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Abstract

The study of high-throughput Molecular Biology offers unprecedented opportunities for
understanding cell mechanisms and diseases. In particular, Genome-Wide association
studies have become powerful tools to detect genetic variants associated with diseases.
This PhD thesis focuses on several key aspects of the new computational and method-
ological problematics that have arisen with such research.

Notwithstanding the widespread use of Genome-Wide association studies, their results
have been questioned, in part because of the bias induced by population stratification.
Many strategies are available to account for population stratification but their perfor-
mances differ according to numerous parameters. We propose a robust comparison study
of these methods. Their advantages and limitations in different stratification scenarios are
highlighted in order to propose practical guidelines to account for population stratification
in Genome-Wide association studies.

We then focus on the inference of population structure that has many applications for
genetic research. In addition to be used to account for population stratification in asso-
ciation studies, it can provide information for evolutionary and demographic studies. We
present in this manuscript a new clustering algorithm called SHIPS (Spectral Hierarchical
clustering for the Inference of Population Structure). This algorithm was applied to a set
of simulated and real SNP datasets along with several of the mainly used algorithms in
the field to propose a comparison of their performances.

Finally, the issue of multiple-testing in Genome-Wide association studies is discussed
on several levels. We propose a general review of the multiple-testing corrections and
discuss their validity for different study settings. We then focus on deriving gene-wise
interpretation of the findings that corresponds to multiple-testing between dependent
tests. We analyze the rationale of the methods designed to this end and then propose a
comparison of the most used in practice in order to determine the best strategy to obtain
valid gene-disease association measures.
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Résumé

Les récentes avancées en Biologie Moléculaires ainsi que le développement des puces et
techniques de séquencage ont mené les biologistes a considérer des études génétiques a
grande échelle. En particulier, les études d’association Genome — Wide sont devenues
un outil trés performant pour détecter les variants génétiques associés aux maladies. Ce
manuscrit de doctorat s’intéresse a plusieurs des aspects clés des nouvelles problématiques

informatiques et statistiques qui ont émergé grace a de telles recherches.

Les études d’association Genome — Wide sont trés répandues cependant leurs résul-
tats sont critiqués, en partie & cause du biais induit par la stratification des populations.
De nombreuses stratégies existent pour prendre en compte la stratification des popula-
tions mais leurs performances varient. Nous proposons une étude de comparaison de ces
méthodes. Leurs avantages et limites sont discutés en s’appuyant sur divers scénarios de
structure des populations dans le but de proposer des conseils et indications pratiques
pour prendre en compte la stratification dans les études d’association.

Nous nous intéressons ensuite a l'inférence de la structure des populations dans la
recherche génétique. En plus de permettre la prise en compte de la stratification dans
les études d’association, cela fournit des informations pour I'étude de I’évolution et de la
démographie des populations. Nous avons développé au cours de cette thése un nouvel
algorithme appelé SHIPS (Spectral Hierarchical clustering for the Inference of Population
Structure). Cet algorithme a été appliqué a un ensemble de jeux de données simulés et
réels et comparé a de nombreux autres algorithmes utilisés en pratique.

Enfin, la question du test multiple dans les études d’association Genome — Wide est
abordée & plusieurs niveaux. Nous proposons une présentation générale des méthodes
de tests multiples et discutons leur validité pour différents schémas d’études. Nous nous
concentrons ensuite sur 'obtention de résultats interprétables aux niveaux des génes,
ce qui correspond a une problématique de tests multiples avec des tests dépendants.
Nous discutons et analysons les différentes approches dédiées a cette fin et proposons une
comparaison des plus utilisées en pratique, afin de déterminer la meilleure stratégie pour
obtenir des mesures d’association géne-maladie valides.
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Preface

General background

Genetic disorders research uses the discovery of Genetics and Molecular Biology that
decrypted the structure of the genetic information. The human genome is actually com-
posed of several chromosomes that correspond to DNA sequences. In recent years, many
advances have been made to identify the genes, that are portions of a DNA sequence, and
understand their functions. The Human Genome Project highlighted that 99.9% of the
information contained in the 20,000-25,000 genes that compose the genome is common
for all individuals. It is then in the remaining 0.1% that is the key that differentiates
individuals. As a matter of fact, certain portions of the genome are not identical from
an individual to another and we call an allele a version of the genetic text of such a
polymorphic portion.

In addition, research of Genetics and Genetic Epidemiology led to the differentiation
of two types of genetic diseases. Monogenic diseases result from the modification of a
single gene while complex (or multifactorial) diseases are the result of the combined effect
of several genes and of the environment. The analysis of such complex diseases have led to
the development of many new technological, computational and analytical methods. This
has motivated approaches that aim to understand the underlying complex mechanisms
of diseases, i.e. what are the genes, the proteins or the flawed signaling and metabolic
pathways that intervene in the disease, in order to provide therapies. As a part of this
process, the pharmaceutical industries, such as the French company Pharnext!, aim to
provide therapeutic solutions.

The classical R&D approaches to find therapeutic molecules are usually based on the
"one drug, one disease" paradigm under which a single drug is used to treat a single yet
often multifactorial disease. The novel strategy proposed by Pharnext is on the other
hand based on pleotherapy. Pleotherapy aims to identify the best combination of active

1http ://www.pharnext.com/



molecules in order to restore the molecular pathways perturbed in each disease and ad-
dresses the shortcomings of the standard R&D approach that has shown its limits in terms
of efficacy and safety. It allows targeting several molecular 'nodes’ in a disease-perturbed
pathway and thus helps to increase the treatment efficacy and safety.

In this strategy, one milestone step, that is also part of the classical approaches in
research of genetic diseases, is to identify genes, that are bound to have a role in the
mechanism of a disease. This can be done by the use of Genome-Wide association studies
that arose with the development of Genetic Epidemiology. These studies usually aim to
screen large portions of the genome in order to detect genetic markers, and by extension
genes, associated with diseases. More precisely, individuals affected by a disease (called
cases) are compared to healthy individuals (called controls) in oder to detect genetic vari-
ations, i.e. alleles, that are significantly different between the two groups with regard
to the disease. The results of such studies are used to complete the constitution of the
Pharnext Genetic Association Database that is an important component to unravel dis-
eases mechanisms.

With the recent improvement of high-throughput genotyping technologies, the usage
of Genome-Wide association studies have become widespread in genetic research. These
studies are however criticized as they involve complex settings and analytical methods
that can lead to biased results. As a matter of fact, the high dimension of the genetic
data, the simultaneous testing of many markers or the necessity to account for the com-
plex genetic structure of human populations are, among others, tricky issues that have
raised doubts about the relevance of these studies’ findings.

The development of methods in Statistical Genetics is therefore very important to
improve these studies, to ensure that they are correctly conducted and provide a proper
interpretation of their findings. To this end, many research groups and laboratories in
Genetics, Mathematics or Statistics therefore dedicate part of their work or collaborate
to enhance the treatment of complex genetic data. For instance, the French laboratory
Statistics and Genome? is a research unit in Statistics that focuses on networks, evo-
lution and statistical methods for Genetics and Genomics.

This PhD was designed on the basis of a CIFRE? convention in collaboration between
the company Pharnext and the Statistics and Genome laboratory and focuses on their
practical research needs and methodological developments. We aim to provide practical
indications and guidelines that answer the questions raised by the treatment and the
analysis of complex genetic data, especially in the case of Genome-Wide association studies
and to develop methods that allow to improve certain aspects of the genetic research.

thtp ://stat.genopole.cnrs.fr/
3CIFRE: Conventions Industrielles de Formation par la REcherche



The next section provides a brief overview of the problematics we focused on during
this PhD and that we present in this manuscript.

Manuscript overview

This manuscript is organized in five chapters. Each main chapter begins with an intro-
duction to precise the context and introduce the notions that are then developed and ends
with a discussion of the results.

In a first introductory chapter we present the statistical and genetic notions that are
necessary for a proper understanding of the rest of the manuscript. After an initiation
to the statistical hypothesis-testing, we introduce several concepts of the Genetics, Pop-
ulation Genetics and Genetic Epidemiology fields. This is also the occasion to detail the
notion of genetic diversity. We then present the Genome-Wide association studies by
providing indications on each step of these studies and discussing the reasons that might
affect their results. Finally, we propose a definition of population stratification and ana-
lyze its causes and effects on genetic association studies.

The second chapter of this manuscript focuses on accounting for population stratifi-
cation in Genome-Wide association studies. Many strategies are available to account for
population stratification but their performances differ according to numerous parameters.
After a presentation of the classical association testing approaches and of those account-
ing for population stratification, we propose a robust comparison study of these methods.
Their advantages and limitations in different stratification scenarios are highlighted in
order to propose practical guidelines to account for population stratification in Genome-
Wide association studies.

We then focus, in a third chapter, on the inference of population structure, which
represents an important part of our PhD work. In addition to be used to account for
population stratification in association studies, this inference can provide information for
evolutionary and demographic studies. To this end, many algorithms have been proposed
to cluster individuals into genetically homogeneous sub-populations. We first introduce
and discuss some of these algorithms and then present a novel approach that we developed
during this PhD. We therefore detail our clustering algorithm called Spectral Hierarchical
clustering for the Inference of Population Structure (SHIPS), based on a divisive hier-
archical clustering strategy allowing a progressive investigation of population structure.
This method takes genetic data as input to cluster individuals into homogeneous sub-
populations and estimates the optimal number of such sub-populations. SHIPS is then
applied to a set of simulated and real SNP datasets along with several of the mainly used
algorithms in the field to propose a comparison of their performances.



The fourth chapter of this manuscript is dedicated to the issue of multiple-testing in
Genome-Wide association studies that is discussed on several levels. These studies aim to
test many markers to detect associations and are therefore susceptible to be biased by the
multiple-testing problem inherent to conducting numerous statistical tests. We propose
a general review of the multiple-testing corrections and discuss their validity for different
study settings.

We then look more in detail at one of the last steps of genetic association studies that
is deriving gene-wise interpretation of the findings. This task demands the aggregation
of the results obtained on sets of markers that are usually correlated and therefore cor-
responds to a specific case of multiple-testing with dependent tests. Many approaches
have been developed to do so. We analyze these methods and their rationales and then
propose a comparison of the most used in practice in order to determine the best strategy
to obtain valid gene-disease association measures.

Finally, the last chapter corresponds to a conclusion of this manuscript. The first
objective of this chapter is to review and summarize the main results presented in the
manuscript. We then evoke the different perspectives that our PhD work has opened
concerning the analysis of genetic data and principally the Genome-Wide association
studies.



Chapter

Introduction

The first chapter of this manuscript introduces the statistical and biological notions nec-
essary to the understanding of our work.

We first provide some statistical background knowledge about hypothesis-testing which
is indispensable to the conduct of genetic studies.

We then define some genetic concepts such as the genome and its features. Concepts
such as the mechanisms leading to diversity, the Hardy-Weinberg equilibrium or the link-
age disequilibrium are presented. We then outline different fields of research in Genetics
that are Population Genetics and Genetic Epidemiology. We introduce the basis of genetic
studies which implies discussing the etiology of diseases, the types of genetic markers and
the various possible study designs that one can encounter.

A third section is dedicated to the Genome-Wide association studies that are the main
focus of this manuscript. The different steps of such studies are detailed: from the data
collection and analysis to the assessment of the validity of the findings. Two important
causes of bias in these association studies are highlighted: population stratification and
multiple-testing issues. The analysis of these two points is part of the research conducted
during this PhD and will be developed later in this manuscript.

In a last section, we present in more details the notion of population structure and
population stratification. We explain its origin along with the different types of struc-
tures and determine how and why this phenomenon can induce a bias in Genome-Wide
association studies.

1.1 Statistical concepts

This section introduces the notion of hypothesis-testing that is important for the under-
standing of the manuscript.
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Definition

Hypothesis-testing is a decision procedure that uses statistical theory. It aims to deter-
mine the plausibility of a statement by analyzing how likely is a result, observed from
certain data, to have occurred by chance alone or to validate the statement. First, hy-
potheses are made about the data and then a statistical procedure is applied to determine
the probability that the result is due to chance alone.

Formally speaking, two hypotheses are considered. The hypothesis we are interested
in, called the alternative hypothesis (H;), and the hypothesis that we use to assess H;
that is the null hypothesis (Hy). The rationale of hypothesis-testing is to assume that the
data are drawn from H, and to evaluate how likely it is that the observed result would
then occur. If it is not likely that such a result occurs under Hj then the alternative H;
is favored.

Usually, a test statistic (S) is defined to assess these hypotheses. A way to consider
how meaningful is § is to assess the probability that a particular value of this statistic
(8°%) would occur by chance under the null hypothesis.

The null hypothesis is used to derive the null distribution of the test statistic. This
distribution serves as a reference to describe the variability of S due to chance under H,.
The hypothesis-testing procedure compares the observed test statistic S to the null
distribution and computes a statistical confidence measure called p-value to summarize
the result. The p-value is defined as the probability that a test statistic at least as large
as the observed one would occur in data drawn according to H:

p-value = Py, (S > S?)

A small p-value indicates that the test statistic lies in the extremities of the null
distribution which suggests that the null hypothesis does not accurately describe the ob-
servation.

Interpretation of a statistical test

In practice, determining whether an observed test statistic is statistically significant re-
quires comparing its corresponding p-value to a confidence threshold (a) also known as
level of significance. When the p-value is smaller than «, the null hypothesis is rejected
with sufficient confidence. Conversely, if the p-value is above the threshold, the observa-
tion is not sufficiently inconsistent with the null hypothesis which is not rejected. The
result is considered as non-significant.

Many studies use a threshold o = 5%, historically suggested by Fisher who argued
that one should reject a null hypothesis when there is only 1 in 20 chance that it is true
(Fisher 1925). It is however possible to select other thresholds as there are no particular
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statistical reasons for using o = 5%. The choice of the significance threshold actually
depends on the costs associated with false-positives and false-negatives, and these costs
may differ from one experiment to another.

When a statistical test is performed, depending on whether the null hypothesis is true
or false and whether the statistical test rejects or does not reject the null hypothesis, one
of four outcomes will occur: (i) the procedure rejects a true null hypothesis (false-positive
or type-I error), (ii) the procedure does not reject a true null hypothesis (true-negative),
(iii) the procedure rejects a false null hypothesis (true-positive) and (iv) the procedure
does not reject a false null hypothesis (false-negative or type-II error). The true state and
the decision to accept or reject a null hypothesis are summarized in Table 1.1.

H, is not rejected H, is rejected

Hy is true  true-negative (1 — «) false-positive / Type-I error rate («)

H, is false false-negative / Type-II error rate () true-positive / Power (1 — f3)

Table 1.1: Outcomes of a statistical test.

Defined that way, the p-value of a test appears simply as the probability of false-
positive and the corresponding threshold « corresponds to the false-positive (or type-I
error) rate.

Another value is presented in Table 1.1 and corresponds to the type-II error rate [3,
that is the probability of false-negative. We usually consider 1— (3, the statistical power of
the test instead. The statistical power corresponds to the probability of rejecting the null
hypothesis when the alternative hypothesis is true. Formally speaking, it corresponds to
Py, (rejecting Hy) and is function of the test significance level . The power of a statistical
test is used to determine what is its potential to detect true-positives. As statistical power
and significance level are dependent, a trade-off has to be found to properly manage false-
positive and false-negative rates. This is a way of selecting the significance level relevant to
the data studied and also to compare different approaches. Given a common significance
threshold «, the best test at the level « is the one maximizing the power 5. The power can
be calculated exactly when the distributions are known, otherwise it requires estimation
procedures. We will present in Section 2.4.5 methods to estimate the power of a test.
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1.2 Genetic concepts

1.2.1 Genome and genetic information

Genetics is a science studying heredity, that is the transmission of traits within a species
from generations to generations. The first theories were proposed by Gregor Mendel in the
mid-19th and determined that the transmission of traits was carried out through entities
that we nowadays call genes. Consecutive research provided a more global understanding
of genes and more generally of the genetic information. The entirety of the hereditary
information of an individual is called the genome. It is composed of one or several
chromosomes that are oriented sequences of 4 different molecules called nucleotides (or
sometimes bases). The 4 nucleotides are the Adenine, the Thymine, the Cytosine and the
Guanine and are usually represented by A, T, C or G. Such sequences of nucleotides are
called DNA (Desoxyribo Nucleic Acid) sequences. A gene is actually a portion of a DNA
sequence. Figure 1.1 corresponds to a graphical representation of the genetic concepts
presented here.

Figure 1.1: Representation of the genetic information contained in one human
cell. This representation is the property of the Mayo Foundation for Medical Education
and Research.

The alphabet {A, T, C, G} constituting the DNA is the same for all species. Also, it
was discovered by J. Watson and F. Crick that the DNA is shaped as a double helix as
shown in Figure 1.1. However the structure of the genetic information can vary between
species. For example, a bacteria has only one chromosome whereas humans have 22 pairs
of homologous chromosomes and 1 pair of sexual chromosomes.

Recent research initiated by the Human Genome Project' have led to the genotyping
of the entire human genome and pointed out that there are about 20,000-25,000 genes

lyww.ornl. gov/hgmis/home.shtml
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present in the human DNA. These genes are more commonly called protein-coding genes.
Indeed through a certain process the information contained in these genes is used to
synthesize proteins that have a main role in the functioning of an organism.

Only less than 5% of the genome is constituted of genes. The rest of the genome is
composed of sequences for which the function is known such as regulatory sequences for
instance and a majority of sequences for which their roles are still unknown.

1.2.2 Genetic diversity and Population Genetics

The genetic diversity corresponds to the total amount of different genetic features of a
species and is also called the gene pool of a species. As a matter of fact, within a species
the genomes of all individuals are not identical. We call a locus a specified position on
the genome and an allele a possible version of the genetic text at a given locus. We
say that a locus is monomorphic when only one allele is possible (i.e. all the individuals
share the same genetic text) and polymorphic when there are several possible alleles at
the locus. A haplotype corresponds to a set of several alleles located on different loci
of the same chromosome. In humans, for a given locus, each parent passes down one
allele to the offspring. Each chromosome therefore carries two alleles at a given locus. We
call genotype this combination of alleles at a locus. We also say that an individual is
homozygous at the locus if the two alleles are the same and heterozygous otherwise.

The diversity of a gene pool can be assessed through several simple measures such as
the proportion of polymorphic loci, the proportion of individuals carrying polymorphic
loci (heterozygocity) or the number of alleles per loci.

Two main genetic mechanisms are responsible for the modification of the genetic text
and therefore the existence of variety of different alleles: mutations and recombinations.

Mutation: a mutation corresponds to the sudden and spontaneous modification of a
DNA sequence. It can for instance correspond to the modification of a base of a se-
quence, its deletion from the sequence or the insertion of a novel base in a the sequence
(Figure 1.2-A). Mutations can occur because of external factors as well as being set
off by the organism itself. A mutation can have various consequences depending on the
sequence that has been altered. It can lead to no effect or to either a positive or negative
effect on the organism depending on how the gene affected by the mutation is altered.
The original function of the altered gene can be preserved (e.g. resulting in the same
protein) or on the contrary the mutation can modify the gene function or regulations.
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A - Mutation
ATGCA

ATGTCA AT_CA AAGCA

B - Recombination

o

Figure 1.2: A - Three mechanisms of mutation of a single base. They correspond
to the insertion of a novel base, the deletion of a base or the modification of a base. B
- Mechanism of recombination by crossing-over. Two sequences are exchanged
during a crossing-over.

Recombination: a recombination event refers to the exchange of nucleotide sequences
between two DNA molecules. It is the case of the recombination between homologous
chromosomes by crossing-over (Figure 1.2-B). Such a recombination generally occurs
during the meiosis, that is the process leading to the formation of gametes. The probabil-
ity of recombination between two loci is proportional to their distance on the sequences.
As a consequence two genes distant on the DNA sequence are more likely to recombine.
On the other hand, two genes located close to each other on a chromosome are likely to be
inherited together. We say that these genes are linked and call this common inheritance
the genetic linkage.
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Population Genetics

Other mechanisms than mutations and recombinations can lead to diversify the gene
pool of a species and ensure that this diversity in passed down through generations.
Population Genetics studies these natural phenomena that are:

Natural selection: non-random process through which alleles (i.e. traits) are conserved
or tend to be bred out from a population according to the advantages that they
procure. Natural selection can for example be responsible for certain alleles to be
passed down from generation to generation as they confer to their bearers advantages
so they can live long enough to reproduce.

Genetic drift: mechanism explaining the frequency of alleles in populations due to
chance. As a matter of fact, each parent has two possible alleles at a given lo-
cus and passes only one to its offspring. The alleles of an offspring are therefore a
random sample of its parent alleles.

Population migration: this corresponds to the fact that individuals can migrate in
(immigration) or out (emigration) of a population. These migrations modify the
gene pool of populations. For instance after immigration, novel alleles can be intro-
duced into a population and after emigration certain alleles can disappear from a
population.

Mating process: certain species do not select their mates according to certain criterion
which corresponds to a random mating. In such a situation alleles are randomly
passed down to future generations. Other species have a selective mating process,
causing certain traits to be favored and therefore more bound to be transmitted
to next generations. Conversely, such a selective mating process can also lead to
certain alleles being bred out from the gene pool.

Linkage Disequilibrium

Another important notion in Genetics is the notion of linkage disequilibrium (LD)
that is not the same as the linkage introduced earlier. Linkage disequilibrium corresponds
to the non-random association of certain alleles. Considering two alleles located at two
different loci (not necessarily on the same chromosome), we say that these loci are in
linkage disequilibrium if the probability of observing this particular combination of alleles,
i.e. this haplotype, is not the same as the probability of this haplotype being randomly
formed from the alleles based solely on their frequencies. In the opposite case, when the
combination of two alleles is not more frequent than it would be under a random formation
of the corresponding haplotype, we say that the two alleles are in linkage equilibrium.
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The existence and level of linkage disequilibrium is influenced by the mechanisms pre-
viously described responsible for the genetic diversity.

Several measures exist to quantify the linkage disequilibrium. We consider two bi-
allelic loci with respective alleles a/A and b/B. Let p,, pa, pp and pp be the frequencies
of the different alleles and pu, pan, Pap and pa, the frequencies of the four corresponding
possible haplotypes. A first measure of LD is the linkage disequilibrium coefficient D that
quantifies the deviation between the observed frequency of a haplotype from the expected
if there was independence:

D = pap — PAPB = Pab — PalPb-

A second measure is the correlation coefficient that is a normalized version of D and
is expressed as
2 _ D?

PaPAPYDB
This coefficient is comprised between 0 and 1 and is more interpretable than D which
leads to a more common use in practice.

A null value of these indicators indicates that the two loci are in linkage equilibrium
and any non null value indicates that there is linkage disequilibrium. The strength of LD
can be quantified by the absolute value of these indicators.

r

Generally, linkage disequilibrium arises between loci located close to each other on
the sequence and decreases as the distance between them increases. Important values
of linkage disequilibrium have however been observed between distant loci (> 500kb).
Certain portions of the genome are in very high LD and are as a consequence passed
down to future generations without any allelic alteration. We call such regions LD blocks.
These blocks can be used to characterize the genome and their study is the source of
many interest.

Wide international projects such as HapMap? and the 1000genomes® projects have
described these LD patterns along the genome and provide the data to conduct further
analyses. Figure 1.3 presents an example of a LD pattern that is observable in the
human genome.

In practice the calculation of the LD can be complicated as the allelic frequencies are
usually known in a given sample but the corresponding haplotypic frequencies have to be
estimated. Several algorithms, based on the Expectation-Maximization (EM) algorithm
(Dempster et al. 1977, Excoffier and Slatkin 1995, Lou et al. 2003) or on Hidden Markov
Models (HMM) (Stephens and Donnelly 2003, Delaneau et al. 2008), have been developed

2http://www.hapmap.org
3http ://www.1000genomes . org
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to conduct the estimation of these frequencies and therefore assess the measures that we
have introduced. To study the linkage disequilibrium in very large genomic regions these
approaches might turned out to be quite demanding in terms of time and resources. In
order to have a global overview of the LD pattern a shortcut classically used is to consider
the correlation between the genotypes at two loci as a measure of LD. This correlation is
not the same as the correlation coefficient defined earlier but is quite similar and faster
to compute. This is for example an option proposed by the software plink? to analyze
genome-wide LD patterns. In addition, software such as Haploview® have been designed
to calculate and provide graphical representations of the linkage disequilibrium.

Chromosome 2

49290k 49250k 49200 k 49100k
T

NM_000145: FSHR ‘ ‘

Figure 1.3: LD pattern of a part of the chromosome 2 in humans. The more red
is a cell, the higher the linkage disequilibrium between the corresponding loci is (Simoni
et al. 2008).

Hardy-Weinberg equilibrium

One of the main principle of Population Genetics is the Hardy-Weinberg equilibrium
(HWE). This theory indicates that under certain assumptions, alleles and genotypes fre-
quencies are constant. We say that these frequencies follow the Hardy-Weinberg equi-
librium. The necessary assumptions to reach this equilibrium are (i) infinite population
size to minimize the effect of the genetic drift, (ii) random mating process, meaning that

4http ://pngu.mgh.harvard.edu/ purcell/plink/
Syww.broad.mit. edu/mpg/haploview/
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all possible mating are equiprobable, (iii) no mutations, no population migration and no
natural selection to avoid any phenomena leading to the disappearance or conservation of
certain alleles and (iv) the successive generations are discrete. Under these conditions it
is possible to derive the genotypic frequencies directly from the allelic frequencies. Let us
consider a bi-allelic locus with alleles a/A having frequencies p, and px = 1 — p, and the
possible genotypes (aa,aA, AA) with frequencies (pg, p1,p2), then under the equilibrium
we have:

po = p2
P1 = 2p.pa -
P2 = p124

In real life, one or several of the assumptions that have been made are bound to be
violated. The Hardy-Weinberg equilibrium actually defines an ideal state that is used to
study the changes in the genotypic frequencies.

When an assumption is violated, one can observe a deviation from the Hardy-Weinberg
proportions. According to the assumption concerned, the deviation differs. If the infinite
population size or the random mating assumptions are violated then the Hardy-Weinberg
proportions are no longer respected. On the other hand, if mutations, population migra-
tion or natural selection are in effect then the allelic frequencies change but the Hardy-
Weinberg proportions may still be respected at each generation.

Wright proposed a model to specify the genotypic proportions when the equilibrium
is no longer respected (Wright 1921). He introduced a consanguinity coefficient F and
derived the new frequencies:

po = P2+ Fpapa
P1 = 2papa — 2Fpapa .
pe = pi+ Fpapa

One can interpret this coefficient as indicating a deficit (F > 0) or conversely an excess
(F < 0) of heterozygous individuals. When F = 0, the population follows the Hardy-
Weinberg equilibrium. Figure 1.4 represents the genotypic frequencies at the equilibrium
or with varying F. As we will see in the rest of the manuscript this equilibrium is often
assumed in genetic studies.

1.2.3 Genetic Epidemiology
Definition

Epidemiology is the study of health related events such as health patterns and their
distributions, health characteristics or determinants influencing health. This science is
nowadays used to understand and control diseases, identify therapeutic targets and define
public health policies. Epidemiology does not aim to find causal relations between health
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Figure 1.4: A - Hardy-Weinberg proportions under the equilibrium. B - De-
viation from the equilibrium in function of the consanguinity coefficient F

(pa = 0.4).

events and certain determinants but assesses the likelihood of such relations in order to
provide directions and guide the analyses and the treatment of these events.

Epidemiological investigations can concern the etiology (analytical studies), the out-
break (prospective studies) or surveillance (descriptive studies) of diseases.

Genetic Epidemiology combines classical Epidemiology and Genetics. It corresponds
to the study of the inherited causes of diseases in families and in populations. A formal
definition of Genetic Epidemiology was proposed by Morton: "a science which deals with
the etiology, distribution, and control of disease in groups of relatives and with inherited
causes of disease in populations".

The emergence of this science has become possible with the discoveries of Cellular
and Molecular Biology. The understanding of the genome and of the different entities
constituting the support of the genetic information such as the DNA, the chromosomes or
the genes have created many research leads in the field of Genetic Epidemiology. Different
types of genetic studies exist and can be classified in several categories according to the
question they aim to answer.

Genetic risk studies or aggregation studies: is there a genetic component to the
disease and what is the contribution of this component compared to that of the
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environment?

Segregation studies: is the component formed of one or several genes? What is the
mode of inheritance of the disease?

Linkage studies: what is the location(s) of the disease gene(s) or genomic region(s)?

Association studies: what is the allele(s) associated with the disease? We refer to these
alleles as susceptibility alleles or disease susceptibility locus (DSL).

To achieve such research, the genetic epidemiological field benefits from the advances
of technologies and the support of several international projects that aim to analyze the
human genome. The Human Genome Project, the HapMap Project, dbSNP® or the
1000genomes Project have collected huge amount of genetic data, identified thousands of
genes and genetic patterns that render possible the study of genetic disorders.

Disease etiology

The etiology of a disease represents all the causes it originated from. Genetic diseases can
have two types of etiologies: monogenic (also called single-gene) or multifactorial (also
called complex).

Monogenic diseases are the result of the modification of a single gene in the organism.
These diseases are considered as rare even though they affect millions of people. To
date, over 10,000 monogenic diseases have been identified such as for instance Sickle Cell
Anemia, Haemophilia, Cystic Fibrosis or Huntington’s disease.

Monogenic diseases follow the Mendelian laws of inheritance but it is not the case of
all genetic disorders. Fisher first identified in 1918 diseases that have polygenic causes.
We consider nowadays multifactorial diseases that are caused by the combined effect
of several genes and environmental factors. The study of these diseases is a lot more
complicated due to the nature and the multiplicity of the factors concerned. Genetic
studies generally attempt to identify genes that are involved in such diseases and refer to
them as susceptibility genes as their role and implication cannot be ascertained. Example
of such diseases are Asthma, autoimmune diseases such as Type-1-Diabetes, cancers or
heart diseases.

Genetic markers

Before the 80s, the markers considered in Genetics were the genes that encode for easily
observable traits such as the blood type. Advances in Molecular Biology and the devel-
opment of novel technologies to manipulate DNA have led to the identification of other

6http ://www.ncbi.nlm.nih.gov/projects/SNP/
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markers based on the variation of the DNA sequences. Many of these markers exist such
as the Variable Number of Tandem Repeat (VNTRs or minisatellites), the Short Tandem
Repeat (STR or microsatellites) or the Single Nucleotide Polymorphisms (SNPs).

The SNPs are among the most widely used markers. They correspond to the variation
of a single base pair of a DNA sequence within a population. Most SNPs are bi-allelic,
meaning that they involve two possible different alleles (Figure 1.5). A SNP is there-
fore usually identified by its locus and its two possible alleles. To date, more than 180M
of SNPs have been identified and information about them are available in the dbSNP
database. Also, several millions of these markers are available in large datasets such as
those provided by the HapMap or the 1000genomes Projects. These markers can be lo-
cated in the intergenic regions, in the non-coding regions of the genes or in the coding
regions. These latter SNPs are very important as they can have a direct effect on the
function of the resulting protein.

Due to the unique location of the DNA variation that represent the SNPs, they can
arise in certain populations only. For this reason SNPs are very useful to differentiate and
analyze different populations. These markers are also at the origin of the Genome-Wide
association studies that we will present in Section 1.3.

Figure 1.5: Example of bi-allelic Single Nucleotide Polymorphism. This repre-
sentation was extracted from http://compbio.pbworks.com/.

Possible designs of the genetic studies

Genetics studies comprise two main types of study designs that are family-based studies
and population-based studies.
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The family-based study design corresponds to considering several families, trios (par-
ents and one offspring) or brotherhood (without parents). A design including twins also
exists to differentiate genetic effects from environmental effects.

As opposed to family-based studies, population-based studies refer to a design based
on unrelated individuals. The most widely used is the case-control design. Considering
a specific disease, a study based on such a design aims to identify genetic differences
between a population of healthy individuals (controls) and a population of diseased indi-
viduals (cases).

Family-based study is the design for aggregation, segregation and linkage analyses
while association studies can be based on both family or population-based designs.

