol was made by inoculation with a single 

clone of BL21 Star (DE3) pRARE and shaken at 37°C overnight. Eight ml of the overnight culture 

was diluted 1/100 on LB broth containing chloramphenicol and shaken at 37°C until the culture 

reached an OD600nm of approximately 0.5. The culture was then chilled on ice for 10 min and 

centrifuged at 6,000g for 20 min at 4°C. The cell pellet was resuspended in 1/2 original volume of ice-

cold 50 mM CaCl2 sterile-filtered, incubated at 4°C for 5 min, and centrifuged as before. The cell 

pellet was resuspended in 1/40 original volume of ice-cold 80 mM CaCl2 containing 15% glycerol and 

sterile-filtered, and 300 µl aliquots of competent cells were then snap frozen in liquid nitrogen and 

stored at -80°C. 

1.1.4 - Transformation of E. coli 

 100 pg of plasmid DNA or 1-5 µl of ligation mixture were gently mixed with a 50μl aliquot of One 

Shot TOP10 chimiocompetent cells and stored on ice for 30 min. The cells were heated at 42°C for 30 

sec and chilled on ice for 2 min. 250 μl of SOC medium sterile-filtered (2% Tyrptone, 0.5% Yeast 

Extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4, and 20 mM glucose) were added 

and cells were shaken at 37°C for 1 hr before plating on selective medium. Plates were incubated at 

37°C overnight. 

 4 µl of β-mercaptoethanol mix supplied with XL10-Gold cells were added to 100 µl aliquot of 

XL10-Gold chimiocompetent cells. After 10 min of incubation on ice, 1 ng of plasmid DNA or 2 µl of 

ligation mixture were gently mixed with the cells and stored on ice for 30 min. The cells were heated 

at 42°C for 30 sec and chilled on ice for 2 min. 500 μl of SOC medium were added and cells were 

shaken at 32°C for 1 hr before plating on selective medium. Plates were incubated at 32°C overnight. 

 50 pg of plasmid DNA or 10 ng of ligation products were gently mixed with a 100μl aliquot of 

MAX Efficiency Stbl2 chimiocompetent cells, and incubated on ice for 30 min. The cells were heated 

at 42°C for 25 sec and chilled on ice for 2 min. 900 μl of SOC medium were added and cells were 



Materials and methods 

210 

shaken at 30°C for 1 hr or 1 hr 30 min for plasmid and ligation products transformation, respectively. 

Cells were then plating on selective medium and incubated at 30°C overnight. 

 1 ng of plasmid DNA was gently mixed with a 100μl aliquot of MAX Efficiency DH10Bac 

chimiocompetent cells placed on 14-ml round-bottom tubes, and stored on ice for 30 min. The cells 

were heated at 42°C for 45 sec and chilled on ice for 2 min. 900 μl of SOC medium were added and 

cells were shaken at 37°C for 4 hrs before plating on selective medium and incubated at 37°C for at 

least 24 hrs. 

 10 ng of plasmid DNA were gently mixed with a 50μl aliquot of One Shot BL21 Star (DE3) 

chimiocompetent cells and stored on ice for 30 min. The cells were heated at 42°C for 30 sec and 

chilled on ice for 2 min. 250 μl of SOC medium were added and cells were shaken at 37°C for 1 hr 

before plating on selective medium. Plates were then incubated at 37°C overnight. 

 10 ng of plasmid DNA were gently mixed with a 100μl aliquot of BL21 Star (DE3) pRARE or 50 

µl aliquot of Rosetta-gami B (DE3) chimiocompetent cells placed on 14-ml round-bottom tubes, and 

stored on ice for 30 min. The cells were heated at 42°C for 30 sec and chilled on ice for 2 min. 500 μl 

of SOC medium were added and cells were shaken at 37°C for 1 hr before plating on selective 

medium. Plates were then incubated at 37°C overnight. 

 2 µl of 1/10 dilution of β-mercaptoethanol mix supplied with ArcticExpress (DE3)RIL cells were 

added to 100 µl aliquot of ArcticExpress (DE3)RIL chimiocompetent cells placed on 14-ml round-

bottom tubes. After 10 min of incubation on ice, 10 ng of plasmid DNA were gently mixed with the 

cells and stored on ice for 30 min. The cells were heated at 42°C for 20 sec and chilled on ice for 2 

min. 900 μl of SOC medium were added and cells were shaken at 37°C for 1 hr before plating on 

selective medium. Plates were incubated at 37°C overnight. 

1.2 - YEAST 

1.2.1 - Strain 

In vivo homing of Pl.LSU/2 intron was evaluated in S. cerevisiae BY4742 MATα his3Δ1 leu2Δ0 

lys2Δ0 ura3Δ0 (S288C). 

1.2.2 - Growth and maintenance 

BY4742 S. cerevisiae strain was grown in YPD (Yeast extract Peptone Dextrose, Clontech 

Laboratories) medium with shaking at 220 rpm or streaked on solid YPD agar plates (2% (w/v) agar 

dissolved in YPD by heating) and maintained at 30°C.  

For selection of recombinant yeast cells, cells were cultured in minimal SD (Synthetic Dextrose) 

medium containing either glucose or galactose/raffinose (Clontech Laboratories) and appropriate 

dropout (DO) supplement mix prepared according to (Sambrook J and Russell DW 2001), or streaked 

on solid SD agar (2% (w/v) agar) plates containing appropriate DO supplement mix. For long term 

storage of yeast strains, a sample of large inoculum from a freshly grown plate was resuspended in 1 

ml of sterile 15% (v/v) glycerol and stored at -80°C. 

1.2.3 - Transformation of S. cerevisiae 

Yeast cells were transformed using the yeast transformation kit from Sigma Aldrich, according to the 

manufacturer’s instructions. 
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1.3 - INSECT CELLS 

1.3.1 - Sf9 cells 

Spodoptera frugiperda Sf9 cells (Life Technologies, Invitrogen) adapted to serum-free suspension 

culture in Sf-900 II SFM (Serum-Free Medium; Life Technologies, Invitrogen) were used to produce 

Pl.LSU/2 IEP. Sf9 cells were cultured in Sf-900 II SFM at 27°C either in suspension with 150 rpm 

using magnetic agitation in 500 ml spinners (Bellco), or in adherence in cell culture plates and flasks. 
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2 - MOLECULAR BIOLOGY 

2.1 - OLIGONUCLEOTIDES 

Oligonucleotides used in this thesis were provided by Sigma Aldrich and are listed below (Table M-1). 

Name Sequence (5’ to 3’) 
Length 

(nt) 

Tm 

(°C) 

PlLSU2F-BamHI CGCGGATCCATGAGTATTCCATATATAATT 30 68.9 

PlLSU2R-NotI ATAAGAATGCGGCCGCTTAAATGTTCAAGATCTTGCC 37 79.3 

YAAA-F TGGTAAGGTATGCGGCTGCCTTCGTCGTTACCGC 34 83.5 

YAAA-R GCGGTAACGACGAAGGCAGCCGCATACCTTACCA 34 83.5 

DeltaIEP-F ATGGTTTATTCGTCGTTACCGCTGCAACAAAACG 34 78.4 

DeltaIEP-R 
ACGACGAATAAACCATCCAACGTCATGTTTGCAATTAAA

G 
40 78.6 

PlLSU2F2 CACCATGAGTATTCCATATATA 22 53.2 

PlLSU2R2 TTAAATGTTCAAGATCTTGC 20 54.4 

IEP-XbaImut-F GGTTAAAAGCAGGTGCTCTGGAAACAACAACTCAGGAG 38 78.8 

IEP-XbaImut-R CTCCTGAGTTGTTGTTTCCAGAGCACCTGCTTTTAACC 38 78.8 

PlLSU2-XbaI-F GCTCTAGAACTAGTGGATCCCCCGGGCTGCA 31 80.5 

PlLSU2-XbaI-R GCTCTAGAGTTTTCAAAATGATTTCCTTAGAGCAAG 36 71.0 

PlLSU2-XhoI-F AAACGAATACTCGAGGATATAGTGAAACCG 30 68.7 

PlLSU2-SacI-R CGAGCTCTCGATAAGCTTTACCTGCCG 27 74.0 

DM1 AGGATCCCAGCTTTTATCTTTGACACA 27 69.0 

DM2 GTAGCTTTCGAAGCTTTACCTGCCGGCACC 30 77.9 

DM3 GGTAAAGCTTCGAAAGCTACATATAAGGAA 30 66.6 

DM4 GAATTCAGTTTTTTAGTTTTGCTGG 25 62.7 

NH27 
GGTCTCTGCTATCTCGCAAGAGGATGTATAGGGACTGAC

ACCTGCC 
46 83.7 

NH28 
GGCAGGTGTCAGTCCCTATACATCCTCTTGCGAGATAGCA

GAGACC 
46 83.7 

MutHtoB-F 
GAATACTCAAGCTATGGATCCCAGCTTTTATCTTTGACAC

A 
41 76.2 

MutHtoB-R 
TGTGTCAAAGATAAAAGCTGGGATCCATAGCTTGAGTAT

TC 
41 76.2 

B-Ko-F GGGATCCACCATGAGTATTCCTTACATAATTCCG 34 74.5 

E-Stop-R AGAATTCCTAGGCAGCGCCGTTCAG 25 74.1 

SalI-P+T-F GTCGACCTAAACTCACAAATTAGAGCTTC 29 66.6 

XbaI-P+T-R TCTAGATGTGAGTTAGCTCACTCATTAG 28 61.9 

N-DIVa-F 
CATATGAAGCTTTTATCTTTGACACAAAATCGGGGGTGGC

GAC 
43 82.1 

NH42 
TGATTTAGTGTGCCGCGGTAACTAAACCAGAATCACCTTT

T 
41 79.1 

N-RBS-DIVa-R CATATGTATATCTCCTTCTAAGCTTTACCTGCCGGCACCG 40 78.2 

NH43 TGGTTTAGTTACCGCGGCACACTAAATCAAGAAGCCTTTT 40 79.2 

S-Kan
R
td-F CCGCGGCTAAAACAATTCATCCAGTAA 27 72.8 

S-Kan
R
td-R CCGCGGTTCAAAATCGGCTCCGTC 24 79.3 
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IDO_1747 CTCCCAGTTCAATTACAGC 19 57.3 

