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INTRODUCTION

Following the recent outburst of genetic data offered by microarray
experiments and whole-genome sequencing, biological phenomena have
been screened through many large scale analyses. Genome-wide associa-
tion studies have investigated potential associations between a phenotype
of interest and particular genotypes in terms of single-nucleotide polymor-
phisms (SNPs). Differential analyses of transcriptomic datasets looked for
association between phenotypes and gene expression profiles. Contrary
to SNP datasets, which capture the variability of nucleotide sequences at
the individual level, transcriptomic or expression datasets aim to measure
the variability of gene activity over time and tissues. Transcribed mRNA
levels are used as a proxy for the levels of proteins used by the cell at a
given combination of time, tissue and environmental condition.

DNA
J Transcription
Translation
Protein

Figure 1 — Expression data: measurements of mRNA levels used as a proxy for gene
activity.

Despite great breakthroughs, those analyses stumble upon the fact that
the penetrance of single candidate alleles often remains very low (Vargh-
ese and Easton 2010) or gene signatures suffer from high variability (Ioan-
nidis 2005, Haury et al. 2011a). Among others, one explanation is that
they consider each gene independently and miss to take into account their
interactions. There is therefore an increasing interest for multivariate ap-
proaches, adopting the approach of systems biology.

From a mathematical viewpoint, graph theory provides an ideal frame-
work to model biological systems. A graph I’ is defined as a couple (V, £)
of vertices and edges. Depending on whether the graph is directed or
not, that is to say whether the edges are directed or not, the set £ de-
notes a set of ordered (resp. unordered) pairs of vertices. Many biological
phenomena can be represented under the form of a graph, or network3.
Roughly speaking, we can distinguish at least three types of well-modeled

3In the sequel, we use indifferently the vocabulary of “graph” or “network”. The former
is more familiar to the mathematical community while the latter is more often used in the
biological one.
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Figure 2 — Targeted model of requlatory mechanism: some genes code for proteins, called
transcription factors, which bind to the promoter region of other genes in order to requlate
their activity.

biological networks: protein-protein interaction (PPI) networks, metabolic
pathways, and gene regulatory networks.

PPI networks model how proteins bind to each other. Vertices consist
of proteins; edges are added between two proteins when those are known
to bind together. PPI networks are a fruitful source of information but
there is a huge variation among them depending on the definition used
for the binding and the techniques developed in order to identify them.
To illustrate the wide variety of PPI sources we could mention, among
others, physical experimentations with potential discrepancies between in
sillico or in vivo methods, and computational biology algorithms, based
for instance upon phylogeny and homology relationships, 3D structure
modeling, or supervised learning techniques.

Metabolic networks compile metabolic pathways, which are the chains
of chemical reactions responsible for specific biological functions taking
place in a cell. In metabolic networks, an edge links in chain substracts and
products of chemical reactions, such that products of one reaction play the
role of substracts to the next. Metabolites involved in chemical reactions
consist in gene products and transformation of gene products but also in a
large range of cofactors found in the environment. More refined metabolic
networks also provide information on the enzymes required to catalyse
the reaction, which make them quite complex and heterogeneous.

Gene regulatory networks aims to describe the inhibition and activa-
tion relationships operated by transcription factors onto genes, as illus-
trated in Figure 2. As such, each vertex represents at the same time a gene
and its protein products as one while edges represent the fact that one of
the genes codes for a protein which binds to the promoter region of the
other in order to regulate its activity. If gene regulations can be identified
individually via biological experimentations like knock-outs, it is now an
important statistical challenge to recover those gene regulatory networks
on a large scale thanks to expression datasets.

This statistical issue is the main motivation of this thesis. In such a
case, our definition of gene regulatory networks is the biological target
that we try to model. Yet, the acurate interpretation of what we infer is
conditioned by two points: first, by the statistical modeling, which will
be detailed and discussed along the manuscript, second by the data on
which we work. Indeed, we restrict ourselves to the observation of bio-
logical phenomena from the unique point of view of mRNA levels, omit-
ing the multiplicity of regulatory actors and the complexity of regulatory
mechanisms themselves.

Various statistical techniques have already been studied to tackle this
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issue, among which partial derivative equations and Bayesian dynamic
networks. In this thesis we adopt the framework of Gaussian graphi-
cal models (GGMs), which combines both assets of multivariate Gaussian
distributions and graph theory.

Chapter 1 recalls major recent developments in this area, when the
main objective is not to infer the distribution at known graphical structure
but to recover the graphical structure itself. In that respect, the leading
challenge resides in design proportions, since we face expression datasets
where the number of available microarrays is much smaller than the num-
ber of genes under study. This so-called high-dimensional setting most
certainly defines a new paradigm for recent statistical developments, at
the opposite end of the usual asymptotic framework which consists in al-
lowing the number of observations to grow to infinity in order to obtain
the most accurate estimations. The first challenge of high-dimensional
statistics is to even be able to provide an answer in a context where it
seems a priori impossible using classical methods. Chapter 1 therefore de-
scribes the main advances offered by regularized approaches to solve high-
dimensional problems. At the root of the high-dimensional paradigm is
the notion of sparsity, which assumes that the burden of dimension is
only apparent: the true size of the problem is actually much lower than it
seems, and it suffices to look for a solution in subspaces of low dimension
where the problem is solvable. Regularization and shrinkage approaches
described in Chapter 1 provide a particularly efficient way of exploring
those low dimension subspaces.

In that context, data heterogeneity might be an asset, particularly to
improve the quality of the answer when the sample size is low. Chapters 2
and 3 consider two different but possibly complementary definitions of
heterogeneous transcriptional data. In both cases, an adequate statistical
modeling can alleviate the burden of high-dimension.

Chapter 2 models heterogeneity at the network level, building upon
the assumption that biological networks are organized: genes known to
participate in the same biological functions are more likely to regulate
each other, while some of them coding for transcription factors are much
more likely to play the role of hubs in networks. Following the work of
Ambroise et al. (2009), Chapter 2 suggests to make use of prior informa-
tion about the topology of the network in the definition of a weighted-Lasso
estimator to improve the accuracy and robustness of the identification of
regulations.

Chapter 3 models heterogeneity at the observation level, focusing on a
recent regularization term called the cooperative-Lasso designed to combine
observations from distinct but close datasets (Chiquet et al. 2011). Since
many transcriptomic experiments are led simultaneously in several close
conditions, as part of a more general experimental scheme, such as stress
experiments, case/control or placebo/treatment studies, a method which
allows the information to be shared across conditions without reducing
the estimation to a single average network as would be done by meta-
analysis is of high-interest. This chapter refers to regularization schemes
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which has nourished a lot of research in the machine learning community
under the term of multi-task learning.

Finally, Chapter 4 addresses the crucial question of uncertainty in an
ongoing work in collaboration with F. Villers and N. Verzelen. Chapter
1 details ways to provide an answer in awkward design sizes. Chapter
2 and 3 define ways to provide an hopefully improved answer. Theory
states conditions under which the answer is reliable and consistent, how-
ever there is a need to quantify the quality and certainty of the answer
on a given dataset. Particularly, if we want the networks we infer to be
used appropriately by clinicians who want to improve disease diagnostics
and prognostics and maybe eventually identify new drug targets, we need
to be able to confirm that differences observed between two networks in-
ferred in distinct conditions are indeed significantly different. Chapter 4
tackles this issue.

Our contribution to this chapter focuses on the adaptation of Verzelen
and Villers (2010) with the use of Fisher statistics, the adaptation of higher-
criticism, as well as numerical experiments and other practical aspects.
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REGULATORY NETWORKS

TH‘E objective of this chapter is to clarify the statistical framework
adopted in this thesis to model and infer gene regulatory networks.
We recall the definition and interpretation of Gaussian graphical models,
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1.1

1.2

1.2.1

1.1. Introduction

INTRODUCTION

Microarray transcriptomic data epitomize the challenges raised by the sta-
tistical modeling of complex biological systems in the recent era of high-
dimensional data. The following chapter provides insights into the two
fundamental stones combined in this thesis to meet this challenge: the
modeling of gene regulatory networks by Gaussian graphical models and
{1 regularization of high-dimensional problems.

Gaussian graphical models (GGMs) provide a theoretically well de-
fined framework to study gene regulatory networks. Admittedly, our
models cannot reflect the complex reality of regulatory mechanisms, but
at least we can strictly interpret and control what comes out the data from
a statistical point of view. The first section of this chapter attempts at
clarifying the structure of conditional dependences exhibited by Gaussian
graphical models.

In order to deal with high-dimensional data, regularized approaches
have nourished an outstanding research effort in the last decades. Among
them, ¢4 regularization lies at the boundary between shrinkage convex es-
timators and model selection. We devote a second section to the mechan-
ims allowing £ regularization to perform simultaneously estimation and
model selection and eventually combine /1 regularization with the infer-
ence of high-dimensional Gaussian graphical models.

STATISTICAL MODELING OF GENE REGULATORY NET-
WORKS

Assume that the vector of expression levels X = (Xj,...,X,)T follows a
regular multivariate Gaussian distribution with expectation y € R” and
covariance structure X € S, where S denotes the set of symmetric pos-
itive definite matrices. GGMs provides a graphical representation of the
conditional dependence structure between components of X. Thorough
definitions and properties of GGMs can be found in Whittaker (1990) and
Lauritzen (1996). Before going further into GGMs we need to clarify what
we mean by conditional dependence structure.