In association studies, genetic markers are analyzed to determine which is the allele
associated with the disease. In a family-based design, cases are considered along with
their parents used as controls. Each parent passes one allele to the offspring which has
the disease. A classical approach to determine the allele associated is to compare the
proportions of alleles that have been inherited by the offspring to the proportions of
alleles that have not been transmitted. A significant difference in these proportions can
indicate a potential association. This method is formalized statistically under the name
of Transmission Disequilibrium Test (TDT) (Spielman et al. 1993, Spielman and Ewens
1996).

In a population-based design, classical epidemiological approaches can be used; the
genotypes of the cases are compared to those of the controls and significant differences
point out whether the marker can be considered as associated with the disease. Chapter
2 will explain more in details the strategies to assess the association between markers and
diseases in case-control studies.

An important question when conducting an association analysis is which of the two
designs is the best. A common bias in case-control studies can arise from an heterogeneity
between the two groups. Not only these groups have to be matched according to certain
features that could have an influence on the disease, such as the gender or the age, but
in the situation of genetic studies, other factors have to be taken into account. We
have briefly discussed the importance of the genetic diversity and the fact that certain
populations can be genetically different. In case-control studies it is necessary to account
for these differences, intrinsic to the population genomes, to avoid a certain bias. This
phenomenon is called population stratification and will be largely discussed in Sections
1.4 and 2.3. Selecting parents as controls can therefore be seen as an alternative to avoid
this bias. The recruitment of families is however more difficult to achieve than that of a
control population, which usually leads to studies with small sample size. In addition, it is
almost impossible to have access to the parents for late onset diseases. As a consequence,
difficulties can arise in both designs to select the individuals included in a studies.

It has however been shown, on basis of large simulations, that the case-control ap-
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proaches are more powerful than the family-based studies to identify marker-disease asso-
ciations (Risch and Teng 1998, Teng and Risch 1999). Moreover important research has
been conducted in recent years to improve the case-control design and take into account
the different sources of errors that could weaken this approach. We will present such
advances in Chapter 2.

From the candidate-gene to the genome-wide approach

A first approach for association studies is the candidate-gene approach. It consists in
focusing on the association between a disease and a selected set of genes. These genes are
usually of interest because of their potential roles in the etiology of the disease. A biolog-
ical prior knowledge is therefore necessary to select these genes. For instance candidate
genes can belong to a metabolic pathway known to intervene in the disease mechanism,
be identified through protein-protein interactions knowledge or be located in a region
that has already been pointed out by previous analyses. This information is available in
public datasets (e.g. KEGGT for metabolic pathways and STRING?® for protein-protein
interactions) and can be consulted to identify target genes.

An alternative to the candidate-gene approach consists in screening a very large por-
tion of the genome to search for markers associated with the disease. These Genome-Wide
association studies assume no prior knowledge on which genes might be relevant. With
the development of high-throughput genotyping technologies and the reduction of the
genotyping costs such analyses have become more and more feasible and popular.

The choice of a strategy depends on the aim of the study and the resources at the
disposal of the researchers. Genome-Wide scans are appealing especially for complex
diseases that result from moderate to small effects of several genes.

1.3 Genome-Wide association studies

Genome-Wide association studies (GWASs) usually correspond to case-control studies,
with unrelated individuals, that aim to scan a large portion of the genome to find associ-
ations between a disease of interest and genetic markers. We present in this section the
major steps of such studies from the data collection to the analysis techniques.

7http://www.genome.jp/kegg
8http://string—db.org/
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1.3.1 Data collection

Sample selection

The selection of samples participating to a genetic study is conducted among the general
population of consenting individuals. The sample selection depends on the study design.
As we discussed previously, selecting individuals is difficult whatever design is consid-
ered. A large number of samples allows a better statistical power to identify the genetic
associations therefore it is advised to get cohorts as large as possible.

In addition to the number of individuals considered it is also very important to be
sure of their states (case or control). This task can be more or less complicated accord-
ing to the type of phenotype considered. Certain diagnoses are straightforward while
others necessitate a more careful selection relying on precise criteria and demanding the
intervention of medical specialists.

In a case-control design it is necessary that the two groups of patients are comparable.
In order to ensure such a feature of the final cohort, individuals are included in a study
according to certain characteristics such as the gender, the age or the ethnicity.

In definitive, the sample selection can take benefits from a medical point of view,
to determine which sample is fit to be included in a cohort, but also from a statistical
point of view. The selection of a proper amount of individuals, as well as the creation of
homogeneous cohorts can be favored by the collaboration from the different researchers
involved in a study.

Marker selection

A useful genetic marker corresponds either to an etiological locus, in which case the
corresponding association is called a direct association (Figure 1.6-A) or is in linkage
disequilibrium with one, which corresponds to a indirect association (Figure 1.6-B).

Genome-Wide association studies are usually conducted on SNP markers. A reason
for this is the large amount of such markers available, the relatively low complexity and
cost demanded to genotype them and the valuable information that they carry. These
studies are based on the hypothesis known as ‘common disease - common variant’ which
stipulates that common diseases, usually complex diseases, can be explained by the com-
bined relatively small effects of many common variants, such as SNPs for instance. This
principle highlights the necessity of disposing of a consistent and relevant set of markers.

Three main marker selection strategies can be highlighted that are (i) random selection,
(ii) tagSNPs selection and (iii) gene-centered selection (Pettersson et al. 2009).

The random selection is usually adopted when no prior information is available about
the disease and the potential regions of the genome that could intervene in its mechanism.
With the development of high-throughput genotyping technologies, such selection can be
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Figure 1.6: A - Direct association: the marker investigated corresponds to the eti-
ological locus. B - Indirect association: the marker investigated is in LD with the
etiological locus.

performed on a massive amount of markers. The type and cost of such technologies
therefore greatly influence the selected sets of markers.

The tagSNPs selection is based on a certain type of SNPs. We have seen in a previous
section that certain sets of SNPs in linkage disequilibrium form LD blocks. A tagSNP
is a SNP among a LD block that carries the entirety of the genetic information of the
block by itself. Thus, due to the block-like structure of the genome, the selection of such
markers is sufficient to cover a large portion of the genetic information available (Balding
2006).

The gene-centered selection involves genotyping SNPs in proximity of the genes. For
markers to be efficiently selected that way it is necessary to know all the genes of the
genome. However, this selection process has the advantages of including biological a pri-
ori information indicating which gene might be involved in the disease etiology or was
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previously highlighted in a former study.

All these marker selection strategies are questionable. While the random selection
seems to cover the largest part of the genome, it is possible that certain interesting
markers are missed due to the random sampling process utilized to compensate the lack
of biological prior information. The tagSNPs selection has the disadvantage of focusing
on SNPs belonging to LLD blocks that might not be the only relevant ones. Finally, the
gene-centered selection tends to select SNPs located within, or close to a gene but excludes
the selection of SNPs that are located farther from the genes but may still have an effect
on their roles, such as SNPs located in regulatory regions for instance. An exhaustive
selection could encompass all aspects of the three strategies presented here. Note that
such selection is becoming more and more possible with the development of the new
generation sequencing.

SNPs selected for a study highly depend on the technology that is used and the markers
that they can genotype. The Illumina and Af fymetriz technologies are nowadays widely
used to genotype SNP markers. These two technologies, based on different approaches,
allow the genotyping of millions of SNPs that include tagSNPs and SNPs located within
the genes or on other loci on the genome. In practice, it has become usual to use these
chips to conduct association studies and the wide choice of markers they provide can be
used as a global marker selection strategy.

One last point needs to be taken into account when selecting the markers included in
a study. We have briefly evoked the problem of having cohorts of individuals genetically
heterogeneous. For now, one just need to known that considering quite large sets of
unlinked markers can be useful to tackle this problem. We will discuss more in detail why
such sets of markers are of use to account for the genetic heterogeneity in the following.

1.3.2 Data analysis

Once the samples have been selected and genotyped for the set of markers investigated,
the genetic data can be analyzed. Such analysis is usually composed of several steps.
First, as usual when statistically analyzing data, a pre-processing step is necessary. Then,
two strategies are available to identify the markers associated with the disease: the single-
marker and the multi-marker approaches.

Pre-processing of the data

The first step of a GWAS when the data is available is a preliminary one that consists
in formatting and ordering the data so that it can be properly analyzed. Given the large
size of such datasets, disposing of clear and clean data files is very important to accelerate
the analyses.

Also this pre-processing step focuses on determining the quality of the data (i.e. a
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quality control). Certain features of the data have to be investigated in order to determine
which samples or markers can reasonably be included in the analysis without leading to
incoherent results.

The quality control of the markers can include:

SNP call rate: usually one assesses the amount of missing data for each marker. The
SNP call rate is the proportion of genotypes per marker with non-missing data.
When the call rate is too low, we might suspect a problem with the SNP genotyping
step. Thus a threshold has to be set to remove these potentially poorly genotyped
SNPs. Classically a threshold of 95% is used. However this threshold has to be set
carefully because important markers could be spuriously removed. It is also impor-
tant to determine if the missing data is missing at random, i.e. in approximately
equal proportions between the cases and controls. Statistical tests are available to
determine the type of missingness. If a marker contains missing data at random,
one usually considers that it can be included in the study however the power to de-
termine its association is decreased. In the case the data is not missing at random,
usual approaches are to exclude the marker from the study or to impute the missing
data using imputation algorithms. Example of such algorithms can be found in
(Servin and Stephens 2007, Marchini et al. 2007, Li et al. 2010Db).

Hardy-Weinberg equilibrium: a second feature of the markers that is verified is the
Hardy-Weinberg equilibrium. In the case of a GWAS, it is reasonable to assume
that the Hardy-Weinberg assumptions hold so that each marker follows the equilib-
rium. In the case a marker deviates from the equilibrium then it is possible that
genotyping errors have been committed. A statistical test can be performed to de-
termine which markers follow or not the equilibrium. The markers deviating from
the equilibrium are usually excluded from the study.

Minor allele frequency: the minor allele frequency (MAF) of a marker represents the
frequency of its less frequent allele in a given population. SNPs with low MAF
have to be carefully examined. There are two reasons for this: (i) when a SNP
is genotyped, the heterozygous and homozygous genotypes (Aa and AA/aa) have
to be represented by the maximum of individuals to limit the genotyping errors.
SNPs with low MAF can lead to low proportions of heterozygous or homozygous
and therefore technical difficulties for the genotyping. (ii) SNPs with low MAF lead
to statistical tests with low power to detect associations. The SNPs with very low
MAF are generally removed from the study. Typically, a MAF threshold of 1-2% is
applied in a lot of GWASs. Note that when the number of individuals is important,
this threshold can be somehow less stringent.
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In certain GWASSs, and for the reasons explained above, a filtering on the number
of heterozygous is conducted instead or in addition to the filtering on the MAF.

SNPs with very low MAF are also refer to as rare variant SNPs. An accurate
genotyping of these markers has become possible with the new generation sequencing
and particular statistical tests aim to assess their association with the diseases.
These analyses are generally not part of a GWAS and constitute alternative studies.

Then, the quality control of the individuals includes:

Individual call rate: the individual call rate corresponds to the proportion of geno-

types per individual with non-missing data and is controlled, like for the SNPs, at
a certain threshold.

Identity by descent: analyzing the identity by descent allows to determine which sam-

ples are not independent (i.e. are related). Two or more alleles are Identical By
Descent (IBD) if they are identical copies of the same ancestral allele. For each pair
of individuals, the following probabilities can be estimated :

e /,: probability of sharing 0 allele IBD

e /,: probability of sharing 1 allele IBD

e /5. probability of sharing 2 alleles IBD

We define 7 the proportion of alleles shared IBD between a pair of individuals. This
proportion indicates the relation between them:

7%:0.5><Zl+2><22.

e 7 = 1: sample duplicate or monozygotic twins
o 7 =0.5: 1% degree relatives (full sibs, parent-offspring)
o 7 =0.25: 2" degree relatives (half-sibs, uncle/aunt-nephew /niece)

o 7 =0.125: 37 degree relatives (cousins, etc ...)

In a GWAS, samples have to be unrelated to ensure the validity of the association
tests. Thus, individuals that are too close to each other have to be removed. A
threshold is therefore applied to «. Usually, when two individuals are related, the
individual with the more missing data is removed. Furthermore, individuals that
are linked with a lot of others are excluded in priority.

The IBD calculation is a very important step in a GWAS but can be quite time
consuming. To that end, fast algorithms have been developed to calculate the IBD
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matrices between pairs of individuals (Pong-Wong et al. 2001, Kong et al. 2008,
Browning and Browning 2010).

Inbreeding coefficient: a feature of interest of the samples is the inbreeding coefficient
(F). This coefficient represents the proportions of homozygous markers of an indi-

O—-F

ok where O and E are the
observed and expected numbers of homozygous genotypes for the individual and
N is the number of markers considered for the calculation. Extreme values of this

coefficient can indicate that the individual was not correctly genotyped.

viduals. It is calculated for an individual by F' =

Gender mismatch: the gender of the samples is sometimes available along with infor-
mation about the sexual chromosomes. When discrepancies appear between these
two information, the corresponding samples are treated with precaution as there
could be other mistakes in their information.

Ancestry outliers: we have evoked that the cohorts of cases and controls have to be
genetically homogeneous. Samples that appears as outliers need therefore to be
identified. Methods to spot and deal with these individuals will be presented in
Chapter 2.

Single-marker approach

An initial natural approach to determine the markers associated with the disease is to
consider them one by one and to test them for association.

The main association tests based on the genotypes are the Armitage Trend test
(Cochran 1954, Armitage 1955) that aims to find a linear trend between the probability
of having the disease and the genotypes, the genotypic test that computes a Pearson
y? statistic or an exact Fisher test on the genotypic contingency table or the Hardy-
Weinberg test (Nielsen et al. 1998) that considers a deviation from the equilibrium in the
cases population as an indicator of association with the disease.

Other association tests are based on the alleles directly such as for instance the allelic

test that is an analogue of the genotypic test on the allelic contingency table.

Some of these association tests allow to consider different modes of inheritance of the
disease. These modes describe how the combination of the two alleles influence the prob-
ability of having the disease. The main modes of inheritance are additive, multiplicative,
recessive or dominant. Considering the correct mode of inheritance of a marker is usually
more appropriate to test for association, however this information is unknown. Generally
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an additive mode is assumed.

The most used single-marker association tests will be detailed and discussed in Chap-
ter 2.

Multi-marker approach

Complex diseases are generally due to the moderate or small effects of several markers.
As a consequence the single-marker approach may not be enough to determine the genetic
mechanisms intervening in the disease etiology. To this end, multi-marker analyses have
been developed. These analyses consider sets of markers, either in close proximity on the
genome or located at more distant positions, and focus on the combined effect of these
markers.

We refer to as genetic interaction or epistasis when several markers have a combined
effect on a disease. Considering all possible interactions of all possible markers is not
feasible. Indeed the number of such possible interactions is way to important to conduct
a complete investigation. Multi-marker analyses therefore attempt to 'smartly’ scan the
genome looking for significant sub-sets of markers that are associated with the disease.
Several approaches are devoted to this task:

Small order epistasis: usually in Genome-Wide association studies, an analysis of the
small order interactions (between two markers) is conducted. Certain statistical tests
allow to consider more than one marker and to test for the effect of the interaction
between two markers. Examples of such approaches are the Logistic Regression that will
be presented in Chapter 2 or statistical tests that compare the allelic association of two
markers between cases and controls or within cases only (Hoh and Ott 2003, Zhao et al.
2006). The development of statistical procedures to analyze interactions between two loci
is still a very live field in genetic research (Cordell 2009).

Haplotype analyses: a possible alternative to analyzing the genetic interactions is
to consider haplotypes. Approaches have been designed to determine which haplotypes,
that correspond to combinations of several SNP markers, increase the susceptibility to the
disease. Some of these approaches are based on simultaneous estimations of the haplotype
frequencies and association testing using EM algorithms (Zaykin et al. 2002) or stochastic
EM algorithms (Tregouet et al. 2004). Others have been developed to identify haplotypes
that show an excess of similarity in the controls compared to the cases (Tzeng et al. 2003,
Beckmann et al. 2005).

Large order epistasis: the small order epistasis methods presented above cannot be
applied to a large number of markers due to the computational cost of investigating higher
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order interactions or of phasing large haplotypes. Therefore other strategies have been
proposed to include a vast number of markers.

The SNP set based approaches consider sets of markers and identify the most relevant
ones through the use of a statistic characterizing each set. The sets of SNPs investigated
can be selected via the use of biological knowledge such as the proximity to genes or
haplotype blocks (Wu et al. 2010b). Other methods also allow the SNP sets to be selected
automatically such as with a moving window, according to their significance in the single
marker analysis (Hoh et al. 2001) or to the global significance of the corresponding region
(Guedj et al. 2006a).

Data mining approaches such as multifactor-dimensionality reduction (MDR) (Ritchie
et al. 2001) are also quite popular to assess the significance of sets of markers. This
method aims to pool multilocus genotypes into high-risk and low-risk groups and analyzes
the datasets through cross-validation to calculate the prediction accuracy of the different
sets.

The random forest method (Lunetta et al. 2004, Bureau et al. 2005) may be the method
that allows the analysis of the larger amount of markers simultaneously. It performs
random searches through the data by using bootstrap sampling. It generates multiple
classification trees based on the markers and their ability to separate the samples in
homogeneous groups. The whole set of tree is called a forest. The random forest method
produces a score for each marker that measures its importance and allow the selection of
several markers that have together a high capability to predict the disease.

1.3.3 Validity of the findings
Possible sources of bias and errors

Genome-Wide association studies can have several limitations that can affect the quality
of the results, that are the number of false-positives or the power to detect associations.
The limitations can be attenuated through a proper design of a study, a thorough quality
control of the data and adequate statistical approaches for the analyses (Page et al. 2003,
Pearson and Manolio 2008). Several causes of errors in GWASs can be highlighted.

Sample and marker features: the sample size is an important parameter as it directly
influences the power of a study. The larger the sample size is, the greater is the power to
finding association. In addition, a case-control design is based on unrelated individual,
hence the necessity to control criterion such as the IBD. Genotyping errors in certain
markers or samples can lead to erroneous results. The quality control of the data is
therefore a crucial step in a study to detect those markers or samples that need to be put
aside from the analysis.

Other features of the data can also have an effect on the power of a study. The power
depends on the MAF of the markers as well as on the linkage disequilibrium between the
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markers and the etiological loci in the case of indirect association (Zondervan and Cardon
2004).

Finally, the nature of the association between the marker and the disease also act on
the capacity to detect association. Strong associations are more simple to uncover than
weak associations. In addition, using a test based on the correct mode of inheritance
usually leads to a better power.

Population stratification: when the samples are selected it is important to match
certain features such as the gender or the age between cases and controls. It is also
important to match the samples according to other factors leading to having genetically
homogeneous groups. These factors are however unknown rendering the bias induced by
the structure of population quite tricky to take into account. False-positive and false-
negative associations can arise if the analyses are not carefully conducted to account for
this bias. Section 1.4 presents more in details the notion of population stratification and
Sections 2.3 and 2.4 examine solutions to take the genetic heterogeneity into account
when testing for association.

Multiple-testing: whether one considers a single- or multi-marker analysis, when many
statistical tests are conducted, the multiple-testing issue has to be taken into account.
Many findings of GWASs are actually false-positive results due to this issue. Section 4.1
will detail the problem and the solutions.

Replication

In a scientific process, the replication of the results is a necessary step to ensure their
reliability. In Genetic Epidemiology, the replication of the results has two main objec-
tives: confirming and providing more evidence in favor of some associations and ruling
out associations that arose due to certain biases (Kraft et al. 2009).

Despite all the precautions that are taken when designing and conducting a GWAS,
one cannot be sure of the pertinence of the results. These findings need to be replicated
in order to provide additional evidence of their reliability. A replication is usually another
study that can consider the same features than the original study or quite different ones.
It is possible to consider the same markers, genotyping technologies or study designs or
relatively different setups. For instance, a gene can be considered as replicated even if it
was represented by different markers in different studies. In addition to being difficult to
set up, the identical replication does not necessarily provide strong evidence. For instance
if a bias was present in the initial study, it might then also arise in the replication due to
the identical settings.

As a consequence, replication studies are preferable on similar but not identical fea-
tures compared to the initial study. Therefore, the confirmation of a results can provide
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evidence in favor of a finding. Nowadays, variants found in association with diseases have
to be replicated in order to be published in most of the high-profile journals (Nature 1999).

Another advantage of replication is that it can extend the scope of the original find-
ings. Replication through meta-analyses tend to reproduce the original findings on differ-
ent populations. Such replications lead to generalizing results found on one population
to a more general population.

Conversely, replication can have the opposite role. If a study based on a more robust
design and analysis finds results in opposition with a primary study, for instance the
non-replication of a marker, then the first findings can be discarded. Usually, in such
situation, a careful analysis of the two studies reveals a bias that led to finding a spurious
association in the first place.

The amount of genetic variants that have been replicated is still minimal (Gorroochurn
et al. 2007). This enforces the reasons to develop adapted strategies to obviate the bi-
ases, induced by multiple-testing or population stratification for instance, that weight on
GWASS results.

1.3.4 From the genetic markers to the genes

Genome-Wide association studies yield results at the SNP level, that are sets of SNPs
associated with the disease. It is however very useful to obtain results at the gene-level,
i.e. knowing which are the genes associated with the disease and the strength of the
association. As a matter of fact the gene can be considered as the unit of interest in Ge-
netics. It is for instance the genes that are considered to conduct gene-candidate study,
replicate association studies, and perform pathways or gene network analyses. For this
reason, a usual last step of a GWAS is the marker annotation. It corresponds to linking
the markers to the genes by determining their positions on the genome compared to the
genes (Cavalli-Sforza 1994).

As a result, all the genes included in a GWAS are represented by one or several
markers, usually in linkage disequilibrium due to the close proximity on the genome. In
order to associate to a gene a single significance measure of association it is necessary to
use statistical techniques that properly combine the information of the different markers
that represent it. Chapter 4 is partly dedicated to the presentation and the analysis of
these statistical methods.



30 1. Introduction

1.4 Population structure and stratification

1.4.1 Origin of population structure

Population structure relates the genetic heterogeneity that exists between individuals of
a population. This heterogeneity is a natural phenomenon resulting from biological and
evolutionary processes. We presented in Section 1.2.2 the different mechanisms respon-
sible for differences in DNA sequences of individuals, i.e. mutations and recombinations,
along with the processes leading to the genetic diversity, i.e. natural selection, genetic
drift, population migration and mating processes. These phenomena lead in time to sub-
populations genetically differing with regard to the frequency of certain alleles. For the
same reasons, disease prevalences’, allele penetrances'? or LD patterns may vary between
such groups (Cavalli-Sforza 1994).

As aresult, more or less important systematic differences exist between sub-populations.
The most important ones are found between ethnic and/or geographically distant groups.
For instance, certain populations such as Caucasian, African and Asian ones were sepa-
rated a long time ago and evolved separately so they were not touched by the exact same
evolutionary processes.

1.4.2 Types of population structure

Human populations have been differentiating themselves since many generations. To re-
late the underlying population structures several models have been proposed, principally
the island model (or K sub-populations model) and the clinal model (or isolation by
distance model) (Astle and Balding 2009).

The island model is based on the rationale that a population can be decomposed in
several sub-populations (also called islands). In this model, three types of structures can
be highlighted: discrete structure, admixture and hierarchical structure (Li et al. 2010a).

A discrete structure pertains to a population formed of several discrete sub-populations.
These sub-populations are discrete in the sense that they differentiated a very long time
ago and that individuals tend to mate within sub-populations. For instance a population
formed of Asian and African individuals.

A population is said to be an admixture when it is formed from the interbreeding
of individuals originating from previously separated populations. As opposed to discrete
structure, which corresponds to the already separated populations, we sometimes refer
to admixture as continuous structure. African-American populations are examples of

9The total number of cases of a disease in a given population at a specific time.
10T his is relatively to a disease, the proportions of individual carrying the alleles and having the disease.
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admixed populations. Usually, the disappearance of an obstacle between populations,
whether it is geographical or cultural, is a cause for the creation of admixed populations.

Finally, we call hierarchical structure a population that has a structure that com-
prises both discrete and admixed sub-populations. To a certain extent, it is possible to
consider that most of the human populations can be decomposed into hierarchical struc-
tures. We therefore refer to as cryptic structure for such structure as it contains different
patterns.

Figure 1.7 provides a graphical representation of these types of population structures.
These representations are often used in genetic research and are based on a statistical
method that is the principal component analysis thoroughly explained in Chapter 2.
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Figure 1.7: Graphical representation of different types of population structure.
A - Discrete structure with 3 populations represented by the first 2 principal compo-
nents. B - An admixture represented by the first principal component and the admixture
proportions.

The clinal model does not assume the existence of sub-populations but considers that
genetic variations are continuous and therefore exhibit a clinal pattern. In such a model,
individuals tend to mate with those located in their vicinity. This model turns out to be a
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good fit for certain populations such as European populations for instance. We can observe
in Figure 1.8 that these populations are not discrete and form a continuous gradient of
genetic variations represented on the first two principal components. In addition, it is
remarkable how the geographical structure of European populations is retrieved in this
graph.
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Figure 1.8: Principal component analysis of European populations. This plot is
obtained from the first two principal components of 1,387 European individuals (Novembre
et al. 2008).

We will see in the following that the type of population structure is very important as
it pertains to different ancestral evolutionary processes.

1.4.3 Population stratification in GWASs

We usually refer to as population stratification when the population considered in a study
is structured. We briefly indicated in previous sections that population stratification could
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induce a bias in association studies. We detail in this section when and why there is
actually a bias along with its effect on the findings of a study.

A confounding bias

In epidemiology we call a confounder a variable that is both correlated with the dependent
variable and the outcome. The resulting bias that can induce such a variable is called a
confounding bias. In association studies, the population membership'! of the individuals
can be a confounder of the relation one wish to analyze between a marker and a disease.
We usually speak of population structure instead of population membership.

Population structure is therefore a confounder when it is both correlated with the
disease (the phenotype) and the marker (the genotype). This means that both the links
PS-genotype and PS-phenotype described in Figure 1.9 exist.

Differences
Differences in disease
in allel? prevalence
frequencies or relative
Population Structure risk
Genotype Phenotype

Figure 1.9: Population structure acting as a confounder. The association between
the marker and the phenotype becomes a secondary association hidden behind the asso-
ciation through the confounder.

Let us consider a case-control association study with a structured population, a disease
of interest and a marker investigated. There is a correlation between the population
structure and the genotype because the genetic heterogeneity of the actual sub-populations
leads to different allele frequencies and therefore different genotype frequencies between
these sub-populations.

The link with the phenotype is due to both biological reasons and to the study design.
Indeed, sub-populations may not be affected by the disease in the same way due to
differences in the prevalence or in the risk of being affected. This is however not enough to

i e. the membership of each individual to its actual sub-population
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create a correlation between the population structure and the phenotype. This correlation
exist when, in addition, the sampling design is not appropriate, i.e. there is not the same
proportion of cases and controls drawn from the sub-populations. Figure 1.10 presents
an example of a situation with two distinct sub-populations and a sampling such as there
are more controls in the first one and more cases in the second one.

In such a situation, the genetic pattern of the individuals are more likely to be due to
their belonging to one of the sub-populations than to their states: case or control. As a
classical association test compares a marker between cases and controls, a bias can arise
because the result of such a comparison may reflect the comparison of the marker between
the two sub-populations and not between the two states.

Population | Population Il

@D Healthy samples
@@ Diseased samples

Figure 1.10: Sampling design that would lead to a bias. Such an imbalanced selec-
tion of cases and controls would associate the genetic pattern of the healthy individuals
to population I and the genetic pattern of the diseased individuals to population II.

The case-control design is usually the more convenient to account for confounding.
The usual techniques consist in matching cases and controls in appropriate proportions
according to the strata defined by the confounding factors. Ideally, samples are selected
within populations considered as homogeneous as possible. The issue of population strat-
ification could then be resolved if it was possible to consider the exact same proportions
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of cases and controls in each sub-population. This is however not possible in practice.

The very complex structure of human populations makes it impossible to determine
truly genetically homogeneous groups of individuals and the knowledge of the actual
sub-populations is not available. Even though usual study designs tend to consider sam-
ples from the same ethnicity and coming from close geographical locations, the cryptic
structure of the populations may lead to the existence of sub-groups of individuals with
differences in their genetic patterns. In addition, certain population structures such as
admixtures do not correspond to discrete structures and render even more complicated
the determination of sub-populations.

Moreover, with the recent availability of large cohorts of patients genotyped for many
markers and many diseases, it becomes more and more usual to conduct association studies
on structured populations.

Effect on association

Classically, to investigate the association between a marker and a disease one has to com-
pare this marker between the cases and the controls. Because of population stratification,
such a comparison may be biased and lead to finding a spurious association or to missing
a genuine one (Deng 2001, Marchini et al. 2004, Freedman et al. 2004, Heiman et al. 2004).

Let us consider the situation of Figure 1.10 where population stratification is in effect
and assume that the marker investigated is not associated with the disease. A classical as-
sociation test, e.g. the Trend test, compares the genotypes distribution between the cases
and the controls. Because controls are mainly represented by the first sub-population,
cases by the second one and due to the differences in genotypic proportions between the
two sub-populations, the marker may appear to be differentially distributed between cases
and controls. However, this distribution of genotypes is due to the genetic differences be-
tween the sub-populations not between the two status groups. This represents what we
call a spurious association.

On the other hand if we assume that the marker investigated is associated with the
disease, it is possible that the differences in genotype frequencies between the two sub-
populations balance the differences due to the status and then hide the existing associa-
tion.

A third situation can occur when the marker is associated with the disease and the
differences in genotype frequencies due to stratification inflate those due to the associ-
ation. In this case, the marker could appear to be strongly associated with the disease
while it corresponds actually to a weak association.

The classical population-based association tests evoked in Section 1.3.2 are vulner-
able to population stratification. In presence of population structure their false-positive
and false-negative rates are inflated.
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1.4.4 Analysis of population structure

Identifying the underlying structure of populations is of great interest for the genetic
research. It allows the study of evolutionary relationships between populations as well
as learning about their demographic histories (Cavalli-Sforza 1994, Bowcock et al. 1994,
Mountain and Cavalli-Sforza 1997, Pritchard et al. 2000a, Lee et al. 2009). In addition,
it offers solutions to account for population stratification in association studies.

During the last decades, many statistical methods focusing on studying population
structure and its consequences have been designed. Three main endgames of these meth-
ods can be outlined:

e Detecting whether a population is structured and gauging the complexity of the
structure.

e Identifying the actual sub-populations and the relations of the individuals to these
sub-populations.

e Accounting for population stratification in association studies.

We will present in Chapters 2 and 3 these statistical approaches dealing with pop-
ulation structure. Chapter 2 will focus on the statistical tests that allow to account for
population stratification. Chapter 3 will be dedicated to methods inferring the structure
of the populations.



Chapter

Accounting for Population
Stratification in Genome-Wide
association studies

We presented in the Introduction the different steps of a Genome-Wide association study.
We also emphasized the potential sources of errors that can affect the validity or the inter-
pretability of the findings. We focus in this chapter on the bias induced by the structure
of the populations. Considering a single-marker analysis strategy to look for association,
we examine the approaches dealing with population stratification.

We first introduce the background of association testing, classical statistical tests to
identify markers associated to diseases, along with some statistical background necessary
to the understanding of more complex tests.

We then present the different strategies that exist to account for population strat-
ification in Genome-Wide association studies. We also propose a comparison of these
strategies based on a wide and realistic set of simulations covering various types of pop-
ulation structure. Our goal being to provide a practical answer to the question: what is
the best approach to avoid the bias induced by population stratification in any genetic
study? The results of this analysis have been published in PLOS ONE (Bouaziz et al.
2011).

2.1 Introduction

2.1.1 Genetic data

Genetic data available for association studies generally comprises different types of in-
formation concerning the individuals and the markers genotyped. The first information

37
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corresponds to a table made of the genotypes of all the samples for all the markers. In-
formation relative to the individuals are also available such as the status (case or control)
and sometimes additional information such as the gender, the age or the ethnicity. The
information about ethnicity is seldom available and can be more or less precise according
to the database.

A last piece of information pertains to the markers and can include their possible
alleles or their positions on the genome. We consider here the case of SNP markers.

These different information can be represented as tables. Table 2.1 displays the in-
formation about the samples and the genotypes and Table 2.2 concerns the information
about the markers.