IDO_848 TTCACTGCATTCTAGTTGTGG 21 60.4 

 

Table M-1: Oligonucleotides used. 

The name, sequence from 5’ to 3’, length, and melting temperature (Tm) are indicated. 

2.2 - NUCLEIC ACID PURIFICATION AND ANALYSES 

2.2.1 - Plasmid DNA purification 

Recombinant E. coli cells were cultured by shaking in LB broth containing relevant antibiotic at the 

appropriate temperature overnight. Plasmid DNA was extracted from late-log phase cultures by 

alkaline lysis using the NucleoSpin
®
 plasmid (Macherey-Nagel, < 25 µg), or NucleoBond

®
 Xtra Maxi 

Plus (Macherey-Nagel, < 1000 µg), according to the manufacturer’s instructions.  

Plasmid DNA from yeast cells was extracted from 5 ml of mid-log phase cultures in SD minimal 

medium containing appropriate DO supplement mix using the Yeast plasmid isolation kit (Clontech 

Laboratories, < 4 µg), according to the manufacturer’s instructions. 

DNA concentrations were quantified by measuring the OD260 on a NanoDrop™ ND-8000 

spectrophotometer (Thermo Scientific). The ratio OD280/OD260 was 1.85-1.9, revealing a high DNA 

purity. 

2.2.2 - DNA precipitation 

DNA in solution was precipitated by adding 1/10 volume of 3 M sodium acetate pH 5.2 and 2 volumes 

of cold 100% ethanol. Precipitation was performed at -20°C overnight before centrifugation at 13,000 

rpm in a microcentrifuge for 30 min. The pellet was washed with 70% ethanol, centrifuged as before, 

dried, and resuspended in Milli-Q water or TE (10 mM Tris-HCl pH 8.0, 1 mM EDTA). 

2.2.3 - DNA electrophoresis 

0.5-1.5% (w/v) high melting temperature agarose or 2-3% (w/v) low melting temperature agarose was 

dissolved in 1X TAE buffer (40 mM Tris-acetate, 5 mM EDTA) by heating, and 1X SYBR
®
 Safe 

DNA gel stain (Life Technologies; Invitrogen). DNA samples were loaded with DNA loading dye 

(Thermo Scientific; Fermentas: 0.005% bromophenol blue, 0.005% xylene cyanol FF, 10% glycerol, 

10 mM EDTA, and 1.7 mM Tris-HCl pH 7.6). A broad range DNA ladder (GeneRuler DNA ladder 

mix; Thermo Scientific, Fermentas) was added as a standard and DNA fragments were separated by 

electrophoresis in 1X TAE at 80-120V. Fluorescent visualization of DNA fragments was performed 

by exposure to ultraviolet light using a GBox-HR gel documentation system (Syngene). 

2.2.4 - Agarose gel extraction 

DNA fragments separated by electrophoresis were excised from the gel using a scalpel and purified 

using the NucleoSpin
®
 Gel and PCR Clean-up kit (Macherey-Nagel), according to the manufacturer’s 

instructions. 
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2.2.5 - Enzymatic restriction digestion 

For screening of recombinant plasmid DNA, 500 ng to 2 µg of DNA were digested with 1 to 5 U of 

one or two restriction endonuclease (New England Biolabs; < 10% final volume) in a final volume of 

20 µl. For extraction of digested DNA fragment from agarose gel and cloning, up to 10 µg of DNA 

were digested in a final volume of 50 µl. Digestions were performed for 1 hr at appropriate 

temperature for the enzyme used. 

2.3 - CLONING 

2.3.1 - TOPO cloning 

TOPO cloning allows rapid cloning, either directional or not, of PCR products into vectors. The 

ligation of PCR inserts into linearized TOPO
®
 vectors (Life Technologies; Invitrogen) is achieved 

through the action of the Topoisomerase I covalently bound to the vector. 

TOPO TA Cloning® is a non-directional cloning system for PCR products with 3’ dATPs overhang 

residues, which are ligated into the linearized pCR
®
2.1-TOPO

®
 vectors, containing 3’ dTTP overhang 

residues.  

 

PCR inserts are amplified using a high-fidelity Taq DNA polymerase presenting a proofreading 

activity (See Materials and methods section 2.4 -). Addition of dATPs to the 3’ end of PCR inserts is 

then performed using the AmpliTaq Gold DNA polymerase (Life Technologies; Applied Biosystems), 

which has a nontemplate-dependent terminal transferase activity (See Materials and methods section 

2.4 -). 1-4 µl of AmpliTaq Gold polymerase-amplified PCR products are incubated with 10 ng of 

pCR2.1-TOPO vectors in presence of 200 mM NaCl and 10 mM MgCl2 in a final volume of 6 µl at 

room temperature for 10 min. Ligation products were immediately transformed into competent E. coli 

cells. 

Zero Blunt® TOPO® PCR cloning is a non-directional cloning system for blunt-end PCR products, 

which are ligated into the linearized pCR®-BluntII-TOPO® vector.  
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1-4 µl of Phusion High-fidelity DNA polymerase-amplified PCR products are incubated with 10 ng of 

pCR-BluntII-TOPO vectors in presence of 200 mM NaCl and 10 mM MgCl2 in a final volume of 6 µl 

at room temperature for 10 min. Ligation products were immediately transformed into competent E. 

coli cells. 

Champion™ pET Directional TOPO® system allows directional cloning of blunt-end PCR products 

into E. coli expression vectors. The PCR product is amplified using a forward primer whose sequence 

begins by CACC, and inserted into the linearized pET151/D-TOPO® vector, which have a GTGG 

overhang.  

 

1-4 µl of Phusion High-fidelity DNA polymerase-amplified PCR products are incubated with 10 ng 

of pET151/D-TOPO vectors in presence of 200 mM NaCl and 10 mM MgCl2 in a final volume of 6 µl 

at room temperature for 10 min. Ligation products were immediately transformed into competent E. 

coli cells. 

2.3.2 - Dephosphorylation and ligation 

5’ phosphate groups were removed from up to 5 pmol digested DNA ends using 0.5 units of Shrimp 

Alkaline Phosphatase (SAP) (Affymetrix; USB) per pmol 5’-ends in 1X SAP reaction buffer in a final 

volume of 25 µl. Incubation was performed at 37°C for 30 min. SAP was inactivated by incubation at 

65°C for 15 min. 

50 ng of digested and dephosphorylated plasmid backbone was ligated to insert DNA in 1:1, 1:3 or 1:6 

molar ratios using 2,000 units of Quick T4 DNA ligase in 1X Quick Ligation buffer (New England 

Biolabs) in a final volume of 20 µl. Ligation was performed for 5 min at room temperature and chilled 

on ice before transformation of ligated products in competent E. coli. 

2.3.3 - Site-directed mutagenesis 

Site-directed mutagenesis of plasmid DNA was performed with the QuickChange II XL site-directed 

mutagenesis kit (Agilent Technologies) that uses PfuUltra high-fidelity (HF) DNA polymerase for 
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mutagenic primer-directed replication of both plasmid strands. For point mutation, the primers were 

designed to contain the desired mutation (Fig M-2A; black star), according to manufacturer’s 

guidelines. For deletion, primers were designed to partially hybridize plasmid DNA on either side of 

the sequence to delete, and to contain a sequence of 8 nt-long at their 5’ end that is complementary to 

the other primer (Fig. M-2B), so that overlapping between the two primers is 16 nt-long. 

 

Figure M-2: Schematic overview of site-directed mutagenesis method. 

(A) Site-directed point mutation. Green and purple arrows: primers used; gray star: desired mutation. (B) Site-

directed deletion. Purple and green short lines: 5’ end of primers that do not hybridize with the parental plasmid 

DNA and correspond to a 8 nt-long sequence complementary to the other primer; green and purple arrows: 

primer sequences hybridizing the parental plasmid DNA on either side of the region to delete; hatched rectangle: 

region to delete. After the first cycle of PCR amplification, the two newly synthetized DNA strands can pair 

together at primer sequences, which share a 16 nt-long overlap.  