In general, the independence of two components X; and Xj condition-
nally on a remaining set of components C describes the fact that knowing
Xc¢, Xj does not bring any supplementary information on X; that is not
already brought by X, and vice versa. If X admits a density with regard
to a certain measure y, this conditional independence means that the joint
density f;;c(xi, xj, xc) of (X, Xj, Xc) factorizes into f; c(x;, xc)fj,c(xj, xc),
or similarly, the conditional distribution fx, X;)|Xc (x;, Xj; xc) factorizes into

fxxe (xi xc) fx, xc (xj: %)

Undirected Gaussian Graphical Models

The crucial point in the definition of conditional independence is the set
C on which the conditionning is taken. Different Markov properties il-
lustrated in Figure 1.1 distinguish the conditional independence structure
represented by an undirected graph I'. Starting from the less stringent
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definition towards the strongest assumption, it is interesting to recall the
definitions of pairwise Markovian, local Markovian or global Markovian,
all with respect to a given graph I'. It is easily checked that 1.3 implies 1.2
which in turn implies 1.1.

Definition 1.1 (Pairwise Markov property)  The random vector X is pairwise Markov with respect
toa graph T = (V, &) if and only if, for every pair of non-adjacent vertices,
i.e. for every pair (i,j) € V?* such that (i,j) ¢ €, X; is independent from X;
conditionnaly on all remaining components:

i <—/—>} s XL XI|XV\{*J}

Definition 1.2 (Local Markov property) The random vector X is local Markov with respect to a
graph T = (V, &) if and only if, for every vertex i, X; is independent from all its
non-neighbors conditionnaly on its neighbors ner(i):

i <+>Ji' & XL Xj|Xner(i)'

Definition 1.3 (Global Markov property) The random vector X is global Markov with respect
toa graph T = (V, &) if and only if, for every three subsets distinct (I,],S) of
vertices, such that X separates I from | in T, for every pair (i,j) € I x ], X; is
independent from X; conditionnaly on Xs:

I<—f—>} & XL X;|XS

With these definitions in mind, we can now define undirected Gaus-
sian graphical models.

Definition 1.4 (Gaussian graphical model) A multivariate Gaussian vector X = (Xy,...,X,)
follows a Gaussian graphical model with respect to a graph T = (V, ) if and
only if X satisfies the pairwise Markov property with respect to I'. For every pair
of vertices (i,j) € V? such that i # j, by:

i <+>Ji' f— X,’ 1 XI|XV\{‘:I}

Now, thanks to the Hammersley and Clifford theorem (see Lauritzen
(1996)), the existence of a positive and continuous density implies the
equivalence, in this particular case, between the three Markov proper-
ties. In other words, if X is a GGM with respect to a graph I, it is not
only pairwise Markov with respect to I, but also local Markov and global
Markov. This equivalence is particularly interesting in terms of interpre-
tation. Indeed, the consequence of the local Markov property is that the
best linear prediction of a component X; is given by its neighbours. Con-
ditional on the set of neighbors X, (;), no supplementary information can
be extracted from remaining components to improve this prediction. The
consequence of the global Markov property is that if two genes X; and X
are linked through a certain path of edges, then conditional on any gene
on the path, and not only their neighbours, Xj and X; are independent.

Markov properties clarify the interpretation of the graphical structure
provided by the application of GGMs on transcriptomic data. The graphi-
cal structure indicates that conditional on the neighbors ofa gene, all other
genes in the dataset are irrelevant to explain its expression levels. Among
a set of correlated genes, we could say that GGMs aims at discovering
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_____________________ - —

(b) Local Markov (c) Global Markov

Figure 1.1 — If the vector X = (X1, ..., Xs) follows a GGM with respect to the graph in
panel (a), then it is equivalently pairwise Markov, local Markov and global Markov with
respect to the same graph. Consider for instance the vertices Xy and Xs. The pairwise
Markov property states that they are independent conditional on all other vertices, that
is to say (Xp, X3, X4, Xg, X7). The local Markov property illustrated in panel (b) implies
that conditional on either the neighbours of X, or the neighbours of X5 there is no depen-
dency left between Xy and Xs. The consequence of the global Markov property illustrated
in panel (c) is that it suffices to condition on any subset of vertices separating X, from
X5 to obtain independence. Particularly, X, is independent from Xs conditional on X3
alone.

the direct flow of information from gene to gene that best explains the
observed levels of expression.

Thanks to the assumption of Gaussianity, distributions of X;’s condi-
tionnaly on X,; admit very simple expressions. This fundamental result
will be at the basis of many further developments. For the sake of clarity,
we assume in the following that X is centered. We denote by A;. (resp.
A ;) the ith line (resp. column) of any matrix A.

Proposition 1.1 (Conditional distributions) Let X = (X;);cy be a multivariate Gaussian vector
with zero mean, invertible covariance matrix . = O, The distribution of X;
conditional on X\; is itself a Gaussian distribution with mean p;\; and covariance
Vine

Hini = Za O Xy Vi = Zii — 2O i

Adding the fact that for every i # j, £,0.; = Zi\i@'\j + 205 = 0, the
conditional distribution of X; given X\ ; can be rewritten under the form:

Xi|X\i=— Y. 0;0;'X;+s¢;
jeVA

where ¢; is a centered Gaussian noise with variance ¥;;, independent from
X\j. Under those terms, the neighbours of X; can be directly read from
the set of non zero entries of ®, which leads to a particularly fruitful
characterization of GGMs.
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Proposition 1.2 (Graph of conditional dependencies expressed via the precision matrix) Let

1.2.2

X=(Xy..., Xp) be a multivariate Gaussian vector with zero mean, invertible
covariance matrix ¥ = @~ L. The graph T = (V, £) of conditional dependencies
between Xy, ..., X, is defined, for every pair of vertices (i,j) € V? such that
i#j, by

@;; #0
In other words, if for every vertex i, ner(i) describes the set of neighbors of i in
the graph T, that is to say the set {j € V,(i,j) € £}, the distribution of X;

conditional on V \ i only depends on X, ;).

X1 Xp X3 Xy X5 X X7

X4 Xe X1 /[ x 0 x 0 0O
. Xo/ * * * 0 0 0 0
\ X3 X5 . X3/ 0 x x * x 0 O
Xq .< Xyl * 0O ¥ x 0 0 O
./ . X501 0 0 *x 0 * % *
X, X\l 0 0 00 x x o0
X X; \o 0o o o x 0 %
(a) Graph (b) Precision matrix

Figure 1.2 — The graph of conditional dependencies is characterized by the position of
non-zero entries of the precision matrix © = £~1

This result will be at the center of the fo]lowing sections and chapters,
since statistical methods to recover the graph of conditional dependencies
rely on the selection of non-zero entries of the precision matrix.

Directed Gaussian Graphical Models

When the interest lies in recovering gene regulations, undirected GGMs
provide a somewhat circumsbribed modeling: first, there is no indication
of which gene acts as a regulator on the other, second some motifs of
particular interest, like retro-active loops, cannot be detected. Directed in-
dependence graphs, associated with time-series datasets, in particular di-
rected Gaussian graphical models, provide a fruitful framework to model
those. However, the interpretation of edges in terms of Markov properties
is a bit trickier.

Although it seems at first sight in complete contradiction with the mo-
tivation above, the main constraint that one needs to impose on directed
independence graphs is to forbid the presence of cycles, thereby working
on directed acyclic graphs (DAGs). We will explain further on how to
solve this apparent inconsistency. For now, remark that the presence of
cycles would raise problems in terms of factorization of the joint distribu-
tion into a chain of conditionnal distributions. Consider a feed-back loop
such that X; regulates X5, which regulates X3, which in turn regulates Xj.
There would only be a few degenerated cases where we could factorize
f(%1,%,%3) 1080 fxy1%, /3513, 3 3¢

A straighforward way to prevent cycles is to provide vertices with a
complete ordering <, so that any edge i —j in the graph can eventually
have only one possible direction, such thati — j if i < j and reversely
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i «— jif j < j. Since a natural ordering is time, notations about di-
rected independence graphs, also called recursive graphs, are traditionaly
defined in analogy to genealogic trees, with edges going from parent-
nodes to child-nodes. Every node i in {1,...,p} is endowed with a past
past(i) = {1,...,i — 1}, which excludes the present and future nodes
{i,...,p}. Given this ordering, edges pointing to i can only come from
the past, and edges leaving i can only point to future nodes. For every
node i, we define its parents pa(i) as the set of all nodes (in the past),
with edges pointing to i. As a result, the joint distribution admits a trivial
recursive factorization as we hoped:

P
f(le---;Xp) (xl’ s xP) = foilxpast(i} (xf ’ xPan(f))

Definition 1.5 (Directed Gaussian graphical model) A multivariate Gaussian vector X =
(X1,...,X,) follows a directed Gaussian graphical model with respect to a DAG
I'< = (V,&%) if and only if, for every pair of vertices (i,j) € V? such that i
belongs to past(j), X; is independent from X; conditional on its past (except i,
naturally):
i+ ] Xi L X1 X\ i)

The set of fzodes.fmm.past(.j) such. that X.i L Xj|Xpa5,(j)\{i} is C.aHed the set.of
parents of j, pa(j). With this notation, a directed Gaussian graphical model with
respect to I'™ equivalently satisfies the ordered Markov property: for every vertex
icV,

Xi L Xpast(ip\pati) | Xpati)-

It follows that the joint distribution now admits a more refined factor-
ization than the factorization above which corresponded to the saturated
graph:

4
f(x1,...,xp)(x1~ o Xp) = fodxp_,(,-) (xi ; xpa(i))

Definition 1.5 echoes the definition of undirected GGMs 1.4 based upon
the pairwise Markov property, except that the conditionning on all nodes
but i and j is replaced by the conditioning on the past of j (but i) only.
This definition relies on the existence of an a priori ordering of the nodes,
which implicitly but strictly governs the direction of edges. As soon as
graphs are acyclic, it is always possible to reason the other way round: for
every DAG, there exists (though it might be an NP-hard problem to re-
cover it) an ordering < of the vertices which is compatible with the DAG,
that is to say, for every two vertices such thati — j, i < j. The directed
local Markov property presents the advantage of not referring to this or-
dering to provide an interpretation of the edges in terms of conditional
dependences.