SNP, SNP, ... SNP, | Status Gender Age Ethnicity
11 0 2 e 2 D f 26 English
i9 1 2 e 1 H f 31 English
in 1 0 . 1 H m 42 German

Table 2.1: Samples information. D = diseased, H = healthy, f = female, m = male.

Name (rsID) Chr Position
M, rs123456 1 1234555
M, rs234567 1 1237793

M, 1s234567 1 1237697

Table 2.2: Markers information. Each SNP marker has a unique rsID as identifier in
international databases.

For certain of these variables, it is necessary to provide more formal statistical nota-
tions that we will conserve in the following of this manuscript. We call

X = (z45)1<i<n

I<j<p
the n x p genotype matrix for the n individuals and the p markers. Each term z;; cor-
responds to the genotype of sample ¢ for the marker 5 and is coded 0, 1 or 2 according
to the number of variant alleles. For a SNP with alleles a and A where A is the variant,
the possible genotypes are aa (coded 0), aA or Aa (indistinguishable and coded 1) and
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AA (coded 2). This coding of SNP data is one of the most used in practice. In certain
settings it corresponds to the coding for an additive model, that is usually assumed. Also
it has the advantage of being interpretable in a qualitative manner, comparing the differ-
ent genotypes to the reference genotype, or in a quantitative manner by measuring the
amount of reference allele.

The phenotype vector is denoted by

Y = (y17"'7yn)a

where y; is the status of sample i coded 0 (healthy) or 1 (diseased).

A specificity of genetic data is that usually the number of markers is greater than the
number of individuals, p > n. This high dimension of the data requires the use certain
specific statistical techniques.

2.1.2 Measures of association

When testing for association it is both important to statistically determine if the asso-
ciation is significant and to assess its degree. The statistical tests are used to provide
evidence of the association and measures of association are used to quantify it. We
present two of these measures that are the relative risk (RR) and the odds-ratio (OR).
These two measures compare the probability of being affected by a disease in function of
the exposure to a certain risk factor. This factor can have several levels and a reference
level that corresponds to no exposure. In the case of genetic association, the risk factor
can be the marker, and the different levels the genotypes aa, aA/Aa and AA with A
being the variant allele. To introduce the relative risk and the odds-ratio we consider as
a risk factor a marker o with the three genotypes coded 0 (the reference), 1 or 2 as differ-
ent levels. We call p,—; the probability of being affected by the disease with the genotype 7.

The relative risk is the risk of being affected by the disease relative to the exposure.
It corresponds to the ratio of the probabilities of having the disease for two levels of the
factor. The relative risk of the genotype ¢ compared to the genotype 0 is

Pr=i
Pz=0 ‘

The interpretation of the relative risk is as follows. If RR;/y = 2 then the individuals
with genotype ¢ are two times more likely than those with genotype 0 of being affected by
the disease. More generally, if RR;/y = 1 then there is no difference between the genotypes
0 and 4, if RR;/o > 1 then it is more likely to be affected by the disease with the genotype
i than with the genotype 0 and if RR;/, < 1 it is the opposite.

RR;)0 =
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Cases Controls
T =1 a b
=10 @ d

Table 2.3: Contingency table of a risk factor compared to the disease. The
quantity a, b, ¢ and d are the individual counts for each combination status/factor.

Using Table 2.3, the relative risk can be estimated by

a/(a+b)
c/(c+d)

The odds-ratio is defined as the ratio of the odds. An odd reflects the likelihood of
being affected by a disease given a certain exposure. It corresponds to the ratio of the
probability of being affected by the disease with a certain exposure and the probability
of not being affected with this same exposure.

RR;)o =

Pz=i
1 — Pz=i .
The odds-ratio of being affected by the disease is

Oa::i =

O:)::'i _ px:z(l - px:O)

/0 Oxzo (1 - px:i)px:D

Odds-ratios are always positive. If OR;,o = 1 then there is not more risk of being affected
with the genotype 7 than with the genotype 0. If OR;)y > 1 then there is an increased
risk with the genotype ¢ compared to the genotype 0 and if OR; /o < 1 it is the opposite.

An advantage of the odds-ratio compared to the relative risk is that it treats the two
variables (status and exposure) symmetrically. This means that instead of considering
the probability of being affected by the disease given the genotype, the odds-ratio can be
defined using the probability of having a certain genotype given the status.

Using the Table 2.3, the odds-ratio can be estimated by

ad

OR;j0 = =

Odds-ratios are preferably used in genetic studies because they can be easily estimated.

Indeed, it is also possible to estimate odds-ratios using logistic regression as we will present
in the next section.

In addition, their interpretation is intimately linked to that of the association test.

Determining that a marker is not associated with the disease, i.e. the genotype and the
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status are independent, is equivalent to having all possible odds-ratios between the disease
and the different genotypes being equal to 1.

2.1.3 Linear and logistic regressions

Regression analyses are methods that model the relationship between a dependent variable
y (also called outcome) and one or several independent variables zy,...,z,. Regression
models estimate the conditional expectation of the dependent variable given the indepen-
dent variables E(y | z1,...x,). A regression function is used to model this expectation

E(y [ @1, 2p) = f(1,...,2p, B),

where (3 is a vector of unknown parameters (or coefficients) that is estimated and quantifies
the effect of each variable on the outcome. In most of the situations, 8 = (f,...,3,) as
there is one parameter per variable.

A regression model can be re-written as

y:f(wl,...,xp,ﬁ)+€,

where € represent a noise also called error.

A regression analysis is based on a sample of independent individuals, for which the
different variables have been observed, and that is used to estimate the unknown param-
eters. Classical assumptions of regression models are that (i) the errors are uncorrelated,
(ii) they have means of zero conditional on the independent variables (E(e | z1,...z,) = 0)
and (iii) they have constant variances across observations (V(g) = 0?). Also these models
assume that (iv) the independent variables are indeed independent from each other and
(v) they are observed without errors.

We present in this section the linear and logistic models that are used in association
studies to analyze the relationship between a phenotype (y) and a marker (z).

Simple linear regression
Linear regression models assume that the function f correspond to a linear function.
y=oa+pPr+e

The parameter o corresponds to the constant independent variable also called the inter-
cept. This model is used when the outcome is a continuous variable.
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The estimation of the parameters can be conducted using the ordinary least square or
the maximum likelihood methods.

It is possible to assess the significance of the parameter [, and therefore determine
whether or not the corresponding variable x explains the outcome, by assuming that the
errors are normally distributed and testing the hypothesis

}¥QZ {B 220}.

Usually a t-test is conducted to assess this hypothesis.

Simple logistic regression

Principle

The logistic regression is used when the outcome is a categorical variable. This regression
model is therefore more suitable for association testing as the phenotype is a discrete
variable. The expectation of the phenotype conditional on the genotype (E(y | x)) is
actually equivalent to the probability of being affected by the disease conditional on the
genotype (P(Y =1 x) = p,). The logistic function is used to model this probability.

ea+ﬁx
Pe = T g
which is equivalent to
logit(p,) = a + Bu.

This model leads to values of p, always comprised between 0 and 1 which is valid for
a probability.

The logistic model can also be expressed in terms of odds
log(O,) = a+ fu.

The parameters of the logistic model can be interpreted using the odds-ratio. If we
consider two genotype values, x4 and xpg, that x can take then

ORxA/xB = flra—wn) )

log(ORy, /o) = B(xa — xB).

The advantage of the logistic regression is that it therefore allows the estimation of the
odds-ratio through the parameters. These parameters can be estimated using a maximum
likelihood method.
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Significance of the parameter
Two methods can be used to test the significance of the parameter which corresponds to
the null hypothesis

HQ : {ﬁ = 0}
The likelihood ratio test compares the likelihood of the null model with only the
intercept and an alternative model that also includes the genotype. The statistic is

likelihood of the null model
likelihood of the alternative model

D = —2log( ),
and follows a x?(dfy — df;) distribution under the null where df; and df, are the degrees
of freedom of each model.
Another approach to test one coefficient is the Wald statistic
Z = P —,
v(pB)

that follows a standard normal distribution N (0, 1) under Hj.

Extension to multiple variables
It is possible to include several variables X = (xy,...,z,) into the logistic model that
generally becomes

p
logit(P(Y =1 a1,...,1,)) = Bo+ Y _ By,

Jj=1

where 3, corresponds here to the intercept and 8 = (5, ...,3,) is the parameter to be
estimated.

The interpretation in terms of odds-ratio can still be applied except that in such a
model these measures are calculated for a certain variable z; considering that all other
variable are kept fixed at a certain level.

In order to test the parameter it is necessary to introduce certain quantities that are
the score function 5

S(B) = 2B

L(Y,B),
and the Fisher information

1,(8) = —E(%ca/, 8)),
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where L(Y, 3) is the log-likelihood of the model.

To test the null hypothesis of nullity of ¢ coefficients

Hy:{ By =...=f,=0},

it is possible to use the likelihood ratio test that is expressed in the same way as with one
variable or the score test that is based on the statistic

S = S(Bu,)'T; (Buy)S (Bu,).

where BHO is the maximum likelihood estimator of § under H,. This statistic follows a
x%(q) distribution under the null.

2.2 Classical association tests

The main association tests can be based on the genotypic contingency table (Table 2.4),
indicating the number of individuals for a given genotype and status, or on the allelic
contingency table (Table 2.5), indicating the number of individuals for a given allele and
status. These tables are represented using a marker with alleles a/A and genotypes aa,
aA or Aa that are not differentiable and AA.

aa aA/Aa AA Total
Case DO D1 D2 ND
Control H, H, H, Ny
Total NO N1 N2 N

Table 2.4: Genotypic table. This table considers a SNP with alleles a and A. D;
represents the number of cases with the genotype ¢, H; the number of controls with the
genotype ¢ and N; the number of individuals with the genotype .

a A Total

Case D,=2Dy+ Dy Dp=2Dy+D; 2Np
Control H,=2Hy+ H, Hs=2H,+ H;, 2Ng
Total Na :2N0+N1 NA =2N2+N1 2N

Table 2.5: Allelic table. This table considers a SNP with alleles ¢ and A. D, and D4
represent the number of cases with the allele a or A, H, and H4 the number of controls
with the allele ¢ or A and N, and N4 the number of individuals with the allele a or A.
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We present the three main unadjusted association tests that are the genotypic test,
the Armitage Trend test and the allelic test. For all these tests we introduce both the
formal definition and the interpretation in terms of logistic regression.

2.2.1 Genotypic test

The genotypic test compares the proportion of the different genotypes between the cases
and the controls. It is directly based on the genotypic contingency table. This test does
not assume any mode of inheritance for the marker. The null hypothesis of this test is

PDy = PoPD ; PHy, = DPoPH
Hy: < pp, = pipp i PH, = P1PH ¢,
P, = P2PD ; PHy = D2PH

where pp, and py, are the proportions of diseased and healthy individuals with the
genotype 7, p; is the proportion of individuals with the genotype ¢ and pp and py are the
proportions of diseased and healthy individuals. The corresponding test statistic is

(D TR (- M)

SG - Z NpN; + NuN;

=0 N N

This statistic is a Pearson statistic and follows a y?(2) distribution under H,.

This test corresponds to the following regression model

logit(p) = o+ Brz1 + Baza,
Hy : {p1 = B, =0},

where z; and z, are dummy variables that represent the genotypes. The genotype aa

is coded (z1:0>; aA/Aa is coded (Zl:l) and AA is coded (Zl:l )

20=0 20=0 zo=1

2.2.2 Armitage Trend test

The Armitage Trend test (Cochran 1954, Armitage 1955) aims to find a linear trend be-
tween the probability of having the disease and the genotypes. In this test, the genotypes
are ordered which leads to gaining a degree of freedom. The order of the genotypes as-
sumes that there is a quantitative effect depending on the number of reference allele. The
null hypothesis is

Do D1 b2

and the test statistic can be expressed according to (Sasieni 1997) as

Hy: {PP0 = PDr_ PDay
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_ N[N(D1 +2D,) = Np(Ny +2N,)]?
"~ NpNy[N(Ny +4N,) — (N; + 2N,)?)

St
This statistic follows a x?(1) under the null hypothesis.

This test corresponds to a logistic regression model using the genotype variable x
coded 0, 1 or 2 such as indicated in the previous section.
logit(p) = a + fx,
H() : {ﬁ = 0}

An advantage of this test is that it allows to account for different modes of inheritance
(Slager and Schaid 2001). By modifying the coding of the genotype variable z, it is
possible to also consider dominant and recessive modes.

2.2.3 Allelic test

The allelic test is the analogue of the genotypic test based on the alleles instead of the
genotypes. It compares the alleles counts between the cases and the controls. This test
is based on the null hypothesis

Hy - { Pp. =PaPp i PH. = Pabh }
PDy = PAPD ; PH, = PAPH

and uses the Pearson test statistic

2N[(2Dy + D1)(2Hy + Hy) — (2Dg + D1)(2H, + Hy)J?

S =
4 2Np Ny (2N + N1)(2No + N )

that follows a x?(1) distribution under Hj.

A logistic regression model using the variable z corresponding to the allele (z = 0 for
a and z = 1 for A) can be associated to this test.

logit(p) = a + Sz,
HQ : {ﬁ = 0}

As each individual contributes to two observations (one for each allele), this test can
be biased. Alternative allelic tests that obviate this bias have been designed (Guedj et al.
2006b).
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2.3 Association tests accounting for population struc-
ture

In the Introduction we have indicated and explained how population stratification can
bias the classical association tests, by confusing the relationship between the marker and
the disease. This can lead to finding spurious associations or to missing genuine ones.
Using family designs and the corresponding Transmission Disequilibrium Test can avoid
this bias, however the complexity of conducting such studies have led to the necessity of
developing approaches to account for stratification in case-control designs. We present in
this section different strategies that allow to account for population structure while test-
ing for association. The main strategies are the Genomic control, Structured Association,
principal component analysis based approaches, regression models and meta-analyses.
The next section is dedicated to a comparison of these approaches.

2.3.1 Unlinked marker selection

Many of the approaches that we will present are based on sets of unlinked markers. These
markers are not in linkage disequilibrium between each other and with the disease sus-
ceptibility markers. The use of such markers allow to get information about the genetic
diversity of the populations. If the markers were linked, the information would be redun-
dant and the ancestry of the population could be incorrectly estimated. These ancestry
estimations are then used to correct for stratification.

The selection of such markers is not straightforward as it is not always possible to
know which markers are in LD with the disease susceptibility markers. It has however
been suggested that selecting markers at random among the whole set of markers available
in a study should lead to the selection of such loci. Indeed, given the massive amount of
markers, the probability of picking markers in LD with the disease susceptibility markers
can be considered as relatively low (Pritchard and Rosenberg 1999).

In order to ensure that all markers are in linkage equilibrium with each others, an
approach called pruning has been developed. Pruning strategies use sliding windows and
progressively exclude markers from the dataset to ensure that the linkage disequilibrium
between the markers that are still included in the data does not exceed a certain thresh-
old. A pruning strategy is proposed in the software plink and is often used in practice
as a first step in many genetic studies.

Another question of interest is how many of such markers should be use to get a
proper assessment of the individual ancestry. Several studies have studied that question,
assessing the quality of the genetic history obtained with different numbers of unlinked
markers. Each method actually needs a different amount of markers to be accurate.
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A solution to reduce the number of markers and ensure the quality of the ancestry
estimation is to use ancestry informative markers (AIMs). These markers are the one
providing the most information about the ancestry of the individuals. Certain methods
have been designed to identify such markers (Paschou et al. 2007, Zhang et al. 2009a).
It is however not always possible in practice to use AIMs as these markers are often
population specific and might not be suitable for all studies.

2.3.2 Genomic control
Methodology

The Genomic control (GC) is one of the first method proposed to account for stratification
(Devlin and Roeder 1999). Tts idea is based on the distribution of the Armitage Trend
test statistic. Under the null hypothesis, this association test statistic should follow a
y? distribution. In the case there is population stratification this distribution is inflated
so that the statistic follows a non-central y2. Figure 2.1 is an example of such inflated
distribution.

Data quantiles

Theoretical quantiles

Figure 2.1: Inflated x? distribution. This Q-Q plot shows the inflation of the test
statistic distribution in presence of stratification.

The Genomic control aims to estimate a factor A called variance inflation factor that
represents the degree of stratification and is used to correct the observed statistic distri-
bution to fit a y? distribution.

The factor A is calculated using the information contained in several markers included
in the study and not only the one being tested.
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median(Sy,...,Sr)
0.456

A:

where (Si,...,S.) are the Trend test statistics for L non-associated and unlinked mark-
ers' and 0.456 is the median of the expected 2 distribution if there was no inflation. The
factor A is then used to correct the distribution of the test statistic of each marker tested
so that the new distribution S?/A can be compared to a x? distribution.

Comments

In addition to correct the test statistic, the factor A\ can be used as an indicator of the
presence and the degree of stratification. In practice, we usually consider that a X inferior
to 1.05 indicates that there is no stratification (Price et al. 2010). The higher is A, the
more important the stratification can be considered.

The Genomic control relies on one major hypothesis that the inflation factor is unique
for all markers. This is the main weakness of the method as it is not likely that all the
SNPs equally reflect the stratification. In addition, the number of markers necessary to
properly estimate A depends on the complexity of the structure of the population. On
the other hand, this method is computationally easy to program and runs rather fast.

Alternatives to the classical Genomic control have been proposed such as the GCmean
that uses an estimation of A based directly on the mean of the test statistics instead of on
the median (Reich and Goldstein 2001), the GCF that considers A to be variable having
a distribution to account for its variability (Devlin et al. 2004) or the robust Genomic
control (RGC) that considers different association models to calculate the adjusted test
statistics (Zheng et al. 2006).

All these Genomic control approaches offer a way to detect and quantify any kind of
stratification as well as to take it into account when testing marker-disease associations.

2.3.3 Structured Association

Structured Association is a class of methods that uses unlinked markers to determine
the presence of population stratification, infer details about the population structure and
conduct association testing while accounting for the corresponding bias.

'i.e. markers that are not in linkage disequilibrium.
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Detecting population stratification

Pritchard et al. proposed a statistical test to detect population stratification (Pritchard
and Rosenberg 1999). This method uses L unlinked markers that are also not in linkage
disequilibrium with the potential candidate markers so they are not associated with the
disease. The rationale of this test for stratification is that if there is no stratification,
the set of unlinked markers should not be associated with the disease. By combining the
association test statistics of each of these markers (Si,...,Sy), it is possible to compute

a global statistic
L

Se=Y_5

i=1

that follows a y? distribution under the null hypothesis
Hy : {None of the L unlinked markers is associated with the disease }.

The number of degrees of freedom of this statistic equals to the sum of the number of
degrees of freedom of each individual test.

The amount of unlinked markers to conduct such a test depends on the complexity of
the population structure involved.

Association testing

Performing a Structured Association test corresponds to inferring the population structure
and then testing for association conditionally on the inferred structure (Pritchard et al.
2000b, Satten et al. 2001). We present here the association test proposed by Pritchard
et al. and available in the software Strat?. The method to infer population structure
assumes the existence of K genetically homogeneous sub-populations and assigns the in-
dividuals to these sub-populations or determines how much of each individual’s genome
comes from each sub-population®. The algorithm used by Pritchard et al. to conduct this
inference is Structure and will be further detailed in Chapter 3 that is dedicated to
the inference of population structure. We therefore assume here that the structure of the
population have been inferred and present the adjusted association test.

The main test for Structured Association, Strat, is based on a likelihood ratio test
and the null hypothesis

Hy : {The genotype frequencies are independent from the disease status }.

thtp ://pritch.bsd.uchicago.edu/software.html
3We call admixture proportions the corresponding quantities.
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Let x = (z1,...,x,) be the marker tested, y = (y1,...,y,) the states of the n individu-

als, ¢ = (qix) 1<i<n the admixture proportions, that are the proportions of individual ’s
1<k<K
genome coming from the k —th inferred sub-population and p = (py;)i1<k<x the frequency
0<y<2

of genotype j in sub-population k. We also define Py = {p;;;1 < k < K,0 < j < 2} and
Pr={pj;;1<k<K,0<j<2,y=0or 1} the genotype frequencies under Hy and H;.
As a matter of fact, under the null, the genotypes are independent of the status, however
under H; these frequencies are different between the cases and the controls.

The likelihood ratio test corresponds to the ratio of the distributions of x under H,
and H,
o Py, (; P1, q)
 Pry (5 Po,q)

This ratio includes information about the inferred population structure. It actually cor-
responds to a ratio stratified between the different sub-populations.

A(z)

The two distributions can be estimated by

K
Pry(i = J | Po,qyy) =D tinPrj,
k=1

K
k=1

The estimation of ¢, that corresponds to the population structure, is conducted using the
software Structure and the estimations of ) and P, using EM algorithms.
This test statistic has an unknown distribution, therefore its significance is empirically
calculated by
#({A(z®) > A(z),b=1...B})
B Y

p — value =

where # () represents the cardinal function and (2*)),<,<p are B simulated random draws
from under H,.

This statistical test is computationally quite intensive. First the estimation of the
parameters ¢, Py and P; have a high computational cost, then the computation of an
empirical p-value leads to repeating these estimations many times.

Note that another Structured Association approach was proposed in (Satten et al.
2001) and simultaneously infers the population structure and performs the association
test. This approach is however rarely used in practice.
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2.3.4 Principal component analysis based methods

Principal component analysis (PCA) is a way of exploring data by creating axes of vari-
ation, that are linear combinations of the original variables and represent the variability
of the data. Each axis of variation account for as much variability as possible that has
not been accounted for in the previous axes. This property of the method allows one to
analyze a reduced number of variables, called principal components (PCs), while keeping
most of the relevant information. This feature is particularly important in genetic studies
where the number of markers analyzed is very large.

Principal component analysis applied to genetic data

PCA method

The most used PCA-based method was introduced in 2006 (Price et al. 2006, Patterson
et al. 2006). The authors suggest that main axes of variation of a PCA applied to SNP
data represent the ancestral genetic variability between individuals and therefore provide
a way of analyzing population structure and accounting for stratification. This method
is implemented in the software Eigensoft®.

Let us consider the n x p genotype matrix X as introduced in Section 2.1.1. We
first assume that all the markers are unlinked. To conduct a PCA of this matrix it is first
necessary to center and normalize the data. We therefore define the column means

LS

_ =11

Hj=——""
n

and the observed allele frequency of each marker

R DYy
Py = 2+ 2n

Y

where the missing entries are excluded from the computation. The new genotype matrix
X is defined so that each entry is

Ty = _tiy M
p;(1=pj)

If the markers are not unlinked, then it is possible to regress each marker on the d
preceding markers and to use the residuals of such regressions as new variables. This op-
eration allows to account for the linkage disequilibrium between the markers. Patterson
et al. suggest that considering d = 1 or 2 is generally sufficient.

4http ://genepath.med.harvard.edu/"reich/Software.htm
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One then computes a singular vector decomposition of the n x n covariance matrix
%XX’. This yields a set of principal components (PCh,..., PC,_1). These principal
components represent the coordinates of the individuals on several sub-spaces and allow
among others to account for population stratification or to cluster individuals into homo-
geneous sub-populations. Genetic and genealogical interpretations of these sub-spaces are
also available. One can refer to (Patterson et al. 2006, McVean 2009) for further details.

Assessing the number of significant principal components
An important issue with PCA applied to genetic data is to determine the number
of significant principal components, that is the number of principal components that
actually describe a structure of the population. A possible technique to do so is to use
the eigenvalues and the Tracy-Widom distribution (Tracy and Widom 1994). It has been
demonstrated that after a suitable normalization, the largest eigenvalue follows the Tracy-
Widom distribution (Johnstone 2001). Patterson et al. extended this theory to determine
a statistic for the k — th eigenvalue )\, that represents the k — th axis of variation. The
statistic is
A — 1(n,py Ay oo, An — 1)
o(n,p, A\, ...,An—1)

where 1 and ¢ are normalization functions depending on the eigenvalues and on the degree
of linkage disequilibrium in the data.

The strategy to determine the number of significant principal components corresponds
to testing one after another the null hypotheses

Hy : { The k — th principal component is not significant },

by the use of the above test statistic that follows a Tracy-Widom distribution.

Application of the PCA

A first use of these axes of variation is to provide graphical representations of the
individuals. Figures 1.7 and 1.8 are examples of such representations. This type of
representation is widely used to provide a graphical overview of the population structure.

Another possible application of the principal components is to highlight outlier indi-
viduals in a genetic studies. Indeed, by plotting all the individuals of a study on several
axes of variation, or by analytically looking at these axes, it is possible to determine which
individuals seem to lie farther than the others. Principal component analysis is therefore
often used in practice in the first steps of a genetic study (Section 1.3.2).
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PCA and clustering of genetic data

The set of significant principal components selected to describe the structure of the popula-
tion can also be used to cluster individuals into genetically homogeneous sub-populations.
For instance a Gaussian Mixture model or a k —means algorithm can be applied to these
principal components (Lee et al. 2009). An example of such clustering method will be
presented in Chapter 3.

Association testing

In order to account for population stratification, a statistical test using the results of
the PCA applied to genetic data have been designed (Price et al. 2006). Given that
the principal components represent axes of genetic variation, it is possible to project the
genotypes on the main axes to obtain new variables that correspond to the proportion of
the genotypes that is due to the structure of the population. One can then subtract to
the original genotypes the part due to the structure and obtained adjusted genotypes xqq4;.
The same transformation is possible for the phenotypes and leads to adjusted phenotypes
Yadj -

The computation of the adjusted data is very computationally efficient as it only con-
sists in operations on matrices or vectors.

Using these adjusted data, a test statistic can be derived as an extension of the Ar-
mitage Trend test,
(n—1—m) x corr(Xug, Yag)?,

where n is the number of samples and m the number of retained principal components.
This statistic follows a x?(1) distribution under the null hypothesis of no association.

PCA-like methods

Alternatives to principal component analyses are possible. The main alternatives are the
multi-dimensional scaling (MDS), that uses similarity matrices between the individuals to
create axes of variation (Li et al. 2008) or laplacian eigenfunctions (Zhang et al. 2009b).

2.3.5 Regression models

As we have seen previously, classical association tests can be expressed in terms of logistic
regression models. Several adjustments of these models are possible to account for popu-
lation stratification (Setakis et al. 2006, Balding 2006). The more commonly used model
corresponding to the Armitage Trend test becomes

logit(p,) = a + Bx + Covariate(s).
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Testing the nullity of the parameter  can therefore provide a way to test for association
while taking stratification into account.

Adjustment on the principal components

The adjustment on the principal components uses the results of the PCA applied to SNP
data such as described in the previous section. Principal components PCY, ..., PC,, are
added to the logistic model as covariates. The number of principal components retained
can be estimated with the Tracy-Widom method or be chosen manually given the com-
plexity of the structure. One has to note that too much principal components can weaken
the analysis as the number of variables in the regression model would be too large. We
will discuss this point in the comparison study that we further propose.

Adjustment on population labels

The adjustment on discrete population labels corresponds to adding a discrete variable
(@;)1<i<n to the model. This variable indicates the population of origin of each sample.
It can pertain to the real population of origin if this information is available or to a
population estimated through the use of a clustering algorithm.

2.3.6 Meta-analyses

Another possible approach to deal with population stratification is to conduct the anal-
yses within K sub-populations considered homogeneous and to combine the results with
meta-analysis methods, such as the Fisher method or Stouffer’s Z-score (Whitlock 2005).

For a given marker, the same association test is conducted within each sub-population
which leads to a set of p-values (p;)i1<;<x. Usually the Armitage Trend test is the test
preferred. To derive combined statistics, one has to assume that all the tests are inde-
pendent.

Fisher’s method

Fisher’s statistic corresponds to
K
-2 Z log(p;),
i=1

and follows a x*(2K) distribution under the null hypothesis of no association.
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Stoufler Z-score method

Stoufler’s Z-score statistic is
K

Z F_l(]' - pl)v

i=1
where F' is the standard normal cumulative distribution and follows a standard normal
distribution under the null hypothesis.

Comments

These tests imply that one needs some knowledge about the homogeneous sub-populations.
They can either correspond to those provided with the data or be estimated.

A main assumption of these approaches is that the statistical tests conducted within
each of these sub-populations are independent. This might not be true if, for instance,
certain sub-populations are close to each other but distant with the others. One can
see that the cryptic structure of certain populations can be a disadvantage for testing
association with meta-analysis approaches.

2.3.7 Other possible approaches

Note that other methods accounting for stratification, less used in practice, have been
proposed. They are based on phylogenetic trees (Li et al. 2010a), on the F' coefficient
(Zhang et al. 2009¢), mixed models (Kang et al. 2010), stratification scores (Epstein et al.
2007), re-matching of cases and controls (Guan et al. 2009), randomization test (Kimmel
et al. 2007), simultaneous correction of stratification and genotyping errors (Cheng and
Lin 2007) or propensity scores (Zhao et al. 2009).

2.4 Comparison of different approaches

2.4.1 Introduction

Many reviews and comparison articles looking at approaches to account for population
stratification have examined the potential of these methods (Pritchard and Donnelly 2001,
Zhang et al. 2008, Tian et al. 2008, Wang et al. 2009, Price et al. 2010, Wu et al. 2011).
They focused on certain parameters affecting the stratification such as the sampling im-
balance, the minor allele frequency of the disease susceptibility locus or the sample size.
Most of them did not however exhaustively considered the different types of population
structures. The study that we propose in this section carefully analyzes this very param-
eter. We propose a comparison of the mainly used methods by considering a large panel
of stratification scenarios corresponding to the different types of population structures.
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Our study differ from the recent comparison proposed in (Wu et al. 2011) by the meth-
ods considered and the type of simulations conducted. In our study numerous stratified
datasets are simulated based on real data so that the structures of the population is well
controlled and the data are similar to the ones used in real situations. We are interested
in determining which methods tend to perform well, in terms of false-positive rate and
power, under various situations. More precisely we aim at providing practical indications
regarding which method(s) should be used with a given structure of the population as they
account properly for the stratification bias. We address these questions for unstructured
populations, admixed populations, discrete and hierarchical ones. Also, we propose a so-
lution for situations where the sampling design has led to sub-populations only composed
of cases or controls that haven’t been genetically matched.

First, we present the different methods that we decided to compare. Then we describe
our process to simulate genetic data under various stratification scenarios. We provide
precisions on the comparison strategy as well, i.e. how we estimated the statistical indi-
cators that are the false-positive rates and powers of the methods. We then present our
results and conclusions.

2.4.2 A large panel of methods compared

We decided to compare the performances of six broadly used strategies to account for
stratification. First, we focused on the Genomic control (GC) (Devlin and Roeder 1999)
and on the test proposed by Price et al. implemented in Eigenstrat (Eig) (Price et al.
2006). Then, we included a family of adjusted Logistic Regressions (Reg). A large number
of types of adjustments can be considered. We decided to focus on the mainly used in
practice: adjustment on the five first principal components resulting from a PCA (Reg
PCs), adjustment on the real population labels when this information is precisely known
(Reg Real Pop) and adjustment on estimated population labels (Reg Est Pop). These
latter labels were estimated using a Gaussian mixture model clustering on the principal
components® (Lee et al. 2009). We also studied one Meta-Analysis approach based on
the Fisher method (Meta). Finally, we considered the Armitage Trend test, that does not
account for stratification, as a reference to assess the level of stratification in the data.
Structured Association were not included in our comparison due to the computational
cost of such methods and the fact that they are not usually utilized in practice to account
for stratification when testing for association.

Several additional alternatives of the Genomic control, Regressions and Meta-Analysis
where investigated as well. Since their results did not turned out to be significantly
different from the original approaches, we will only discuss them in Section 2.5.

5This algorithm is detailed in Section 3.2.5.
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2.4.3 Simulation model

The simulated genetic data tha we consider are based on the island model therefore on the
assumption that the population structure is organized in sub-populations. This assump-
tion is often made to when simulating data of genetic association studies. Our simulation
model follows approaches previously used (Hyam et al. 2008, Li and Li 2008, Peng and
Amos 2010) and is based on the genotype frequencies of real datasets. These frequencies
are used as an empirical distribution of the range of possible genotypes. Simulating this
way leads to genetic patterns similar to those found in real data and therefore allows
us to finely control the type of population structure. That way, we first simulate sev-
eral datasets corresponding to the sub-populations of origin. Then we randomly mate
each sub-population and apply a genetic model to generate diseased and healthy sam-
ples. To simulate discrete sub-populations, the populations of origin are independently
mated and for admixed populations we mate these populations with each other. The final
sub-populations simulated are mixed together to produce a cohort of individuals with
population structure. The type of population structure depends on the original datasets
selected and the parameters of the model.