10-30 ng of plasmid DNA were amplified using 2.5 units of PfuUltra HF DNA polymerase, 11-15 

pmole of each FPLC (Fast polynucleotide liquid chromatography)-purified primers, 1 µl of dNTP mix 

(provided with the kit), 1X reaction buffer (provided with the kit) in a final volume of 50 µl. Initial 

denaturation step was performed at 95°C for 30 sec, followed by 16 or 18 amplification cycles for 

point mutation or deletion, respectively, consisting of denaturation at 95°C for 30 sec, primer 

annealing at 55°C for 1 min (the annealing temperature is set according to the primer melting 

temperature, which must be ≥ 78°C), and extension at 68°C for 1 min 20 sec/kb. Reactions were then 

cool to 37°C and 1 unit of Dpn I restriction enzyme was added to digest the parental (non-mutated) 

DNA. Incubation was performed at 37°C for 1 hr and chilled on ice before transformation of 1 µl of 

Dpn I-treated mutation products in XL10-Gold competent E. coli cells. 
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2.3.4 - Description of plasmid cloning 

 pGST-IEP 

 

The Pl.LSU/2 IEP ORF was first amplified by PCR from the pPlLSU/2 plasmid (Appendix x; (Costa 

M et al. 1997b)) using PlLSU2F-BamHI and PlLSU2R-NotI oligonucleotides. The resulting PCR 

fragment, containing BamHI and NotI restriction sites, was ligated in pCR2.1-TOPO by TOPO TA 

cloning. After BamHI and NotI restriction digestion of the recombinant plasmid obtained, the 

BamHI/NotI IEP ORF restriction fragment was ligated with the BamHI/NotI digested pGEX-4T1 

plasmid (GE Healthcare Life Sciences; Appendix x). The resulting pGST-IEP plasmid contains the 

IEP ORF in frame with the GST ORF, and should express the GST-IEP fusion protein. 

 pGST-IEPmtDD- 

The RT catalytic motif YADD of the IEP sequence was mutated in YAAA by site-directed 

mutagenesis of the pGST-IEP plasmid using YAAA-F and YAAA-R oligonucleotides. The resulting 

plasmid should express a RT-defective GST-IEPmtDD- fusion protein. 

 pGST-IEPΔRT5 

The RT5 domain of the IEP sequence was deleted by site-directed mutagenesis of the pGST-IEP 

plasmid using DeltaIEP-F and DeltaIEP-R oligonucleotides. The resulting plasmid should express a 

RT-defective GST-IEPΔRT5 fusion protein. 
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 pFastBacHT-IEP 

 

The Pl.LSU/2 IEP ORF was first amplified by PCR from pPlLSU/2 plasmid using PlLSU2F2 and 

PlLSU2R2 oligonucleotides and ligated into pCR2.1-TOPO by TOPO TA cloning. The resulting 

recombinant plasmid was digested with EcoRI and ligated into EcoRI-digested pFastBac-HT C 

plasmid (Life Sciences, Invitrogen; Appendix x). The resulting pFastBacHT-IEP plasmid contains the 

IEP ORF in frame with the 6xHis tag of pFastBacHT C plasmid, and should express the His-IEP 

fusion protein. 

 p151-IEP 

 

The Pl.LSU/2 IEP ORF was amplified by PCR from the pPlLSU/2 plasmid using PlLSU2F2 and 

PlLSU2R2 oligonucleotides and ligated in pET151/D-TOPO by directional Champion pET TOPO 
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cloning. The resulting p151-IEP plasmid contains the IEP sequence in frame with the 6xHis tag and 

the V5 epitope of the pET151/D-TOPO vector, and should express the HisV5-IEP fusion protein. 

 p151-IEPmtDD- 

The RT catalytic motif YADD of the IEP sequence was mutated in YAAA by site-directed 

mutagenesis of the p151-IEP plasmid using YAAA-F and YAAA-R oligonucleotides. The resulting 

plasmid should express a RT-defective HisV5-IEPmtDD- fusion protein.  

 p151- IEPΔRT5 

A part of the IEP sequence containing the RT5 domain was deleted by site-directed mutagenesis of the 

p151-IEP plasmid using DeltaIEP-F and DeltaIEP-R oligonucleotides. The resulting plasmid should 

express a RT-defective HisV5-IEPΔRT5 fusion protein. 

 p151-E+I+IEP 

 

The cloning of p151-E+I+IEP plasmid was performed in 3 steps (Fig. M-3). 
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Figure M-3: Schematic representation of p151-E+I+IEP cloning. 

The cloning strategy of p151-E+I+IEP is represented here and described below. 

The XbaI site (Fig. M-3; X) located in the IEP sequence of p151-IEP plasmid was first eliminated by 

site-directed mutagenesis using IEP-XbaImut-F and IEP-XbaImut-R oligonucleotides (Fig. M-3; step 

1). The exon 2 and the intron sequence upstream the IEP ORF located in the pPlLSU/2 plasmid were 

then amplified by PCR using PlLSU2-XbaI-F and PlLSU2-XbaI-R oligonucleotides (Fig. M-3; step 

1’) and ligated in XbaI digested p151-IEP_XbaMut (Fig. M-3; step 2). The resulting plasmid was 

digested with XhoI (Fig. M-3; Xh) and SacI (Fig. M-3; S) and ligated with the insert containing the 

5’end of the IEP ORF, the intron sequence downstream of the IEP ORF and the Exon 3 (Fig. M-3; 

step 3), amplified by PCR using PlLSU2-XhoI-F and PlLSU2-SacI-R oligonucleotides (Fig. M-3; step 

2’). The resulting p151-E+I+IEP plasmid contains the Pl.LSU/2 intron, flanked by its two exons and 

containing the IEP sequence in frame with the 6xHis tag and V5 epitope in its domain IV, and should 

express both the intron and the HisV5-IEP fusion protein. 

 p151-E+I+IEPmtDD- 

The YADD catalytic motif of the IEP sequence was mutated in YAAA by site-directed mutagenesis of 

the p151-E+I+IEP plasmid using YAAA-F and YAAA-R oligonucleotides. The resulting plasmid 

should express both the Pl.LSU/2 intron and a RT-defective HisV5-IEPmtDD- fusion protein. 
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 pEE-URA3 

 

The cloning of pEE-URA3 plasmid was performed in 5 steps (Fig. M-4). 

 

Figure 5.4: Schematic representation of pEE-URA3 cloning. 

The cloning strategy of pEE-URA3 is represented here and described below. 
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Sequences of exon 2 (50 last nucleotides of exon 2; Fig. M-4, E2) and exon 3, in which the 16
th
 

nucleotide was changed in thymine to eliminate a Stop codon (the first 71 nucleotides of exon 3; Fig. 

M-4, E3m), located in the pCINeo-E2E3mGFP plasmid (previously constructed by a collaborator, 

Appendix x), were amplified by PCR (Fig. M-4; step 1) using oligonucleotides DM1, which contains a 

BamHI restriction site (Fig. M-4; B) and DM2, which contains the beginning of the URA3 sequence 

(Fig. M-4; green line). In parallel, the URA3 ORF sequence located in the pRS426 plasmid (Appendix 

x) was amplified by PCR (Fig. M-4; step 2) using oligonucleotides DM3, which contains the end of 

the E3m sequence (Fig. M-4; light blue line) and DM4, which contains an EcoRI restriction site (Fig. 

M-4; E). These two PCR products were subsequently mixed and amplified by PCR using DM1 and 

DM4 oligonucleotides (Fig. M-4; step 3). The resulting PCR product was cloned into pCR-BluntII-

TOPO vector by TOPO cloning (Fig. M-4; step 4), forming the pCR-BluntII-E2E3m-URA3 plasmid. 

The E2E3m-URA3 sequence was isolated by digestion of pCR-BluntII-E2E3m-URA3 with EcoRI and 

BamHI and ligated into the BamHI/EcoRI-digested pBFG1 plasmid ((Yelin R et al. 1999); Appendix 

x) (Fig. M-4; step 5), resulting in the formation of the pEE-URA3 plasmid. This plasmid contains the 

E2E3m-URA3 sequence cloned in frame of two HA tags (Fig. M-4; gray rectangles), and should 

express the HA-E2E3m-URA3 fusion protein. 

 pEgpIIE-URA3 

 

The cloning of pEgpIIE-URA3 plasmid was performed in 4 steps (Fig. M-5). 
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Figure M-5: Schematic representation of pEgpIIE-URA3 cloning. 

The cloning strategy of pEgpIIE-URA3 is represented here and described below. 