Definition 1.6 (Directed local Markov property) A random vector X satisfies the directed local
Markov property with respect to the DAG I'™ if and onl if for every vertex i €
vertices, X; is independent from all its non-descendants nd(i) (except its parents)
conditional on its parents:

Xi L Xoaiy\pa(iy IPa(i)
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How to obtain the directed global Markov property is less trivial
though. Figure 1.3 represents two basic examples chosen by Whittaker
(1990) that well illustrate the subtleties of the interpretation of directed
edges in terms of conditional dependencies.

X1

.\Xg X4
o 0
X1 Xy Xz Xy ./
®o-0-0-0 X2
(a) (b)

Figure 1.3 — Two examples of directed graphs. Definition 1.5 associates the two graphs
with the following set of conditional independences: in panel (a), X3 L Xq|Xo, X4 L
X1|Xa, X3 and Xg L Xp|Xq,Xs; in panel (b), X1 L Xp, Xg L Xq|Xp, X3, X4 L
X2| X1, X3. Panel (a) satisfies the Wermuth condition while panel (b) does not because of
the motif highlighted by the light blue region.

Indeed, one would be tempted to interpret directed independence
graphs thanks to the useful local or global Markov property. In Figure 1.3,
panel (a), it seems natural that X, should be independent from X; condi-
tional on either X, or X3 alone, as it would be the case, would the edges
be undirected. The independence conditional on X3, corresponding to the
local Markov property, can be obtained by combining X L X;|X, X3 and
Xy L X5]X1,X3. Yet, there is no straighforward way to prove the inde-
pendence conditional on X, which would correspond to a global Markov
property. Besides, interpreting the directed graph in panel (b) as an undi-
rected one clearly nourishes misleading interpretations. Indeed, in the
undirected case, conditioning on X3 leaves X; and X, independent while
this is absolutely wrong in the directed case.

The difference between the two graphs is the presence of the special
motif in panel (b), called Wermuth motif, where the two parents of X3 are
independent. To eliminate Wermuth configurations, the idea is to “marry”
the parents of the colliders and omit the direction of edges to form the
moral graph I associated to the directed graph I'~. Then the directed in-
dependence graph I'™ shares the same Markov properties as its associated
moral graph I'. Naturally, when the original directed graph satisfies the
Wermuth condition, then it possesses exactly the same Markov properties
as its undirected counterpart. The two moral graphs associated with the
directed graphs of Figure 1.3 are presented in Figure 1.4.

To state a directed global Markov property without resorting to the
moral graph, we need to find out the right definition for a separating set
in the case of DAGs. Because of Wermuth configurations, the definition of
separating subsets requires a little more definitions than in the undirected
case. Along a given trail, let us distinguish collider from non collider
nodes: colliders are nodes where edges point to meet. A trail from i to j
is said to be blocked by S if and only if either there is a non-collider node
within S, or if there is a collider node outside S and its ancestor set (the
smallest subset containing all the parents of S and all the parents of those
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Xy
X, X,
e —©
X, X X3 Xy
o0 0 =
(a) (b)

Figure 1.4 — Moral graphs associated with the graphs of Figure 1.3. Since the directed
graph in panel (a) satisfies the Wermuth condition, the associated moral graph is nothing
more than its undirected version. The moral graph in panel (b) marries the two parents
X1 and X3 of X3, as highlighted by the light blue region. Those moral graphs implies
that the original directed graphs also indicate the following conditional independences: in
panel (a), X3 L X1|Xp, Xq L X1|X3, X4 L Xq|Xp, and X4 L X;|X3; in panel (b),
X4 1 X1|X3, X4 1 X2 |X3 but X1 7«[ X2 |X3

recusively). A subset S separates two subsets I and | on a DAG I'* if and
only if S blocks all trails linking I to J.

Definition 1.7 (Directed global Markov property) A random vector X satisfies the directed global

Markov property with respect to the DAG T~ if and only if for every pair of
vertices (i, j) and subset S separating i from j in T, X; is independent from X;
conditionnal on Xs:

X; L Xj|Xs

A typical example of directed GGM is given by autoregressive time-
series. Consider a stationnary autoregressive process X of order 1. There
exists a parameter p E] -1, 1[ such that for everyt=1,..., T -1,

Xit1 = pXi + €141,

where & is the Gaussian white-noise innovation process. The process
{X;}L_, is a directed GGM with respect to the graph with edges t — t + 1
for everyt =1,..., T — 1. Since they admit the same moral graph, it is also
a directed GGM with respect to the graph with reversed edges t -1 — t.
If the former is in adequation with the natural ordering of time, both are
equivalent in terms of Markov properties.

Chapter 2 focuses on the inference of a directed GGM associated with a
stationnary autoregressive random vector X = (Xl, e, XF’) of order one.
There exists a matrix A, with eigenvalues smaller than 1 in absolute value,
such that forevery t =1,..., T —1

1 1 1
X1 X €41
t+ +
. =Al| . |+ .

p P P
X1 X €41

Under the assumptions of Chapter 2 on the Gaussian white noise and
on the absence of within time effects, the process {X;}; is naturally a

directed GGM with respect to the full graph with all edges X; — XJ; 41

for every t = 1,...,T — 1, and every pair of nodes (i,j). However, this



14

Chapter 1. High-dimensional GGMs and Gene Regulatory Networks

1.3

full graph is no more useful than the saturated graph in the undirected
case. Chapter 2 will detail the recovery of a minimal directed GGM, repre-
senting the minimal across-time conditional dependency structure among
nodes.

To finish with, let us come back to the original paradox and explain
how this longitudinal representation allows the modeling of feed-back
loops despite the absence of cycles. Indeed, edges can either all point
from time f to time tf + 1, or be all reversed as we saw in the previous
example, hence the absence of cycles. However, if we omit the time-lapse
and abusively merge nodes {Xf, e, X‘T} corresponding to the same com-
ponent i into one, cycles can appear, as illustrated on Figure 1.5.

X} ® X,
X4
X7 ® X7, .
X @ ® X7, - ¥l

4

e\ ‘ext, /.\\
= O O

X ® o Xt5+1 X3 X? X3
(a) Directed GGM (b) Condensed directed GGM

Figure 1.5 — An extract from a directed GGM representing an order 1 autoregressive
random vector, and its condensed representation, omitting the time-lapse over which the
correlations take place. Cycles appear in the condensed version while the actual directed
GGM representation is acyclic.

STATISTICAL INFERENCE OF HicH-DiMENsiONAL GGMs
VIA /1 REGULARIZATION

Since we deal with high-dimensional data, it is worth taking a short detour
and recall what solutions have been developped in the last ten or twenty
years to tackle high-dimensional linear regression, when the number of
variables is far larger than the sample size. Next sections will explain
how to adapt those preliminary results to the inference of GGMs. For the
moment, consider that we observe a size-n sample (y,X) € R" x M, , of
the following Gaussian linear regression model:
Y=XB"+¢

where ¢ is a Gaussian white noise with variance o2.

In high-dimensional settings, the ordinary least square estimator (OLS)
is not defined. Assuming that the true parameter g* lies in a subspace of
smaller dimension, one way to provide an answer to the minimization of
the quadratic risk is namely to restrict the estimator to lie in a subspace of
reduced dimension where a solution exists thanks the addition of penalty
terms. Instead of solving the usual least square problem, solve for instance
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a problem of the form of (1.1).

A 1
B= arﬁg E’in §||y — XB||2 4+ An pen(B). (1.1)
€

In Problem 1.1, A, tunes the amount of shrinkage imposed on ﬁ Ridge
regression is a particular case of regularized least square problem, with
pen(B) = ||B||3. As another particular case, ¢; regularization, presented
in Equation (1.2), has drawn much of research attention since the publi-
cations of Donoho and coauthors under the terms of basis pursuit (Chen
and Donoho 1994) and Tibshirani under the denomination of the Lasso for
Least Absolute Shrinkage and Selection Operator (Tibshirani 1996).

.1
ﬁzaré% $1nilly—xﬁlli+/’tn 1Bll1- (1.2)
€

The specificity of {1 regularization compared to £ or any other £, regular-
ization with p > 1is that it is the convex relaxation of the £y pseudo-norm
regularization presented in Equation (1.3).

N o1
p=arg min 5[y =Xz -+ Ax [|Bllo (13)
€

The ¢y pseudo-norm counts the number of non-zero components of B.
Varying the amount on regularization A,, Problem 1.3 is equivalent to
looking for the best linear model with only k variables among p:

" o1
B =arg min _|ly — XB|; (1.4)
BeRP 2

st |Bllo <k.

Solving Problem 1.3 or equivalently 1.4 is actually the number of variables
is small. With specific choices of A,, respectively A,(AIC) = 2/n and
An(BIC) = 2log(n)/n, Problem 1.3 boils down to AIC and BIC criteria
under assumption of known variance, which can be efficiently combined
to forward, backward or forward-backward algorithm to perform model
selection. When p grows, the number of models to investigate grows as 27
and the exhaustive search becomes impossible. On the contrary, Problem
1.2 is convex and benefits from efficient convex optimization algorithms,
thereby solving in one step both problems of estimation and model selec-
tion. The following of our thesis will be based on variations upon such ¢,
regularized problems.

In low as in high-dimension, at least four types of problems can be
addressed to measure the quality of those estimators:

P1: prediction of y, in which case B* is only the focus of attention as a
black box leading to y. Performances of the estimator B are mea-
sured in terms of a distance between the optimal linear predictor of
y given X, X, and its estimation XB*.
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1.3.1

P2: estimation of B*, also known as inverse problem in which case g* is in
itself the center of attention. The objective is to dissect the black box
and understand its mechanisms. Performances of B are measured
in terms of a distance between B* and B. When the sample size is
smaller than the number of variables, this problem is particularly
ill-posed, since multiple B’s can lead to the same prediction XB.