The genetic model is based on Wright’s model (Wright 1921) applied to a bi-allelic
marker with alleles A and a. Let pg, p1 and py be the frequencies of genotypes aa, aA/Aa
and AA defined by the Hardy-Weinberg proportions

po = Pi+Fpa(l —pa)
VS — 2pa(1 _pa) - 2]:pa(1 _pa) )
b2 = (1 _pa)2 + Fpa(l _pa)
where p, is the frequency of allele a and F is the consanguinity coefficient that we
consider null hereafter so that the disease susceptibility locus (DSL) is under the Hardy-
Weinberg equilibrium.
We then want to compute the genotype frequencies of the DSL for cases and controls
pp, and pg,, © = 0, 1 or 2, using the disease prevalence K, the penetrances fy, f1 and f; of
the genotypes and the mode of inheritance of the disease. The main modes of inheritance

can be defined by considering the relative risk RR;jo = RR; = %, i = 1,2 by

Recessive RR, =1
Additive RR, = fftl
Multiplicative RR; =+ RR»
Dominant RR; = RR,

Using fo = K,/(po + RR1.p1 + RR2.p2), f1 = RRy.fo and fo = RR,.f, and the Bayes
formulas we can easily derive the desired frequencies.

(pD07pD17pD2> = fg{.ioa f}(.ila f?{?) ) (2 1)
( ) = (A=fo)-po (A=f1)-p1 (1=f2).p2 :
Py, PHy5 PH, K, K, K, .
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Figure 2.2 graphically represents the simulation process.
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Figure 2.2: Graphical representation of the simulation process. Real datasets
are combined with a genetic model to create a simulated dataset having one DSL and a
specific genetic pattern.

2.4.4 Data sources and stratification scenarios

We simulated our data according to the model described in the previous section and using
the HapMap phase III populations®. A number of 5,500 SNPs, with minor allele frequen-
cies higher than 5%, were randomly chosen in equal number on each of the non-sexual
chromosomes. We only considered SNPs present on an Affymetriz GeneChip Human
Mapping 500K so that these SNPs are those commonly used in GWASs. Then, for each
of our stratification scenario, some of the HapMap populations were used to simulate
our final data with 5,500 SNPs and one DSL following an additive model and randomly
located among the available loci.

We aimed at covering several situations as it may be harder to account for stratifi-
cation with closely related populations than with very distant ones. Therefore, to get

6http://hapmap.ncbi.nlm.nih.gov/downloads/genotypes/2010—08_phaseII+III
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an exhaustive assessment of the strategies we considered several scenarios corresponding
to different types of population structure: no structure, admixed populations, discrete
structures with populations more or less genetically close, and a hierarchical structure.
The proportions of cases and controls simulated are different in the sub-populations so
that the design is not a simple random sampling design”. Our design and the differences
between the populations ascertain that we induced and controlled a bias due to popula-
tion stratification.

The different scenarios that we considered are described hereafter and graphically rep-

resented in Figure 2.3. In addition, Table 2.6 gives the simulation parameters of the
DSLs for these scenarios.
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Figure 2.3: Population structures of the different scenarios. Samples are repre-
sented on the first two principal components (PCs) estimated on the genotype data.

"In such design, the probability of selecting a case or a control is the same among all sub-populations.
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Scenario (Structure) | Pop | Prevalence (K,) | MAF | # Cases | # Controls
1 (None) CHB 0.05 0.3 200 200
. CHD 0.05 0.3 125 75
2 (Admixture) CHB 0.01 0.2 7 125
. CEU 0.05 0.3 125 75
3 (Discrete) TSI 0.01 0.2 7 125
. CHB 0.05 0.3 125 75
4 (Discrete) CEU 0.01 0.2 7 125
GIH 0.05 0.3 10 60
LWK 0.01 0.4 30 20
5 (Hierarchical) YRI 0.01 0.4 30 50
CEU 0.05 0.2 10 60
CHB 0.03 0.1 150 10
5 (D) CHB 0.05 0.3 200.r 100
CEU 0.01 0.2 | 200.(1-r) 100

Table 2.6: Simulation parameters for the stratification scenarios. The MAF
indicated corresponds to that of the disease susceptibility locus.

Scenario 1: One homogeneous population. With only one such population there
is no stratification. The idea is to determine if the methods accounting for stratification
are reliable when there are applied to a non-stratified population. Individuals from Han
Chinese in Beijing, China (CHB) are used to simulate these data.

Scenario 2: Admixture. We considered an admixture of two originally close popu-
lations: Chinese in Metropolitan Denver, Colorado (CHD) and Han Chinese in Beijing,
China (CHB) are used.

Scenario 3: Two fairly distant discrete populations. The two relatively distant
discrete populations are Utah residents with Northern and Western European ancestry
from the CEPH collection (CEU) and Toscans in Italy (TSI).

Scenario 4: Two very distant discrete populations. The two very distant discrete
populations are Han Chinese in Beijing, China (CHB) and Utah residents with Northern
and Western European ancestry from the CEPH collection (CEU).

Scenario 5: Hierarchical structure. The hierarchical structure is composed of five
populations: Yoruba in Ibadan, Nigeria (YRI), Luhya in Webuye, Kenya (LWK), Han
Chinese in Beijing, China (CHB), Gujarati Indians in Houston, Texas (GIH) and Utah res-
idents with Northern and Western European ancestry from the CEPH collection (CEU).
Scenario 6: Varying proportions of cases/controls This scenario uses the same
populations as scenario 4 but with a varying proportion of cases between the two sub-
populations. The proportion of controls is fixed and equal in the two populations while
the proportion of cases is taken with a (7, 1 - r) ratio, with r varying. When this pro-
portion is of 0 then all the cases are in the CEU population that is the less affected by
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the disease. When it is of 1 then all the cases are in the most affected population (CHB).
Our goal is to observe the behavior of the methods in function of the degree of sampling
imbalance and to look at whether they tend to perform well in the extreme case where all
the cases come from only one of the populations. In this latter case, it is also of interest
to determine if the best solution to account for population stratification is not to consider
only the cohort composed of both cases and controls by excluding the samples that are not
matched. The answer to this issue is particularly useful for large studies where controls
with different ancestries are used to match the genotyped cases.

2.4.5 Comparison strategy

We used a statistical framework to analyze the potential of the main approaches investi-
gated that focuses on their false-positive rates and powers.

Note that population stratification is said to lead to spurious associations but also to
mask true associations. This second effect is more tricky to observe but the statistical
power can be useful to do so. As it corresponds to the proportion of SNPs that have been
detected associated when they were, a loss of power between a situation with no stratifica-
tion and a situation with stratification means that SNPs that used to be correctly detected
in the first situation are no longer in the second. This corresponds to missing associations.

Both false-positive rate and power can be expressed in function of the test statistic.
However the distribution of this statistic is not always obvious so we prefer using the
p-values instead. Thus the false-positive rate becomes Py, (p-value < a) and the power
Py, (p-value < o). In our simulations, each dataset is simulated with one disease suscep-
tibility locus, for which the degree of association is controlled, and 5,500 additional SNPs
to assess the population structure. By placing ourselves under the null hypothesis, of
no association, then under the alternative hypothesis, of association, we can respectively
assess both false-positive rate and power of the methods. To do so, we use a Monte-Carlo
method and assess the same quantity

#({p—value; < a,i =1... B})
B Y

where #() represents the cardinal function, meaning that we count the number of p-values
inferior or equal to o, and B the number of simulated datasets.

All the DSLs simulated, whether it is under the null hypothesis or the alternative,
are differentiated between the sub-populations. This implies that for all the population
structure scenarios considered, one DSL is simulated per sub-population. These DSL are
excluded of the mating process the populations are then submitted to in order to reach
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the desired type of structure. That way, the properties of the DSLs, such as the relative
risk, are conserved whatever population structure is simulated (Table 2.6).

Note that only methods with equivalent false-positive rate can be compared in term
of power. This implies that a method with high power is no better than one with low
power if the first one did not maintain a correct false-positive rate.

We simulated data for several DSL relative risks ranging from 1 (no association) to 2.5
(strong association). For each relative risk a number of B — 2,000 datasets were simulated
to get an accurate estimation of the statistical quality indicators. We genuinely estimated
the indicators with this process as we controlled the degree of association through the
simulation model. Note that there is an equivalence between the false-positive rate and
the power when the relative risk is of 1. A level o = 5% was chosen for all the tests. Data
simulations and comparison of the strategies were performed using the software R®.

2.4.6 Results

The results of the comparison are presented in this section for each scenario (Figures
2.4 to 2.11). Table 2.7 summarizes the estimations of A for the different scenarios.
These estimations were conducted using the Genomic control based on the median of the
Armitage Trend test statistics.

Scenario A

Scenario 1 1.002
Scenario 2 1.009
Scenario 3 1.065
Scenario 4 2.711
Scenario 5 9.571

Table 2.7: Estimated )\ for the different scenarios. Classical Genomic control was
used to conduct these estimations.

Scenario 1: One homogeneous population

In the first scenario, with an unstructured population, the estimation of A\ was 1.002 con-
firming that there was no stratification. Figure 2.4-A presents the false-positive rate of
the methods. We noted that all of the methods had a correct false-positive rate, lying
within the 95% confidence bounds. Eigenstrat and Regressions adjusted on principal
components (Reg PCs) were however the closest to the 5% level.

8http://cran.r-project.org
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Figure 2.4-B provides the power curves of the different methods in function of the
increasing relative risks. Powers of all the strategies were equivalent in this scenario ex-
cept for Meta that was less powerful. One can note that there was no difference between
an adjustment on a the real population labels and on the estimated ones. This was due to
the fact that the population was so homogeneous that the clustering algorithm considered
all samples to be in a unique population.

When there was no stratification, all the methods performed well and did not induce
any bias. Besides, except for the Meta-Analysis, there was no loss of power when adjusting
the results for stratification compared to the non-adjusted approach.

Scenario 2: Admixture

This scenario corresponded to an admixture of two close populations. The estimation
of A was 1.009 which meant that according to the Genomic control there was almost no
stratification.

However, one can observe that there was still a real bias induced by population stratifica-
tion as the Trend test had a false-positive rate significantly higher than 5% (Figure 2.5-
A). This was also quite logically the case of the Genomic control as the variance inflation
factor was close to 1.

Eigenstrat and Regressions adjusted principal components (Reg PCs) had false-
positive rates reaching the upper bound of the confidence interval. Regressions adjusted
on the estimated population labels (Reg Est Pop) led to a high number of false-positive
findings. This might have been due to the fact that the clustering algorithm used was not
accurate enough to determine the correct population labels of the individuals in the case
of an admixture.

The Regression adjusted on the real population labels (Reg Real Pop) and the Meta-
Analysis had a false-positive rate of almost 5%.

The analysis of the power curves (Figure 2.5-B) showed that the Trend test, the Ge-
nomic control and the Regression adjusted on the estimated population labels (Reg Est
Pop) had the highest powers. This was however due to the inflation of the false-positive
rate, also affecting the power, and therefore did not mean that these methods were more
powerful. Eigenstrat and the Regression adjusted on the principal components were
equivalent and outperformed the other methods in term of power. Regression adjusted
on the real population labels (Reg Real Pop) and Meta were the less powerful methods.

In an admixture scenario, so with a very fine population structure, only Eigenstrat,
Reg (PCs) and Reg (Real pop) were correctly correcting for stratification.
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Figure 2.4: Scenario 1 (One homogeneous population). A - False-positive rates
of the methods. The plain black line represents the 5% level at which the tests were
conducted. The dashed black lines are the 95% confidence intervals for this level. B -
Powers of the methods in function of the increasing relative risk.
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Figure 2.5: Scenario 2 (Admixture). A - False-positive rates of the methods. The
plain black line represents the 5% level at which the tests were conducted. The dashed
black lines are the 95% confidence intervals for this level. B - Powers of the methods in
function of the increasing relative risk.



2.4 Comparison of different approaches 67

Scenarios 3 and 4: Discrete structures

The third scenario corresponded to two populations closely related but that were differ-
entiable. The estimated A was 1.065 indicating a slight stratification according to the
Genomic control. Again the inflation factor was under-estimated as the false-positive rate
of GC was very high such as for the Trend test. All the other methods had a correct
false-positive rate (Figure 2.6-A).

On Figure 2.6-B, the power of Eigenstrat and the Regression methods were similar
and higher than that of the Meta-Analysis.

In a situation where the populations were quite close it appeared that Eigenstrat
and Regression based methods were the best solutions to account for stratification.

In Scenario 4, the estimation of A was 2.711 which denoted quite an important struc-
ture of the population. In such a situation , the Trend test was very biased and had
a highly inflated false-positive rate (Figure 2.7-A). On the other hand, the Genomic
control behaved differently and became too conservative. All Regression methods were
equivalent and performed as well as Eigenstrat both in terms of false-positive rate and
power. Again the Meta-Analysis was the less powerful strategy (Figure 2.7-B).

Scenario 5: Hierarchical structure

Scenario 5 pertained to a more complex population structure. There were five populations
and a hierarchical structure leading to an estimation of A of 9.571. It was striking how the
Trend test deviated from the 5% level by reaching almost 100% of false-positive findings
under the null assumption. On the contrary, the Genomic control was very conservative
due to the high value of \. Eigenstrat had an inflated false-positive rate and was no
longer equivalent to the adjusted Regressions. In addition, we observed that Meta was
too conservative in this scenario (Figure 2.8-A).

The Genomic control was not powerful at all as it did not detected any association.
Powers of all the Logistic Regressions were slightly smaller than that of Eigenstrat but
this was due to the difference in false-positive rates (Figure 2.8-B).

In such a situation, only Logistic Regressions were capable of keeping correct false-
positive rates while reaching good powers.

Scenario 6: Varying proportions of cases/controls

The sixth scenario corresponded to the same population structure as the fourth but with
a varying sampling design. Figure 2.9 presents the evolution of A with the proportion
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Figure 2.6: Scenario 3 (Two fairly distant discrete populations). A - False-positive
rates of the methods. The plain black line represents the 5% level at which the tests were
conducted. The dashed black lines are the 95% confidence intervals for this level. B -
Powers of the methods in function of the increasing relative risk.
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Figure 2.7: Scenario 4 (Two very distant discrete populations). A - False-positive
rates of the methods. The plain black line represents the 5% level at which the tests were
conducted. The dashed black lines are the 95% confidence intervals for this level. B -
Powers of the methods in function of the increasing relative risk.
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Figure 2.8: Scenario 5 (Hierarchical structure). A - False-positive rates of the
methods. The plain black line represents the 5% level at which the tests were conducted.
The dashed black lines are the 95% confidence intervals for this level. B - Powers of the
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Figure 2.9: Evolution of )\ for Scenario 6. Representation of A estimated with GC in
function of the proportion of cases in the first population (popl).

We observed that the Trend test had a correct false-positive rate only when the sam-
pling design was balanced between the two populations otherwise it was inflated. The
opposite trend was noticeable for the Genomic control (being quickly too conservative)
and Meta. On the other hand, whatever the sampling design, Regressions and Eigenstrat
globally maintained a correct false-positive rate (Figure 2.10-A). When the sampling
was very imbalanced however, Eigenstrat tended to deviate from the 5% level.

The analysis of the power (Figure 2.10-B) showed us that powers of Regressions
and Eigenstrat were equivalent which confirmed the result that we previously found in
scenario 4.

An interesting fact was to observe the loss of power of the Trend test between the
extreme situations. This confirmed that population stratification can lead to missing gen-
uine associations. Quite logically we also retrieved the fact that if individuals are sampled
in a very affected population then the power was more important than in other cases.

It is quite common in GWAS to include patients having different ancestries than the
original cohort. This can be done to get larger samples or to find controls corresponding to
the typed cases. A larger sample size implies a gain in power, however if the corresponding
ancestries are different, population stratification could generate a bias reducing the power.
If one of the group of patients with a different ancestry than the rest of the cohort is only
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composed of controls (or cases), one practical question often discussed is whether it is
better to exclude this cohort of the study or to keep it and account for stratification.

We answered this question by comparing the powers of the methods when all the
patients were kept and when only the cohort composed of both cases and controls was
kept. We focused only on Regressions and Eigenstrat that were the methods able to
correctly correct for stratification. Whether all the cases were in the most affected or
in the less affected population, we observed that the powers were the same whether the
cohort composed of controls only was excluded or not. The power was not more important
with more samples because of the bias due to stratification. However this bias was taken
into account by the two methods so that it was not necessary to exclude a part of the
patients (Figure 2.11).

Computational considerations

In term of execution time, the investigated methods are relatively equivalent. The Ge-
nomic control is relatively fast as it imply to test two times each SNP. Adjusted Regres-
sions and Eigenstrat are quite equivalent when principal components are used to adjust
the results. The necessary time to adjust on estimated population labels depends on
the algorithm used to infer the population structure and can be quite fast or very time
consuming.

It has been pointed out that Linear Regression can be a practical alternative to Logis-
tic Regression as it is computationally faster, especially when there are covariates included
in the models (Wu et al. 2010a). We analyzed this method as well in our study (data
not shown). Linear and Logistic Regression methods seemed to be perfectly equivalent in
most of the scenarios, however it appeared that the use of the dichotomous outcome that
is the disease status in the Linear Regression is no longer a viable options in hierarchical
populations (Scenario 5). We therefore recommend to keep using the Logistic Regression
instead.

2.5 Discussion

The problem of population stratification is a serious shortcoming for GWASs raising
doubts about their findings. To counteract this effect many approaches have been de-
veloped to account for stratification but it is not always clear in which situations they
should be applied. Several articles have been published studying the performances of the
different methods when some parameters influencing the stratification bias such as the
minor allele frequency of the susceptibility locus, the degree of sampling imbalanced, the
number of markers or the sample size vary (Pritchard and Donnelly 2001, Zhang et al.
2008, Tian et al. 2008, Wang et al. 2009, Price et al. 2010, Wu et al. 2011). We have
decided to focus here on a parameter that has not been studied in depth and is yet quite
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important that is the type of population structure itself. Indeed, one can wonder whether
it is a good thing to adjust for stratification when there is no structure of the population,
or whether reducing the bias is easier with distant or close populations. Also the relative
performances of the most commonly used approach under these scenarios may vary differ-
ently. We compared these approaches through simulation studies by considering several
scenarios of population structures. A particularity of our study is that to do so, we used a
robust simulation model that is based on real genotype data so that we simulated datasets
similar to the ones used in real situations.

We first determined that if there is no structure in the population, all of the studied
methods correcting for stratification performed well both in term of false-positive rate
and power reflecting trends previously reported (Epstein et al. 2007, Guan et al. 2009,
Wu et al. 2011). Given this result and since it is quite difficult to be entirely sure that
the population is sufficiently homogeneous, we recommend to always apply a correction
for the stratification bias.

Concerning the type of population structure, our study also pointed out the fact that
as soon as there is an admixture in the structure (Scenarios 2 and 5) then it is more
delicate to correct the bias than with discrete populations.

We then highlighted methods that did not provide a good correction for stratification.
First, we showed that the Genomic control failed to properly account for stratification
in most of the situations. An interesting observation is that this method was not always
affected in the same manner by the stratification. For genetically close populations the
variance inflation factor A was not a good indicator of the stratification level as it indicated
almost no structure. This means that the Genomic control was anti-conservative. On
the other hand, with relatively distant populations, this factor was overestimated, and
therefore the false-positive rate was below the 5% level, rendering the Genomic control too
conservative. We therefore confirm the conservativeness of the Genomic control reported
in many situations (Pritchard and Donnelly 2001, Zhang et al. 2008, Dadd et al. 2009).
We also studied an alternative version of the Genomic control, where the estimation of
A was based on the mean of the test statistics instead of on the median. This version
provided the same results as the Genomic control presented in our study.

Second, in most of the scenarios we noted that the Meta-Analysis method was less
powerful than the other alternatives. If it is however required to use a Meta-Analysis
method then Fisher’s method appeared as the best option. Indeed, we compared the
Fisher and the Z-score methods and found that Fisher’s always had a correct false-positive
rate and a better power.

We therefore do not recommend the use of the Genomic control and Meta-Analyses
methods to get a proper correction for stratification.
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Note that it was not possible in our study to include the test implemented in the
software Strat which is based on the results of Structure as the underlying algorithms
are computationally very intensive (Zhang et al. 2008, Price et al. 2010). This rendered
difficult to compare the test to the other methods in a robust manner. Even though it
has been shown that Strat can provide a reasonable correction for stratification (Zhang
et al. 2008), its high computational cost and complexity would lead us not to consider
this test to account for stratification when conducting a GWAS.

Our results pointed out that the test implemented in the software Eigenstrat is
a good solution to account for stratification with admixed or discrete structure which
confirms the findings of (Zhang et al. 2008, Li and Yu 2008, Wu et al. 2011). On the
other hand, with a hierarchical structure (Scenario 5), we found that Eigenstrat had
a false-positive rate deviating from the 5% level which has been reported by previous
studies (Li et al. 2010a, Wu et al. 2011). In the recent comparison study (Wu et al.
2011), no hierarchical structure was investigated however the inflated false-positive rate
of Eigenstrat was reported for stratification scenarios including several populations or
admixtures. Given that Regressions were able to correct the bias in a satisfactory way
in this scenario it implies that Eigenstrat and the Logistic Regressions adjusted on the
principal components are not always equivalent. This results is also outlined in (Wu et al.
2011).

Note that we included 5 principal components for the Regression adjustments and
Eigenstrat. We decided not to use the Tracy-Widom theory to automatically determine
the significant number of principal components as it usually leads to select a very high
number of components (more than 20), which could lead to a poor convergence of the esti-
mation of the Regression parameters. In practice only the first components are used. It is
however of interest to look at the quality of the corrections if more or less components are
considered. Additional simulations considering 1, 2, 5, 10, 20 or 50 components were con-
ducted. They show that for a structure relatively simple to infer (Scenario 4), the number
of principal components included in the models do not have an influence on the adjust-
ments. Both the Logistic Regression and Eigenstrat have correct false-positive rates
and comparable powers (Figure 2.12). When the structure of the population is more
complex (Scenario 5), more components are needed to keep a reasonable false-positive
rate (Figure 2.13). The Logistic Regression has an inflated false-positive rate if only
one component is used and a better power if more than two components are used. It
is interesting to note that Eigenstrat has a false-positive rate that is no longer outside
of the confidence interval for the 5% level when many components are used (more than
ten in our simulations). This however goes along with a consequent loss of power. This
might be the reason why Price et al. advised a default number of ten components when
using this method (Price et al. 2006). Logistic Regression is therefore more stable than
Eigenstrat to the number of principal components used.
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We also showed that the most efficient methods to account for stratification make use
of Logistic Regressions. In all of the situations studied here these methods were able to
maintain a proper false-positive rate and provided a good power to detect associations.

Concerning the different types of adjustments, one has to note that the Regressions
adjusted on the real population labels may not be applicable in every situations since an
accurate information about the sample ancestries is not always available. If the infor-
mation available is not accurate enough then estimated labels may be more informative
about the homogeneous sub-groups and should be used instead (Barnholtz-Sloan et al.
2008).

We also investigated alternative Regression based approaches that were not discussed
in the Results section but that are closely related to the main approaches we presented.
First, we investigated another method combining the use of estimated population labels
and principal components to adjust the association test (Li and Yu 2008). This method
was not different than using only the principal components in our data. The rationale
invoked by Li et al. to use both adjustments to respectively account for discrete and
admixed populations is however pertinent making this method a reasonable option when
the population labels can be accurately estimated. In addition, we investigated the use of
estimated population probabilities instead of the discrete labels which showed that both
methods are equivalent.

Another important question is how the methods behave when the sampling propor-
tions become more imbalanced between the sub-populations. We addressed this question
in the sixth scenario that highlighted the fact that Regressions and Eigenstrat were the
methods capable of correcting for stratification even with very imbalanced samplings. In
the extreme cases where all the cases are from one population only, we observed that
considering only the cohort composed of both cases and controls by excluding the cohort
with controls only was as powerful as considering all the samples. This highlights that
adjusted Logistic Regressions and Eigenstrat are performing well enough so that they
can deal with extreme sampling within sub-populations.

New sequencing methods allow to focus on DSL with very low minor allele frequency
(< 1%). In order to determine the quality of the methods to account for stratification
with such rare DS, we simulated additional datasets corresponding Scenarios 4 and 5
(Figure 2.14 and 2.15 respectively). It appeared that the approaches considered had
the same behavior than with more important minor allele frequencies but they all ex-
perienced a loss of power. This loss of power is expected when testing a non-stratified
association with low minor allele frequency and our results have confirmed the findings of
(Zhang et al. 2008) that is it still the case with stratification.

Finally, we expect that when the number of SNPs available in a study increases, the
information about the structure of the populations and therefore the quality of the cor-
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rections of all the methods also increase. This is confirmed by the comparisons conducted
in (Zhang et al. 2008, Wu et al. 2011) that considered more than 10,000 SNPs. When a
certain amount of SNPs is reached, usually tens of thousands, the information provided
by additional SNPs becomes redundant (e.g. because of linkage disequilibrium) and the
corrections are no longer better. Also, when the amount of SNPs included is not impor-
tant enough, usually less than a couple of hundreds, the methods are not provided with
enough information to properly account for stratification.

Method Type No Strat Admixture Discrete Strat Hierarchical
FP  Power FP Power FP  Power FP  Power

Trend None +4+ 4+ - , - ) - )

Reg (PCs) C ++ 4+ + o+t ++ 4+ ++ 4+

Reg (Real Pop) D ++ -+ ++ o+ ++ 4t ++ 4+

Reg (Est pop) D ++ -+ - . ++ ++ 4+

Eigenstrat C ++  ++ + +-+ ++ ++ -

GC C ++ ++ - : - : -

Meta D S + ++ + ++ + -

Table 2.8: This table summarizes the results of our study in terms of false-
positive rate and power. A '++’ implies a very good performance, a '+’ a good
performance, a ’-> a bad performance and a that it was not possible to assess a
comparable power given that the false-positive rate was not correct. FP: false-positive
rate, C: continuous, D: discrete.

3

To conclude, we summarize the performances of the main methods analyzed in our
study for all the types of population structure (Table 2.8). Given the results we pre-
sented, we recommend to use, whatever the population structure, an adjusted Logistic
Regression model. The adjustment on the principal components is the more advantageous
as it always leads to a correction of the bias. Moreover, principal component analysis can
always be applied to the genetic data without any previous knowledge on the structure.
If one has some accurate information on sample labels, then a joint adjustment with the
principal components should provide an even better correction. For this reason, we also
focused our research on clustering algorithms to estimate population labels. Chapter 3
will present a novel clustering strategy that we developed to this end.
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Figure 2.10: Scenario 6 (Varying proportions of cases/controls). A - False-positive
rates of the methods. The plain black line represents the 5% level at which the tests were
conducted. The dashed black lines are the 95% confidence intervals for this level. B -
Evolution of the power (with RR = 2) of the methods in function of the proportion of cases
in the first population (popl). Note that all the Regression methods being equivalent for
this scenario, we summarize the results for these methods under the name 'Reg’ only.
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Figure 2.12: Comparison of principal component based methods with varying
numbers of components included in the models (Scenario 4). A - False-positive
rates of the methods. The plain black line represents the 5% level at which the tests were
conducted. The dashed black lines are the 95% confidence intervals for this level. B -
Powers of the methods in function of the increasing relative risk.
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Chapter

Inference of Population Structure

In this third chapter we analyze the issues arising to infer the structure of populations
along with the different strategies that have been designed to achieve this task. We also
present an important part of this PhD work that is the development of an innovative
clustering algorithm to determine and analyze population structure.

In a first section we introduce what it means to infer the population structure along
with the difficulties that one can encounter to do so. Indeed the type of population
structure and the type of data can have an influence on the inference techniques.

We then present the main strategies aiming to uncover the structure of populations
and the statistical concept behind them.

The third section will pertain to the method that we developed: Spectral Hierarchical
clustering for the Inference of Population Structure (SHIPS).

We then compare this novel strategy to the main existing approaches and discuss
the different methods. Our novel clustering approach has been published in PLOS ONE
(Bouaziz et al. 2012b).

3.1 Introduction

Why the inference of population structure

Identifying the underlying structure of populations is often of use for genetic research.
It allows the study of evolutionary relationships between populations as well as learning
about their demographic histories (Cavalli-Sforza 1994, Bowcock et al. 1994, Mountain
and Cavalli-Sforza 1997, Pritchard et al. 2000a, Lee et al. 2009).

Such analyses are also of a great interest for population-based genetic studies such
as Genome-Wide association studies. Notwithstanding the widespread usage of GWASS,
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we have seen that their findings have been criticized partly because they are vulnerable
to population stratification. Inferring the structure of the populations can therefore be
helpful to identify whether there is indeed a structure or to define homogeneous clusters
of individuals that can later be use to correct the association test and account for stratifi-
cation. We presented in the Chapter 2 several adjusted methods that use homogeneous
clusters of individuals to correct for stratification. For instance these clusters can be used
for adjusted Regressions as well as for Structured Association or Meta-Analyses.

Two main general approaches

Two major strategies have been developed to infer the structure of the populations that
are parametric model-based clustering and non-parametric clustering.

Model-based clustering approaches make numerous assumptions on the genetic data
and use statistical inference methods to assign individuals to sub-populations. Many
of these parametric approaches exist such as for instance Structure (Pritchard et al.
2000a), Admixture (Alexander et al. 2009, Alexander and Lange 2011), BAPS (Corander
et al. 2003) or FRAPPE (Tang et al. 2005). These parametric methods are the most com-
monly used in practice to infer population structure.

Non-parametric approaches have the advantage over parametric ones of making fewer
assumptions on the data. The main non-parametric methods are AWclust (Gao and
Starmer 2007) using a distance-based hierarchical clustering or ipPCA (Intarapanich et al.
2009) using iterative principal component analysis (PCA).

It is also possible to apply clustering algorithms, such as for instance a Gaussian mix-
ture model-based clustering, to the principal components resulting from a PCA applied
to genetic data (Lee et al. 2009). We refer to this particular method as PCAclust in the
following.

Issues when inferring the structure

A major difficulty to infer the structure of populations is the dimension of the data. In-
deed, the number p of marker is very important and usually far greater than the number
of samples n. It is as a consequence difficult to genetically cluster individuals due to this
constraint. Certain methods use a pruning technique to reduce the number of markers
previously to conduct a clustering. Others reduce the dimension of the data by consider-
ing principal component analysis or similarity matrices.
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The type of population structure also influences clustering method strategies. For
discrete structure is it natural to provide a discrete classification of the individuals in ho-
mogeneous sub-populations. For admixtures, such a classification is no longer appropriate.
Indeed, there are no discrete sub-populations to be identified in admixtures. Instead, sev-
eral methods estimate what we call admixture proportions. Given a certain number of
hypothetical ancestral populations, the admixture proportions represent the proportions
of each individual’s genome coming from each of these ancestral populations. We briefly
introduced this notion when we presented the Structured Association method. Usually
parametric algorithms are more adapted to the estimation of admixture proportions than
non-parametric algorithms.

3.2 Approaches to infer population structure

We present in this section the main approaches to infer the structure of populations.

3.2.1 Structure

Structure is a parametric algorithm that uses Bayesian statistical inference to cluster
individuals from genotype data or to determine admixture proportions (Pritchard et al.
2000a). It is part of the Structured Association method that we introduced in Section
2.3.3. Different statistical models are associated with each endgame of the method. Both
models assume that the Hardy-Weinberg equilibrium is in effect in the estimated sub-
populations. The other assumptions on the data concern the distributions of the different
parameters indicated hereafter.

The model without admixture

Let K be the number of sub-populations from which were sampled the n individuals, Z =
(Z1, ..., Zy) the unknown vector of population labels and P = (pgji)1<k<x the frequency

1<g<p
1<IL2

of allele [ at locus j in population k. X represents here the genotype matrix of bi-allelic
unlinked markers.