The 16
th
 nucleotide of the exon 3 sequence (Fig. M-5; E3) located in the pCINeo-E2-IntDIVab-E3 

plasmid (previously constructed by a collaborator, Appendix x) was changed in thymine (Fig. M-5; 

E3m) by site-directed mutagenesis using NH27 and NH28 oligonucleotides (Fig. M-5; step 1). The 

resulting pCINeo-E2-IntDIVab-E3m was digested with HindIII (Fig. M-5; H) and the E2-IntDIVab-

E3m restriction fragment was isolated and ligated into the HindIII-digested pCR-BluntII-E2E3m-

URA3 plasmid (Fig. M-5; step 2). The HindIII site of the resulting pCR-BluntII-E2IntDIVanE3m-

URA3 plasmid was mutated into a BamHI site (Fig. M-5; B) by site-directed mutagenesis using 

MutHtoB-F and MutHtoB-R oligonucleotides (Fig. M-5; step 3). The resulting pCR-BluntII-

E2IntDIVabE3m-URA3_Bam plasmid was digested with BamHI and EcoRI (Fig. M-5; E) and the 

restriction fragment containing E2IntDIVabE3m-URA3 was ligated into the BamHI/EcoRI-digested 

pBFG1 plasmid (Fig. M-5; step 4). This plasmid is the splicing reporter construct used in the yeast 

splicing assay, and should express the HA-E2E3m-URA3 fusion protein upon precise Pl.LSU/2 intron 

splicing. 
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 pNLS-IEPco 

 

The cloning of pEgpIIE-URA3 plasmid was performed in 4 steps (Fig. M-6). 

 

Figure M-6: Schematic representation of pNLS-IEP
co

 cloning. 

The cloning strategy of pNLS-IEP
co

 is represented here and described below. 
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The IEP
co

 sequence followed by 3 nuclear localization signals (Fig. M-6; NLS, dark gray rectangle) 

and a c-Myc epitope (Fig. M-6; Myc, orange rectangle), located in the pUC57-IEP
co

 plasmid (In frame 

IEP, 3 NLS and c-Myc epitope sequences, codon-optimized for translation in human cells; Genescript; 

Appendix x), were amplified by PCR (Fig. M-6; step 1) using the oligonucleotides B-Ko-F, which 

contains a BamHI restriction site (Fig. M-6; B) and the Kosak sequence (Fig. M-6; black rectangle), 

and E-Stop-R, which contain an EcoRI restriction site (Fig. M-6; E) and a stop codon (Fig. M-6; light 

gray rectangle). The resulting PCR product was cloned into pCR2.1-TOPO by TOPO TA cloning (Fig. 

M-6; step 2). In parallel, the sequence of pYEF1 plasmid ((Cullin C and Minvielle-Sebastia L 1994); 

Appendix x) containing the GAL10 promoter (Fig. M-6; PGAL10) and the PGK terminator (Fig. M-6; 

TPGK) was amplified by PCR (Fig. M-6; step 1’) using oligonucleotides SalI-P+T-F, which contains a 

SalI restriction site (Fig. M-6; S), and XbaI-P+T-R, which contains a XbaI restriction site (Fig. M-6; 

X). The resulting PCR product was cloned into pCR2.1-TOPO by TOPO TA cloning (Fig. M-6; step 

2’). The resulting pCR2.1-PGAL10-TPGK was digested with SalI and XbaI and the restriction fragment 

containing the PGAL10 and TPGK was ligated into the SalI/XbaI-digested pRS413 plasmid ((Sikorski RS 

and Hieter P 1989; Christianson TW et al. 1992); Appendix x) (Fig. M-6; step 3). The plasmid 

pCR2.1-IEP
co

 obtained after step 2 was digested with BamHI and EcoRI and the resulting restriction 

fragment containing the Kosak, IEP
co

, NLS, c-Myc, and stop codon sequences was ligated into the 

BamHI/EcoRI-digested pRS413-PGAL10-TPGK plasmid (Fig. M-6; step 4). The resulting pNLS-IEP
co

 

plasmid contains the codon-optimized IEP ORF sequence for translation in human cells downstream 

of a Kosak sequence and in frame with 3 NLS and a c-Myc epitope. This plasmid should express the 

NLS-IEP
co

 protein. 

 pRRL-intron-ΔDIV / pRRL-intron-DIVa / pRRL-intron-DIVab / pRRL-intron-Full  

figure pRRL-intron-… 

These cloning were performed by collaborators. The plasmids pCINeo-E2-IntΔDIV-E3, pCINeo-E2-

IntDIVa-E3 (Appendix x), pCINeo-E2-IntDIVab-E3 (Appendix x), and pCINeo-E2-IntFull-E3 

(Appendix x), previously constructed by a collaborator, were digested with SalI and partially digested 

with PstI, and the restriction fragments corresponding to E2-IntΔDIV-E3, E2-IntDIVa-E3, E2-

IntDIVab-E3, and E2-IntFull-E3, respectively, were isolated and ligated in the PstI/SalI-digested 

pRRLSINPPT-PGKmcs-WPRE plasmid ((Follenzi A et al. 2000; Charrier S et al. 2005; Charrier S et 

al. 2007); Appendix x), forming the pRRL-intron-ΔDIV, pRRL-intron-DIVa, pRRL-intron-DIVab, 

and pRRL-intron-Full plasmids, respectively. These plasmids correspond to gene transfer vectors for 

lentiviruses production, used to establish stable human cell lines expressing the intron ΔDIV, DIVa, 

DIVab or full length forms, flanked by its two exons. 

  



Materials and methods 

226 

 pRRL-GFP / pRRL-GFP-IEP
co

 

 

 

These cloning were performed by collaborators. The plasmids pC1-IEP
co

 and pGFP-IEP
co

, previously 

constructed by a collaborator (Appendix x and Appendix x), were digested with AgeI and MfeI. The 

restriction fragments containing the IEP
co

 and the GFP-IEP
co

 sequences, respectively, were isolated 

and partially digested with SalI. The restriction fragments containing the IEP
co

 and the GFP-IEP
co

 

sequences, respectively, were isolated and ligated in the AgeI/SalI-digested pRRLSINPPT-PGKGFP-

WPRE plasmid ((Follenzi A et al. 2000; Charrier S et al. 2005; Charrier S et al. 2007); Appendix x), 

forming the pRRL-GFP and pRRL-GFP-IEP
co

 plasmids, respectively. These plasmids correspond to 

gene transfer vectors for lentiviruses production, used to express the NLS-IEP
co

 fused or not in N-

terminal to the GFP protein in stable human cell lines previously established. 
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 pDonor 

 

The cloning of pDonor plasmid was performed in 5 steps (Fig. M-7). 
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Figure M-7: Schematic representation of the pDonor cloning. 

The cloning strategy of pDonor is represented here and described below. 

The exon 2 sequence and the beginning of intron sequence (until the DIVa 5’ region), located in 

pPl.LSU/2 plasmid, were amplified by PCR using oligonucleotides N-DIVa-F and NH42 (Fig. M-7; 

step 1). In parallel, the end of the intron (from the DIVa 3’ region) and the exon 3 sequence were 

amplified using oligonucleotides NH43 and N-RBS-DIVa-R (Fig. M-7; step 1’). These two PCR 

products were mixed and amplified using N-DIVa-F and N-RBS-DIVa-R (Fig. M-7; step 2). The 

resulting PCR product was cloned into pCR2.1-TOPO by TOPO TA cloning (Fig. M-7; step 3), 

leading to the formation of the pCR2.1-EE-IntDIVa-RBS plasmid. In parallel, the Kan
R
 gene, 

containing the td group I intron sequence, and its promoter were amplified from the pACD4K-C 

plasmid (TargeTron® Gene Knockout System, Sigma Aldrich; Appendix x) using the oligonucleotides 

S-Kan
R
td-F and S-Kan

R
td-R (Fig. M-7; step 2’). The resulting PCR product was cloned into pCR2.1-
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TOPO by TOPO TA cloning (Fig. M-7; step 3’), leading to the formation of the pCR2.1-Kan
R
td 

plasmid. The Kan
R
td and its promoter sequences were isolated by SacII (Fig. M-7; S) digestion and 

ligated in the SacII-digested pCR2.1-EE-IntDIVa-RBS plasmid (Fig. M-7; step 4). The restriction 

fragment containing E2, Intron DIVa with Kan
R
td and its promoter, E3, and a RBS, obtained by NdeI 

(Fig. M-7; N) digestion of the pCR2.1-EE-IntDIVa+Kan
R
td-RBS plasmid, was ligated in the NdeI-

digested p151-IEP plasmid (Fig. M-7; step 5), leading to the formation of the pDonor plasmid. 

 pAcceptor 

 

The cloning of pAcceptor plasmid was performed in 3 steps (Fig. M-8). 

 

Figure M-8: Schematic representation of the pAcceptor cloning. 

The cloning strategy of pAcceptor is represented here and described below. 
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The sequences of exon 2 and exon 3 was amplified by PCR using oligonucleotides IDO_1747 and 

IDO_848 on spliced cDNA template, obtained by in vitro splicing of the Pl.LSU/2 intron from 

precursor cDNA transcribed in HEK 293 cells transfected with pCINeo-E2-IntΔDIV-E3 plasmid (Fig. 

M-8; step 1). The resulting PCR product was cloned into pCR2.1-TOPO by TOPO TA cloning (Fig. 