P3: selection of relevant components of B*, also referred to as sup-
port recovery, which is essential to provide interpretability to high-
dimensional models. This problem is more demanding than Prob-
lem [P2], since including small false-positive coefficients might not
impede the success of Problem [P2] while severely deteriorate the
success of Problem [P3]. Yet, two-step thresholding approaches can
adapt procedures successful in Problem [P2] to answer Problem [P3].

Py4: detection answers the question of whether there is any significant sig-
nal in B*. Contrary to Problem [P3], which identifies where exactly
the signal is, Problem [P4] only looks for the presence of any sig-
nal at all. In terms of hypothesis testing, while Problem [P3] would
amount to testing for each single hypotheses Hy; : B = 0, Problem
[P4] amounts to testing the global hypothesis that B* = 0. In high-
dimension, it is sometimes much more realistic to treat Problem [P4]
than Problem [P3].

Theoretical properties of ¢4 regularization have been studied in the light
of those four issues: necessary conditions and achievable results differ. In
the fo]lowing paragraphs, we provide important insights into the {1 norm,
mainly in comparison with £y and ¢, regularizations, and recall the main
necessary conditions to tackle Problems [P1], [P2] and [P3]. Chapter 2 and
3 try to improve the quality of answers to Problems [P2] and [P3] in the
case of Gaussian graphical models. Chapter 4 tackles Problem [P4] in a
two-sample framework, where the objective is to detect the presence of
heterogeneity between two high-dimensional linear regressions.

High-dimensional variable selection via the Lasso

As the convex relaxtion of £y regularization the Lasso lies at the boundary
between non-convex £,, 0 < ¢ < 1, regularized problems offering model
selection properties and ET, v > 1, regularized problems which have the
advantage of being convex but do not induce sparsity. The range of £,
regularizations define the family of Bridge estimators, for ¢ > 0:

a o1
B, = arg min 5 |ly — Xpl[5 + A | BII3. (1.5)
BeR?

It is instructive to have a look at the Lasso from this perspective and
compare it to other Bridge estimators, particularly the well-known Ridge
regression and model selection (1.3) as the limit of £, regularization for 7y
tending to o.
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How Does ¢; Regularization Act as a Selection and Estimation Tool?

Under the light of geometrical, asymptotic and analytic arguments, we
want to shed light on why ¢ is so different from other convex Bridge
estimators, with oy > 1, explaining why £y is the only convex Bridge esti-
mators capable of inducing sparsity. These three frameworks also clarify
its limitations as a biased estimation tool.

The Geometric Point of View: Singularities Induce Sparsity. The first
way to understand how the Lasso can act as a selection tool is to look at
it from a geometric argument from convex optimization theory. Indeed,
while the least square criterion is differentiable everywhere on R?, the ¢,
norm is not differentiable at o. The consequence is that instead of a unique
derivative saﬁsfying optimal conditions at points which cross the axes,
there is a non-degenerate convex range of possible subgradients which
correspond to the same optimal sparse point.

The simplest way to see it is to consider the constrained formulation
of Problem 1.5:

A o1
p = arg minz ||y — XB|I; (1.6)
BeR?
st ||y < t.

Problem 1.5 is equivalent to the Lagrangian formulation of the constrained
formulation, and for every A, in 1.5, there exists a t in (1.6) such that both
problems share the same solution.

First-order optimality conditions for Problem 1.6 state that a point B <
R? is optimal if and only if the least square derivative —V{(B;y, X) =
—XT(y — XB) defines a supporting hyperplane to the feasible set at B. In
other words, the opposite of the least square derivative must belong to the
normal cone to the feasible set at ﬁ, where the normal cone to a convex
set C at point xq is defined by {y € R?, (y,x — xo) < 0,Vx € C}. Thereby,
for every B in the feasible set, the least square derivative must satisfy

(XTy —XB, B~ B) > 0.

In the case of £, norms or pseudo-norms, the feasible set is nothing more
than the corresponding ball of radius t1/7 in RP. Figure 1.6 pictures unit
balls IR? for #1 and #, balls, along with their normal cones at (1,0). If we
think of the least square derivative as a continuous random variable (as
function of the error term ¢), then it will almost-never fall into the normal
cone to the ¢, ball at (1,0), which is degenerated into a single half-line of
zero Lebesgue mass. On the contrary, there is non negligeable probability
for it to fall into the normal cone to the ¢; ball at (1,0), thanks to the
singularity.

In other words, contrary to the £, norm which is differentiable on R?,
the /1 norm favors the selection of its points of singularities, which are
interestingly located on the axis, thereby shrunking some coefficients to
exactly o.
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B2

(a) Optimal point (1,0) on the £1 ball (b) Optimal point (1,0) on the £; ball

Figure 1.6 — Optimality conditions for the sparse point (1,0) for constrained problems
(1.6) for the Lasso (y = 1) and Ridge regression (y = 2)

The Asymptotic Point of View. An interesting comparison between £,
¢1 and ¢ regularizers appears in Knight and Fu (2000). Although the
analysis is led in the classical n > p setting, the comparison of /; to £,
with 9 < 1 and ¢ > 1 limiting distributions is thought-provoking. In
this framework, we can assume that XTX/n converges to a positive def-
inite matrix ¥ when n tends to inﬁnity. Then XTe/n admits a centered
Gaussian limit distribution W, with variance o¥. Knight and Fu (2000)
suggest the amount of re gularization followsa 1//n decay rate, such that
Any/1 — Aq, then for every ¢ > 0, \/n(B — B*) converges in distribution
to arg min(V7) where V7 is defined by:

1
V() = —0TW 4 EGT‘FE? +Aopen, (6; B%).

All limiting distributions diverge from the OLS limiting distribution by
the limiting penalty term pen,, function of the true signal B*, which dis-
tinguishes the three cases vy <1,y =17 > L

Start with the Lasso, that is to say ¢y = 1.

4
pen, (6; B*) = I; Bjsign(ﬁ}‘)l{ﬁ#ﬂ} + |9f|1{,6}*:0}‘

At the limit, the singularity brought by the absolute value is restrained
in the limiting objective function to the positions of true zeros. There is
no singularity left at truely relevant coefficients, but a bias remains to be
paid. In comparison, Bridge estimators like Ridge regression, with v > 1
do not exhibit this singularity, as expected from the geometric point of
view. Another point of divergence with the Lasso is that the amount of
penalty increases with the magnitude of the coefficients, which may lead
to unacceptably large bias on most relevant and significant coefficients.

P
pen, ., (6;8") = Z;f’fsign(ﬁ}‘)lﬁ}‘l"’_l
I:
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The paper underlines the interesting properties of f,r pseudo-norms with
7 < 1, which can switch off unrelevant covariates while still estimating
true coefficients at the usual \/n rate without any bias, since the limiting
penalty term remains only active on true zeros.

P
pen,1(6;8%) = }_ 1611 o}
1

The major inconvenient of £, regularizations with ¢ < 1 is that they are
non longer convex, loosing all efficient tools of convex optimization, both
in terms of computing time and guarantees of converging to a global op-
timum.

Bridge Estimators as Thresholding Operators. The phenomenon ob-
served in limiting distribution is also well illustrated if we express bridge
estimators in function of the OLS estimator under an orthonormal design.
In this framework, bridge estimators with ¢ > 1 take the expression of
simple thresholding operators, component by component, called proximal
operators in the optimization community.

Indeed, considering an orthonormal design such that XTX = I, the

expression of the OLS estimator BGIS reduces to the product XTy, while the

c . e . 50l 2
opposite least square derivative at g simplifies into the difference ﬁo - B.

As a result, we can rewrite first-order optimality conditions of the Lasso

) ~lasso ~ols
intermsof B and B :

|ﬁ?ls B lll'assol <A, if ﬂ;asso —0,
~ols ~lasso ~lasso, _ .. =lasso
ﬁ;’ :ﬁj (1+/’*n|ﬁ;’ ) 1fﬁ;' # 0.

Inverse the second equality to ﬂ;am = ﬁols - Ansign(ﬁols) and combine it

. . C s . . ~lass:
with the constraint of the first inequality to obtain a closed form for 8 °

. . 50ls
as a function of the OLS estimator ﬁo :

+

)| B

B
In other words, under orthonormal settings, the Lasso operates as a soft-
thresholding operator on each covariate independently from the others,
substracting A, to all coefficients (adding for negative coefficients), and
switching them off as soon as the absolute value of the OLS estimator
goes below the thresholding value of A,

To obtain the proximal operator related to Ridge regression, rewrite
the objective function into

~lasso . /’Ln
ﬁ j - ols
i

% [yTy = 2y™XB + BT(XTX + 2An1,) B] -

As a result of the orthonormality assumption, the first-order optimality
condition leads to the fol]owing proximal Ridge operator, which shrinks
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all OLS coefficients by a factor 1/(1+ 2A,,):

~ridge . 1 ~0ls
Fi~ =1y, Pi

The soft-thresholding operator corresponding to the Lasso and the
shrinkage operator of Ridge regresssion must be compared to the model
selection operated on the basis of a BIC or AIC criterion, or even univari-
ate t-test thresholding (along with a correction for multiple testing). Those
model selection (MS) approaches correspond to the ¢; regularized prob-
lem and a hard-thresholding operator, so that there would exist a A, such

that:
~MS ~ols

B =) b

All three proximal operators are represented as a function of the OLS
estimator in Figure 1.7. As already exhibited by the asymptotic and geo-
metric analyses, model selection seems like an ideal target operator, which
identifies a restricted subset of relevant covariates, estimating without
bias the coefficient, but remains computionally too demanding for high-
dimensional datasets. On the opposite end of the spectrum, Ridge re-
gression is realistic but only acts as a shrinkage estimator, reducing the
dimension of the space in which the solution lies without reducing the
model size. Not only the final model is too complex to interpret in high-
dimention, but the larger the coefficients, the larger the bias. As a com-
promise between an intractable solution under £, regularization and an
>-regularized solution which lacks interpretability, #1 regularization of-
fers a realistic approach satisfying both needs for a truely reduced model
dimension and a reasonably biased estimation.