Bayesian inference is used to obtain the distribution of Pr(Z, P | X). This is done using
the posterior distribution

Pr(Z,P| X)x Pr(Z)Pr(P)Pr(X | Z, P),
where an uniform prior is chosen for Z and a Dirichlet prior for P
Vi=1...n,Vk=1...K, P(Z;=k)=1/K,

szlK, ijlp, VZ212, pkﬂND(Al,)Q),
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and Pr(X | Z, P) is given by
Vi=1l...n,j=1...p,VIi=1...2, Pr(l‘g;l) =1 | Z,P) is defined by p,, ;,
where xl(;) is the copy of allele a for sample ¢ at locus j.
The posterior distribution Pr(Z, P | X) cannot be computed exactly but observations

(ZzW, PWY, .. (ZM) PM)) can be approximated using Markov Chain Monte Carlo
(MCMC) estimations.

The model with admixture

To account for admixture, a new parameter is introduced in the model. The parameter
@ = (qir) 1<i<n represents the proportion of individual i’s genome that originated from
1<k<K

population k. For each individual, this parameter follows a Dirichlet prior distribution as
well. The quantity that is estimated with MCMC simulations are then (Z™M, P QM)
L (700, pin Q)

Estimation of the number of clusters

The two models previously introduced allow one to estimate the populations of origin of
the individuals in the case of a known number of populations K. In practice, this number
is unknown and has to be estimated. Pritchard et al. propose a way of estimating K
using a Bayesian approach, therefore the posterior distribution

Pr(K | X)«x Pr(X | K)Pr(K).

Problems arise to compute Pr(X | K) reason why they also propose an had oc solution
that is selecting the number of clusters K maximizing an estimation of log(Pr(X|K)).
This information is given in the output of the program along with the admixture propor-
tions or the population labels.

Extension of the initial software

Several extensions of the original version of Structure have been developed. They include
a novel model, called linkage model, allowing markers to be in linkage disequilibrium.
Also they propose the F-model that assumes that different prior distributions for the
allele frequencies are possible to account for the dependence of the frequencies between
population (Falush et al. 2003).

Another extension of the algorithm was also designed to consider a special type of
markers, the dominant markers (Falush et al. 2007).

Finally, the last addition to the original method includes information about the sam-
pling location of the individuals when it is available and informative (Hubisz et al. 2009).
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Advantages and limitations

The advantages of the method proposed by Pritchard et al are that it provides rather
reliable estimations of the population of origin. It also allows for admixture in a way that
can be useful to account for cryptic population structure. We presented the algorithm for
bi-allelic markers, however it can be use with markers having more than two alleles.

The majors drawbacks of this method are the computational time and the reliability

of the number of estimated populations (K). The MCMC runs of the algorithm are rather
long to compute which makes it difficult to apply Structure on large datasets.
The problem of the number of population is a more delicate one. One has to keep in mind
that the clusters estimated by Structure may not represent the real sub-populations but
hypothetical ancestral populations. Recent algorithms such as Structurama (Huelsenbeck
and Andolfatto 2007) allow a better estimation of K and can be combined with the clus-
terings estimated by the program to provide more accurate estimations of the population
ancestries.

Also, like every parametric model, Structure is quite sensitive to the priors used. It is
important to have some minimal knowledge about the data to consider prior distributions
and parameters that fit.

3.2.2 Admixture
Statistical model

Admixture is another very popular parametric algorithm that estimates admixture pro-
portions (Alexander et al. 2009, Alexander and Lange 2011). Admixture uses the same
statistical model as Structure however instead of sampling priors using MCMC estima-
tions, the program directly maximizes the likelihood. Admixture assumes the Hardy-
Weinberg equilibrium between the unlinked markers.

To estimate the parameters () and P, the algorithm maximizes the log-likelihood
K K
L(Q,P) = Z{l’ileg( Z Qikpkjl) +(2 - l'ij)lOg( Z Gir(1 — pkjl))}-
i\j k=1 k=1

In order to accelerate the estimation several statistical techniques are employed. A
block relaxation algorithm is used to conduct the optimization (de Leeuw 1994). The con-
vergence of this algorithm is accelerated using a quasi-Newton method and the standard-
errors of the parameters are calculated using a moving block bootstrap method.
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Estimation of the number of clusters

The estimation of the number of clusters K is conducted by a cross-validation technique.
This method partitions the initial data into several subsets that are used to estimate K
and to validate the estimation.

Extension of the algorithm

Admixture is a recent program however an extension has already been developed to include
information about the sample ancestry into a supervised model.

Comments

Admixture has rapidly become a popular algorithm to infer the population structure. The
computational time is greatly improved compared to Structure as well as the number of
parameters involved that is diminished as no Bayesian estimation is conducted.

As Admixture uses unlinked markers, the authors advise to use a pruning method, to
reduce the linkage disequilibrium between the markers, prior to performing the ancestry
inference.

3.2.3 Other parametric approaches

Several other parametric methods exist and can be consulted in (Satten et al. 2001, Wang
2003, Corander et al. 2004, Purcell and Sham 2004, Tang et al. 2005, Chen et al. 2006,
Reeves and Richards 2009, Shringarpure and Xing 2009). These methods are based on
Bayesian models, mixed models or latent class models. It is also interesting to cite an
algorithm recently published that is based on a parametric similarity matrix (Lawson
et al. 2012). Many of these programs are quite time consuming or are not able to assess
certain cryptic structure which is the reason why the development of novel clustering
algorithm is an ongoing research matter.

3.2.4 AWoclust

The AWclust (Allele sharing distance and Ward’s minimum of variance hierarchical clus-
tering) algorithm is a non-parametric method based on a hierarchical clustering (Gao and
Starmer 2007 2008). This method is composed of three steps.

1. A distance matrix between all pairs of individuals is computed. This is a dissimi-
larity matrix based on the allele sharing distance (ASD). The dissimilarity at SNP
[ between samples 7 et j is
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0 if same genotype
d;;(1) =<1 if one common allele .

2 if no common allele

2. A hierarchical clustering is applied to the distance matrix. Initially each individ-
ual forms a single cluster. The clusters are progressively merged following Ward’s
minimum of variance criterion until all samples are in the same cluster.

3. The estimation of the number of clusters K is conducted using a gap statistic method
(Tibshirani et al. 2000). The novel algorithm that we developed during this PhD is
also based on a gap statistic. We will present this estimation method in the next
section dedicated to the SHIPS algorithm.

Note that the AWclust algorithm limits the maximum number of clusters to 16 in
order to reduce the computational cost of the method.

3.2.5 Principal component analysis and clustering

We presented in Chapter 2 the principal component analysis and evoked the possibility
of using the axes of variation to cluster individuals into homogeneous sub-populations.
Several clustering algorithms can be used on the principal components such as a classical
K-means or a Gaussian mixture model (GMM) clustering (Lee et al. 2009). We present
here the method called PCAclust that uses this latter clustering strategy.

PCAclust method

The PCAclust algorithm is composed of the 3 following steps.

1. A principal component analysis is applied to the genotype data to compute the
principal components (PCs). This step is conducted using the software Eigensoft
using the LD option that replaces each SNP by the residual of its regression on the
two preceding SNPs.

2. A set of significant PCs, (PCY,...,PC,,), is selected using the Tracy-Widom statistic
at a 5% level.

3. A Gaussian mixture model clustering algorithm is applied to the selected PCs to
cluster the samples. As a matter of fact the principal components are normally
distributed which leads to a good fit with the GMM clustering. Figure 3.1 is an



90

3. Inference of Population Structure

example of the normality of the principal components that also shows the mixture
of the normal distributions between the three populations considered.

The estimated number of clusters is computed so that the likelihood of the model

is maximized.
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Figure 3.1: Normal distribution of the principal components. A genetic data com-
posed of three HapMap populations is used. The three main ethnicities are represented
by the populations CEU (Caucasian), MKK (African) and CHB (Asian). The principal
components are plotted as histograms and display a mixture pattern of 3 distributions
representing each ethnicity. Each of these distribution is colored according to the ethnic-

1ty.
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3.3 SHIPS: Spectral Hierarchical clustering for the In-
ference of Population Structure

We present in this section our novel non-parametric distance-based clustering approach
based on a divisive hierarchical clustering method. Our method is based on the idea
that it might not be possible to uncover all of the structure in the data when applying
a clustering algorithm just once. Fine population structures may not be detected as the
corresponding sub-populations are hidden within the major sub-populations detected by
the first run of the algorithm.

We therefore implemented a robust statistical framework to iteratively apply a clus-
tering algorithm to the data and so analyze in depth the genetic patterns of the studied
populations. This corresponds to a divisive hierarchical clustering strategy. Based on a
pairwise distance matrix, the algorithm progressively divides the original population in
two sub-populations by the use of a spectral clustering algorithm. The process is then
iterated in each of the two sub-populations and so on. This leads to the construction of
a binary tree, where each node represents a group of individuals. To determine the final
clusters, a tree pruning procedure and an estimation of the optimal number of clusters are
applied. In such an approach, both the final clustering of the individuals and the num-
ber of clusters are estimated by the method. We call our method "Spectral Hierarchical
clustering for the Inference of Population Structure’ (SHIPS).

3.3.1 The SHIPS algorithm

SHIPS can be described in several steps that are graphically represented in Figure 3.2.

1. Computation of a distance matrix that is a similarity matrix S between each pair
of individuals. This matrix is used for the next steps of the algorithm.

2. Creation of a binary tree. Each population is divided in two sub-populations and
so on (Figure 3.2-A).

3. Pruning of the tree to keep only the relevant branches corresponding to the relevant
divisions (Figure 3.2-B).

4. Estimation of the optimal number of clusters K to determine which clusters of the
tree are the final ones (Figure 3.2-C).

3.3.2 Similarity matrix

SHIPS is based on a spectral clustering algorithm. A similarity matrix is therefore neces-
sary to apply this clustering method. We decided to consider a similarity matrix based
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Figure 3.2: Graphical example of the SHIPS algorithm. After that the initial
binary tree is built (A), the pruning procedure leads at the end of each step to a possible
clustering of the individuals. In this example the data is clustered in four, then three then
two clusters (gray nodes) at step ¢, i + 1 and ¢ + 2 respectively (B). The final clusters
decided by the gap statistic correspond to the ones of the four classes clustering (red
nodes) (C).

on the allele sharing distance that has been previously used to identify genetic patterns
among populations (Mountain and Cavalli-Sforza 1997, Gao and Starmer 2007). This
matrix represents how close the genomes of each pair of individuals are. The similarity
at SNP [ between samples ¢ and j is calculated as follows

2 if same genotype
s;j(l) =<1 if one common allele .

0 if no common allele
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The total similarity between samples 7 and j is

p p

sig = sij() =Y (2= |wa — zal),
=1 =1

where x;, xj are the sample genotypes coded 0, 1 or 2 according to the number of

reference alleles present at the locus . The final matrix S=(s; j)1<i<n is a squared matrix
1<j<n

of dimension n X n, n being the number of individuals.

One has to note that any pairwise similarity matrix could be used in the algorithm
instead of the one presented here. Examples of such matrices, based for instance on hap-
lotypes instead of genotypes, are presented in (Li and Yu 2008, Browning and Browning
2010, Lawson et al. 2012, Lawson and Falush 2012). We decided the choice of this sim-
ilarity measure as it is fast to compute and it led to high empirical performances of the
algorithm.

3.3.3 Creation of a binary tree with successive spectral clustering
algorithms

The binary tree produced by SHIPS is obtained by successively dividing each population
in two sub-populations using a spectral clustering algorithm. Spectral clustering methods
cluster points using eigenvectors of matrices derived from the initial data. We decided to
use the version of this method proposed by Ng et al. (Ng et al. 2001, Luxburg 2007) that
is the normalized spectral clustering described in the three following steps.

First, the similarity matrix S computed in the previous section is transformed into its
normalized laplacian L with

L=1-D'*WwD™ /2
where W = S — diag(95), I is the identity matrix

n

and D is a diagonal degree matrix such as each diagonal term d; = Z Wij.
j=1
In a second step, a singular vector decomposition of the laplacian L = UAU’ is com-
puted and the m first eigenvectors (Uy,. . ., U,,) are normalized to get new vectors (17,.. .,
T.,), with norms of 1, defined by
Ui

VLU

These vectors are used to cluster the points, i.e. divide a population in two sub-populations.
Note that m represents here the number of desired clusters so m = 2 in the case of the
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SHIPS algorithm.

In a third step, a clustering algorithm is applied to the new vectors (77,75) to create
the two sub-populations. We decided to use a Gaussian mixture model (GMM) clustering
after determining empirically that the usual k —means clustering algorithm is less robust
than the GMM clustering when applied to our genetic data. The GMM clustering is used
in the way the &k — means would be, that is by strictly fixing the number of estimated
clusters to m = 2.

If the population that we wish to split in two sub-populations is deemed homogeneous
by the algorithm, the GMM clustering creates two clusters, one with all the samples and
an empty one. This is a termination criterion that defines the end of a branch of the tree,
called a terminal node. In extreme cases, the terminal nodes are all composed of a unique
sample of the original population which ensures the convergence of the tree building step
of the algorithm.

3.3.4 Pruning of the tree

The divisive strategy of SHIPS consists in dividing the original population in two sub-
populations with the spectral clustering algorithm previously described and to iterate
this procedure within each sub-population. This process leads to the computation of a
binary tree (Figure 3.2-A). It is however noticeable that certain divisions are not rel-
evant enough in terms of separating really distinct genetic populations. As a result, a
pruning procedure is applied to the tree to progressively suppress the nodes, and the
corresponding branches, that are the less relevant. This procedure creates several nested
trees, each corresponding to a possible clustering of the individuals with a decreasing
number of clusters (Figure 3.2-B). At the last step of the pruning, all the samples are
in the same cluster.

The strategy of tree pruning that we use is the reduced error pruning. A quality
indicator is defined and calculated for each node of the tree. This indicator is based on
the sum of the squared similarities of a node and of its leaves. We define the function
calculating the sum of squared similarities within a node A by

SW(A)= > s},
i,JEA

where s; ; is the similarity previously introduced between samples ¢ and j.
Considering a tree T, the quality of a node G which has the leaves L(G) = (L1, ..., Lq)
is defined by
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qual(G | T) = SW(G) = > SW(Ly).

In terms of inter-cluster sums the quality can be expressed by

qual(G | T) Z Z 7],

1<k<k'<d i€Ly,jELy

which corresponds to the sum of squared similarities between the leaves of G.

At each step, the node with the lowest quality value, Gpryneq = argmingeq qual(G | T),
is pruned along with the subtree which it is the root. The indicators are recalculated after
each step to account for the new topology of the tree.

3.3.5 Estimation of the optimal number of clusters
Principle

The optimal number of clusters K is regarded as a variable that is estimated using Tib-
shirani et al.’s gap statistic (Tibshirani et al. 2000). This method compares a quality
indicator calculated on the result of a clustering in k classes of a dataset of interest and
the value that this indicator would take under its null distribution, that is when the same
clustering algorithm is applied to cluster a null reference dataset in k classes also.

A range of possible numbers of clusters, k = 1... k42, is thus investigated and for
each an indicator Wj, is calculated. The gap statistic is defined for a clustering with k
clusters by

Gap(k) = E[Wk] — Wk,
and estimated by
B
—_— ]_
Gap(k) = E'[Wi] = Wi = — bz_; Wiy = W,
where E*[W}] represents the expectation from the null distribution and therefore the W},

are the quality indicators calculated on B simulated null reference datasets. The simula-
tion process for these datasets is described hereafter.

Several possible estimations of thAe optimal number of clusters K exist (Dudoit and
Fridlyand 2002). The one we use is K, the smallest k such as

Gap(k) > Gap(/%) — St

where k = argmax, Gap(k) and sp=sd((W},)1<o<p)-\/(1 + 1/B). Note that the factor
\/Zl + 1/B) accounts for the simulation error of the W};.
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Quality indicator

Let (Ck)k=1.. kna.. be possible clusterings of the samples in the data with £ clusters in a
clustering C. These clusterings are in our algorithm the ones determined at each step of
the pruning (Figure 3.2-B). We call W}, the quality indicator calculated on the clustering
Cy. If we denote Cy, = (Dy, ..., Dy), where D, is the r—th cluster of C, then the indicator
that we consider is

k
1
W= S(D,),
k — 2,|D7,.| ( )

where ¥(D,) is the sum of the squared dissimilarities between the samples of the r — th
cluster of Cy and |D,| its cardinal (i.e. the number of samples in D,). The dissimilarities
are calculated like for the AWclust algorithm that is by inverting the values (0 if the
samples have the same genotypes and 2 if they have no common alleles) compared to the
similarities.

In the classical version of the gap statistic, the logarithm of W} is used however several
alternatives have recently been investigated (Mohajer et al. 2011). We decided to use the
aforementioned criterion as we observed that it led to a better estimation of the number
of clusters for both the simulated and real genetic data that we used to assess the method.

Simulation under the null distribution

To compute null reference datasets we simulate datasets with a number of variables and
individuals identical to the ones of the original datasets. Each variable was taken uni-
formly within {0, 1,2} to match the SNPs values of the original datasets. Simulated that
way, the null datasets correspond to data where there is no structure of the population.
This simulation choice is also the one made in the algorithm AWclust that uses a gap
statistic method. Note that theoretically it is not necessary to match all of the features
of the data, such as for example the minor allele frequency of each SNP, when simulating
under the null. This choice of simulation model was motivated by the empirical perfor-
mances of the corresponding gap statistic to estimate accurate numbers of clusters in our
applications.

Adequacy of SHIPS and the gap statistic

SHIPS has the advantage of producing in one run of the algorithm nested clusterings of the
samples for k£ = 1... k4, which renders faster the computation of the gap statistic. Note
also that the quality indicator used in the gap statistic is based on a dissimilarity matrix
while SHIPS uses a similarity matrix. This actually does not imply the computation of a
new matrix, as the dissimilarity and the similarity matrix are linearly related. The gap
statistic is therefore well suited to determine the optimal number of clusters with this new
method.
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3.3.6 Implementation

The SHIPS algorithm was implemented in R and the Mclust package was used within
the spectral clustering steps to apply Gaussian mixture model clustering. A R package is
freely available at http://stat.genopole.cnrs.fr/logiciels/SHIPS.

This algorithm takes as input parameters a SNP matrix of dimension n x p where n is
the number of individuals and p the number of SNPs. Each entry of the matrix is coded
0, 1 or 2 given the number of reference alleles present at each locus for each sample. It is
also necessary to indicate the maximum number of clusters to be investigated (denoted
here ky,q,) and the number of null datasets simulated (B here) to apply the gap statistic.
A default value of B = 20 is set in the program.

3.4 Comparison of SHIPS to other approaches

We now propose several applications of the SHIPS algorithm to SNP datasets. We con-
sidered five scenarios of simulated population structures. The software Genome (Liang
et al. 2007) was used to simulate these data of increasing complexity. We also applied the
method to a simulated admixed dataset that was produced using the simulation model
presented in Section 2.4.3. In addition, we evaluated the performances of the algorithm
on two real datasets, namely data from the HapMap project (Consortium 2005) and the
Pan-Asian dataset (Ngamphiw et al. 2011). A comparison of our method SHIPS and some
of the main approaches that are Structure, Admixture, AWclust, and PCAclust was also
conducted on these datasets.

3.4.1 Evaluation of the methods
Methods included in the comparison

We compared SHIPS to some of the most commonly used clustering algorithms in the
genetic field. We first considered the parametric approaches Structure and Admixture.
Also we included a non-parametric approach, namely AWclust, and finally we added the
alternative clustering strategy PCAclust to the comparison.

SHIPS was used with the default parameters, i.e. 20 null datasets simulated for the gap
statistic. A reasonable maximum number of clusters was considered for all the methods,
for instance, when analyzing a dataset with 10 (known) sub-populations we investigated
up to 20 possible sub-populations.

The version 2.3.2.1 of Structure was downloaded from http://pritch.bsd.uchicago.
edu/structure.html and used with 5,000 burn-ins, 5,000 runs, the admixture model and
no LD model. Structure provides a way of estimating the optimal number of clusters
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K through the model likelihood however it has been demonstrated that this method
had shortcomings compared to more recent algorithms such as for instance Structurama
(Huelsenbeck and Andolfatto 2007) that allows a better estimation of K. To consider the
best use of Structure, we therefore decided to opt for a way of estimating the number
of clusters that advantages this method. In our comparison strategy a criterion is used
to compare the different programs and we considered an estimated K for Structure that
optimizes this criterion. Also, as Structure provides admixture proportions under the
admixture model, we decided as it is usually done that an individual was assigned to
the estimated population it has the highest probability to belong. Note that with this
assignment method, certain clusters computed by the admixture model might not have
any individuals assigned to them. In such a situation we considered the estimated number
of clusters to be the effective number of sub-populations after the assignment procedure.

The program Admixture was downloaded from http://www.Genetics.ucla.edu/
software/admixture. The estimation of the number of clusters was conducted using the
minimum of cross-validation error with the default parameter of 5 fold cross-validation.
Like with Structure, we obtained discrete clusterings with this program by assigning an
individual to the population it has the highest probability to belong.

The version 2.0 of AWclust was downloaded from http://AWclust.sourceforge.net
and used with the default parameters and 20 simulations for the computation of the gap
statistic. The estimated number of clusters was determined using the maximum of the
gap statistic.

The method PCAclust was recoded as it is not available as a software. The PCA
was conducted using the software Eigensoft. The R package Mclust was used to apply
GMM clustering to the set of relevant principal components selected with the use of the
Tracy-Widom statistic. The optimal number of clusters was estimated using the likelihood
computed by Mclust.

Population structure scenarios

We assessed SHIPS and the other methods on several datasets. We considered simulated
datasets where the structures of the populations were controlled, a simulated admixed
dataset and real datasets to determine the performances of the different approaches in
real situations. For all of these scenarios small datasets of thousands of markers and
large datasets of hundreds of thousands of markers were considered. We used several
replicates for the small data in order to account for the simulation process or the markers
sampling. Only one was used for the large scenarios due to the computational cost of
certain algorithms.
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Simulated datasets

We simulated datasets using the software Genome based on the coalescent approach
and assuming an island model of population structure. We considered a first model M1
with no structure of the population in order to determine which methods are capable
of uncovering that the data is not structured. We then considered 4 structured models,
M3, M5, M10 and M20 with respectively 3, 5, 10 and 20 sub-populations and increasing
complexities of population histories. Figure 3.3 presents the population histories of
these models and Table 3.1 the detail of the sampling. Each small dataset is composed
of 5,000 SNPs and each large dataset of 200K SNPs simulated in equal number on each of
the non-sexual chromosomes. Ten datasets were simulated and analyzed by the algorithms
for each small scenario. The results are then averaged over these datasets. Note also that
for computational purposes, Structure was only applied to five small datasets and was
not applied to the large ones.

Model Samples per sub-population
Model M1 (1 sub-population) 100
Model M3 (3 sub-populations) 100
Model M5 (5 sub-populations) 50
Model M10 (10 sub-populations) 50
Model M20 (20 sub-populations) 30

Table 3.1: Details of the simulated models.

Simulated admixed datasets

In order to assess the performances of the various algorithms on more realistic situa-
tions we simulated a discrete admixed dataset corresponding to the model named Madx.
Two real populations from the HapMap phase III data!, namely the Han Chinese from
China (CHB) and the Utah residents with Northern and Western European ancestry from
the CEPH collection (CEU), were used in an evolutionary model to produce an admixed
population. The evolutionary model consists in randomly mating samples from each of
the two original populations and to iterate this process over time. The final dataset is
composed of the two original populations (CEU and CHB) and the admixed simulated
one (named XY). The detail of the sampling is provided in Table 3.2. Like for the other
simulated datasets we considered small data of 5,000 SNPs with ten replicates and one
large data of 200K SNPs.

HapMap dataset
We also focused on the potential of the methods when applied to real datasets. We

IThe full HapMap dataset is available at http://hapmap.ncbi.nlm.nih.gov/downloads.
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Figure 3.3: Population history trees used to generate the simulated datasets.
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Population # Samples
CEU 112
CHB 137
Admixed (named XY) 100

Table 3.2: Details of the admixed dataset.

first considered the HapMap phase I1I dataset with 9 populations and 1,087 individuals
(Table 3.3). Figure 3.4 is a graphical representation of these populations on the prin-
cipal components space. We considered small data with 20,000 SNPs and large data with
220K SNPs randomly chosen among the whole set of SNPs available and in equal num-
ber on each of the non-sexual chromosomes. To account for the SNPs sampling, twenty
replicates of the small HapMap data were considered to assess the methods, except for
Structure that was only applied to five datasets.

Population | Ethnicity 7# Samples
CEU Utah residents with Northern and Western European ancestry 112
CHB Han Chinese in Beijing, China 137
CHD Chinese in Metropolitan Denver, Colorado 109
GIH Gujarati Indians in Houston, Texas 101
JPT Japanese in Tokyo, Japan 113
LWK Luhya in Webuye, Kenya 110
MKK Maasai in Kinyawa, Kenya 156
TSI Toscani in Italia 102
YRI Yoruba in Ibadan, Nigeria 147

Table 3.3: Details of the HapMap dataset.

Pan-Asian dataset

The PASNPi consortium provides the genotype data of 75 Pan-Asian and HapMap
populations with 1928 individuals and 54,794 SNPs2. Among all these populations, certain
main groups, defined by the countries of origin, can be highlighted. We focused on 10 sub-
populations formed by 443 individuals, from each of these groups (Table 3.4, Figure 3.5)
and refer to these data as the Pan-Asian datasets. Like for the HapMap data, we selected
20,000 SNPs randomly chosen in equal number on each of the non-sexual chromosomes
among the initial dataset for the small data (with twenty replicates) and the whole set

2The complete PANSNPi dataset is available at http://www4a.biotec.or.th/PASNP.
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Figure 3.4: Representation of the 9 populations of the HapMap dataset. This
scatter-plot uses the first five principal components of a dataset with 20K SNPs. This
graph is only intended to present the general genetic pattern of the dataset and does not
exhaustively represent the capability of the PCA to separate the populations.
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of SNPs for the large data. For the reasons indicated previously, Structure was only
applied to five small replicates.

Population | Ethnicity # Samples
CN.WA Wa, China 26
ID.JA Javanese, Indonesia 34
IN.TB Mongoloid features, India 23
JP.ML Japanese ,Japan 71
KR.KR Koreans, Korea 90
MY.JH Negrito, Malaysia 50
PI.AT Ati, Philippines 23
SG.ID Indian, Singapore 30
TH.MA Mlabri, Thailand 18
TW.HA Chinese, Taiwan 48

Table 3.4: Details of the Pan-Asian dataset.

Assessing the clustering quality

To assess the potential of a clustering method it is important to focus on both the sample
assignments and the estimated number of clusters. The quality indicator usually con-
sidered is the accuracy, that is the proportion of individuals that were assigned to the
correct populations. This indicator focuses only on the one-to-one relationship between
estimated clusters and true populations. We decided not to retain this criterion as it does
not exhaustively describe the quality of a clustering method’s assignments and does not
account correctly for the estimated number of clusters.

The indicator we selected to account for both the assignments and the estimation of
the number of clusters is the adjusted Rand index (Rand 1971). This index is calculated
using the contingency table of two clusterings U and V' (Table 3.5) with the formula

>y () = [E (5 X, ()]/ )
3 [ 2 (‘“)+Z (3] =[5 (“2’)2 ($)1/G)

where a;, b; and n;; are defined in Table 3.5.

This index focuses on all pairs of samples and considers whether they have correctly
been assigned to the same population or correctly been assigned to different populations.
That way, in addition to the accuracy criterion, the adjusted Rand index takes into ac-
count the fact that certain samples should not be clustered together. The adjusted Rand
index is comprised between 0 and 1, a value of 1 meaning a perfect clustering. Note that
if there is only one cluster in the data and that a clustering method properly uncovers

adjusted Rand index =
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Table 3.5: Contingency table between two clustering U and V. a; and b; are the
numbers of samples in the i — th clusters U; of U and V; of V' and n;; the number of
samples in the ¢ — th cluster U; of U and the j — th cluster V; of V.

such a structure the Rand index is theoretically not defined. Given that the structure is
perfectly estimated in such a case we consider a value of 1 for the Rand index.

For simulated datasets we compared, via the adjusted Rand index, the clusterings
proposed by the different methods to the true population labels that are available through
the simulation process. For the admixed and the real datasets, no true population labels
exist. As a consequence we provide two quality measures that are the quality index using
as comparison partitions the population labels provided with the datasets (e.g. CHB or
CHD in HapMap) and the partitions produced by Admixture. We selected Admixture as
it is one of the most widely used methods for the estimation of population structure. Also
we represent the admixture proportions of all the methods with barplots. For discrete
clusterings these proportions are either 0 or 1.

3.4.2 Results

Several small datasets and one large dataset were investigated for each simulated or real
scenario. The average Rand indexes and the average estimated numbers of clusters are
the indicators we are interested in. Figure 3.6 presents these values for all the methods
applied to small datasets and Figure 3.7 for the large datasets. In addition, Figure 3.8
provides examples of the graphical representations of the criterion used by SHIPS to
estimate the number of clusters K on the small datasets and Table 3.6 the average
numbers of principal components retained by the algorithm PCAclust in each scenario.

Data / Model | M1 | M3 | M5 | M10 | M20 | Madx | HapMap | Pan-Asian
Small data 0 17 12 51 72 9 49 64
Large data 0 6 ) 28 49 25 70 99

Table 3.6: Number of PCs selected with PCAclust.
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Simulated datasets

Model M1 (1 sub-population)

For the model M1, with only one population, SHIPS was always able to correctly
determine the correct number of one cluster for both all the small and large datasets. This
was also the case of Structure and PCAclust. As a consequence these three methods
perfectly assigned all the individuals to the correct population and had a Rand index of
1. On the other hand, Admixture was only able to determine that there was no structure
in the small datasets, estimating K = 1, but not in a large dataset producing K = 2.
This is bound to be due to the number of SNPs that led the algorithm to determine a
more complicated structure. AWclust properly determined that there was one cluster in
7 small replicates out of 10, but the average number of estimated clusters is K = 2. On
the large dataset, this latter method correctly estimated the number of clusters as the
amount of SNPs allowed the AWclust’s gap statistic to be more accurate.

Model M3 (3 sub-populations) and M5 (5 sub-populations)

The performances of SHIPS, Structure and AWclust were comparable for these mod-
els. An average number of 3 and 5 clusters was respectively estimated for all small and
large replicates of the models M3 and M5 (except for Structure that was not applied to
large datasets). These three methods mis-classified in average less than 3 individuals lead-
ing to Rand indexes higher than 0.99. PCAclust was able to estimate the correct number
of 3 sub-populations in 8 small replicates out of 10 small datasets of the model M3 and in
5 replicates for the model M5. When the number of SNPs increased to 200K, PCAclust
was able to correctly estimate K and led to perfect sample assighments. The clustering
proposed by Admixture on these models were not consistent with the true populations.
Indeed, this method identified the maximum number of clusters to be the optimal one,
that is 10 in our case. Larger sample sizes did not improve these results.

Model M10 (10 sub-populations)

The model M10, with 10 populations, pertains to a more complex structure of the data.
In this scenario SHIPS, Structure and AWclust succeeded in perfectly estimating K and
assigning all individuals to the correct populations for both small and large datasets.
PCAclust estimated a mean number of 6 clusters for the small data, 4 for the large data
as it was not able to separate certain populations. Admixture again over-estimated the
number of clusters (K = 18 for small data and K = 17 for large data). We investigated
up to 20 clusters but the algorithm did not converge for values of K greater than those
estimated.