M-8; step 2), leading to the pCR2.1-E2E3 plasmid. The fragment containing E2 and E3 was isolated 

from pCR2.1-E2E3 by digestion with HindIII (Fig. M-8; H) and ligated into the HindIII-digested 

pLysS plasmid (Fig. M-8; step 3) (Appendix x), leading to the pAcceptor plasmid.  

 pE2E3 

 

The fragment containing E2 and E3 was isolated from pCR2.1-E2E3 by digestion with HindIII (Fig. 

M-8; H) and ligated into the HindIII-digested pRS327 plasmid ((Eriksson P et al. 2004); Appendix x), 

leading to the pE2E3 plasmid. 

2.4 - PCR AMPLIFICATIONS 

 PCR amplifications of fragments for cloning were performed using 20 ng of plasmid DNA 

template, 2 units of Phusion® High-fidelity DNA polymerase (Thermo Scientific; Finnzymes), 0.5 

µM of each primer, 400 µM of each dNTPs, and 1X Phusion HF buffer (supplied with the enzyme) in 

a final volume of 50 µl. Initial denaturation was performed at 98°C for 1 min and followed by 30 

amplification cycles consisting of denaturation at 98°C for 10 sec, primer annealing at X°C for 20 sec 

(the annealing X temperature was adjusted to 3°C higher than the lower primer melting temperature), 

extension at 72°C for 20 sec/kb, and a final extension step of 5 min at 72°C. PCR products were 

incubated with 1 unit of Dpn I restriction enzyme at 37°C for 1 hr to digest the plasmid DNA, and gel 

purified after electrophoresis on agarose gel.  

For TOPO TA cloning, addition of dATPs at 3’ ends of PCR products was performed using 20 µl 

of purified PCR products, 2.5 units of AmpliTaq Gold DNA polymerase, and 3 mM of dATPs in 1X 

PCR Buffer II (supplied with the enzyme) in a final volume of 30 µl at 72°C for 15 min. 

 

 Screening of recombinant E. coli colonies and analysis of purified recombinant plasmid DNA by 

PCR were performed using 1 unit of RedTaq DNA polymerase (Sigma Aldrich), 1X reaction buffer 

(supplied with the enzyme), 200 µM of each dNTPs, 0.2 µM of each primer, and either a bacterial 

colony picked from an LB-agar plate or 10 ng of plasmid DNA in a final volume of 50 µl. Initial 
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denaturation was performed at 94°C for 5 min and followed by 30 amplification cycles consisting of 

denaturation at 94°C for 40 sec, primer annealing at X°C for 1 min (the annealing X temperature was 

adjusted to 5°C lower than the lower primer melting temperature), extension at 72°C for 1 min/kb, and 

a final extension step of 10 min at 72°C. 
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3 - PROTEIN EXPRESSION, PURIFICATION AND ANALYSES 

3.1 - PROTEIN EXPRESSION 

3.1.1 - Cell-free expression system 

The Expressway Cell-Free E. coli Expression System (Life Technologies; Invitrogen) was used to 

express the Pl.LSU/2 IEP in vitro. The plasmid p151-IEP was used as DNA template. It was initially 

designed and constructed for the expression of Pl.LSU/2 IEP tagged in N-terminal to a 6xHis tag and a 

V5 epitope (HisV5-IEP) in E. coli. However, the plasmid configuration is close to the recommended 

characteristics (Fig. M-9). Indeed, it presents required features, regardless to the position of the 

ribosome binding site (RBS), HisV5-IEP encoding sequence, and T7 terminator (Fig. M-9). The only 

exception is the length between the promoter and the RBS (Fig M-9; 57 nt instead of recommended 

15-20 nt). However, the length between promoter and RBS in the control pEXP5-NT/CALML3 

template is similar (Fig. M-9; 51 nt). The p151-IEP plasmid also differs from recommended template 

design by the presence of a lac operator (lacO), which should not have any influence on the protein 

synthesis in vitro. 

 

Figure M-9: Template design for Cell-Free expression system. 

The manufacturer recommended template design for optimal protein synthesis is indicated. The recommended 

lengths between promoter, RBS, gene of interest and terminator are indicated. The templates used to express 

Pl.LSU/2 IEP (p151-IEP) and the control protein CALML3 are represented.  

Template DNA was prepared according to the manufacturer’s instructions: a sample of previously 

purified p151-IEP plasmid DNA was precipitated using RNase-free reagents and consumables. 

Template DNA concentration was set at 500 ng/µl in RNase-free DEPC-treated water. 

In vitro protein synthesis was performed according to the manufacturer’s instructions using 1 µg of 

DNA template in a thermomixer at 1,200 rpm for 30 min at 30°C, before adding the Feed buffer and 

continuing the incubation at 1,200 rpm for 5 hrs 30 min at 30°C. Proteins were then precipitated with 

acetone and mixed with 3.3X protein sample buffer (composed by 5/6 of 4X XT sample buffer and 1/6 

of 20X XT reducing agent; Bio-Rad). Protein samples were heated at 95°C for 5 min and stored at -

20°C until SDS-PAGE analysis.  
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3.1.2 - Insect cell expression 

(a) Production of recombinant bacmids 

DH10Bac E. coli cells were transformed with either pFastBacHT-IEP or pFastBacHT-CAT. Clones 

selected by blue/white screening were analyzed by PCR using M13(-40)F and BacSeqControl 

oligonucleotides to determine successful transposition of His-IEP or His-CAT expressing cassettes, 

and recombinant bacmids were purified from positive clones. 

(b) Production of recombinant baculoviruses 

 P1 baculovirus stock: 

1 x 10
6
 Sf9 cells per well were seeded in a 6-well plate in 2 ml of Sf-900 II SFM. The cells were 

incubated for 1 hr at 27°C to allow the cell adherence before adding 0.8 ml of Sf-900 II SFM 

containing bacmid DNA:lipid complexes. Bacmid DNA:lipid complexes were prepared by mixing 1 

µg of bacmid DNA diluted in 100 µl of Sf-900 II SFM with 9 µl of Cellfectin I reagent (Life 

Technologies, Invitrogen) diluted in 100 µl of Sf-900 II SFM followed by incubation at room 

temperature for 30 min. Cells were then incubated at 27°C for 5 hrs, and the transfection medium was 

replaced by 2 ml of Sf-900 II SFM before continue the incubation at 27°C for 96 hrs. P1 baculoviral 

stock was then collected by harvesting the medium which was clarified by centrifugation at 500g for 5 

min. 

 Isolation of baculovirus from a single viral clone: 

1 x 10
6
 Sf9 cells per well were seeded in a 6-well plate in 1 ml of Sf-900 II SFM and incubated at 

27°C for 1 hr. 200 µl of P1 viral stock diluted at 10
-5

 to 10
-7

 in Sf-900 II SFM were added to the cells 

followed by incubation at room temperature for 3 hrs. The medium was then removed and 2 ml of 

plaquing medium (4% solubilized agarose gel and 1X final Sf-900 II SFM) was added before 

incubation at room temperature for 20 min. The cells were then placed in a sealed plastic box with 

moist paper towels and incubated at 27°C for 8 days, or until plaques are formed. Baculovirus from a 

single clone was purified by collecting agarose from an isolated plaque, and resuspended in 500 µl of 

Sf-900 II SFM. 

 Generation of the baculovirus P1p stock: 

7.5 x 10
6
 Sf9 cells seeded in a T75 cell culture flask in 10 ml of Sf-900 II SFM were infected with 250 

µl of previously isolated baculovirus and incubated at 27°C for 72 °C. P1p baculoviral stock was then 

collected by harvesting the medium which was clarified by centrifugation at 500g for 5 min. P1p stock 

was titrated as described in section thereafter. 

 Generation of the baculovirus P2 stock: 

400 ml of Sf-900 II SFM were inoculated with Sf9 cells at 1 x 10
6
 cells/ml in 500 ml spinner and 

infected with P1p baculovirus stock at MOI 0.1. Cells were cultured in suspension for 72 hrs at 27°C. 

P2 baculoviral stock was then recovered by collecting the medium which was clarified by 

centrifugation at 1,300g for 15 min, and filtrated on 0.45 µm cellulose acetate filter. P2 stock was 

titrated as described in section thereafter. 
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 Titration of baculovirus stocks: 

1 x 10
6
 Sf9 cells per well were seeded in a 6-well plate in 1 ml of Sf-900 II SFM and incubated at 

27°C for 1 hr. 100 µl of P1p or P2 viral stocks diluted at 10
-7

 to 10
-9

 in Sf-900 II SFM were added to 

the cells followed by incubation at room temperature for 3 hrs. The medium was then removed and 2 

ml of plaquing medium (4% solubilized agarose gel and 1X final Sf-900 II SFM) were added before 

incubation at room temperature for 20 min. The cells were then placed in a sealed plastic box with 

moist paper towels and incubated at 27°C for 8 days, or until plaques are formed. Viral titers (pfu/ml; 

plaque forming units/ml) were then determined by counting the number of plaques for each dilution 

and using the following formula: 

                        
                  (   )

                         (  )                 
 

(c) Expression of proteins 

200 ml of Sf-900 II SFM were inoculated with Sf9 cells at 1.09 x 10
6
 cells/ml in a 500 ml spinner and 

infected with P2 baculovirus stock at MOI 5. Cells were cultured in suspension for 72 hrs at 27°C, 

pelleted by centrifugation at 1,300g for 10 min, and pellets were stored at -80°C overnight. 