Jé.us
lléf,mun
J.';Rjdge

-
.
2 GOLS
1-1:2L #
./}.
.-/

ﬁOLS ﬁOLS

(a) Hard-thresholding £  (b) Soft-thresholding #1  (c) Shrinkage #> operator
operator operator

Figure 1.7 — Proximal operators corresponding to fo (Model selection), ¢, (Lasso) and
{> (Ridge) regularizations.

Now that we have exposed the reasons why ¢ regularization can pro-
vide an interesting shrinkage and selection operator as Tibhirani put it, and
how this selection phenomenon can occur, it is time to raise the question
of how good is {1 regularization in terms of prediction, estimation and se-
lection in the linear regression setting, corresponding to above Problems
[P1], [P2], [P3]. For simplicity, we will refer to 1 regularization in this
setting as the Lasso.

An exhaustive summary of the various assumptions required to guar-
antee estimation and selection properties of the Lasso in the noiseless case
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is given by van de Geer (2009). Figure 1.8 provides a simplified version of
Figure 1 in van de Geer (2009).

Restricted Isometry Property

N

(5, 2s) Restricted Eigenvalue (S, s) Restricted Eigenvalue

N T

(S, s) Uniform Irrepresentability 5§ Compatibility

.
.
S .
v, if @* . not too small
. min
.
N
a

No false positive Perfect selection Oracle inequalities for prediction and estimation

Figure 1.8 — Summary of causal links between main assumptions required to prove
estimation and selection properties of the Lasso, in a simplified representation of Figure
1, reference van de Geer (2009).

Figure 1.8 highlights the distinction between irrepresentability condi-
tions required for selection consistency and lighter restricted eigenvalue
assumptions required for estimation and prediction oracle inequalities.
The former has notably been proved necessary for selection properties,
and the latter, in its compatibility formulation is possibly the weaker as-
sumption that can be required to obtain at least estimation and prediction
consistencies. The next two sections will therefore be devoted to the analy-
sis of those two assumptions. The restricted isometry property is also one
of the main assumptions usually used to prove consistency results, but we
will not dwell on that one since both previous assumptions are weaker.
Besides, these assumptions will be at the basis of the assumptions derived
for the cooperative-Lasso in Chapter 3.

When Does the Lasso Perform Well as a Selection Operator?

The irrepresentable condition, also known as mutual incoherence condi-
tion in the community of signal processing, appears simultaneously in a
large body of work as a sufficient and necessary condition for selection
properties of /1 regularized least squares (Zhao and Yu (2006) in statistics,
Donoho et al. (2006) and Tropp (2006) in the field of signal processing,
while Meinshausen and Bithlmann (2006) defines the equivalent assump-
tion of neighborhood stability). Even though each of these results differ,
the main assumption remains the same in both its deterministic design
and Gaussian random design forms. Denote by S the subset of relevant
covariates, &€ its complementary subset.

Definition 1.8 (Irrepresentable condition for the Lasso under deterministic design) Consider a
fixed design stored in a n x p matrix X. There exists y > 0 such that:

IXEXs (XEXs) sign(Bs)[lo <1 —p (1.7)

Definition 1.9 (Irrepresentable condition for the Lasso under Gaussian random design)  Consider
a Gaussian random design such that each row of the n x p design matrix X follows
a centered Gaussian distribution with covariance matrix ¥. There exists y > 0
such that:

[¥ses(¥ss)'sign(Bs)]leo < 1 — . (1.8)
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Parameter p is sometimes referred to as the incoherence parameter of
exact recovery coefficient. This condition stems from the primal-dual wit-
ness construction clearly formulated in Wainwright (2009a) used to prove
selection properties of the Lasso, in particular to prove that no irrelevant
covariate can be included in the model on top of relevant covariates. Tech-
nically, it appears in a three-step reasonning:

1. Infer an oracle estimator B restricted to the true support S = S(B*)
and complete the estimator by zeros outside the true support, so that
this oracle estimator is built to satisfy exact support recovery;

2. Exhibit the subgradient z associated to this oracle B;

3. Exhibit the (dual feasibility) constraints required on z so that the
primal-dual pair (B,z) is optimal for the original unconstrained
problem, either asymptotically or with large probability.

Conditions 1.7 and 1.8 ensures that, conditional on the inclusion of rele-
vant covariates and non-inclusion of irrelevant ones, the subgradient sati-
fies dual feasibility constraints.

Quite intuitively, these conditions measure in terms of correlation
how close irrelevant covariates are to relevant covariates, so that least
squares could be misguided into including those irrelevant covariates,
hence the regression term of irrelevant covariates onto relevant ones
(x;xs)—lxgxsc. More precisely, the irrepresentable condition takes the
scalar product of this regression term with the true signed support. In-
deed, a high-correlation between relevant and irrelevant covariates only
presents a risk if it is of the same sign as the true coefficient. Figure 1.9
represent four different situations, two of which satisfy the irrepresentable
condition, two others which do not.

The first main results based upon the irrepresentable condition require
an asymptotic framework. Wainwright (2009a) introduces a probabilistic
approach which allows to work at fixed n.

When Does the Lasso Perform Well as an Estimation or Prediction Op-
erator?

The irrepresentable condition is quite strong, it is therefore of interest to
understand what other possibly good properties could the Lasso demon-
strate under weaker conditions. Sparsity oracle inequalities actually show
that the Lasso can adapt itself to the true sparsity level in order to perform
at minimax rates up to a logarithmic factor in terms of estimation and pre-
diction, under weaker conditions called restricted eigenvalue conditions.

Definition 1.10 (Restricted Eigenvalue assumption) Consider a given amount of sparsity s < p.

There exists k(s) > 0 such that:

SC{1,...,p},IS|<s A#0,||Asc 1 <3|I55 1 /1 ||As]2

Kx(s).

This assumption is better understood if we build it step by step. Start
by assuming that the Gram or Hessian matrix XTX/n is positive definive,
so that the problem admits a unique solution. This assumption is highly
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Figure 1.9 — Configurations (a) and (c) satisfy the irrepresentable condition, configura-
tions (b) and (d) do not.

unrealistic in high-dimension. If the true signal is sparse, say of sparsity
s, then the solution is identifiable if and only if all submatrices of size 2s
of the Hessian are positive definite, that is to say the minimum eigenvalue
of all submatrices of size less than 2s is positive.

If we are no longer interested in the identification of the true support,
but in sharp estimation and prediction properties, then what we need
is somewhat stronger than positive eigenvalues, we need large positive
eigenvalues. In classical statistical terms and as illustrated by Figure 1.10,
we need the Fisher information to be large enough so that an estimation
gap A = B* — B induces a difference in likelihood of at least x||A|2, or
reversely, the smaller the likelihood difference, the smaller the estimation
error. In analytical terms, derive a second-order Taylor series expansion
near ﬁ* in the direction A, to observe that this strong convexity assumption
amounts to uniformly lower bound the eigenvalues of the Hessian matrix
in the neighborhood of the true parameter g*:

0 * 2 * Al2
Iy = XBIE — lly = XB*[2 = ~2(XT(y —X), &) + [Xa|2 + (1212

This uniform lower bound is again too strong in high-dimensional set-
tings. Therefore on top of considering reduced size matrices, we focus on
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Figure 1.10 — Loss function with high curvature, or Fisher Information, in panel (a),
low curvature, or Fisher Information, in panel (b).

a restricted neighborhood, which is the cone {A € RP, ||As||1 < 3||As]1},
where we know the Lasso error term A = B* — B to reside, hence the
denomination restricted eigenvalue.

The consequence of the restriction to the cone is that there is no guar-
antee that the solution will be unique. However, with large probability, all
solutions are concentrated within the same ¢, or ¢; ball around the true
parameter ﬁ*. Besides, under supplementary assumptions on the mimi-
nal nonzero value, estimation or prediction bounds can be completed by
thresholding steps in order to provide model selection guarantees.

This assumption is the weakest assumption possible, except by a slight
modification: change the ||As||2 at the denominator into a ||As||1 to obtain
the compatiliby assumption, but we lose the eigenvalue interpretation.

We refer to S. Negahban and Yu (2012) for a generalization of this
assumption to adress regularized M-estimators under a larger spectrum
of sparsity assumptions on f*.

How to correctly tune the amount of regularization?

In the previous sections, the amount of regularization A, was considered
as given, and the question of its choice was purposely eluded. However,
when using the Lasso, this is actually the first practical question which
arises: what is the correct amount of regularization. All questions related
to correct estimation and model selection are actually conditional to the
correct choice of A,, since this value roughly speaking determines the size
of the model selected by the Lasso. When applying the Lasso, what we
obtain is better described via regularization paths: the set of coefficients
obtained over varying A,’s, from the null model to the largest possible
model given the number of observations available. Most of the time, the
Lasso behaves as its Lars (Efron et al. 2004) approximation, adding one
variable at a time. However, it sometimes happens that some variables
previously added to the set of active variables disappear from the selected
model.
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Formally, the regularization path provides a collection of models of
increasing sizes M = {m,A € A}. As such, ¢; regularization provides
an intelligent way of exploring the much too large set of possible models,
which recalls the fact that /1 regularization is first and foremost a convex
relaxation of the £ regularized problem.