Model M20 (20 sub-populations)
In this last simulated model, with the more complex structure and 20 populations,
both SHIPS and Structure evaluated the correct number of clusters for all replicates and
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Rand Index Comparison
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Figure 3.6: Comparison of the clustering methods on the small datasets. Average
Rand indexes over all small replicates are indicated for each method and each model along
with the estimated numbers of clusters in parenthesis. The darker a cell color is, the better
the corresponding clustering is.
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Rand Index Comparison
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Figure 3.7: Comparison of the clustering methods on the large datasets. Rand
indexes are indicated for each method and each model along with the estimated numbers
of clusters in parenthesis. The darker a cell color is, the better the corresponding clus-
tering is. The software Structure was not applied to large datasets due to a too large
computational cost.
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completed an individual assignment very consistent with the true populations. AWclust
and PCAclust underestimated the number of clusters. AWclust only allows to estimate
a maximum of 16 clusters that was reached for this complex dataset. One could wonder
if the clustering assignments would have been better if the maximum number of clusters
was more flexible. On the other hand, PCAclust was not able to detect the structure of
this dataset. Only 4 clusters in average were identified in the small and large datasets
as many populations were not separated thus leading to a low Rand index close to 0.2.
For both small and large datasets Admixture estimated 21 clusters and almost perfectly
assigned all the individuals to the correct populations. Even though these clusterings are
quite accurate, it is noticeable that 21 was the maximum number of clusters for which the
algorithm converged. In other words, it is possible that if the convergence could have been
reached for greater values of K, the number of clusters could have been over-estimated
again.

SHIPS and Structure were the most accurate methods when applied to simulated
datasets both in terms of estimating the correct number of clusters K and assigning
individuals consistently with the true population labels. The performances of the other
methods were a little less, especially for Admixture that always over-estimated K and
PCAclust that usually under-estimated it. It is also noticeable that for all of the methods
the results are generally comparable between the large and the small datasets.

Admixed and real datasets

In order to assess the quality of the clustering methods we were also interested in looking
at admixed and real datasets, more representative of the ones encountered in genetic
studies. We present the average results over the different small and large replicates, along
with details on the assignments performed. In order to account for the fact that there is no
‘true’ structure in real datasets, we considered both the population labels and the labels
produced by the program Admixture as structures (also called partitions) of reference.
Barplots of the admixture proportions of the different methods are presented for the
admixed datasets (Figures 3.9 and 3.10), the HapMap datasets (Figures 3.11 and
3.12) and the Pan-Asian datasets (Figures 3.14 and 3.15). In addition, Figures 3.13
and 3.16 display the graphical results of SHIPS for the small HapMap and Pan-Asian
data.

An admixed population

SHIPS identified 3 distinct populations for the admixed datasets that are the two pop-
ulations of origin (CEU and CHB) and the one simulated as an admixture. Structure,
Admixture and AWclust detected two populations. The admixture proportions displayed
in Figure 3.9 show that Admixture and Structure estimated almost the same ancestries
for the individuals, with the admixed population (XY) having a genome coming approx-
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Figure 3.9: Barplots of the admixture proportions for the small admixed data.
The first small dataset was used to produce this plot. Populations are separated by black
lines and assigned with a unique color that is approximately reported on the barplot of
each method. For the discrete methods the admixture proportions are either 0 or 1.



112 3. Inference of Population Structure

CEU
XY
CHB

Admixture SHIPS PCAclust AWeclust
K=2 K=3 K=4 K=3

Figure 3.10: Barplots of the admixture proportions for the large admixed data.
Populations are separated by black lines and assigned with a unique color that is approx-
imately reported on the barplot of each method. For the discrete methods the admixture
proportions are either 0 or 1.
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imately in equal part from the CHB and CEU populations. These proportions correctly
match those used in our simulation model. AWclust resulted in a split of the admixed
population in function of these admixture proportions. On the other hand, PCAclust
estimated 5 clusters that correspond to the 3 distinct populations identified by SHIPS and
two small clusters being sub-populations of the CHB and CEU populations.

In terms of quality indexes, when comparing to the population labels, SHIPS and PCAclust
performed the best as they identified the 3 main discrete populations. When comparing
the results to Admixture, Structure is the closest in such a setting and SHIPS and
AWclust are in agreement at about 50% as they assigned the samples from the admixed
population to another population being a cluster of admixed, CEU or CHB individuals.
The results are quite similar on the large admixed dataset except for PCAclust that did
not find small sub-clusters within the CHB populations (Figure 3.10).

It is interesting to notice that there are two kinds of behaviors to cluster the admixed in-
dividuals. Certain methods assigned them to the populations of origin they are the closest
genetically speaking and others created a specific admixed cluster. These two behaviors
of the methods are understandable given the nature of the admixture that we considered
in this simulation. Indeed, we simulated a discrete admixture, meaning that the admixed
samples, even though originating from the CHB and CEU populations, form a discrete
cluster. The nature of this structure is therefore more challenging for discrete clustering
algorithms such as SHIPS and AWclust but also quite favorable to discrete assignments
compared to 'real life’ admixtures that are usually continuous. The results produced by
Structure and Admixture have to be interpreted in the sense that with a continuous ad-
mixture only the admixture proportions can properly relate the structure as there would
be no discrete cluster to be identified. Further analyses of these algorithms on continu-
ous admixture would reveal more precisely the behaviors of the algorithms with such a
population structure and complete the partial results presented here.

HapMap 9 populations

Considering all 20 small replicates, SHIPS was able to identify 8 clusters in average
(Figure 3.8). Certain populations such as the two Chinese populations (CHD and CHB)
were not entirely differentiated in some datasets. Also, two of the African populations
YRI and LWK were sometimes assigned to the same cluster. Results were similar on the
large dataset. In both cases, an average Rand index of about 0.8 was reached when using
the population labels as reference (Figures 3.6 and 3.7). PCAclust estimated 9 clusters
by assigning CHB and CHD to the same cluster and splitting certain populations such
as GIH or the African ones into several clusters. Structure and AWclust produced clus-
terings less consistent with the population labels. Structure identified the three main
ethnicities, that are African, Caucasian and Asian plus the GIH population. Note that
this population derives from the Asian and Caucasian one. AWclust was only able to
detect the three main ethnicities. These two latter methods have therefore a relatively
low Rand index (0.4) compared to the population labels.
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Figure 3.11: Barplots of the admixture proportions for the small HapMap data.
The first small dataset was used to produce this plot. Populations are separated by black
lines and assigned with a unique color that is approximately reported on the barplot of
each method. For the discrete methods the admixture proportions are either 0 or 1.
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Figure 3.12: Barplots of the admixture proportions for the large HapMap data.
Populations are separated by black lines and assigned with a unique color that is approx-
imately reported on the barplot of each method. For the discrete methods the admixture
proportions are either 0 or 1.
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Figure 3.13: SHIPS tree of the 9 HapMap populations. This representation is an
output produced by SHIPS. The tree structure corresponds to the successive divisions
conducted by the algorithm. Each final cluster is represented by a scatter-plot of its
members. We colored here the individuals according to the population labels.
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Admixture estimated 7 ancestral populations in the small datasets. As we can observe
on Figure 3.11, according to Admixture, the CHB and CHD populations share a very
close ancestry, which can explain why SHIPS and the other methods did not split these
populations. The JPT population has a common ancestry with the Chinese populations
but with different admixture proportions. SHIPS and PCAclust were able to differenti-
ate this population from CHB and CHD but not Structure and AWclust. Among the
7 ancestral populations detected by Admixture, one is specific to the GIH population.
In addition, Structure uncovered the same admixture pattern which validates the clus-
terings of SHIPS and PCAclust that differentiated the GIH population. It is noticeable
that even though the admixture proportions of the Caucasian population CEU and TSI
are very close, SHIPS and PCAclust were able to separate them in two distinct clusters.
The behavior of the methods is however different on the African populations. The 3
corresponding populations share the same 3 ancestries in different proportions. SHIPS
differentiated these 3 populations correctly whereas PCAclust created a fourth cluster
composed of samples from each of these populations. When observing the admixture
proportions of the samples clustered into this additional group, there seems to be no
common pattern and therefore this split appears to be inconsistent with the structure of
the population. As a result SHIPS is the method that agrees the most with Admixture
(Rand index = 0.76) followed by PCAclust (Rand index = 0.69), Structure (Rand index
= 0.61) and AWclust (Rand index = 0.61).

On the large dataset, results are quite similar except that Admixture estimated 6 ances-
tral populations. The corresponding assignments were however more consistent with the
population labels. The same observation can be made for SHIPS and as a consequence the
quality indicator of our new method improved whether we compared it to the population
labels or to Admixture.

Pan-Asian 10 populations

We first describe the results for the small datasets. In average, over all the small
Pan-Asian datasets, SHIPS estimated 8 clusters. In the majority of the replicates the
population from India (IN.TB) was clustered with the Philippines (PT.AT) or Singa-
pore (SG.ID) and the populations from China (CN.WA) and Indonesia (ID.JA) or Japan
(JP.ML) were assigned to the same cluster. These clusterings of the data are quite consis-
tent with the labels of the populations and as a consequence SHIPS has the highest Rand
index of 0.81 with this reference partition. PCAclust estimated 9 clusters. The CN.WA
population was split in several clusters and often assigned to the same clusters as samples
from SG.ID and IN.TB or PI.LAT and MY.JH. Several other populations were separated
according to the population labels and therefore the quality index with this reference is of
0.71. Structure identified 5 ancestral populations. The corresponding discrete clustering
is however quite distant from the population labels. Indeed, only the MY.JH, TH.MA and
part of the SG.ID populations are separated. As a consequence the Rand index compared
to the population labels is quite low. Likewise, AWclust has a null Rand index as this
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Figure 3.14: Barplots of the admixture proportions for the small Pan-Asian
data. The first small dataset was used to produce this plot. Populations are separated
by black lines and assigned with a unique color that is approximately reported on the
barplot of each method. For the discrete methods the admixture proportions are either 0
or 1.
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Figure 3.15: Barplots of the admixture proportions for the large Pan-Asian
data. Populations are separated by black lines and assigned with a unique color that
is approximately reported on the barplot of each method. For the discrete methods the
admixture proportions are either 0 or 1.
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Figure 3.16: SHIPS tree of the 10 Pan-Asian populations. This representation is
an output produced by SHIPS. The tree structure corresponds to the successive divisions
conducted by the algorithm. Each final cluster is represented by a scatter-plot of its
members. We colored here the individuals according to the population labels.
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method did not determine any structure in the data. Admixture found 6 ancestral popu-
lations. The populations IN.TB, JP.ML, KR.KR and TW.HA were assigned to the same
cluster like CN.WA and ID.JA. This results in a Rand index of 0.45. When analyzing the
admixture proportions (Figure 3.14) we observe that SHIPS assigned the populations
IN.TB and CI.AT to the same cluster whereas these populations share quite different
ancestries. On the other hand, this novel algorithm differentiated the TW.HA, KR.KR
and JP.ML populations that have closely related ancestries. PCAclust also assigned these
populations to different clusters but had a lower Rand index than SHIPS compared to the
Admixture partitions as the additional cluster detected by this method does not match
the admixture proportions.

On the large datasets, SHIPS and PCAclust estimated fewer clusters than on the small
datasets. SHIPS estimated 5 clusters and PCAclust 7 clusters. These differences resulted
in SHIPS identifying a structure very close to that estimated by Admixture (Rand index
of 0.89) while PCAclust’s clustering was less in agreement with Admixture (Rand index
of 0.25). On the other hand, PCAclust was closer to the population labels partition than
SHIPS. One has to note that when setting the number of clusters manually, SHIPS and
PCAclust estimated the same structure than on the small datasets. These different be-
haviors of the methods are therefore due to the size of the dataset that influenced the
estimations of the number of clusters.

The analysis of the real datasets pointed out that compared to the population labels
as reference partitions, SHIPS was the most efficient method to uncover the population
structures followed by PCAclust. Even though SHIPS produces discrete clusterings, this
novel algorithm reached the most important agreement with the clusterings estimated by
widely used methods such as Admixture.
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3.5 Discussion

We have proposed a novel clustering approach to infer the genetic structure of popula-
tions from SNPs data. SHIPS is based on a divisive hierarchical clustering procedure and
a pruning strategy followed by the use of the gap statistic to estimate the final number
of clusters K.

Comments on the different strategies

SHIPS has proven to be an accurate and precise method to estimate both relevant optimal
numbers of clusters as well as for producing assignments consistent with the reference
partitions of the data considered. In the simulated datasets, K was always correctly
estimated and only few individuals were mis-assigned. The structures identified for the
admixed dataset (K=3), the HapMap (K=9) and the Pan-Asian (K=10) datasets were
remarkably close to the population labels or the partitions estimated by the program
Admixture.

The other algorithms considered had less regular performances, either missing the
structure of the complex simulated data or of the real datasets. A possible explanation of
these results depends on the algorithms’ methods to estimate the number of clusters or on
the parameters utilized for each algorithm. It is interesting to observe that even though
Structure and Admixture are based on the same model their performances are notably
different. In the simulated datasets, Structure was able to estimate the correct K for
each dataset. On the other hand, Admixture always over-estimated the number of clusters
by selecting the higher K investigated. This led to poor performances of Admixture in the
first simulated scenarios (M1 and M3) and relatively satisfying ones in the final scenarios
(M5, M10 and M20) as the correct number of clusters corresponded to the maximum
K for which the method converged and therefore the estimated K. Given that when
manually setting K to the true values, Admixture identified the true structures of the
data, the estimation of the number of clusters through cross-validation can be identified
as the cause of the poor clustering quality of the algorithm in the simulated datasets. We
considered different cross-validation methods that are 5, 10 and 15 fold cross-validation,
and obtained the same estimations of K (data not shown). It therefore appears that the
cross-validation method is not fit in such settings to estimate the number of clusters. These
results confirm certain limitations of the cross-validation criterion that had already been
pointed out (Alexander and Lange 2011, Lawson et al. 2012). We used in our comparison
an improved version of Structure by considering an estimated K maximizing the quality
criterion thus leading to more correct estimation of K. However, one has to note that
the estimation method originally used in Structure, that is the maximum likelihood,
led to correctly identifying the structure of the simulated data (data not shown). The
opposite conclusions can be drawn for real datasets (HapMap and Pan-Asian). Admixture
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estimated values of K close to the ones defined by the population labels while Structure
under-estimated the values of K compared to both the population labels and Admixture.
The cross-validation method used in Admixture is more appropriate for real complex
datasets however there are no efficient way to estimate a correct K for Structure. This is
due to the fact that even when setting manually K, Structure produced clusterings with
empty clusters and therefore could not identified more populations than we presented in
the Results section. For example, only the three main ethnicities plus the GIH population
were identified in the HapMap data while other methods such as SHIPS or Admixture were
able to differentiate the Asian, Caucasian or African populations. A possible explanation
for Structure’s results is that, even though the algorithm converged properly, a too short
burn-in period and too few runs of the algorithm were used for such complex data. These
choices were however made due to the very high computational time of the program.

AWclust generally uncovered the structure of the small and large simulated datasets
but failed to properly analyze the real datasets. Whether we considered the popula-
tion labels or the partitions produced by Admixture as reference for the real datasets,
AWclust’s clusterings were not in agreement with these references. Only the three main
ethnicities were detected in the HapMap data and no structure in the Pan-Asian data
due to the fact that the optimal estimated number of clusters were under-estimated. It
is however interesting to notice that when manually setting the number of clusters, the
sample assignments were more consistent with both the population labels or the results
of Admixture. This can be explained by the gap statistic used by the algorithm that was
not able to select the correct values of K while the hierarchical clustering could sepa-
rate certain populations. 20 simulations for the gap statistics may not have been enough
though the same number was used with SHIPS that more correctly estimated K. These
results highlight the quality of the version of the gap statistic that we used in the SHIPS
algorithm.

In addition to the individuals clustering, both SHIPS and AWclust provide tree struc-
tures that allow the analysis of the relationship between populations. The corresponding
graphical representations, presented in Figures 3.13 and 3.16 for SHIPS, are quite simi-
lar to dendrograms produced by AWclust. The differences are that in SHIPS the lengths of
the branches have no meaning and the individuals of the final clusters are plotted to rep-
resent their dispersion. The analysis of these two kinds of graphical representations were
quite similar in our comparisons. For example, we observed in the simulated datasets,
that for basic population structures (model M3 and M5), the trees provided by SHIPS
and AWclust properly related the genetic histories of the populations. For more complex
datasets, mainly the major population differentiations and some of the finer separations
led to tree branches consistent with the population histories represented in Figure 3.3.
Also, these representations can provide indications on the genetic distance of the real
populations. For instance, we observed on Figure 3.13 that the Caucasian and Asian
populations are first separated from the African ones and then separated from each other.

The method PCAclust selected the number of principal components to be used for
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the clustering using the Tracy-Widom statistic (Table 3.6). Many components (more
than 25) were determined significant for the complex simulated datasets M10 and M20.
This led to clusterings rather inaccurate as the estimated numbers of clusters were greatly
under-estimated for both the small and large datasets. If fewer PCs were kept, e.g. only
five, the estimated K would have been more exact (data not shown). This indicates that
too many PCs add a non-negligible noise to the data provided to the GMM clustering
and therefore that the PCs selection method of PCAclust could be improved.

The performances of this method are however better when applied to real datasets, espe-
cially when compared to the population labels. When comparing the clusterings produced
by PCAclust to Admixture, the results are more mitigated. PCAclust estimated more
clusters than Admixture and split populations that this latter algorithm considered com-
ing from the same ancestral populations. A reason might be that even though the two
algorithms are somehow linked (Lawson and Falush 2012), the methods to estimate the
numbers of clusters are quite different.

The methods discussed here are composed of two parts to analyze the structure of
the populations. The first corresponds to the quality to assign individuals to relevant
clusters and the other is the ability to estimate a proper optimal number of clusters K. If
a potential value of K is unknown, it is important that the clustering method estimates
a proper K otherwise even with accurate sample assignment capabilities the resulting
clustering may not be relevant. Among all the algorithms that we investigated, SHIPS
was the only one that had satisfying performances for both these features of clustering
methods in all the scenarios investigated. SHIPS did not fail to uncover the structure
in simulated datasets like Admixture and PCAclust and did not miss the fine complex
separation of the populations in real datasets like Structure or AWclust.

In terms of ease of use of the algorithms, the non-parametric ones generally have the
advantage of demanding fewer input parameters than parametric approaches. In addition
to the data, SHIPS needs the maximal number of clusters investigated and the number
of null simulations for the gap statistics. Usually parametric algorithms need a lot of
input parameters, often pertaining to the underlying statistical models and therefore
more complicated to set. This is the case of Structure, however Admixture needs only
the maximal number of clusters and the parameter to conduct the cross-validation.

Considering the computation time of the algorithms, PCAclust is the faster, e.g. tak-
ing less than an hour when applied to the Pan-Asian data. SHIPS and Admixture take
a couple of hours while AWclust takes close to a day and Structure several days. Even
though PCAclust is the fastest algorithm that we considered in our comparison, one has
to note that the program does not come as a package and has to be recoded. The other
methods that we considered have the advantage of being freely available in the form of
packages.
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Particularities of SHIPS

Several particularities of the SHIPS algorithm can be highlighted. The divisive strategy
is based on the rationale that a clustering method has to be applied iteratively to the
sub-populations in order to detect the cryptic structures that are hidden behind the main
structure of the data. SHIPS finely investigates each estimated cluster to determine if it can
be divided into several relevant sub-clusters. This division procedure, that is equivalent
to the construction of a binary tree, is conducted by the use of a spectral clustering that
takes as input a similarity matrix. This similarity matrix has to be computed only once
for all the data and sub-matrices corresponding to the sub-clusters investigated can be
extracted at each step. This renders the construction of the tree a fast and efficient part
of the algorithm. Omne has to note that the individuals assignment part of the SHIPS
algorithm is intimately linked to the choice of a proper similarity matrix. We decided
to consider a matrix based on the allele sharing distance as it is computationally fast
to compute and led to accurate clustering results. It is however possible to use different
matrices that could lead to even better clustering performances (Lawson and Falush 2012).
It has been demonstrated that matrices based solely on the allele sharing distance can
have low power for the identification of population structure compared to more elaborate
distances taking into account other features of the data such as the dependencies between
the markers or the relatedness between the samples. Example of such distances can
be found in (Browning and Browning 2010, Lawson et al. 2012) and could easily be used
with SHIPS. Indeed, a flexibility of the SHIPS algorithm is that a large variety of similarity
matrices can be used to conduct the samples assignment.

The pruning procedure leads to several possible clusterings of the samples. These
configurations are all nested within each other. This allows in one run of the algorithm to
get for all possible K the corresponding clusterings. This information is useful if the user
does not desire to use the estimation procedure of K and wants to manually look at the
clustering possibilities. The hierarchical clustering of AWclust proposes the same option,
while software such as Admixture, Structure or PCAclust have to be applied each time
for each possible number of clusters. In addition, this allows a fast application of the gap
statistic that needs all clustering options for varying numbers of clusters.

SHIPS does not use the same version of the gap statistic than the one used in AWclust.
As explained in Section 3.3.5, we decided not to consider the logarithm of the within-
cluster sum of squares but directly the sum of squares. This indicator showed better
empirical performances to estimate the optimal K. Given that AWclust was sometimes
able to infer the structure of certain data when manually setting a value for K but that
the version of the gap statistic used in the program failed to do so, we are confident in our
choice of statistic. This gap statistic is rather precise but, like all gap statistics, a time
consuming method to estimate the number of clusters. Certain methods, such as AWclust,
therefore limit the maximum number of clusters investigated in order to accelerate the
whole clustering process. We decided not to make this limitation in the SHIPS package
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in order to let the user of the program the choice of a reasonable maximum number of

clusters.
Also, we determined through several experiments that repetitive applications of the
SHIPS algorithm to the same dataset leads to the same clustering results. This robust-

The novel clustering approach presented in this chapter was applied to SNP data. It
produces accurate clustering results and is therefore a promising method to uncover the
genetic structure of many populations.



Chapter

Multiple-testing Issues in
Genome-Wide association studies

We refer to multiple-testing issues when not one but several statistical tests are performed
simultaneously. When only one statistical test is conducted, the probability of having a
false-positive is controlled at the level of significance a. When more than one test are
performed, o can no longer be interpreted as the probability of false-positive of the overall
tests but rather as the expected proportion of tests providing false-positive results.

Let us consider, for instance, m tests performed in a single experiment. With just one
test (m = 1) performed at the usual 5% significance level, there is a 5% chance of incor-
rectly rejecting Hy. However, with m = 20 tests in which all the null hypotheses are true,
the expected number of such false rejections is 20 x 0.05 = 1. Now, with m = 100, 000
tests, the expected number of false-positives is 5,000 which is much more substantial.

As a consequence, the control of the proportion of false-positives in the context of
multiple-testing is a crucial issue and the false-positive rate does not appear adapted
anymore to define a confidence threshold to apply to the p-values. We therefore need
multiple-testing correction procedures aiming at controlling certain more relevant statis-
tical confidence measures.

Genome-Wide association studies involve testing many markers and are therefore sen-
sible to this issue. The first section of this chapter is dedicated to a complete analysis
of the classical multiple-testing correction approaches in genetic studies. We present
and discuss the Family-Wise Error Rate (FWER), the False-Discovery Rate (FDR) or
the local-FDR. This review of the classical correction procedures has been published in
Methods in Molecular Biology (Bouaziz et al. 2012a).

We then focus on a particular issue in GWASs that is the determination of the genes
associated with the disease. We introduced in Section 1.3.4 this problem that con-
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sists in considering several markers in linkage disequilibrium. Improved multiple-testing
corrections and alternative methods accounting for the variable dependency between the
markers as well are therefore needed in such situations. We present the main strategies
to derive gene-wise measurements and compare them in a simulation study.

4.1 Multiple-testing and Genetic association studies

As we discussed previously, multiple-testing issues are a potential bias of association stud-
ies. Many statistical approaches, generally referred to as multiple-testing procedures, have
been developed to deal with multiple-testing and the inherent problem of false-positives.
They consist in reassessing probabilities obtained from statistical tests by considering
more interpretable and suited statistical confidence measures than the usual p-values.

Several recent reviews dealt with the multiple-testing problem in the context of large-
scale molecular studies (Balding 2006, Rice et al. 2008, Moskvina and Schmidt 2008,
van den Oord 2008, Noble 2009, Chen et al. 2010). Our goal in this section is to provide an
intuitive understanding of these confidence measures, an idea on how they are computed
and some guidelines about how to select an appropriate measure for a given experiment.
First we give some statistical basics about multiple-testing issues. Then we describe and
discuss the main confidence measures (FWER, FDR and local-FDR). We also provide
information about the p-values distribution which is an important point seldom considered
in practice.

4.1.1 Introduction

When one considers several tests conducted in a single experiment, « can no longer be
interpreted as the probability of false-positive of the whole set of tests but as the expected
proportion of false-positive results. The generic situation is the following: when n statis-
tical tests are performed, depending on whether each hypothesis tested is true or false and
whether the statistical tests reject or does not reject the null hypotheses, each of the m
results will fall in one of four outcomes defined in Table 1.1. This leads to the equivalent
Table 4.1 corresponding to multiple-tests, indicating the actual number of false-positives
and false-negatives (fp and fn) instead of their respective rates of occurrence (« and ).

In the case of Genome-Wide association studies, the number of false-positives is higher
than the expected number of true discoveries and unfortunately, it is not possible to know
which null hypothesis is correctly or incorrectly rejected. It is therefore necessary to
consider alternative confidence measures instead of the false-positive rate. More pertinent,
measures such as the FWER, the FDR and the local-FDR have been developed to this
end and are presented in the following sections.
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Hy is not rejected Hg is rejected Total
Hy is true  true-negatives (tn) false-positives (fp) mo=1tn+ fp
Hy is false  false-negatives (fn) true-positives (tp) my = fn+tp
Total my =tn+ fn mgr = fp+tp m

Table 4.1: Outcomes of m statistical tests performed at the level a.

4.1.2 Family-Wise error rate
Definition

The first alternative confidence measure proposed to handle the multiple-testing problem
is referred to as the Family-Wise Error-Rate (FWER) criterion. It is defined as the
probability of falsely rejecting at least one null hypothesis over the collection of hypotheses
(or family) that is being considered for joint testing:

FWER = Py, (fp > 1 at the level «).

Controlling the FWER at a given level is to control the probability of having at least
one false-positive, which is very different from the false-positive rate. In practice, as the
number (m) of tests increases, the false-positive rate remains fixed at the level o whereas
the FWER generally tends toward 1.

Several procedure exist to control the FWER; here we introduce the Bonferroni and
the Sidak procedures that can be considered as the reference methods.

The Bonferroni procedure

Certainly the simplest and most widely used method to deal with multiple-testing is to
control the FWER by applying the Bonferroni adjustment (Bonferroni 1935 1936) which
accounts for the number of tests. It is based on the following simple relation between the
p-value of a test i (p;), the number of tests performed (m) and the FWER at the level p;
(FWER,):

FWER;, = Py, (fp>1 at the level p;)
= Py, ({test 1is fp at the level p;} or...or {test m is fp at the level p;})

< Z]P’HO({test k is fp at the level p;})
k=1
< mpi,

because for each test i, Py, (test i is fp at the level p;) = p;. The new confidence val-

ues pPot = mp, correspond to the p-values adjusted by the Bonferroni procedure, and
Di P P p J Yy p )
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represent upper bounds of the FWER;. Controlling the FWER at a 5% level requires
to apply a 5% threshold to the adjusted p-values corresponding to the product of each
p-value with the number of tests. One can also prefer to apply a threshold of 5%/m to
the unadjusted p-values. For instance, to ensure that the FWER is not greater than 5%
when performing 100 tests, each result can be considered as significant only if the p-value
is less than 0.05/100 = 0.0005. It makes no difference in term of results.

The major advantage of the Bonferroni procedure is that it is simple and straightfor-
ward to calculate and can easily be used in any multiple-testing application (Rice et al.
2008). However some authors argue that one major disadvantage of the Bonferonni pro-
cedure is that it over adjusts the p-values, resulting in a control of the FWER slightly
more stringent than expected.

The Sidak procedure

An alternative was developed in the case of independent tests by Sidak (Sidak 1967) and
is based on:

FWER,; = Pg,(fp>1 at the level p;)
= 1—Py,(fp=0 at the level p;)

= 1-(1—p)"

This adjustment results in a more precise control of the FWER. However this approach
assumes that all the tests performed are independent and may therefore not be suitable for
every situation while the Bonferonni procedure does not make any assumption about the
relation between the tests. Moreover in the case of a large number of markers tested, such
as in Genome-Wide association studies, and small p-values in which we are interested in,
the 1 — (1 —p;)™ proposed by Sidak can be reasonably approximated by the mp; proposed
by Bonferroni.

Comments on the FWER

As a matter of fact, tests are often dependent when testing genetic markers that are
statistically associated by linkage disequilibrium over the genome . In such situations, a
practical and common alternative is to approximate the exact FWER using a permuta-
tion procedure (Balding 2006, Rice et al. 2008). Here, the genotype data are retained
but the phenotype labels are randomized over the individuals to generate a dataset that
has the observed LD structure but satisfies the null hypothesis of no association with the
phenotype. By analyzing many of such datasets, the exact FWER can be approximated.
The method is conceptually simple but can be computationally intensive, particularly
as it is specific to a particular dataset and the whole procedure has to be repeated if
the data is somehow altered (Balding 2006). Moreover it requires complex programming
skills and statistical knowledge. However, the availability of relatively inexpensive and
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fast computers and the use of built-in permutation utilities available for several genetic
programs (such as plink) obviate these problems to some extent.

Actually the main disadvantage with the use of the FWER as a confidence measure is
its unreliability with certain data sizes. This procedure works well in settings involving a
few tests (e.g. 10-20, usual for candidate gene studies) and even when the number of tests
is somewhat larger (e.g. a few hundreds as in genome-wide micro-satellite scans) (Rice
et al. 2008). Yet the control of the FWER is not ideal when the number of tests is very
large, as the level of significance becomes too stringent and as a result true associations
may be overlooked and a consequent loss of test power occurs (Moskvina and Schmidt
2008). For instance in the context of Genome-Wide association studies, if 1 million genetic
markers are tested, the p-value threshold for each marker must be set to 5x 10~® to control
the FWER at 5% which is very low.

Even though such levels certainly would provide a safeguard against false-positives,
they would also lead to an unacceptable number of false-negatives, particularly for com-
plex traits where the loci effects are expected to be moderate at best. Consequently, less
stringent confidence measure-based methods are designed such as the Holm procedure
(Holm 1979) or the weighted Holm procedure (Dalmasso et al. 2008) to find a proper
balance between false-positives and false-negatives in large-scale association studies. This
constitutes one of the burning methodological issues in contemporary Genetic Epidemi-
ology and statistical Genetics (Rice et al. 2008).

4.1.3 Analyzing the distribution of p-values to understand the
basis of more advanced multiple-testing corrections

Mixture distribution of p-values

Analyzing the distribution of p-values provides a way to determine how many tests are de-
clared under the null hypothesis (Hy) or under the alternative (H;) and therefore to assess
the multiple-testing problem. A very interesting result is that under Hy, the null distri-
bution of p-values (Dy) corresponds to a standard Uniform distribution on the interval
0,1] (Figure 4.1-A).

On the other hand, the alternative distribution of p-values (D;) under H; corresponds
to a distribution that tends to accumulate toward 0 (Figure 4.1-B). In practice, one

deals with p-values drawn under Hy and H; which corresponds to a mixture distribution
D of Dy and D; (Figure 4.1-C) (McLachlan and Peel 2000):

f=mofo+mfi1,

where f, fo and f; are respectively the probability density functions defining the distri-
butions D, Dy and D;; my and 7; are the proportion of p-values generated under Hjy and
H, respectively, with 79 + 7 = 1.
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distributions were used to simulate these p-value distributions.



4.1 Multiple-testing and Genetic association studies 133

A- Histogram of p—values B- Q-Q plot
< -
[}
@ =2 o -
> ° €
7 ®
5 g o~
a 3 %
o T
o
d o -
°© T T T T T 1 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0 1 2 3 4
p-values Theoretical quantiles
v 0
8 < A
o =
Z - € o 4
2 5
a w o N7
o @©
0O « -
Qe ]
e T T T T T 1 ° T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0 1 2 3 4
p-values Theoretical quantiles
o -
o
o 2 <« 4
2 o Z
3 < § o
[} o
o o 8 &
- ©
[
< .
°© T T T T T 1 e T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0 1 2 3 4
p-values Theoretical quantiles
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proportion of markers under H; (m; = 2%, 10%, and 50%). Mixtures of Uniform
and Beta distributions were used to simulate these p-value distributions.
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Finding evidence of the existence of true-positives

An usual question addressed at the outset of the analysis of large-scale genetic data is
whether there is evidence that any of the markers tested and declared as significant at a
given confidence level « is a true-positive. Investigating the distribution of p-values can
help finding an answer.