3.1.3 - Bacterial expression 

E. coli strain BL21 Star (DE3) was transformed with the appropriate expression plasmid and three 

single colonies were inoculated into 5 ml of LB containing appropriate antibiotics. Precultures were 

shaken at 37°C overnight, inoculated into 110 ml of LB medium with antibiotics and grown at 37°C 

for 3-6 hrs, until OD600 reached 0.5. Induction was started by addition of IPTG (0.1 mM final) to 100 

ml of the culture, and 10 ml of the culture was non-induced. The incubation was continued for 3 hrs at 

37°C. Cells were then collected by centrifugation (1,900g for 10 min at 4°C), and washed once with 

1X PBS. The washed cell pellet was stored at -80°C overnight before protein extraction. 

E. coli strain BL21 Star (DE3) pRARE was transformed with the appropriate expression plasmid and 

three single colonies were inoculated into 5 ml of LB containing appropriate antibiotics. Precultures 

were shaken at 37°C overnight, inoculated into 10-210 ml of LB medium with antibiotics and grown 

at 37°C for 3-6 hrs, until OD600 reached 0.5-0.7. Cultures were cooled or not at 18°C for 20 min, and 

induction were started by addition of IPTG (0.1-1 mM final) to 2-200 ml of the culture. As a control, 

2-50 ml of the culture was non-induced. The incubation was continued for 3 hrs at 18°C, 32°C, or 

37°C. Cells were then collected by centrifugation (1,900g for 10 min at 4°C), and washed once with 

1X PBS. The washed cell pellet was stored at -80°C overnight before protein extraction. 

 E. coli strain ArcticExpress (DE3)RIL was transformed with the appropriate expression plasmid and 

three single colonies were inoculated into 10 ml of LB containing appropriate antibiotics. Precultures 

were shaken at 37°C overnight, inoculated into 410 ml of LB medium without antibiotics and grown at 

30°C for 3-6 hrs, until OD600 reached 0.6. Cultures were cooled or not at 15°C for 25 min, and 

induction was started by addition of IPTG (0.1 mM final) to 400 ml of the culture. 10 ml of the culture 

were non-induced. The incubation was continued for 18 hrs at 15°C. Cells were then collected by 

centrifugation (1,900g for 10 min at 4°C), and washed once with 1X PBS. The washed cell pellet was 

stored at -80°C overnight before protein extraction. 
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E. coli strain Rosetta-gami B (DE3) was transformed with the appropriate expression plasmid and 

three single colonies were inoculated into 5 ml of LB containing appropriate antibiotics. Precultures 

were shaken at 32°C overnight, inoculated into 105 ml of LB medium without antibiotics and grown at 

32°C for 3-6 hrs, until OD600 reached 0.6-0.8. Induction was started by addition of IPTG (1 mM final) 

to 100 ml of the culture, and 5 ml of the culture were non-induced as a control. The incubation was 

continued for 4 hrs at 30°C. Cells were then collected by centrifugation (1,900g for 10 min at 4°C), 

and washed once with 1X PBS. The washed cell pellet was stored at -80°C overnight before protein 

extraction. 

3.2 - PROTEIN EXTRACTION 

All total and soluble protein samples collected during protein extractions were mixed with 3.3 X 

protein sample buffer (composed by 5/6 of 4X XT sample buffer and 1/6 of 20X XT reducing agent; 

Bio-Rad). All insoluble protein samples collected were mixed with 1X protein sample buffer in 1/5 of 

the volume that was used to resuspend the original cell pellet. All protein samples were heated at 95°C 

for 5 min and stored at -20°C until SDS-PAGE analysis. The remaining soluble protein fractions were 

subsequently used for protein purification.  

3.2.1 - Sf9 protein extraction 

Sf9 cell pellet was washed in ice-cold 1X Phosphate buffered saline (PBS) and centrifuged at 1,300g 

for 10 min. Cells were then resuspended in 8 ml of ice-cold TEN buffer (50 mM Tris pH 7.5 and 100 

mM NaCl), and incubated 5 min at 4°C before being centrifuged as before. The pellet was then 

resuspended in 8 ml of ice-cold 250 mM Tris pH 7.5 supplemented with protease inhibitor cocktail 

(cOmplete EDTA-free protease inhibitor cocktail, Roche Applied Science) and cells were lysed by 

three cycles of freeze/thawing between -180°C and 37°C. A sample of total protein fraction was 

collected before pelleting cell debris and insoluble proteins by centrifugation at 10,000 rpm on a 

microcentrifuge for 10 min at 4°C. A sample of soluble protein fraction from the supernatant was 

subsequently collected and the pellet containing insoluble proteins was also conserved for SDS-PAGE 

analysis.  

3.2.2 - Bacterial protein extraction 

BL21 Star (DE3) and BL21 Star (DE3) pRARE cell pellets were thawed on ice and resuspended in 1 

volume of BugBuster® Master mix (Novagen) supplemented with protease inhibitor cocktail for 20 

volumes of E. coli pelleted culture. The lysis was performed at room temperature for 20 min on a 

rotary wheel before replacing the lysate at 4°C. A sample of total protein fraction was collected before 

pelleting cell debris and insoluble proteins by centrifugation at 16,000g for 20 min at 4°C. A sample of 

soluble protein fraction from the supernatant was subsequently collected and the pellet containing 

insoluble proteins was also conserved for SDS-PAGE analysis. 

For His-tagged protein purification under denaturing conditions, BL21 Star (DE3) pRARE cell pellets 

were thawed on ice and resuspended in 1 volume of buffer M (50 mM Tris-HCl at pH 8.0, 1 M NaCl) 

with either 6 M Guanidine hydrochloride (GuHCl) or 8 M Urea for 20 volumes of E. coli pelleted 

culture. After incubation at room temperature for 10 min on a rotary shaker, cells were lysed by 

sonication (3 cycles of 6 sec “on” at 200 W and 6 sec “off”). A sample of total protein fraction was 

collected before pelleting cell debris and insoluble proteins by centrifugation at 16,000g for 20 min at 
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4°C. A sample of soluble protein fraction from the supernatant was subsequently collected and the 

pellet containing insoluble proteins was also conserved for SDS-PAGE analysis. Total and soluble 

protein samples containing guanidine hydrochloride were precipitated (See following section) before 

being mixed with protein sample buffer.  

ArcticExpress (DE3)RIL cell pellets were thawed on ice and resuspended in 1 volume of ice-cold 

buffer Mb (50 mM Tris-HCl at pH 8.0, 1 M NaCl, and 4 mM β-mercaptoethanol) supplemented with 

protease inhibitor cocktail for 30 volumes of E. coli pelleted culture. Lysozyme (BioUltra, Sigma 

Aldrich) was added to a final concentration of 1 mg/ml, and after 45 min at 4°C cells were lysed by 

sonication (6 cycles of 12 sec “on” at 200 W and 12 sec “off”). RNase A and DNase I were added at 

10 µg/ml and 5 µg/ml respectively, followed by incubation at 4°C for 15 min. A sample of total 

protein fraction was collected before pelleting cell debris and insoluble proteins by centrifugation at 

16,000g for 20 min at 4°C. A sample of soluble protein fraction from the supernatant was 

subsequently collected and the pellet containing insoluble proteins was also conserved for SDS-PAGE 

analysis. 

Rosetta-gami B (DE3) cell pellets were processed as for ArcticExpress (DE3)RIL with two 

differences: the volume of buffer used to resuspend the cell pellet was 1/80 of the E. coli pelleted 

culture volume, and for lysates that are used for protein purification under non-denaturing conditions 

in presence of CHAPS, the Mb buffer was supplemented with 10 mM of CHAPS (MbC buffer). 

3.3 - PROTEIN PRECIPITATION 

Proteins were precipitated with 2.5 volumes of acetone for 1 hr at 4°C and recovered by centrifugation 

at 18,000g for 15 min at 4°C. Protein pellet was then washed with 100% ethanol, dried, and 

resuspended in 0.5 volumes of 50 mM Tris-HCl at pH 8.5, 8 M urea, and 10 mM DTT. 

3.4 - PROTEIN PURIFICATION BY AFFINITY CHROMATOGRAPHY 

During all purifications, samples were collected at each step for SDS-PAGE analysis. All samples 

were mixed in 3.3X protein sample buffer, except the resin sample after elution(s) that was dried using 

gel-loading pipet tips and resuspended in one bed volume of 1X protein sample buffer. Protein 

samples were heated at 95°C for 5 min and stored at -20°C until SDS-PAGE analysis. 