The main issue is to the select the correct amount of regularization and
choose a model along the path. Tibshirani (1996) suggests the use of cross-
validation. However, the objective of cross-validation is the selection of a
model which guarantees to maintain good predictions on new datasets,
based on a minimization of an estimation of the generalization error. Yet,
cross-validation offer no theoretical guarantees. In comparisaon, the pe-
nalized criterion developed in Baraud et al. (2010) addresses the problem
of selecting the estimator with smallest Euclidean risk among any family
of estimators. In particular, it answers the question of tuning the amount
of regularization of Lasso estimators. This criterion is valid under high-
dimensional settings and is proved to satisfy non-asymptotic risk bounds
under no assumptions on the true model.

Those criteria provide guides on how to tune the amount of regu-
larization in the light of prediction problem [P1] but does not provide a
desirable guide in the light of estimation problem [P2] or selection prob-
lem [P3]. In chapter 4, though, we happen to need a model with good
prediction properties, and resort to the procedure of Baraud et al. (2010).

Thanks to the computation of the Lasso degrees of freedom (Zou et al.
2007, Dossal et al. 2011), BIC and AIC criteria seem adaptable. Yet, their
justification rely on asymptotic approximations, which seem highly unre-
alistic, if not irrelevant, in high-dimensional settings. Extended BIC crite-
ria have been suggested to correct for the Laplace approximation. For a
model S of size s, denoting by ES the maximum likelihood estimator re-
stricted to model S, with corresponding log-likelihood E(Es), the extended
BIC criterion is defined by

EBIC(s) = £(Bs) — %logn —slog p.

EBIC comes from the addition of a uniform prior on models S, such that
starting with p variables, each model of size s is given a prior probability
of (p+1)"1(C;)~1. The consistency of EBIC has been proved in high-
dimensional sparse fixed design linear regression (Chen and Chen 2008)
and adapted to Gaussian graphical models (Gao et al. 2012, Foygel and
Drton 2010).

High-dimensional variable selection in GGMs

The inference of a GGM is based upon proposition 1.2, which states that
the precision matrix © can in fact be interpreted as the adjacency matrix
of an undirected weighted graph I' representing the partial correlation
structure between variables Xj, ..., X,. Therefore inferring the graph of
conditional dependencies I' amounts to recovering the support of ® and
more than estimating ©, the main issue in this framework is to answer
selection problem [P3] and correctly select the set of nonzero entries of ©.
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Maximum Likelihood inference

Consider that we observe n identically and independently distributed
(hereafter i.i.d.) observations from a multivariate Gaussian distribution
with covariance X, which are stored once centered in a matrix X € R"*P,
For each observation i, (i = 1,...,n) and gene g,(¢ = 1,...,p), entry Xig
contains the expression level observed for gene g in the ith sample. These
n observations must be collected in close enough conditions so that we can
assume that they follow the exact same distribution once centered. Inde-
pendency of the observations also implies that time-course measurements
do not fit this undirected model. Chapter 2 is devoted to models designed
for time-course, i.e. longitudinal, data.

GGMs fall in the family of exponential models, for which the whole
range of classical statistical tools apply. As soon as n is greater than p, the
model likelihood admits a unique maximum over the set S;, defining a
Maximum Likelihood Estimator (MLE). Following the assumption that X
is Gaussian, the MLE of © is defined by:

1
OMLE — arg max  (271) P/ det(©) exp ( XTGX) (1.9)
ecS;

Let us denote the empirical covariance matrix by 5§ = XTX /n. After log-
transformation and use of the Trace operator property Tr(aTb) = Tr(baT),
for every compatible vectors a and b, Problem 1.9 becomes:

OME — arg max logdet(®) — (O, §), (1.10)

Oes;

where (A,B) denotes the matrix inner-product associated with the
Frobinius norm, (A, B) = Tr(ATB).

When 7 is larger than p, Problem 1.10 admits a unique solution equal
to S~1. As the square product of a centered and scaled Gaussian vector, S
follows a Wishart distribution, which is the mulhvarlate generalization of
the chi-square distribution. As a result, its inverse 51 naturally follows an
inverted Wishart distribution whose parameters admit an analytical close
form.

There are two major limitations with the MLE regarding the objective
of graph reconstruction by recovering zeroes in the estimate of ®. First of
all, and not of little importance, we need n to be larger than p to be able to
even define this estimator, which is never the case in microarray studies,
unless we focus on a very restrained subset of candidate genes. Second,
even in the case where we would be lucky enough to gather enough data,
the MLE provides an estimate of the saturated graph: all genes are con-
nected to each other, which is of no interest at all.

What saves us here is a common property of biological networks,
namely sparsity: among all p(p — 1)/2 possible interactions between
genes, only a few actually take place. Sparsity makes the estimation feasi-
ble in the case where 1 is smaller than p since we can concentrate on sparse
or shrinkage estimators with less degrees of freedom than in the original
problem. Henceforth, the question of selecting the correct set of edges in
the graph is treated as a question of model (or covariate) selection.



1.3. Statistical Inference via /1 Regularization

27

Background on High-Dimensional Inference of GGM

The different methods for model selection/estimation in GGMs roughly
fall into three categories. The first contains constraint-based methods, per-
forming statistical tests. We mention that the procedure in Drton and
Perlman (2007; 2008) relies on asymptotic considerations, a regime never
attained in real situations. The forward selection method combined with
permutation tests suggested in Kiiveri (2011) would fall into this cate-
gory. Limited-order partial correlations were also considered in Wille and
Bithlmann (2006), Castelo and Roverato (2006). The second of these cate-
gories is composed of Bayesian approaches, see for instance Dobra et al.
(2004), Jones et al. (2005), Rau et al. (2011). However, constructing priors
on the set of concentration matrices is not a trivial task and the use of
MCMC procedures limits the range of applications to moderate-sized net-
works. The third category contains regularized estimators, which add a
penalty term to the likelihood in order to reduce the complexity or degrees
of freedom of the estimator. A first shrinkage estimator was proposed by
Schifer and Strimmer (2005). This approach consists in using a weighted
average of two different estimators, the first being unconstrained (thus
having small bias but large variance), the second being low-dimensional
(and thus exhibiting small variance but large bias).

Let us now introduce adaptations of ¢1-regularized procedures to the
inference of high-dimensional GGMs. In Meinshausen and Biithlmann
(2006), a first attempt was made under the name of neighborhood selec-
tion. This approach solves p different Lasso regression problems, where
p is the number of genes in the network. Subsequently two other arti-
cles, Banerjee et al. (2008) and Yuan and Lin (2007a), independently pro-
vided an improvement of the initial work of Meinshausen and Bithlmann
(2006). In both works, the problem is seen as a penalized maximum like-
lihood (PML) problem and is solved as a recursive "Lasso-like” problem.
The next improvement in this vein comes with the Graphical Lasso, or
glLasso, of Friedman et al. (2008), which makes this penalized likelihood
approach highly attractive in terms of computational cost, with very recent
improvements for high-dimension developed in Mazumder and Hastie
(2011). Still, the neighborhood selection approach remains a lot cheaper,
computationally speaking.

Highlights on ¢; Regularizers for GGMs

Let us review in little more details the two Lasso-type techniques on which
we build upon in this thesis, namely the neighborhood selection and the
Graphical-Lasso approaches.

On the one hand, the €1-penalized estimator, proposed in Banerjee
et al. (2008) and advantageously solved by the gLasso algorithm, directly
considers the original penalized likelihood problem:

O = arg max log det(©) — (©,5) — A ||O|4,. (1.11)
0cs

P

In this regularized problem, the f£1-norm on the entries of the concentra-
tion matrix drives some coefficients to zero: it enforces sparsity. The non-
negative parameter A tunes the global amount of sparsity: the larger the
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parameter A, the fewer edges in the graph. A large enough penalty level
produces an empty graph. As A decreases towards zero, the estimated
graph tends towards the saturated graph and the eiﬁmated concentration
matrix tends towards the usual unpenalized MLE OMLE By construction,
this approach guarantees a well-behaved estimator of the concentration
matrix, that is to say sparse, symmetric and positive—deﬁnite.

On the other hand, the more naive neighborhood selection procedure
has been reported to be more accurate in terms of edge detection. The
reader is referred to Villers et al. (2008) and Rocha et al. (2008). This ap-
proach determines the graph of conditional dependencies I' by solving
a series of p independent fl-penalized regression problems, successively
estimating each gene neighborhood. Recall that X is the n x p matrix of
observations, with column ¢ containing the vector Xg of n observations
for gene g. Matrix X, contains all columns X except its gth column,
that is to say observations on all genes except expression levels of gene g.
Concretely, for each gene g, expression levels are “explained” by the ex-
pression levels of remaining genes. Neighbors of gene ¢ in the graph I'
are estimated by the nonzero elements of ﬁg solving Problem 1.12.

Bg = arg min

rg min X, g8 +A 118l 2

Indeed, if ne(g) denotes the set of neighbors of gene g in the graph of
conditional dependencies I' associated to the concentration matrix ©, then
proposition 1.1 implies that the best linear approximation of the random
vector Xg by remaining gene expressions X\g is given by:

0.
_ _ &
Xg= Y BaXn=- ), —E)Xh-

hene(g) hene(g) 88

As a result, Problem 1.12 aims to estimate coefficients ﬁgh proportional to
the concentration matrix entries of interest Og.