Plotting the observed distribution of p-values
Plotting the distribution of p-values is a first intuitive approach to assess approximately
the evidence of true-positives. Indeed, a simple histogram of the p-values can indi-
cate whether the distribution is made of a mixture of p-values drawn under H, and
H, (Figure 4.1-C) or is composed of p-values drawn under Hy only (Figure 4.1-A). In
the case the distribution is a mixture then some of the tests detected as significant may
be true findings. Figure 4.2-A represents the histograms of p-values obtained for three
increasing proportions of H;.

An alternative and widely used approach is to compute a Quantile-Quantile plot (Q-
Q plot) of the p-values comparing their distribution to the standard uniform distribution
expected under Hy. If the two distributions are similar, the points in the Q-Q plot will
approximately lie on the line y = x. If the observed quantiles are markedly more dispersed
than the Uniform quantiles, this suggests that some of the significant results may be true-
positives. Figure 4.2-B represents Q-Q plots of p-values obtained for the three increasing
proportions of Hj.

Estimating the proportion of markers under H, and H;

As we discussed previously, plotting the distribution of p-values can provide a qualita-
tive and approximative criterion for assessing the proportion of genetic markers associated
with the disease. Also, the actual proportions of p-values drawn under Hy and H; (mg and
m = 1 — g, respectively), which are too rarely considered, can provide such information.
They are also important to assess the False-Discovery-Rate, a confidence measure that
will be presented in the next section. Furthermore a reliable estimate of my, the number
of truly null tests, is of great relevance for calculating the sample size when designing the
study (Wang and Chen 2004, Jung 2005). A variety of methods have been proposed to
estimate 7y based generally on statistical techniques such as mixture model estimation
(Pounds and Morris 2003, McLachlan et al. 2006, Markitsis and Lai 2010), non-parametric
methods (Mosig et al. 2001, Scheid and Spang 2004, Langaas and Ferkingstad 2005, Lai
2007) and Bayesian approaches (Liao et al. 2004).

The most simple and adopted method is inspired from the approach proposed by
Storey and Tibshirani (Storey and Tibshirani 2003). The idea is to estimate 7y from a
part of the distribution between a given value A\ and 1 where the distribution D; drawn
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Figure 4.3: Mixture distribution of p-values with the corresponding proportions
of true-positives, true-negatives, false-positives, and false-negatives at the level
a. A mixture of Uniform and Beta distributions was used to simulate this p-
value distribution.

under H; is negligible, and then normalized between 0 and 1:

number of p-values > A
mx (1—X) ’

7%0(>\) =

where m is the number of genetic markers tested. Some authors showed that a value of A
of 0.5 is a good compromise between bias and variability to assess my. An application of
this procedure to the three distributions represented in Figure 4.2 estimates m of 98%,
90% and 50%, and hence m; of 2%, 10% and 50% respectively.

The Poisson test: To assess whether there are some true alternative hypotheses, it
is common to perform a Poisson test. Indeed, when it is assumed that the tests are
independent, a Poisson distribution can be used as a model for the number of significant
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results at a given level a. If one assumes that all the m markers are under the null
hypothesis then it is possible to determine, via the level «, the expected number of markers
that should come out as significantly associated m%?. Given the observed number of
markers associated m%*, the Poisson distribution allows us to compute a p-value indicating
if m%* is significantly greater than m%?, in which case it is likely that some of the markers
associated are true-positives. For example, if 500 independent tests are performed, each
at the level o = 0.05, we expect m%” = 500 x 0.05 = 25 significant tests to occur when
all null hypotheses are true. If we observe m%* = 38 significant markers, the p-value of
such an observation is given by the Poisson distribution with mean 25, and is equal to
5.7x1073. So if we observe 38 significant markers out of 500 markers tested at a 5% level,
it is very likely that some of them truly are associated with the disease. An application
of this procedure to the three distributions represented in Figure 4.2 based on 2,000
tests results in p-values of 0.12, 3 x 107 and 2 x 10716, A drawback of this approach
is that it assumes that the tests are independent. In the case they are not, this method
over-states the evidence that some of the alternative hypotheses are true when the test
statistics are positively correlated, which commonly occurs in practice in Genome-Wide
association studies due to LD. In such a situation, an equivalent test taking dependencies
into account can be implemented based on permutations as we explained for the FWER,

but remains computationally expensive.

Notes on the mixture distribution of p-values

Understanding and investigating the mixture distribution of p-values drawn under H, and
H, is seldom considered in the analysis of large-scale genetic data. However it can provide
a substantial amount of information. Plotting the distribution of p-values, assessing the
proportion of markers under Hy and H; and conducting a test based on the Poisson dis-
tribution are useful confidence indicators to confirm whether there is actually something
to find in the data. Figure 4.3 provides a graphical representation of a mixture distribu-
tion of p-values along with the potential outcomes of the corresponding statistical tests.
Moreover the mixture model assumption and the estimation of the proportion of markers
under Hy and H; are very important to understand in order to apply more advanced
multiple-testing correction approaches.

All these approaches make the theoretical, and often observed in practice, assumption
that the distribution under Hj is a standard uniform distribution. Any strong deviation
from this expected distribution can alert about the appropriateness of the statistical test
chosen for the analysis.
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4.1.4 False-Discovery rate
Definition

Controlling the FWER is widely used, however, preventing against any single false-positive
in large-scale genetic studies leads often to too stringent p-value corrections and therefore
many missed findings. For these reasons, there is a certain reluctance to use FWER-
based multiple-testing corrections such as the one proposed by Bonferonni (Moskvina
and Schmidt 2008). In practice, most researchers would reasonably accept a higher risk
of having a false-positive in return for a greater statistical power (Balding 2006). To
overcome the limitations of the FWER, Benjamini and Hochberg introduced a more in-
tuitive statistical concept as an alternative: the False-Discovery-Rate (FDR) (Benjamini
and Hochberg 1995). FDR-based multiple-testing corrections use the following idea: in-
stead of considering that one wants to be sure at 95% that none of the tests declared as
significant is a false-positive (i.e. considering the FWER), the FDR method focuses on
the expected proportion of truly null hypotheses that are falsely rejected.

Considering the m tests presented in Table 4.1, the total number of rejections (mg)
and the total number of non-rejections (my = m — mpg) at the level « are observable.
However the values of tp, fp, tn and fn are unknown. With these notations, Benjamini
and Hochberg defined the FDR, that is the expected proportion of tests falsely declared
significant among all tests declared significant, as:

if mp =0, FDR = 0
otherwise, FDR = E ( /p ) —E <&> .
Ip+tp mp

Intuitively, if 100 tests are predicted to be significant, i.e. nzr = 100, and if the FDR is
controlled at 5% then fp =5 of these tests should be false-positives.

The Benjamini-Hochberg procedure

The definition of the FDR proposed by Benjamini and Hochberg (Benjamini and Hochberg
1995) is the most often used as it comes with a simple procedure to apply it. For each test
i, the FDR corresponding to the level p; (FDR;) is controlled by the expected number of
test statistics declared as significant under Hy (m X p; X mg) over the observed number of
test statistics declared as significant (mpg;) at the level p;':
m X p; Xm
FDR, < P2 70

MRpR;

To obtain a correct estimation of the FDR it is therefore necessary to have a precise
estimation of the proportion 7my. This implies having some knowledge about the alternative

'mp; corresponds to the number of tests with p-values smaller than p;
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hypothesis which is not always the case. The idea proposed by Benjamini and Hochberg
to avoid the explicit calculation of 7 is to use the fact that my < 1 and therefore:
m X pi

FDR,; < .
MREg;

The Benjamini-Hochberg procedure, like the FWER correction, corresponds to apply-
ing the threshold « to a set of adjusted p-values pPH = Msz In other words, if we order
the m tests by their increasing p-values (pq),...,Dm)), this procedure is equivalent to
finding the largest £ such as pg) < %a and rejecting the £ first ordered null hypotheses.

Comments on the FDR

The main advantage of FDR estimation is that it allows to identify a set of candidate
positives, of which a weak and controlled proportion are likely to be false-positives. The
false-positives within the candidate set can then be identified in a follow-up study. Note
that the FDR and the false-positive rate are often mistakenly equated, but their difference
is actually very important (Storey and Tibshirani 2003). Given a level of confidence for
declaring the test statistics significant, the false-positive rate is the rate that test statis-
tics obtained under Hj are called significant by chance whereas the FDR is the rate that
significant test statistics are actually null. For instance, a false-positive rate of 5% means
that on average 5% of the test statistics drawn under Hy in the study will be declared as
significant and a FDR of 5% means that among all test statistics declared as significant,
5% of these are actually drawn from Hj, on average.

One possible problem with the procedure of Benjamini and Hochberg is that when
considering a sorted list of p-values in ascending order, it is possible for the FDR associated
with the p-value at rank m to be higher than the FDR associated to the one at rank m+1
(Noble 2009). This non-monotonicity? can make the resulting FDR, estimates difficult to
interpret.

Moreover, a main assumption in the Benjamini-Hochberg approach is that the tests are
independent. As already discussed before, this may not be the case when analyzing large-
scale genetic data. To account for such situations, Benjamini and Yekutieli (Benjamini
and Yekutieli 2001) developed a quite similar procedure where the FDR is controlled by:
FDR, < M)
mp; X ¢(m)
where ¢(m) is a function of the number of tests depending on the correlation between
the tests. If the tests are positively correlated, ¢(m) = 1, there is no difference with
the approach presented before. Otherwise if the tests are negatively correlated, c(m) =

Iy

%i.e. the FDR does not consistently increase
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Although the Benjamini-Hochberg procedure is simple and sufficient for many studies,
one can argue that an upper bound of 1 for 7 leads to a loss of precision in the estimation
of the FDR. Such estimations are actually probably conservative with respect to the
proportion of test statistics drawn under Hy and H;. This means that if the classical
method estimates that the FDR associated with a collection of p-values is 5%, then on
average the true FDR is lower than 5%.

Consequently, a variety of more sophisticated methods introducing the estimation of m
have been developed to achieve more accurate FDR estimations. Depending on the data,
applying such methods may make a big difference or almost no difference at all (Noble
2009). To this end, Storey introduced the g-value defined to be the FDR analogue of the
p-value (Storey and Tibshirani 2003). Storey’s procedure can be considered as analogue
to the procedure of Benjamini and Hochberg except that it incorporates an estimate of
the null proportion .

Finally, as mentioned in the previous section, FDR-based corrections strongly depend
on the assumption that the p-values are uniformly distributed if there is no association,
which may not always be the case in practice. Methods providing more exact estimations
of the FDR in such situations exist and rely on more advance statistical and algorithmic
notions (Wojcik and Forner 2008).

4.1.5 Local false-discovery rate

Definition

The FDR criterion introduced in the previous section has received a great focus during
the last decades due to its lower conservativeness compared to the FWER. The FDR is
defined as the mean proportion of false-positives among the list of rejected hypotheses.
It is therefore a global criterion that cannot be used to assess the reliability of a specific
genetic marker. More recently, a strong interest has been devoted to the local version of
the FDR, called 'local-FDR’ (Efron and Tibshirani 2002) and denoted hereafter fdr. We
briefly present this new confidence measure in the following.

The idea is to quantify the probability for a given null hypothesis to be true according
to the specific p-value of each genetic marker tested. For a given p-value p; associated to
a test 4

fdr; = P(test statistic ¢ is under Hy knowing p;)
P(Ho )P, (p:)
P(p;)
mofo(pi)
f(pi)
mofo(pi)
mofo(pi) + T f1(pi)’
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where 7y and m; are the proportions of p-values generated under Hy and H; respectively,
and fy, f1 and f the density functions corresponding to the distributions Dy, D; and D
as described in Section 4.1.3. In general, the local-FDR is more difficult to estimate
than the FWER and the FDR due to the difficulty in estimating density functions. Many
approaches have been proposed that are fully parametric (Allison et al. 2002, Pounds and
Morris 2003, Liao et al. 2004, McLachlan et al. 2006), semi-parametric (Robin et al. 2007)
that is implemented in a R package Kerfdr (Guedj et al. 2009), Bayesian (Broet et al.
2004, Newton et al. 2004) or empirical Bayes (Efron and Tibshirani 2002), and most of
them rely on the mixture model assumption described in Section 4.1.3.

Comments on the local-FDR

The main advantage of the local-FDR over the more classical FDR measure, is that it
assesses for each genetic marker its own measure of significance. In this sense it appears
more intuitive and precise than the FDR. However its estimation requires to determine
with precision 7y and the distribution under H; (D;) which requires more advanced sta-
tistical skills and the use of fully developed algorithms. In addition, like for the other
alternative confidence measures that we presented, most of the algorithms to assess the
local-FDR assume the independence of the tests.

4.1.6 Conclusions

Genome-Wide association studies are attractive but susceptible to certain sources of bias
such as the one induced by multiple-testing. To this end, multiple-testing corrections
have been developed, based on alternative measures of significance adapted to genome-
wide studies. Nowadays, FWER, FDR and local-FDR constitute key statistical concepts
that are widely applied in the study of high-dimensional data.

The FWER controls the probability of having one or more false-positives and turns
out to be too stringent in most of the situations. As a more intuitive alternative, the
FDR considers the proportion of significant results that are expected to be false-positives.
More recently through the local-FDR, authors have proposed to consider the actual prob-
ability for a result of being under Hy or H;. Considering the fact that several confidence
measures can be applied to account for multiple-testing, a question that naturally arises
is which method one should use and also if a FWER correction, due to its stringency,
is even appropriate. Noble provided a practical solution to the problem (Noble 2009).
Based on the same rationale motivating the choice of a significance threshold, choos-
ing which multiple-testing correction method to use depends on the cost associated with
false-positives and false-negatives. For example, if one’s follow-up analyses will focus on
only few experiments, then a FWER-based correction is appropriate. Alternatively, if one
plans on performing a collection of follow-up experiments and tolerate having some of
them that fail, then the FDR correction may be more appropriate. Finally, if one is inter-
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ested in following up on a single gene, local-FDR may be precisely the more suited method.

Correlations between genetic markers, due to LD for instance, is still a difficult issue
when considering multiple-testing. Such local dependencies between the tests lead to a
smaller number of independent tests than markers examined.

As we have seen, some approaches allow taking dependent tests into account such as
permutation-based methods (Benjamini and Yekutieli 2001, Moskvina and Schmidt 2008,
Wojcik and Forner 2008), but require far more advanced programming skills and statistical
knowledge than the simple Bonferroni or Benjamini-Hochberg procedures. Alternative
procedures aim to identify the effective number of independent tests conducted in order
to derive confidence measures that account for these dependencies (Li and Ji 2005). Such
approaches are not yet applied to whole genome scans but are considered when looking
at smaller sets of markers, usually in high LD. We will focus on such approaches to derive
gene-level p-values instead of SNP-level ones in Section 4.2.

On the other hand, theoretical and simulation studies suggest that multiple-testing
corrections assuming the independence of the tests perform quite well in cases of weak
positive correlations, which is common in many large genetic studies (Benjamini and
Yekutieli 2001, Moskvina and Schmidt 2008).

This issue of dependency in the analysis of large-scale molecular data is likely to be
a live field of research in the near future. As statistical techniques are still develop-
ing to account for the complexities involved in controlling false-positives in exploratory
researches, independent replications and validations still remain necessary steps in the
discovery process (van den Oord 2008).

4.2 Gene-level association

4.2.1 Introduction
Gene-wise interpretation of GWASs

Genome-Wide association studies yield results at the SNP level, that are sets of SNPs
associated with the disease. A secondary step of these studies is usually to derive a gene-
level interpretation of the findings. As a matter of fact, in Genetics, the gene is often
considered as the unit of interest as the analyses of the functional mechanisms of a dis-
ease are generally based on genes and their products such as RNA or resulting proteins
(Jorgenson and Witte 2006). Determining the genes associated with the disease opens
the door to a lot of additional research such as targeting genes of interests for candidate-
gene studies or replicate association studies. Also, it allows the consideration of biological
information, such as pathways or protein interactions, in the analysis of GWASs (Neale
and Sham 2004).
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For instance, enrichment analysis such as performed by the method Gene Set Enrich-
ment Analysis (GSEA) (Subramanian et al. 2005) aims to determine sets of genes involved
in a common biological process (e.g. defined in the Gene Ontology?) or biological path-
ways (e.g. defined in the KEGG database). Such an analysis is possible through the use
of functional information that is only available at the gene or protein level. It is therefore
necessary to obtain association information at the gene-level. To derive a gene-level mea-
sure of significance, such as a test statistic or a p-value, one needs to combine the results
of all the SNPs corresponding to the gene.

Statistical issues and types of approaches

Computing a single p-value per gene raises several statistical issues. First, several SNPs
are usually genotyped within a gene and combining the results of each individual SNP
test outcome corresponds to a multiple-testing situation. This fact is often observed in
practice as large genes tend to come out as the most significant in most of the studies. In
addition, markers within a gene are usually closely located on the genome and therefore
likely to be in linkage disequilibrium. This LD pattern of a gene leads to a situation
of multiple-testing with dependent tests. As a consequence, statistical tests that aim to
derive gene-level p-values have to account for both these features of the structure of a gene.

The most widely used approach to compute a single p-value per gene is to consider
the most significant p-value of its SNPs (Torkamani et al. 2008). This method is however
biased as it does not account for the two statistical issues described above (Hong et al.
2009). The use of permutation procedures is however possible to computed an unbiased
p-value per gene using this approach. These permutation procedures are however quite
time consuming to reach a sufficient level of precision which has led to the development of
more advanced multiple-testing corrections that allow to re-assess SNP p-values adjusted
on the total number of SNPs of the gene and the LD pattern between them (Li and Ji
2005, Li et al. 2011). The most significant adjusted p-value can then be selected to rep-
resent the gene.

Such an approach tends to focus on genes that are affected by at least one significant
mutation. It is also of interest to obtain a gene-level measure that considers the situation
where the gene is affected by an accumulation of significant mutations (Lehne et al. 2011).
To that end, other strategies have been designed to include the information contained in
all the SNPs simultaneously. A natural approach is to consider another statistic than the
minimum to apply to the SNP p-values or test statistics such as for instance the mean
or a quartile (Moskvina et al. 2011, Lehne et al. 2011). These methods may however
also imply the computation of permutations to assess the gene p-value. A recent range
of statistical methods aiming to assess the global significance of sets of markers has been

3http://www.geneontology.org
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proposed and can be used to derive gene-level p-values in this simultaneous-testing per-
spective (Goeman et al. 2005, Wang and Elston 2007, Chapman and Whittaker 2008, Pan
2009).

We present in Section 4.2.2 these different approaches and then propose in Section
4.2.3 a comparison of the most used in practice. We based our analysis of the different
methods on a set of realistic simulations by considering various gene sizes, LD patterns and
strengths of association. We aim at providing indications regarding which tests correctly
account for the number of markers and the LD pattern by assessing the false-positive rate
and the power. Also we are interested in determining the gain in power that approaches
considering several mutations per gene can have over those focusing on a single mutation
per gene.

4.2.2 Strategies to derive gene-level p-values

We present here the main approaches to derive gene-level p-values from a set of SNPs in
the case of a case-control genetic study.

Let Y be the phenotype of the n individuals and G a gene with Tz and pg its test
statistic and p-value that we aim to assess. Let X = (X1,...,X,,) be the m markers that
compose the gene G with (Sy,...,S,,) and (p1,...,p,) their association test statistics
and p-values.

The test that we consider aim to assess the null hypothesis

Hy : {The gene G is not associated with the disease.}.

Permutation procedure

Principle

A permutation procedure is a method that consists in assessing the unknown distri-
bution of a test statistic under a null hypothesis Hy by permuting the labels of the
samples. We consider that we estimated a statistic T¢ = f(Si,...,Sm), where f is a
function that can correspond to the mean for instance, and that the distribution of T
under Hj is unknown. A permutation procedure computes B novel sets of SNP statistics
(St,...,8L), ... (SB, ..., SP) each based on the association test where the sample labels
have been permuted. Then, B statistics T}, ..., TZ are calculated on each of the new SNP
statistics set. The permutation process breaks the association between the markers and
the disease, therefore between the gene and the disease, without modifying the features of
the data. The new statistics T2, ..., TZ therefore represent the distribution of Ty under
H,.
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It is then possible to empirically compute a gene p-value

~ #{T4 2T i=1...B})
bc = B )

where #() represents the cardinal function.

Comments
This procedure produces accurate estimations given that a reasonable number of simulated
data is considered. This however renders the estimation process time consuming. Indeed,
for each simulated data, it is necessary to compute all the SNP statistics and the gene
statistic.

In practice permutation methods are not always applicable to test a large number of
genes which leads to the necessity for faster statistical tests.

Multiple-testing corrections accounting for dependent tests

Several multiple-testing corrections that account for dependency between the tests have
been proposed including some based on permutations. We introduce in this section a
faster method that assesses the number of effectively independent tests (M.sf) (Li and Ji
2005). The different multiple-testing procedures introduced in Sections 4.1.2 and 4.1.4
are based on the number of statistical tests conducted m. The idea of the approach of Li
and Ji is to substitute to this number of tests, the effective number of tests M, ;;.

Effective number of tests
The effective number of tests can be seen as the number of independent sets of correlated
tests, which corresponds to the number of independent LD blocks of SNPs. This esti-
mation uses the correlation matrix C' between the markers that serves as an estimation
of the linkage disequilibrium pattern and the eigenvalues of this matrix (Aq,...,\,,) that
represents degrees of correlation between the markers.

The effective number of tests is calculated as follow

Mesy = Zf(l)\il)a
where
fl@) =1z 21)+ (z — [z]),

I(z > 1) is the indicator function that gives 1 if z > 1 and 0 otherwise and [z] is the
floor function that gives the largest integer not greater than x.
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Application to the FWER

We introduced in Section 4.1.2 the Family-Wise Error-Rate correction via the Sidak
procedure. If one considers the markers as independent then each marker p-value p; can
be adjusted for multiple-testing by

prik =1 —(1—p)™,

with m being the number of markers.

In order to also account for the dependency between the markers the idea is to replace
the number of markers by the effective number M.y which leads to

fag) = 1— (1= py)Meri.
Application to the FDR

Another multiple-testing method that can be adjusted for the dependency between the
tests is the False-Discovery Rate. The Benjamini-Hochberg procedure to estimate the
FDR presented in Section 4.1.4 corresponds to calculating adjusted p-values

BH m.p;

iadj — —mR' )

7

where mp, is the number of markers with p-values lower than p;.

In order to account for the dependency it is possible to consider a novel correction

g Megr-Di
iadi — ar

Megsy,

?

where M.y, is the estimated number of independent markers among the set of markers
with p-values lower than p;.

Comments

These two methods are based on the calculation of correlation matrices between the mark-
ers. It is faster to compute these matrices than using permutation procedures, especially
with the use of efficient software such as plink that includes special algorithms to compute
correlations between sets of SNPs.

Adjusted Meta-analyses

Meta-analysis methods allow to aggregate several p-values from independent tests to pro-
duce a global measure of significance over all the test (see Section 2.3.6). When the m
tests are independent, the overall Fisher statistic

TFisher _ _QZlOg(pi)a
=1
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follows a x?(2m) distribution under H,.

When the tests are dependent the distribution of this statistic under the null is no
longer a x*(2m) but has a mean equal to 2m and a variance ¢ (Brown 1975) with

m—1 m
o =4m+2) " Y cov(—2log(p;), —2log(p;)).
i=1 j=i+1

It has been proposed to estimate this variance in order to derive a test statistic that
follows a x? distribution (Moskvina et al. 2011). The covariance term of the variance o?
can be estimated by

cov(—2log(pi), —2log(p;)) = pij-(3.25 4+ 0.75p;;),

where p;; = cor(X;, X;). This estimation uses a Gaussian quadrature method.
Finally the corrected test statistic

Fisher
Fisher __ 4TTLT
=—F

7o
adj o

follows a Xgmg/ag distribution under Hj.

Regression Models

Regression models that have been detailed in Section 2.3.5 provide the possibility to
include several markers in a single model to test their combined effect. Several of these
models have been adapted to the analysis of sets of markers that corresponds to the
analysis of a gene.

Uncorrected multi-Regression
A first approach is to consider a regression model that includes all the markers

logit(P(Y = 1] X1,.... Xn)) = Bo+ Y _ B X,
j=1

It is possible to test the overall effect of all the markers, i.e. of the gene with

Hy: {Bi = ... 5 = 0},

by the use of a classical score test statistic

THes — S(BHO)/Ifl (Br,)S (B
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where BHO is the maximum likelihood estimator of 3 = (8, ..., 3,) under Hy, S(BHO) the
derivative in § = Sy, of the log-likelihood and I; the Fisher information. This statistic
follows a x?(m) distribution under the null hypothesis.

This test accounts for the number of markers but does not consider the dependency
between them. As a matter of fact, the dependency between the markers is bound to affect
the validity of the model as correlated covariates violate the assumption of regression
models.

Goeman test

The Goeman test is related to the classical association score test presented for the uncor-
rected multi-logistic Regression but assumes an empirical Bayesian model (Goeman et al.
2005). This model uses independent priors for the marker parameters which corresponds
to considering that § is random with mean E(3) = 0 and covariance cov(3) = 0?1 where
I is the identity matrix. In this framework, testing the hypothesis

HO : B =0
is equivalent to testing
Hy:0?=0.

The Goeman test statistic corresponds to the empirical Bayesian score test statistic
of the logistic model which can be expressed as (Goeman et al. 2005)

1
pGeeman — §(U'U — trace(Iy)),

where U = X'(Y =Y x 1) with Y = 37 | V; and 1 is a column vector of size n with all
elements equal to 1.
By expressing the classical score test statistic such as suggested in (Chapman et al.
2003)
T = UV,

where V' = cov(U), one can see the close relation with the Goeman statistic.
Also, a development of the Fisher information matrix expression leads to

I;=Y(1-Y)x(X-X)(X-X),
so that finally, the Goeman test statistic has the form (Chapman and Whittaker 2008)

1 _ _ _ _ _
Goeman — 5((Y —Y x1)XX'(Y -V x1) =Y (1 -Y) x trace((X — X)"(X — X))>

The test statistic has an unknown distribution under the null hypothesis. A per-
mutation procedure could then be used to estimate the null distribution however as we
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indicated earlier this can be quite time consuming. An alternative to derive the null
distribution of this statistic has been proposed and is based on a decomposition of the
test statistic (Chapman and Whittaker 2008). If one uses permutations then only the
part U'U of the statistic is random, the other terms being fixed. By noticing that the
distribution of U is known under Hy Chapman et al. proposed a way to obtain the null
distribution using simulations. Under Hy, U follows a normal distribution N(0, ;) as a
consequence it is possible to simulate many U and U’'U and to reconstitute the statistic
Tcoeman- A p-value can then be assessed like for permutation procedures, by estimating
the proportions of simulated test statistics larger than the observed statistic.

Technically this test does not account for dependency between the markers. It ignores
this correlation as opposite with test who assume the independence. The idea is to
consider that if several markers are in LD and that if among them one is associated with
the disease, then the others are bound to be associated as well so that some sort of average
of the associations can summarize the signal in the corresponding block.

Marginal score test

Pan et al. have developed another statistical test, also closely related to the classical score
test, but that is based on the marginal effect of each marker (Pan 2009). This test, like
the Goeman test, ignores the correlation between the markers and computes an averaged
signal. The statistic of this test is

TMereST — ' Diag (1)~ 'U.

Contrary to the usual score test, a diagonal matrix is used which favors the marginal effect
of each marker. Pan et al. also demonstrated that this test statistic follows a quadratic
distribution that can be approximated by axz(d) + b where
2
Thd g (SLe? L, (S
cj — and d = s
J

a9 = ——/———

3

2

Z] e =1 Z] 1CJ (Zj:l )

where (cy, ..., cy,) are the eigenvalues of the matrix W Diag(W)™! with
W = Diag(I;) '1;Diag(I;)~"

Close alternatives to this marginal score test have been designed and are based on
different normalizations of the classical score test. Indeed, the classical score test is
normalized by V=1 while the marginal score test uses Diag(I;)™*

Other approaches

Several other approaches have been proposed to tackle the question of deriving gene-level
p-values. They can be based on alternative function to estimate the effective number of
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independent tests (Li et al. 2011), on random effect Regressions (Tzeng and Zhang 2007),
on the elasticNet method (Friedman et al. 2010), on selecting tagSNP within the genes

(Huang et al. 2011), or on Fourier transform of the genotypes to reduce the degree of
freedom of the tests (Wang and Elston 2007).

4.2.3 Comparison of approaches to obtain gene-level information

We now propose a comparison of the main approaches dedicated to derive gene-level p-
values. Several comparisons have been proposed to assess these strategies (Chapman and
Whittaker 2008, Pan 2009, Ballard et al. 2010, Lehne et al. 2011). Many of these reviews
focus on regression models: Chapman et al. proposed a comparison of several regression
models, Pan et al. designed and compared different regression score-like tests, Ballard et
al. focused on the differences between regression with fixed and mixed effects. On the
other hand, Lehne et al. compared the different types of approaches that are considering
the minimum of p-value of the markers or another function such as the mean or a quartile.

We decided to perform a global analysis of all these methods including at the same
time all the different types of approaches presented in Section 4.2.2. Our goal is to
determine the different behaviors of the strategies when applied to various types of genes.
We aim to highlight the approaches that are properly capable to account for the size of the
gene and the pattern of LD. Also we are interested in evaluating the difference in practice
between methods focusing on the stronger SNP association signal and those accounting
for all the signals simultaneously.

Our comparison is based on a set of realistic simulations where the number of markers,
the LD patterns and the strength of the SNP associations are controlled.

Methods included in the comparison

We considered 11 usual methods to include in our comparison. We first selected several
multiple-testing methods that are the False-Discovery rate and Sidak procedure without
correction for dependent tests (FDR and Sidak) along with the same methods with the cor-
rection for dependent tests (FDR.corr, Sidak.corr). We also considered the meta-analyses
methods with and without the adjustment for dependency (Fisher and Fisher.corr). We
then focused on several Regression models that are the uncorrected Regression (Reg),
Goeman test (Goeman) and the marginal score test (MargST). This choice of methods
among all the possible Regression models was motivated by the results of several previous
comparison studies (Chapman and Whittaker 2008, Pan 2009). It has been demonstrated
that the Goeman test and the marginal score test have improved performances over the
other Regression based tests. The uncorrected Regression test can be useful as a reference
for the Regression methods as it corresponds to the simpler and more classical approach.
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In addition, we considered one permutation based method (perm) that is based on the
mean of the SNP test statistics. We aim at answering the question: does the gain in
power of such a method compensates its high computational cost? Finally we included in
the comparison the minimum of the SNP p-values method (minP) that is the most used
in practice. This method is not adjusted for multiple-testing and dependency and is as
a consequence used as a reference method to assess the quality of the other approaches.
This latter method is also of use to demonstrate the crucial necessity of using adjusted
methods instead of the raw minimum of the p-values.

Simulation model

We applied the different strategies to several simulated genes. Our simulation process is
based on a two-stage strategy. In a first step, the structure of LD of a gene is determined
and then the SNPs corresponding to this structure are simulated. We call G a gene and
assume that it is composed of m SNPs.

Determination of the LD structure

First, one has to set the numbers p of LD blocks and ¢ of independent SNPs that compose
the gene. Then our algorithm randomly simulates the numbers m;,j = 1,...,p of SNPs
per block so that Z§:1 m;+q = m. Finally, positions on the gene G are randomly selected
to fit the p LD blocks and the ¢ independent markers.

Simulation of the markers
Markers are simulated using the simulation model presented in Section 2.4.3 that allows
to specify the degree of association.

The simulation of independent markers is straightforward as the model can directly
be applied to the provided simulation parameters.

The simulation of LD blocks uses iterative permutations of the genotypes between
several markers. As a matter of fact, it is possible to create a correlation between two
SNPs by permuting the values of one of them. For example, let us consider the Pearson
correlation coefficient between two SNPs z and y

> (@i = 2)(yi — ﬂ)'

(n—1)o,0,

Pay =

One can calculate the contribution to this coefficient of a pair of values (x;,y;) as presented
in Table 4.2.

It is then possible to estimate the variation of correlation between x and y that is
created when two values of the SNP y are permuted (Table 4.3). Using these tables, one
can create a correlation or decorrelate two SNPs.