3.4.1 - GST-tagged protein purification 

Soluble protein fractions were incubated with glutathione-charged agarose beads (Glutathione 

Sepharose® 4B, GE Healthcare) using a bed volume corresponding to either 1/100 or 1/30 of the 

lysate volume. The binding of proteins was performed for either 30 min at room temperature or 

overnight at 4°C on a rotary wheel. Beads were then washed three times with 10-20 bed volumes of 

ice-cold 1X PBS supplemented with 1 mM PMSF. GST-tagged proteins were eluted by incubation 

either for 15 min at room temperature or overnight at 4°C on a rotary shaker with one bed volume of 

either ice-cold buffer Gst1 (100 mM HEPES pH 8.0 and 10 mM reduced glutathione), ice-cold buffer 

Gst5 (100 mM HEPES pH 8.0 and 50 mM reduced glutathione), or ice-cold buffer Gst5N (100 mM 

HEPES pH 8.0, 120 mM NaCl, and 50 mM reduced glutathione), supplemented with protease 

inhibitor cocktail. Eluted protein fraction was dialyzed or not using dialysis cassette (Slide-A-Lyzer 

dialysis cassettes, 20K MWCO; Thermo Scientific, Pierce) twice for 2 hrs and then overnight at 4°C 

against 500 ml of buffer 100 mM HEPES pH 8.0, 120 mM NaCl, and 1 mM PMSF. Eluted and/or 
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dialyzed protein fractions were stored in 50% (v/v) glycerol with 1 mM DTT and 0.1 mM EDTA at -

20°C. 

3.4.2 - Histidine-tagged protein and RNP particles purification 

 Native and non-denaturing conditions: 

Soluble protein fractions from BL21 Star (DE3) pRARE were incubated with Ni
2+

-charged agarose 

beads (HIS-Select® HF Nickel affinity gel, Sigma Aldrich) using a bed volume corresponding to 1/30 

of the lysate volume. The binding of proteins was performed for 15 min at 4°C on a rotary wheel. 

Beads were then washed twice with 20 bed volumes of ice-cold buffer EW (50 mM Sodium 

phosphate, pH 8.0, 300 mM NaCl, and 10 mM imidazole) supplemented with protease inhibitor 

cocktail. His-tagged IEP was eluted by incubation 15 min at 4°C on a rotary shaker with 2 bed 

volumes of ice-cold buffer E (50 mM Sodium phosphate, pH 8.0, 300 mM NaCl, and 250 mM 

imidazole) supplemented with protease inhibitor cocktail. Eluted protein fraction was stored in 50% 

(v/v) glycerol with 1 mM DTT and 0.1 mM EDTA at -20°C. 

Soluble protein fractions from Sf9 pellets were incubated on-column with Ni
2+

-charged agarose beads 

(Ni-NTA agarose, Life Technologies) using a bed volume corresponding to 1/16 of the lysate volume. 

Binding was performed for 2 hrs at 4°C on a rotary wheel. The columns were then washed four times 

with 16 bed volumes of ice-cold buffer N (50 mM NaH2PO4 pH 8.0, 500 mM NaCl) with 20 mM 

imidazole. Elution was performed at 4°C using 3.5 ml of ice-cold buffer N with 250 mM imidazole. 

Seven 500 µl fractions of eluted proteins were collected, and stored in 50% (v/v) glycerol with 1 mM 

DTT and 0.1 mM EDTA at -20°C. 

Soluble protein fractions from Rosetta-gami B (DE3) were incubated with Ni
2+

-charged agarose beads 

(Ni-NTA agarose, Qiagen) using a bed volume corresponding to 1/12 of the lysate volume. The 

binding was performed 4°C overnight on a rotary wheel. Beads were then washed once with 15 bed 

volumes of ice-cold buffer Mb (for natives conditions) or MbC (for non-denaturing conditions) with 1 

mM PMSF, then three times with 15 bed volumes of ice-cold buffer Mb or MbC with 1 mM PMSF 

and 20 mM imidazole, twice with 15 bed volumes ice-cold buffer Mb or MbC with 1 mM PMSF and 

40 mM imidazole and finally once with 15 bed volumes with ice-cold buffer Mb or MbC with 1 mM 

PMSF and 60 mM imidazole. His-tagged IEP was eluted by incubation overnight at 4°C on a rotary 

wheel with one bed volume of ice-cold buffer Mb or MbC supplemented with protease inhibitor 

cocktail and 1 M imidazole. Eluted protein fractions were then dialyzed using dialysis cassette (Slide-

A-Lyzer dialysis cassettes, 10K MWCO; Thermo Scientific, Pierce) twice for 2 hrs and then overnight 

at 4°C against 500 ml of buffer Mb with 1 mM PMSF. Proteins were finally stored in 50% (v/v) 

glycerol with 1 mM DTT and 0.1 mM EDTA at -20°C. 

 Denaturing conditions:  

Soluble protein fraction from BL21 Star (DE3) pRARE was incubated with Ni
2+

-charged agarose 

beads (Ni-NTA agarose, Life Technologies) using a bed volume corresponding to 1/8 of the lysate 

volume. Binding was performed for 30 min at room temperature on a rotary wheel. Beads were then 

washed once with 10 volumes of ice-cold buffer M with 1 mM PMSF and either 6 M GuHCl (for 

GuHCl denaturing conditions) or 8 M Urea (for urea denaturing conditions); three times with 10 

volumes of ice-cold buffer M with 1 mM PMSF, 20 mM imidazole, and 6 M GuHCl or 8 M Urea; 

twice with 10 volumes ice-cold buffer M with 1 mM PMSF, 40 mM imidazole, and 6 M GuHCl or 8 
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M Urea, and finally once with 10 volumes with ice-cold buffer M with 1 mM PMSF, 60 mM 

imidazole, and 6 M GuHCl or 8 M Urea. His-tagged IEP was eluted by incubation overnight at 4°C on 

a rotary shaker with one volume of ice-cold buffer M supplemented with protease inhibitor cocktail, 1 

M imidazole, and 6 M GuHCl or 8 M Urea. Eluted protein fractions were then subjected to a refolding 

step using a multi-step dialysis process: eluted fractions were dialyzed using dialysis cassettes at 4°C 

for 2 hrs against 500 ml of buffer Gu-1 (M with 5 M GuHCl) or buffer U-1 (M with 7 M Urea) with 1 

mM PMSF. First dialysis buffer was then replaced by buffer Gu-2 (M with 4 M GuHCl) or buffer U-2 

(M with 6 M Urea) with 1 mM PMSF and dialysis was continued for 2 hrs at 4°C. This process was 

reproduced with Gu-3 (M with 3 M GuHCl) to Gu-5 (M with 1 M GuHCl) and with U-3 (M with 5 M 

Urea) to U-7 (M with 1 M Urea), and a final dialysis at 4°C overnight was performed in 500 ml of M 

buffer with 1 mM PMSF. Proteins were finally stored in 50% (v/v) glycerol with 1 mM DTT and 0.1 

mM EDTA at -20°C. 

3.5 - PROTEIN ANALYSES 

3.5.1 - Protein SDS-PAGE gel staining 

Proteins were resolved on a denaturing 10% polyacrylamide-SDS gel (Criterion XT Bis-Tris gel, Bio-

Rad) and the Precision Plus Protein All Blue standards (Bio-Rad) was added as a standard. Proteins 

were separated by electrophoresis in 1X MOPS buffer (XT MOPS Running buffer; Bio-Rad) at 150V. 

The gel was then washed three times in Milli-Q water and proteins were colored with Coomassie blue 

stain (Bio-Safe Coomassie stain; Bio-Rad) for 1 hr at room temperature with gentle agitation. Stain 

was removed and the gel was washed twice for 1 hr at room temperature and once overnight at room 

temperature with Milli-Q water. Coomassie blue stained protein gels were finally dried on a filter 

paper (Whatman) using a vacuum gel dryer for 2 hrs at 65°C. 

3.5.2 - Western blotting 

Proteins were resolved on a denaturing 10% polyacrylamide-SDS gel (Criterion XT Bis-Tris gels, 

Biorad) and transferred onto a nitrocellulose membrane (Hybond ECL, Amersham) in 20 mM Tris, 

150 mM Glycine and 20% (v/v) ethanol at 400 mA for 2 hrs at 4°C.  

Immunoblots of GST-tagged proteins were blocked in 5% (w/v) non-fat dried milk in PBST (1X 

PBS containing 0.1% (v/v) Tween-20) overnight at 4°C. Membranes were probed with primary HRP-

conjugate mouse anti-GST antibody (1:25,000 dilution, Amersham) in 5% (w/v) non-fat dried milk in 

PBST for 1 hr at room temperature, and washed three times with PBST for 10 min and two times with 

1X PBS for 10 min at room temperature. Immunoreactive bands were detected by using the Super 

signal West Dura chemiluminescent substrate (Pierce), according to the manufacturer’s instructions 

and revealed on X-ray autoradiography Hyperfilm ECL (Amersham). 