Actually, solving the p regression problems defined by (1.12) may be
interpreted as inferring the concentration matrix in a penalized maximum
pseudo-likelihood framework, as depicted in Rocha et al. (2008), Ambroise
et al. (2009), Ravikumar et al. (2010): the joint distribution of X is approxi-
mated by the product of the p distributions of the p variables, conditional
on the other ones, as if these distributions were independent, that is

P n
L(6;X) =Y ) logP(xig|Xi\g; Op),
g=li=1

where X, is the ith observation of the vector X deprived of the gth co-
ordinate. This pseudo-likelihood is based upon the (false) assumption
that conditional distributions of expression levels are independent. Par-
ticularly the distribution of gene g expression levels conditional on gene
h is assumed independent from the distribution of gene h conditional on
gene g, ignoring the symmetry condition on concentration matrices. Be-
cause the neighborhoods of the p genes are selected separately, a post
symmetrization must be applied to manage inconsistencies between edge
selections; Meinshausen and Biihlmann (2006) suggests AND or OR rules.
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As for the comparison of theoretical properties, even though there is no
reason for the Graphical Lasso and the neighborhood selection approach
to result in identical estimates at fixed n, they are both shown asymp-
totically consistent in terms of edge detection (as n goes to infinity) un-
der their respective strong but necessary irrepresentability assumptions.
Ravikumar et al. (2011) provide an irrepresentable or mutual incoherence
assumption similar to 1.8 for the graphical Lasso. The Hessian XTX/n of
the least square problem is naturally replaced by the Hessian of Problem
1.11, namely H = X ® X. This Hessian corresponds in fact to a covari-
ance matrix at the edge level, since for every pair of edges (i,j), (k,£),
Hij, e = COV(X,'XI', X X;). Therefore, as irrepresentable condition for
linear regression involved covariances between relevant and irrelevant co-
variates, the irrepresentable condition for the graphical Lasso involves the
covariances between relevant and irrelevant edges. Denoting by & the set
of true edges £ = {(g,h) € V%, g # hand Oy, # 0}, we can quote the
corresponding irrepresentable condition.

Definition 1.11 (Irrepresentable condition for the graphical Lasso Ravikumar et al. (2011)) There

1.4

exists § > 0 such that

HeeHZ M <1-—
r:é%’f” eeHeell1 < n

The conclusion of Ravikumar et al. (2011) is that the main differences
in terms of performances between the two methods from an information
theoretic point of view lies in this hypothesis. However, despite two par-
ticular examples where the irrepresentable condition for neighborhood
selection is seen less restrictive than its graphical Lasso counterpart, there
is no general rule to be known.

A STEPPING-STONE TOWARDS THE STRUCTURED MODEL-
ING AND INFERENCE OF HiGH-DiMENSIONAL GGMs

The introduction of /; regularization has rendered possible the address
of high-dimensional problems, which are out of reach of classical asymp-
totic theory based upon the paradigm of small p, large n. However, 12
regularization reaches its limits in terms of robustness: support recovery
is only guaranteed under strong assumptions without which a large num-
ber of false positives can be introduced. In particular, ¢; regularization
suffers from designs with correlated covariates. This observation has mo-
tivated the development of a vivid field of research building variations on
{1 regularization in three main directions: combinations of /; regulariza-
tion and bootstrap sampling, weighted I regularizers and a large range of
sparsity-inducing norms. While the notion of sparsity triggered the intro-
duction of ¢1 regularization, most of the variations on /1 regularization are
stimulated by the idea that the sparsity pattern follows a particular struc-
ture. By resorting to sparsity, {q re gularization makes it possible to answer
statistical problems that were originally unthought of. By instilling struc-
ture, variations on f1 aim at perfectly fitting the underlying structure of
the data, and thereby increase the robustness of the answer.
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Bootstrap Methods. The first statistical answer to the lack of robustness
presented by the Lasso comes from bootstrap sampling, in the spirit of the
Bolasso (Bach 2008a), or stability selection (Meinshausen and Biihlmann
2010) in the field of high-dimensional GGM. The idea underlying the Bo-
lasso is that for a well-chosen amount of sparsity, the Lasso is most likely
to select all true covariates with a probability tending to one, while most
unrelevant covariates are selected with a non zero but strictly less than one
probability. If we infer the model on various bootstrap samples, each of
the estimated support will include the true model with probability tending
to one, along side a few false positives. Therefore, taking the intersection
of those supports should discriminate the true support from false inclu-
sions. Stability selection takes a softer stand, by defining for each covariate
the probability that it is selected across the set of bootstrap samples for a
given amount of regularization, and retains covariates reaching a certain
selection probability. Even though it requires some computing time, these
bootstrap corrections have been recognized to improve the accuracy of
selected models (Haury et al. 2011b, Rohart 2011).

Weighted /1 Regularization. Another approach developed to reduce the
inclusion of false positives is the fine tuning of the amount of regulariza-
tion, covariate by covariate. The adaptive Lasso (Zou 2006, Zhou et al.
2011), which corrects the penalty level A, by weights inversely propor-
tional to an initial estimator Bim.t, aims at reducing the bias on large co-
efficients while reducing the probability of falsely selecting unrelevant
covariates. Instead of adapting the weights according to an initial esti-
mate, Ambroise et al. (2009) suggest to adapt weights according to the
specific biological structure of the data. Focusing on the inference of
high-dimensional GGMs from i.i.d. transcriptomic data, their idea is to
modulate the penalty levels according to the topological structure of the
network. Chapter 2 adapts this idea to the inference of GGMs from time-
course transcriptomic data.

Sparsity-inducing Regularizations. Last but not least, we must mention
that a wide variety of sparsity-inducing norms have already designed in
order to tackle as many different statistical issues as there are of concrete
application frameworks. In front of this outburst of new regularizers, ref-
erences S. Negahban and Yu (2012), Bach (2010), Bach et al. (2012) form
attempts at the definition of a generalized theory, to replace the case by
case analysis of each new suggestion. Some of them require our atten-
tion. First of all, the elastic-net (Zou and Hastie 2005) provides an answer
to the problematic case of correlated subsets of covariates. By combining
the #; norm to an £, norm, the elastic-net aims to select all correlated co-
variates as one, contrary to the Lasso, which would let those covariates
compete to enter the model. As a result, the elastic-net has been regarded
as a good solution to stabilize the support recovered by the Lasso in the
case of correlated designs (Allassonniere and Giraud 2011). Beyond spar-
sity requirements, the modeling of redondancies through low rank matri-
ces has been implemented through nuclear norm regularizers, allowing
the decomposition of matrices into a low rank and a sparse components.
Finally, group-sparse regularizers have been designed to tackle what is
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known in machine learning as multi-task settings, or could correspond
to panel datasets: redondant datasets, called tasks, are collected about
the same phenonemon, be it multiple cameras, multiple sensing channels,
multiple individuals, correlated covariates. The objective is to combine
those redundant tasks under the hypothesis that they share the same sig-
nal sparsity pattern, without merging them into a single dataset as if they
were strictly i.i.d. Chapter 3 focuses on this particular question.






WEIGHTED-LASSO FOR
STRUCTURED NETWORK
INFERENCE FROM TIME COURSE
DATA

E present a weighted-Lasso method to infer the parameters of a first-
W order vector auto-regressive model that describes time course ex-
pression data generated by directed gene-to-gene regulation networks.
These networks are assumed to own a topological structure which helps
define a weighted /7 regularization. This prior structure can be either de-
rived from expert biological knowledge or inferred by the method itself.
We illustrate the performance of this structure-based penalization both on
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This chapter is mainly inspired from reference Charbonnier et al. (2010).
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INTRODUCTION

Many transcriptomic datasets do not fit the i.i.d. settings at all, no-
tably time course expression datasets. Assuming a first-order vector auto-
regressive (VAR1) model, several authors have already provided inference
methods handling high-dimensional settings: Opgen-Rhein and Strimmer
(2007) suggested a shrinkage estimate while Lébre (2009) performed statis-
tical tests on limited-order partial correlations to select significant edges.
In a recent work, Shimamura et al. (2009) proposed to deal with this VAR1
setup by combining ideas from two major developments of the Lasso to
define the Recursive elastic-net. As an elastic-net (Zou and Hastie 2005),
this method adds an /> penalty to the original /1 regularization, thus en-
couraging the simultaneous selection of highly correlated covariates on
top of the automatic selection process due to the #; norm. As in the
adaptive-Lasso (Zou 2006), weights are corrected on the basis of a for-
mer estimate so as to adapt the regularization parameter to the relative
importance of coefficients. Note that, in this context, we are no longer
looking for an estimate of the inverse of the covariance matrix but of the
parameters of the VAR1 model, which leads to a directed graph.

In this chapter, we aim to couple VAR1 modeling of time course data
with an fj-regularized approach taking the topological structure of the
network into account. A simple example of topological structure would
split the genes into two groups: a group of hubs that exhibit a high con-
nection probability to all other genes and a group of leaves that only re-
ceive edges leaving from the hub class. This information can either be
inferred or recovered from biological expertise since recovering hubs con-
sists roughly in exhibiting transcription factors in regulatory networks, a
large number of them being already identified by the biologists.

Another refinement of our method is to built on the adaptive-Lasso
(Zou 2006, Zhou et al. 2009) which is known to reduce false positive rate
compared to the classical Lasso. As such, our method belongs to the
larger family of weighted-Lasso methods. Shimamura et al. (2007) build
upon Meinshausen and Biihlmann (2006)’s neighborhood selection and
the adaptive-Lasso to improve inference of networks in an ii.d. context.
They choose separate penalties for each neighborhood selection problem
and adapt each individual penalty coefficient to the information brought
by an initial ridge estimate. Here, we suggest to lower the bias of the Lasso
by not only using information from an initial statistical inference but also
from prior knowledge about the topology of the network that assumes the
existence of genes with high connection probability to other genes.

The rest of the chapter is organized as follows: in the next section,
the VAR1 model and associated likelihood function are briefly recalled;
an {1-penalized criterion is proposed where each parameter of the VAR1
model, representing the graph of interest, is weighted according to a prior
structure of the network. The weights can also depend on a previous es-
timate just as in the adaptive-Lasso. In Section 3, the inference procedure
is detailed: we present how the topological structure can be recovered;
from that point on, network inference reduces to a convex optimization
problem which we solve through an active-set algorithm based upon the
approach of Osborne et al. (2000). Finally, an experimental Section inves-
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tigates the performances of the method. First, simulated data are consid-
ered; then, we try to recover edges implied in two different regulation pro-
cesses. First in yeast cell cycle, by analyzing the Spellman et al.’s dataset
and comparing the selected edges to the direct regulations collected from
the Yeastract database; second in E. coli, by analyzing U. Alon’s precise
kinetic data on S.0.S. DNA repair subnetwork.