In order to simulate a LD block, we first simulate several SNP markers with the
provided parameters and select a marker of reference. The global pattern of LD is created
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x; y; Contribution ¢; to p,,
0 0 0

0 1 -

0 2 —2z

1 0 —y

1 1 1-z—9y

1 2 2-2x—9y

2 0 —2y

2 1 2—-7T—2y

2 2 4 —2% — 2y

Table 4.2: Contribution of a pair of values (_x_i,yi) to the correlation p,,. Each
pair (x;,y;) contributes to the correlation by ( Sty

n—1)ogoy "

Case 1 Case 2

X 10 10 1
y 01 10
X 12 12 1
y 21 12
X 02 02 4
y 20 02
X 21 21 5
y 02 20
X 21 21 1
y 01 10
X 01 01 9
y 20 02

Table 4.3: Absolute difference of correlation between two SNPs when the values
of one of them (here y) are permuted between a pair of individuals. This table
compares the correlation between the SNPs = and y between a situation represented by
Case 1 and a situation represented by Case 2 where the values of the SNP gy have been
permuted between the samples ¢ and j. Each difference has to be divided by (n—1)o,0,.
The sign of the difference of correlation can be changed by inverting Case 1 and Case 2.

by simultaneously correlating all the markers to the reference marker and by considering
a certain amount of common permutations. Technically one has to provide a range of
possible correlations for the LD block and the common permutation procedure ensures
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that all the pairwise correlations of the block are within this range.

If the initial marker is associated with the disease, then we expect that all the markers
simulated in LD with it will also be associated with the disease. In order to ensure the
degree of association within the desired relative-risk bounds, it is possible to permute the
genotypes within the case or control samples only.

Such a simulation process may be time consuming as it implies a careful choice of the
permutations to ensure a global LD pattern and control the associations. It has however
the advantage of leading to more realistic LD patterns that those considered in the sim-
ulations of (Wang et al. 2007) as the disease associated marker is not necessarily in the
center of the LD block and the correlations do not decrease with the distance to this locus.

This simulation process eventually allows to simulate several independent markers and
several LD blocks for a single gene by controlling the degree of LD and the strength of
association.

Gene structure scenarios

We considered several scenarios pertaining to different parameters susceptible to influence
the strategies analyzed. We simulated several gene sizes (3, 10 and 30 SNPs), different
patterns of LD (no LD, moderate LD and high LD) and different patterns of associa-
tion that corresponded to the number of markers, when there was no LD, or of blocks
of markers, when there was LD, that were associated with the disease (several marker-
s/blocks, one marker/block, no marker associated). We refer in the following to multiple
markers/blocks association as strong association and to single marker/block association
as weak association. Genes simulated with no marker associated were used to assess the
false-positive rate while genes with associated markers were used to assess the power.

Each gene was simulated on 500 cases and 500 controls. The relative risk for the
non-associated markers was fixed at 1 and was randomly chosen between 1.1 and 1.3 for
the associated markers. The pattern of moderate LD implied a correlation between the
markers of a block comprised between 0.4 and 0.7 and the high LD pattern referred to a
correlation between 0.7 and 1. Each simulated gene was replicated 10,000 times in order
to provide accurate estimates of the false-positive rates and powers of the methods.

Figures 4.4 to 4.8 present the different patterns of LD and association when there is
one in function of the size of the genes. We can observe the strong patterns of association
on Figures 4.5 and 4.7 where at least more than two markers/blocks are associated with
the disease and the weak patterns in Figures 4.6 and 4.8 where only one marker/block
is associated with the disease.
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Comparison strategy

For each scenario and each pattern of LD we assessed the false-positive rate and the power
on B = 10,000 datasets using the method described in Section 2.4.5. This corresponds
to estimate the quantity

#({p—value; < ;i = 1... B})
B 9

where the threshold « is set at 5%.

In order to present the results of the comparison of the methods we decomposed these
simulations in several scenarios in function of the pattern of LD of the genes. Scenario
1 corresponded to no LD, Scenario 2 to a moderate LD and the Scenario 3 to a high
LD. Each scenario therefore included several gene sizes and strengths of association. The
difference between weak and strong association was only considered for 10 and 30 SNPs
as it was not possible to significantly vary the number of associated markers with 3 SNPs.
Table 4.4 details the different scenarios indicating for each the gene size and the pattern
of association.

Scenario LD d°® Assoc | # SNPs | # Blocks (Assoc) | # SNPs (Assoc)
Strong 3 0 (0) 3 (1)
Strong 10 0 (0) 10 (2)
Scenario 1 None Weak 10 0 (0) 10 (1)
Strong 30 0 (0) 30 (5)
Weak 30 0 (0) 30 (1)
Strong 3 1(1) 0 (0)
Strong 10 2 (2) 2 (0)
Scenario 2 | Moderate Weak 10 2 (1) 2 (0)
Strong 30 5 (3) 3 (0)
Weak 30 5 (1) 3 (0)
Strong 3 1(1) 0 (0)
Strong 10 2 (2) 2 (0)
Scenario 3 High Weak 10 2 (1) 2 (0)
Strong 30 5 (3) 3 (0)
Weak 30 5 (1) 3 (0)

Table 4.4: Details of the simulation scenarios when an association is simulated.
We represent here for each scenario and for each gene size the strength of association that
is the number of SNPs or blocks of SNPs associated with the disease. Note that to each
scenario and gene size also corresponds a situation where no SNPs are associated in order
to estimate the false-positive rate.
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Figure 4.4: LD and association pattern for 3 SNPs The bottom part of the graph
corresponds to the LD pattern between the markers. The top part is a plot of the associ-
ation signal (—logjo(p-value)) calculated using the Armitage Trend test for each marker.
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Figure 4.5: LD and strong association pattern for 10 SNPs. The bottom part of
the graph corresponds to the LD pattern between the markers. The top part is a plot of
the association signal (—logio(p-value)) calculated using the Armitage Trend test for each
marker.
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Figure 4.6: LD and weak association pattern for10 SNPs. The bottom part of
the graph corresponds to the LD pattern between the markers. The top part is a plot of
the association signal (—logio(p-value)) calculated using the Armitage Trend test for each
marker.
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Figure 4.7: LD and strong association pattern for 30 SNPs. The bottom part of
the graph corresponds to the LD pattern between the markers. The top part is a plot of
the association signal (—logio(p-value)) calculated using the Armitage Trend test for each
marker.
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Figure 4.8: LD and weak association pattern for 30 SNPs. The bottom part of
the graph corresponds to the LD pattern between the markers. The top part is a plot of
the association signal (—logo(p-value)) calculated using the Armitage Trend test for each
marker.



4.2 Gene-level association 157

Results

We present here the results of these comparisons for the different scenarios using Figures
4.9 to 4.13 that are graphical representations of the false-positive rates and powers of
the methods.

Scenario 1

In this first scenario, with no LD, one can note that the method using the minimal p-
value of the SNPs (minP) had an inflated false-positive rate increasing with the number of
markers (Figure 4.9-A, C and E). This directly highlighted the fact that it is necessary
to account for the number of markers composing a gene. Otherwise, the false-positive
rates of the other methods were all within the 95% confidence interval, except for the
uncorrected Logistic Regression (Reg) that had a slightly inflated false-positive rate with
30 SNPs. This might have been due to the fact that Logistic models are sensitive to the
number of covariates included. These results indicate that almost all the methods that
account for the dependencies between the variables can be applied to sets of independent
markers without having an inflated false-positive rate.

The powers of the methods were quite comparable except for the permutation strategy
(Perm) that had lower power compared to the majority of the methods. Also, the Goeman
test (Goeman) and the marginal score test (MargST) seemed a little more powerful than
the other approaches (Figure 4.9--B, D and F). These results were relatively constant
with the number of markers of the genes.

Scenario 2

The second scenario pertained to a moderate LD pattern between the markers.
When only 3 SNPs were considered, the uncorrected meta-analysis method (Fisher) had
an inflated false-positive rate and on the contrary, the corrected meta-analysis method
(Fisher.corr) was conservative (Figure 4.10-A). These tendencies increased with the
number of markers. The other methods had correct false-positive rates whatever the
number of SNPs considered, except for Reg that was slightly anti-conservative. With 3
SNPs, the analysis of the powers show that the multiple-testing corrections adjusted for
the dependencies between the markers (FDR.corr and Sidak.corr) along with Goeman
and MargST were more powerful than the other approaches. This result was not repli-
cated with 10 and 30 SNPs for the multiple-testing corrections. This might have been
due to their false-positive rates that were reaching the upper bound of the 95% confidence
interval. One can also note that Fisher.corr had a relatively high power even though this
method was conservative when 30 SNPs were considered (Figure 4.10-E and F).

Figure 4.11 compares the powers of the methods for 10 and 30 SNPs between strong
association and weak association. We can logically observe that the powers of all the
methods were more important for strong associations. Considering only the methods with
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correct false-positive rates, the most powerful were Goeman and MargST. Also when there
were 30 SNPs, the relative increase of power of these methods was the most important.
Even though the permutation method is supposed to estimate the exact distribution of
the test statistic under H,, the method was not the more powerful.

Scenario 3

With a high LD pattern, the behaviors of the methods were quite constant for all
numbers of SNPs. FDR, Sidak and Fisher.corr were conservative while Fisher, FDR.cor
and Sidak.corr had an inflated false-positive rate (Figure 4.12). Also, like in the previous
scenarios, Reg had an inflated false-positive rate for 30 SNPs genes. Again, Goeman and
MargST were the more powerful methods.

When comparing the powers between weak and strong association we observed that
minP and Fisher had the highest power due to their very inflated false-positive rates
(Figure 4.13). If we focus on the methods with correct false-positive rates then Goe-
man and MargST were once again the most powerful methods to detect gene-disease
associations.

4.2.4 Discussion

We have conducted a comparison of several classically used approaches to detect gene-
disease associations. Based on simulated genes with various gene sizes, linkage disequi-
librium and association patterns, we analyzed the false-positive rates and powers of the
methods. Several behaviors of the methods can be highlighted and seem to be emphasized
when the complexity of the gene structure increases.

The first result that we highlighted is that the usual method consisting in considering
the minimal p-value of the SNPs composing a gene has a highly inflated false-positive rate
that increases with the number of SNPs and the LD pattern. This confirms results that
have already been discovered in previous study relating the weakness of the most classical
approach and highlights the importance of accounting for both the number of SNPs and
the LD pattern (Hong et al. 2009).

The original Fisher method is conservative when there is a LD structure in the genes.
On the other hand, after correction for dependencies between the markers this method
becomes anti-conservative. This may imply that the correction factor used to correct
the x? distribution is too high and that the estimation of this factor could somehow be
improved. On can also note that the power of Fisher.corr is quite important while this
method has a low false-positive rate. It is possible that an adjustment of the false-positive
rate of this method could lead to an improved approach with correct false-positive rate
and a high power.

A comparable results is observable for the multiple-testing corrections. The methods
that do not adjust for the dependencies between the markers are slightly conservative when
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10 or 30 SNPs are considered while the corrected versions have inflated false-positive rates.
This once again highlights the difficulty to estimate the proper number of independent
SNP blocks to adjust the methods.

The permutation method is naturally able to maintain a correct false-positive rate.
This method has however a relatively low power compared to its computational cost. One
possible explanation is that 1000 permutations were not enough to assess correct null
distributions. This should however be enough as the false-positive rates were correctly
controlled.

In all the scenarios the uncorrected Regression method has an inflated false-positive
rate when 30 SNPs are considered. This may be due to the high number of variables
included in the model that affects the parameters estimation.

Finally the performances of methods such as the Goeman test and the marginal score
test (MargST) are the highest. These two methods have a correct false-positive rate and
reach the highest power to detect associations. The rationale that consists in ignoring
the correlation between the markers and averaging the association signals within the
LD blocks appears to be well suited with the gene testing issue. One downside of these
approaches might however be that they are known to have a high power when the markers
are positively correlated and associated in the same direction otherwise the power may
be lesser. Such structures of the genes are however bound to appear in real situations
(Moskvina and Schmidt 2008, Chapman and Whittaker 2008). In addition, these methods
allow a certain gain in power when a gene is associated to a disease through more than
one marker or block of markers. We would therefore recommend the use of one of these
two statistics to assess gene-level p-values.
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Figure 4.9: False-positive rates and powers of the methods (Scenario 1). This
graph shows on the left panel the evolution of the false-positive rates for Scenario 1 (no
LD) with 3 SNPs (A), 10 SNPs (B) and 30 SNPs (C). The plain black line represents
the 5% level at which the tests were conducted. The dashed black lines are the 95%
confidence intervals for this level. On the right panel is the evolution of the powers with
3 SNPs (D), 10 SNPs (E) and 30 SNPs (F). For the scenarios with 10 and 30 SNPs only
the strong association are represented.
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Figure 4.10: False-positive rates and powers of the methods (Scenario 2). This
graph shows on the left panel the evolution of the false-positive rates for Scenario 2
(moderate LD) with 3 SNPs (A), 10 SNPs (B) and 30 SNPs (C). The plain black line
represents the 5% level at which the tests were conducted. The dashed black lines are the
95% confidence intervals for this level. On the right panel is the evolution of the powers
with 3 SNPs (D), 10 SNPs (E) and 30 SNPs (F). For the scenarios with 10 and 30 SNPs
only the strong associations are represented.
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Figure 4.11: Comparison of the powers between strong and weak association
patterns (Scenario 2). This graph shows on the left panel the evolution of the powers
for the strong associations with 10 SNPs (A) and 30 SNPs (B). On the right panel are
the powers for the weak associations with 10 SNPs (C) and 30 SNPs (D).
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Figure 4.12: False-positive rates and powers of the methods (Scenario 3). This
graph shows on the left panel the evolution of the false-positive rates for Scenario 3 (high
LD) with 3 SNPs (A), 10 SNPs (B) and 30 SNPs (C). The plain black line represents
the 5% level at which the tests were conducted. The dashed black lines are the 95%
confidence intervals for this level. On the right panel is the evolution of the powers with
3 SNPs (D), 10 SNPs (E) and 30 SNPs (F). For the scenarios with 10 and 30 SNPs only
the strong associations are represented.
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Figure 4.13: Comparison of the powers between strong and weak association
patterns (Scenario 3). This graph shows on the left panel the evolution of the powers
for the strong associations with 10 SNPs (A) and 30 SNPs (B). On the right panel are
the powers for the weak associations with 10 SNPs (C) and 30 SNPs (D).



Chapter

Conclusions

Recent advances in Molecular Biology and improvements in micro-array and sequencing
technologies have led biologists toward high-throughput genetic studies. In particular,
Genome-Wide association studies have become widely used to identity markers and genes
associated with diseases. As a matter of fact, the conduct of these studies represents a
milestone step in the process leading to understanding the mechanisms of diseases and
the development of therapeutic solutions. This PhD work focused on these studies and
the related problematics in order to answer to practical interrogations of a pharmaceutical
company such as Pharnext and of the Statistics and Genome laboratory. We aimed
to provide indications and guidelines that answer to the questions raised by the treatment
and the analysis of complex genetic data and to develop methods that allow to improve
certain aspects of the genetic research.

This final chapter is dedicated to presenting the main points that we evoked in this
manuscript along with the conclusions of our work regarding the different aspects of the
GWASs that we analyzed and the methodological developments that we conducted. This
chapter is also an opportunity to indicate further perspectives of our work.

5.1 General conclusions

Population stratification has been shown to bias the results of Genome-Wide association
studies leading to false-positive or false-negative findings. Many strategies have been
designed to account for stratification and it is not always obvious in practice which one
should be used. We therefore conducted analyses to elucidate this point by focusing on the
main approaches that are the Genomic control, methods based on Principal Components
Analysis, Regression models and Meta-analyses.

We compared these different strategies on a set of simulated datasets corresponding
to various stratification scenarios. These analyses allowed us to raise several conclusions.
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First we determined that when there is no stratification, none of the methods that we
considered induced a bias and that their respective powers were preserved. This highlights
the fact that it is therefore advised to always correct for stratification. We also determined
that admixture structures are more tricky to take into account than discrete structures.
Finally, we showed that the Regression method adjusted on the axes of variation or on
accurate population labels is the best solution to derive association measure while taking
the structure of the populations into account.

This latter result highlighted the importance of powerful clustering algorithms to infer
population structure. We therefore studied the issues encountered in the inference of pop-
ulation structure and designed a novel clustering algorithm. One of the major difficulties
to cluster genetic data is the dimension of the data. Indeed, one often faces a number of
variables, the markers, that is far superior to the number of individuals.

The method that we developed during this PhD is called Spectral Hierarchical clus-
tering for the Inference of Population Structure (SHIPS). It is a non-parametric approach
that uses a unique pairwise similarity matrix in order to reduce the dimension of the data.
Our algorithm is based on the idea that it might not be possible to uncover all of the
structure in the data when applying a clustering algorithm just once. Fine population
structures may not be detected as the corresponding sub-populations are hidden within
the major sub-populations detected by the first run of the algorithm. We therefore imple-
mented a robust statistical framework to iteratively apply a spectral clustering algorithm
to the data via a divisive hierarchical clustering strategy and so analyze in depth the
genetic patterns of the studied populations. We compared our algorithm to some of the
most used in practice and determined that it reaches very satisfying performances both in
terms of individuals assignments and estimation of the optimal number of clusters. These
results are promising for the future use of SHIPS.

A final point we were interested in is the issue of multiple-testing. In GWASs, many
statistical tests are conducted and as a consequence a certain amount of false-positive
findings arise due to the multiple-testing issues. The use of an appropriate correction
is therefore necessary to ensure the validity of the results. We reviewed the different
classical approaches that are the Family-Wise Error Rate, the False-Discovery Rate and
the local-FDR. A question that naturally arose was which method one should use? We
explained that the choice of a correction approach actually depends on the cost associated
with false-positive and false-negative findings as well as the type of follow-up experiments
that might be conducted on the association results.

Another problematic that was raised in the analysis of Genome-Wide association stud-
ies data is how to obtain gene-wise interpretation of the findings, i.e how to obtain a
measure of significance for a gene. Deriving such a measure implies combining the infor-
mation of all the markers composing a gene which leads to a multiple-testing situation
with dependent tests as these markers are bound to be in LD. We presented the classical
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approach that consists in using the most significant p-value of the markers. Deriving
gene-level p-value with this method tends to favor large genes and the permutation pro-
cedure that can be used to correct for this bias is rather time consuming. This point
highlighted the practical dilemma of finding a test that properly accounts for the struc-
ture of the gene and do not necessitate permutations. This has led to the development of
many other approaches that we presented and compared through several simulations. Our
study pointed out the performances of Regression based methods such as the Goeman
test or the marginal score test.

Eventually, the different results that we obtained allowed to draw some interesting
conclusions regarding certain aspects of the conduct of Genome-Wide association studies
that can be added to the many research and discussions on this topic. In addition, we
designed a novel clustering algorithm that showed promising results and is susceptible to
be further used to cluster genetic data.

5.2 Perspectives

The research work that we presented in this PhD has led to several conclusions and also
pointed out some interesting research perspectives.

Genetic interactions

We mainly focused on the association between a single marker and a disease. However,
as we presented in the Introduction, it is also possible to look at the combined effect
of several markers, that is called epistasis. In particular, the interaction between two
markers is a topic of interest in GWASs. We noted that the analysis of these interactions
raises several interrogations. First the definition of an interaction is relatively vague and
as a consequence quite different strategies are available to assess them. For instance the
main approaches correspond to Logistic or Linear Regression models, methods based on
the differential correlation between the markers or uses the large interaction xphenotype
contingency table. A complexity in testing interactions is that the amount of test that
has to be performed is considerable. If a dataset is composed of p markers then there are
@ interactions that need to be investigated. The development of fast statistical pro-
cedures is therefore indispensable to allow a complete screening of the genome. A second
issue in the practice of the analysis of epistasis is that population stratification is rarely
accounted for. With the Regression models it could seem natural to add covariates like
for the single marker association test however for the differential correlation tests and the
other models that exist this option is no longer possible. Certain approaches have been
proposed but have yet to be thoroughly analyzed. We have designed several methods to
test the interactions based for instance on the adjusted phenotypes proposed by Price
et al. (see Section 2.3.4) in order to account for stratification. Due to the very long
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computational time demanded by the simulation procedures to assess the methods, some
work is still needed to assess these strategies.

Another point concerning the interactions that we think might be worth investigating
concerns the gene-gene interactions. We presented how to derive a gene-level p-value in
this manuscript and, following the same rationale that highlighted the interest of this work,
it could also be useful to be able to derive gene xgene-level p-values. A first work has been
proposed in (Li and Ji 2005) and uses multiple-testing corrections for dependent variables
such as those introduced in Chapter 4. In the case of interactions, the estimation of an
effective number of independent tests is however more complicated. They proposed using
the mutual information to replace the correlation of the initial procedure which is a lot
more time consuming and therefore not so likely to be used in practice. We feel that there
is a need to develop innovative methodologies to analyze the gene xgene interactions and
this work is well suited as a continuity of the one we conducted during this PhD.

Rare variants analysis

With the development of new generation sequencing, biologists are looking beyond com-
mon genetic variations and are focusing on rare variants that can contribute substantially
to common diseases. As a matter of fact, associations highlighted by Genome-Wide as-
sociations studies can account for only a small fraction of the heritability of diseases.
The analysis of rare variants is thought to be a solution to uncover more about diseases
mechanisms.

A first problematic that arises with rare variants is finding out their associations with
diseases. Indeed the low frequency of these variants renders the classical association tests
not powerful to detect associations. We showed in Chapter 2 that the power of the usual
statistical techniques are very diminished when applied to rare variants. As a consequence
novel association tests have to be designed and the issue of population stratification may
have to be taken into account in a possibly different way.

Also, an interesting topic of research concerns the contribution of rare variants to
the analysis of population structure. It has been shown that the information about the
structure of the populations contained in rare variants is not the same as that contained
in common genetic variation (Baye et al. 2011). Further analyses can be considered to
assess more precisely the information hidden within rare and common variants and how
these types of markers should be used to provide the best inference possible.

Going further with the SHIPS algorithm

The algorithm that we developed has shown promising performances. We think that this
algorithm could be enhanced by continuing working on certain aspects.
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First, the similarity matrix that we considered is quite simple and does not consider
all the information that is available in a genetic dataset. As it is somehow at the basis of
the clustering results, developing a more complete matrix could increase the accuracy of
the method.

The SHIPS algorithm produces in one run several possible clusterings of the data for
various numbers of clusters. This property allows the use of many methods to estimate
the number of clusters. We considered the gap statistic as it provided the best empirical
performances. One downside of this method is its computational time that is the longer
part of the SHIPS algorithm. Investigating other methods to estimate the number of
clusters could lead to finding a solution that would render faster the program.

One last perspective with SHIPS is its application to other types of data. Indeed, this
method has been designed for genetic SNP data but technically corresponds to a divisive
hierarchical clustering and could be suitable to cluster any kind of data. To do so a
proper similarity matrix is necessary and the quality criterion used in the algorithm may
have to be modified to fit data that are not composed of discrete values in {0,1,2}. We
aim to apply the SHIPS algorithm to several data, such as micro-array or RNA-seq gene
expression data, in order to design a more general version of the algorithm.
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Abstract

Inferring the structure of populations has many applications for genetic research. In addition to providing information for
evolutionary studies, it can be used to account for the bias induced by population stratification in association studies. To
this end, many algorithms have been proposed to cluster individuals into genetically homogeneous sub-populations. The
parametric algorithms, such as Structure, are very popular but their underlying complexity and their high computational
cost led to the development of faster parametric alternatives such as Admixture. Alternatives to these methods are the non-
parametric approaches. Among this category, AWclust has proven efficient but fails to properly identify population
structure for complex datasets. We present in this article a new clustering algorithm called Spectral Hierarchical clustering
for the Inference of Population Structure (SHIPS), based on a divisive hierarchical clustering strategy, allowing a progressive
investigation of population structure. This method takes genetic data as input to cluster individuals into homogeneous sub-
populations and with the use of the gap statistic estimates the optimal number of such sub-populations. SHIPS was applied
to a set of simulated discrete and admixed datasets and to real SNP datasets, that are data from the HapMap and Pan-Asian
SNP consortium. The programs Structure, Admixture, AWclust and PCAclust were also investigated in a comparison study.
SHIPS and the parametric approach Structure were the most accurate when applied to simulated datasets both in terms of
individual assignments and estimation of the correct number of clusters. The analysis of the results on the real datasets
highlighted that the clusterings of SHIPS were the more consistent with the population labels or those produced by the
Admixture program. The performances of SHIPS when applied to SNP data, along with its relatively low computational cost
and its ease of use make this method a promising solution to infer fine-scale genetic patterns.
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Introduction

Population structure relates the genetic heterogeneity that exists
between individuals of a population. This heterogeneity is a
natural phenomenon resulting from biological and evolutionary
processes such as for instance natural selection, genetic drift,
populations migrations or mating processes [1]. These phenomena
lead in time to sub-populations genetically differing with regard to
the frequency of certain alleles. For the same reasons, disease
prevalences or allele penetrances may vary between such groups.
These systematic differences between sub-populations can be more
or less important. The most identifiable are found between ethnic
and/or geographically distant groups.

Identifying the underlying structure of populations is often of
use for genetic research. It allows the study of evolutionary
relationships between populations as well as learning about their
demographic histories [2-6].

Such analyses are also of a great interest for population-based
genetic  studies such as Genome-Wide Association Studies
(GWASs). Notwithstanding the widespread usage of GWASs,
their findings have been criticized partly because they are
vulnerable to population stratification. This corresponds to the
bias induced in situations where the studied populations are
genetically heterogeneous and the sampling of cases and controls is

PLOS ONE | www.plosone.org

imbalanced between the various ancestries. Population stratifica-
tion 1s known to lead to finding spurious associations or to missing
genuine ones [7-11]. Inferring the structure of the populations can
therefore be helpful to identify whether there is indeed a structure
or to define homogeneous clusters of individuals that can later be
used to correct the association test and account for stratification.

Two major strategies have been developed to infer the structure
of the populations that are parametric model-based clustering and
non-parametric clustering. Model-based clustering approaches
make numerous assumptions on the genetic data and use statistical
inference methods to assign individuals to sub-populations. Many
of these parametric approaches exist such as for instance Structure
[5], Admixture [12,13], BAPS [14] or FRAPPE [15]. These
parametric methods are more commonly used to infer population
structure. It has however been pointed out that they have some
drawbacks such as the complexity of the underlying statistical
models and of the assumptions that have to been made on the
data. Also, the program Structure is known to have a very high
computational cost. Non-parametric approaches have the advan-
tage over parametric ones of making fewer assumptions on the
data. For example most of these methods do not assume the
Hardy-Weinberg equilibrium between genetic markers. In addi-
tion, such approaches involve few parameters to be estimated [16].
The main non-parametric methods are Awclust [17] using a
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Abstract

Genome-Wide Association Studies are powerful tools to detect genetic variants associated with diseases. Their results have,
however, been questioned, in part because of the bias induced by population stratification. This is a consequence of
systematic differences in allele frequencies due to the difference in sample ancestries that can lead to both false positive or
false negative findings. Many strategies are available to account for stratification but their performances differ, for instance
according to the type of population structure, the disease susceptibility locus minor allele frequency, the degree of
sampling imbalanced, or the sample size. We focus on the type of population structure and propose a comparison of the
most commonly used methods to deal with stratification that are the Genomic Control, Principal Component based
methods such as implemented in Eigenstrat, adjusted Regressions and Meta-Analyses strategies. Our assessment of the
methods is based on a large simulation study, involving several scenarios corresponding to many types of population
structures. We focused on both false positive rate and power to determine which methods perform the best. Our analysis
showed that if there is no population structure, none of the tests led to a bias nor decreased the power except for the Meta-
Analyses. When the population is stratified, adjusted Logistic Regressions and Eigenstrat are the best solutions to account
for stratification even though only the Logistic Regressions are able to constantly maintain correct false positive rates. This
study provides more details about these methods. Their advantages and limitations in different stratification scenarios are
highlighted in order to propose practical guidelines to account for population stratification in Genome-Wide Association
Studies.
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Introduction

Genome-wide association studies (GWAS) have become a
widely used approach for gene mapping of complex diseases.
With the development of high throughput genotyping technologies
many markers are available to conduct these studies. The most
common study design is the case-control design using unrelated
individuals. The relevance of the results of such large scale genetic
studies is however questioned. Indeed certain biases arise when
conducting a GWAS, leading to false discoveries. As a conse-
quence, only few associations are consistently and convincingly
replicated [1]. There can be many causes to such spurious findings
and non-replications [2—4]. It is broadly considered that failure to
account for the bias induced by population stratification is one of
them. This phenomenon occurs when the sampling has been made
within non genetically homogeneous populations, i.e. there are
systematic differences in allele frequencies due to ancestry and the
baseline disease risk are different between the actual subpopula-
tions. This can lead to finding spurious associations or to missing
genuine ones [5-8]. Accounting for population stratification has
nowadays become a necessary step in the conduct of a GWAS,
especially with the development of very large studies such as the
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ones undertaken by international consortia. These studies indeed
gather many cohorts of cases and controls, not always matched,
with different ancestries.

The most used association test to detect an association is
Armitage’s Trend test. This test statistic follows a x> distribution
under the null hypothesis of no association. In case of population
stratification, this distribution is inflated and the test statistic
follows a non-central x> distribution. Several main approaches
exist to account for population stratification in GWAS: Genomic
Control [9,10], Principal Component Analysis (PCA) based
methods [11,12], Regression models [4,13], and Meta-Analyses.
Genomic Control aims at correcting the Trend test statistic
inflated null distribution by estimating an inflation factor, usually
called A, using many markers. In practice we usually consider that
a /A inferior to 1.05 indicates that there is no stratification [14]. The
main assumption of this method is that the inflation factor is the
same for all markers. PCA-based methods use markers to define
continuous axes of variation, called principal components, that
reduce the data to few variables containing most of the
information about the genetic variability. These axes often relate
the spatial distribution of the ancestries of the samples. Using such
methods, Price et al. propose an association test to account for
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Chapter 13

Multiple Testing in Large-Scale Genetic Studies

Matthieu Bouaziz, Marine Jeanmougin, and Mickaél Guedj

Abstract

Recent advances in Molecular Biology and improvements in microarray and sequencing technologies have
led biologists toward high-throughput genomic studies. These studies aim at finding associations between
genetic markers and a phenotype and involve conducting many statistical tests on these markers. Such a
wide investigation of the genome not only renders genomic studies quite attractive but also lead to a major
shortcoming. That is, among the markers detected as associated with the phenotype, a nonnegligible pro-
portion is not in reality (false-positives) and also true associations can be missed (false-negatives). A main
cause of these spurious associations is due to the multiple-testing problem, inherent to conducting numer-
ous statistical tests. Several approaches exist to work around this issue. These multiple-testing adjustments
aim at defining new statistical confidence measures that are controlled to guarantee that the outcomes of
the tests are pertinent.The most natural correction was introduced by Bonferroni and aims at controlling
the family-wise error-rate (FWER) that is the probability of having at least one false-positive. Another
approach is based on the false-discovery-rate (FDR) and considers the proportion of significant results that
are expected to be false-positives. Finally, the local-FDR focuses on the actual probability for a marker of
being associated or not with the phenotype. These strategies are widely used but one has to be careful
about when and how to apply them. We propose in this chapter a discussion on the multiple-testing issue
and on the main approaches to take it into account. We aim at providing a theoretical and intuitive
definition of these concepts along with practical advises to guide researchers in choosing the more appro-
priate multiple-testing procedure corresponding to the purposes of their studies.

Key words: Multiple testing, Genetic, Association, Biostatistics, GWAS, Bonferroni, FWER, FDR

1. Introduction

During the last decade, advances in Molecular Biology and
substantial improvements in microarray and sequencing technolo-
gies have led biologists toward high-throughput genomic studies.
In particular, the simultaneous genotyping of hundreds of
thousands of genetic markers such as single nucleotide polymor-
phisms (SNPs) on chips has become a mainstay of biological and

Francois Pompanon and Aurélie Bonin (eds.), Data Production and Analysis in Population Genomics: Methods and Protocols,
Methods in Molecular Biology, vol. 888, DOI 10.1007/978-1-61779-870-2_13, © Springer Science+Business Media New York 2012
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