Immunoblots of HisV5-tagged proteins were blocked in Odyssey® blocking buffer (LI-COR) 

overnight at 4°C. Membranes were probed with primary mouse anti-V5 antibody (1:5,000 dilution, 

Life technologies, Invitrogen) in Odyssey blocking buffer supplemented with 0.1% (v/v) Tween-20 for 

1 hr at room temperature, and washed three times with PBST for 10 min. Membranes were then 

probed with secondary IRDye 680-conjugated goat anti-mouse antibody (1:8,000 dilution, LI-COR 

Biosciences) in Odyssey blocking buffer supplemented with 0.1% (v/v) Tween-20 and 0.01% (v/v) 

SDS for 45 min at room temperature, and washed three times with PBST for 10 min and two times 
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with 1X PBS for 10 min. Immunoreactive bands were detected with the Odyssey infrared scanner (LI-

COR). 

3.5.3 - Mass spectrometry 

His-tagged purified protein fractions obtained by both IMAC and centrifugation in sucrose gradient 

were separated on SDS-PAGE gel, followed by coloration with Coomassie blue stain. The 69-kDa 

band detected in samples purified by sucrose gradient, and both 69-kDa and 75-kDa bands detected in 

samples purified by IMAC were excised from the gel using a scalpel and washed first in 500 µl of 

methanol for 10 min, then in 500 µl of Milli-Q water for 5 min, and finally in 500 µl of methanol for 

10 min. Proteins were then digested in 100 mM NH4CO3 pH 7.9 with 5 ng/µl of trypsin (Sequence 

Grade Trypsin, Promega) in a final volume of 30 µl at 37°C overnight. Peptides were desalted and 

concentrated by using ZipTip® µC18 (Millipore) pre-equilibrated in 50% (v/v) acetonitrile and 0.5 % 

formic acid (v/v) and washed with formic acid 1% (v/v). Peptides were eluted in 1 µl of 80% (v/v) 

acetonitrile and 0.2% (v/v) formic acid containing 3 mg/ml of α-cyano-4-hydroxy-cinnamic acid 

(HCCA) matrix, and spotted on a metallic MALDI target plate (Applied Biosystems). Tandem mass 

spectra were acquired in reflectron mode with acceleration voltage of 25 kV on a 4800 Plus MALDI-

TOF/TOF™ analyzer (AB SCIEX) equipped with a YAG 200-Hz laser (355 nm). MS and MS/MS 

data sets were retrieved using the Data Explorer® software (Applied Biosystems), and trypsin 

autolysis products were used to calibrate spectra. Data sets analyses are described in section 4 -. 

3.5.4 - Reverse transcriptase activity assay 

RT activity was assayed at 37°C in 14 µl of reaction medium containing 10 mM KCl, 10 mM MgCl2, 

50 mM Tris-HCl at pH 8.0, 5 mM DTT, 0.05% NP40, 1 µg of poly(rA)-oligo(dT)12-18 (Amersham), 

and 10 µCi of [α-32P]dTTP (3,000 Ci/mmole, Perkin-Elmer). Reactions were started by the addition 

of either 5-8 µl of purified protein sample, 0.03-0.5 units of SuperScript II reverse transcriptase (Life 

Technologies, Invitrogen) diluted in equivalent volume of the same buffer than those in which are 

stored purified proteins used in the assay, or 5-8 µl of the buffer in which purified proteins are stored. 

Reactions were performed for 10-120 min and stopped by addition of EDTA (50 mM final). 

Radioactive products were spotted on a DE81 filter (Whatman) which was washed twice in 2X SSC. 

After drying the membrane and expose it overnight on a phosphor screen (Molecular Dynamics 

PhosphorImager System; GE Healthcare Bio-Sciences), radioactive spots were detected by the Storm 

system (GE-Healthcare Bio-Sciences) and data were analyzed with ImageQuant software (GE 

Healthcare Life Sciences). 

RT activity of His-tagged proteins contained in RNP particles were assayed as described above with 

either 0.1 OD260 units of RNPs, the equivalent volume of buffer in which RNPs are stored, or 0.03 

units of SuperScript II reverse transcriptase diluted in equivalent volume of the buffer in which RNPs 

are stored. Reactions were performed in 14 µl of previously described reaction medium supplemented 

or not with 1 µg of RNase A (Sigma Aldrich). 
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4 - BIOINFORMATICS 

The Pl.LSU/2 IEP amino acid sequence was used as a query in a BLASP (version 2.2.26) research 

against the complete genome sequence of E. coli BL21 (DE3). The expected threshold was settled at 

10, and the filter of low complexity regions was applied. 

ClustalW (version 2.0.12) was used to align amino acid sequences of Pl.LSU/2 IEP and retron EC86 

reverse transcriptase with default settings. 

The tridimensional structure of GST-IEP and HisV5-IEP were predicted using the I-TASSER server 

(http://zhanglab.ccmb.med.umich.edu/I-TASSER/). The 3D structure models presenting the higher 

confidence level were retrieved for each protein (C-scores of -1.51 for GST-IEP and -1.00 for HisV5-

IEP models), and analyzed using Jmol software (version 13.0.1) and the 3D molecule viewer 

component of Vector NTI® Advance 11.0 (VNTI; Life Technologies). The molecule surface was 

calculated in VNTI by using the Connolly surface method (Connolly ML 1983; Connolly ML 1993). 

The analysis of each MALDI-TOF/TOF data set obtained for the 69-kDa bands of HisV5-IEP (WT 

and mtDD-) purified by IMAC and for the 69-kDa and 75-kDa bands purified by sucrose 

centrifugation consisted in peptide fingerprint mass mapping using the search program MS-Fit 

(http://prospector2.ucsf.edu). The UniProtKB/SwissProt annotated database (without restriction in 

species; 517787 entries in the database in the version dated 2011.07.06) was used and the settings 

were one missed cleavage allowed, requirement of minimum 4 peptides that match with the input data, 

and a mass tolerance of 20 ppm.  

Predicted MS data set for the sequence of Pl.LSU/2 IEP was generated by in silico tryptic digestion 

using the MS-digest program (http://prospector2.ucsf.edu) using default settings. For each predicted 

parental ion, the program also generates predicted MS/MS data set theoretically obtained after parental 

ion fragmentation. Experimental MALDI-TOF/TOF MS spectra (MS data) were then manually 

compared to the MS data set from in silico tryptic digestion of Pl.LSU/2 IEP, and experimental 

MS/MS spectra of 4 selected parental ions were then manually compared to theoretical MS/MS data 

set from the corresponding in silico predicted parental ions. 

The isoelectric point of the Pl.LSU/2 IEP was predicted using the iep application of the EMBOSS 

software, version 6.3.1 (Rice P et al. 2000).  

 

http://zhanglab.ccmb.med.umich.edu/I-TASSER/
http://prospector2.ucsf.edu/
http://prospector2.ucsf.edu/
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1 - PLASMIDS MAPS 
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ABSTRACT 

Integrating vectors are widely used in gene therapy for stable and long-term transgene expression. In 

ex vivo hematopoietic gene therapy approaches, HIV-1-derived lentiviral vectors can thus be used to 

transduce hematopoietic progenitors. The biological potency of the vector is expected to correlate 

positively with the frequency of transduced cells and also with the number of integration (VCN, vector 

copy number) per cell. However, the use of these vectors that cannot target transgene integration into 

host chromosome may lead to insertional mutagenesis. In this regard, the safety of integrating vectors 

remains a significant concern in clinical applications. We first evaluated the level of transduction of 

hematopoietic progenitor cells at the single-cell level by measuring VCN in individual colony-forming 

cell units using an adapted quantitative PCR method. We showed that the frequency of transduced 

progenitor cells and the distribution of VCN in hematopoietic colonies may depend upon experimental 

conditions including features of vectors. 

On the other hand, the use of vectors that can target the integration of the transgene into a specific-

site of the host genome would overcome genotoxicity issues related to integrating vectors. While site-

specific integrative approaches based on engineered nucleases such as Zinc-finger nucleases or 

Meganucleases are currently developed, we evaluated the use of a group II intron for genomic 

targeting. Group II introns are self-splicing mobile elements found in prokaryotes and eukaryotic 

organelles. They can integrate into precise genomic locations by homing, following assembly of a 

ribonucleoprotein complex containing the intron-encoded protein (IEP) and the spliced intron RNA. 

Engineered group II introns are commonly used tools for targeted genomic modifications in 

prokaryotes but not in eukaryotes, probably due limited catalytic activation of currently known group 

II introns in eukaryotic cells. The brown algae Pylaiella littoralis Pl.LSU/2 group II intron is uniquely 

capable of in vitro ribozyme activity at unusually low level of magnesium. As this intron remains 

poorly characterized, we purified recombinant Pl.LSU/2 IEP expressed in Escherichia coli and 

showed that the protein displays a reverse transcriptase activity either alone or associated with intronic 

RNA. The Pl.LSU/2 intron could be engineered to splice accurately in Saccharomyces cerevisiae and 

splicing efficiency was increased by the maturase activity of the IEP. However, spliced transcripts 

were not expressed. Although intron splicing was not detected in human cells, and homing of 

Pl.LSU/2 in E. coli and S. cerevisiae could not be demonstrated, these data provide the first functional 

characterization of the PI.LSU/2 IEP and the first evidence that the Pl.LSU/2 group II intron splicing 

occurs in vivo in eukaryotes in an IEP-dependent manner. 
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