MODELING STRUCTURED REGULATION NETWORKS FROM
TiME-COURSE DATA

Auto-Regressive Model and Sparse Networks

The dynamics of RNA measurements Xo, X1,..., Xt of p genes at T + 1
regular time points are represented by a first-order vector autoregressive
model VARI as in equation (2.1). Each measurement X; is a size p row
vector containing the expression levels of the p genes of interest at time ¢.

Xy =Xi_1A+¢g, forallt =1, (2.1)

where matrix A = (Agp)gnep is a p X p matrix governing the dynamics
of expression levels over time. To guarantee that A is stationnary and in
its canonical representation we assume that A has eigenvalues of absolute
values strictly smaller than 1. Variations away from these dynamics are
captured by a white Gaussian noise {¢; };—1,_r satisfying for every t,s > 1
assumptions (2.2) and (2.3).

E(er) =0, (2:2)

E(efes ) = 04071, (2.3)

Under these assumptions, {X; };—q__ r follows a first-order Markov process
homogeneous in time: if expression levels vary over time according to

equation (2.1), the regulatory structure among these expression levels is
assumed constant over time, as illustrated by Figure 2.1.

aiz a2

a3

a13

I r“25.
® o

Figure 2.1 — Example of homogeneous Markov process on a set of five genes.
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Implications in terms of data collection and normalization First, be-
cause of the homogeneity assumption, VAR1 models apply to dynamic
measurements but do not provide dynamic networks. Regulations are as-
sumed to be constant over time. Therefore, this model is better suited to
draw a picture of short-term regulation dynamics based upon measure-
ments taken at close time points to guarantee the detection of dependen-
cies between time-points and over a short period of time to satisfy the ho-
mogeneity assumption. Models taking into account possible evolutions of
the regulatory networks over time and better suited for life cycle datasets
were for instance developed in Lébre et al. (2010). Second, assumption
(2.3), stating that there is no correlation between contemporaneous noise
terms, is only reasonable if no important gene, particularly any gene regu-
lating multiple genes in the dataset, has been omitted and if the data have
been correctly normalized, thereby annihilating any correlated measure-
ment errors over the microarrays.

Network modeling In this setting, matrix A plays the role of the concen-
tration matrix © in the i.i.d. framework presented in the previous chapter.
Indeed, each entry Agh is proportional to the partial correlation coefficient
between variables X,g and X;‘_l, that is to say between the expression of
gene ¢ at time t and the expression of gene I at the previous time point,
conditional on all other gene expressions at time t — 1, as expressed in
equation (2.4).

) cov (Xg, X?_1|X>E1) cov (Xgr X?—1|Xf\f1)
_ S
gh var (Xf_l |X>’_11) \/V;ﬂ- (X§|X,\I_11) var (X{‘_l |X>’_11)

Note that Assumption 2.3 bears the important consequence that con-
ditional on the past, contemporaneous gene expressions are necessarily
independent.

(2.4)

Proposition 2.1 (Absence of contemporaneous partial correlations)  Assume (2.1), (2.2) and (2.3).

For every pair of genes (g,h) and time point t:
cov(X$, X! X;_1) = 0.

As in the ii.d. setting, nonzero entries of A code for a graph describ-
ing the conditional dependencies between gene expression levels, except
that the graph is now directed, as in Figure 2.2. Even though time is
omitted, the graphical representation in Figure 2.2 is in fact equivalent
to the homogeneous Markovian representation of Figure 2.1. Proposition
2.1 clearly states that no regulation can exist between contemporaneous
points. An edge from & to g is added to the graph if, conditional on all
gene expressions except gene h at time t — 1, the covariance between Xg,;
and Xj;_1 is nonzero. Identifying the nonzero entries of A is again equiv-
alent to reconstructing the graph of conditional dependencies. However,
there are two main differences between this dynamic version of partial
correlation and the notion of partial correlation expressed in the previous
chapter. First, the conditioning is made upon all gene expressions from
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the previous time-point, therefore self—]oops are allowed. Second, the cor-
relation considered between the two genes is asymmetric: we consider the
correlation between the past expression levels of gene / and the present
expression levels of gene g, leading naturally to an asymetric matrix of
partial correlations and a directed graph of conditional dependencies.

e e

Figure 2.2 — Graph of conditional dependencies associated with the homogenous Markov
process represented in Figure 2.1.

Estimation in the case p < T Denote by X the (T + 1) x p matrix of cen-
tered, scaled to unit-variance data, whose fth row contains the information
X; relative to the p variables at time t. The empirical variance-covariance
matrix S and the empirical temporal covariance matrix V are then given
by
S= l)(T X V= l)(T X
T TN \T’ T TN \0#

where X\; denotes matrix X deprived of its kth row.

Thanks to the assumptions we make on the modeling, the log-
likelihood of the VAR(1) factorizes into a simple expression:

T
L(A;S,V) = glogf(XdX,_l)

1 T

= 503 (Xt = AX11)T(Xe — AXpo1) + ¢
=1
1 T

= _F Z: X;r_lATAXf—]. - ZX;AXf_l +c
=1

= 202l

As a result, the maximum likelihood estimator (MLE) of A is easily
recovered and recalled in the fo]lowing proposition.

Tr (ATSA) — 2Tr (VTA)] + ¢,

Proposition 2.2 (Maximum Likelihood Estimator) Assume p < T. Then S is invertible and

maximizing the log-likelihood of the VAR1 process is equivalent to the following
maximization problem

max {Tr (VTA) — 1Tr (ATSA)} ,
AeM,(R) 2

whose solution is given by ~
Amle — g-1y, (2.5)
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Thanks to the assumptions we made on noise terms the VAR1 model can be factorized

and seen as a usual regression problem. Denote by X, (respectively X;) the T
first (respectively last) rows of X. A% is naturally given by (X;XP)_]X;Xf =
S-1V = A™e. The MLE (2.5) is straightforwardly equivalent to the ordinary
least square estimate (OLS) of A.

Estimation in the high-dimensional case Solution (2.5) requires a co-
variance matrix S that is invertible, which occurs when S is at least of
rank p. In real situations the actual number of observations T is often
about or lower than the number of variables, thus the MLE needs to be
regularized. Regularization such as Moore-Penrose pseudo inversion or
{1-regularization can be applied on matrix S in order to make the inversion
always achievable. A sharpest approach is investigated in Opgen-Rhein
and Strimmer (2007), where the OLS solution is regularized by shrinking
both matrices S and V.

We suggest to draw inspiration from the f1-penalized likelihood ap-
proach developed by Banerjee et al. (2008) in the case of i.i.d. samples of
a multivariate Gaussian distribution: here, samples are no longer i.i.d yet
linked through time by the VAR1 model. Still, the sparsity can be con-
trolled with a positive scalar A adjoined to an /;-norm penalty on A by
solving

. 1
Af = arg max {Tr (VTA) — ETr (ATSA) —A||A||1} , (2.6)

where the {;-norm of matrix A is simply defined by |Al:1 =
Y, [:f:] |Aji| . Since MLE and OLS are equivalent in this framework,
solution to the penalized-likelihood formulation (2.6) is equivalent to solv-
ing p independent Lasso problems on each column of A, which is exactly
Meinshausen and Biihlmann (2006)’s approach. The difference is that
it does not require any post-symmetrization since there is no symmetry
constraint on A in the present context.

A Structured Modeling of the Network

As in reference Ambroise et al. (2009), we suggest that the graphical rep-
resentation of A owns a particular topological structure which identifies
clusters of genes with characteristic connectivity patterns. Indeed, the l1-
norm regularization encourages a first restriction on the network’s topol-
ogy inferred through criteria (2.6), by encouraging sparsity. Yet, it is well
known that, by penalizing truly significant entries of A as much as truly
zero entries, a single 12 penalization leads to biased estimates and a par-
ticularly strong number of false positives (Knight and Fu 2000, Zou 2006).
Weighted-Lasso approaches can lower this bias by adapting penalties to
prior information about where the true zero entries should be, relying on
possibly data-driven as well as biological information. An existing correc-
tion is given by the adaptive-Lasso (Zou 2006, Zhou et al. 2009). Penalty
coefficients are alleviated or increased using individual weights reversely
proportional to a consistent initial estimate Alnit,

The main purpose of this chapter is to show the interest of taking into
account information about the topology of the network: not only should
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we scale coefficients individually, but also consider the underlying orga-
nization of the gene set P. Adaptation of weights is made by providing
A with a well-chosen prior distribution, relying on the organization of P.
We assume that genes are spread through a partition of P into Q classes
of connectivity. Both existences and weights of edges, described by the
elements of A, depend on the connectivity class each vertex belongs to.
Denote by Z;, the indicator function that gene i belongs to class q. Con-
ditional on the fact that gene i belongs to cluster g and gene j belongs to
cluster ¢, each entry A,'j is provided with an independent prior distribution
fijqe- Following Ambroise et al. (2009), we choose Laplace distributions for
f,vqu since it is the corresponding log-prior distribution to the /1 term in
the Lasso. Hence, by choosing

1 |Af;'|}
ijge(Aij) = ex {—— ,
fine () 2pijqe P Pijqt

where pjjpp are scaling parameters, we expect a model whose log-
likelihood will naturally make a specific £1-penalization term appear.

The interpretation of /1 regularizations as Laplace Bayesian prior dis-
tribution has been discussed in Gribonval (2011). Despite the fact that
many other prior distributions could lead to the same MAP expression,
the Laplacian interpretation is rather intuitive. As illustrated on Figure
2.3, the larger the regularization weight Pijgts the stronger the concentra-
tion of the prior probability around o.

Modeling star-shaped (or hub) networks. Many configurations fit into
this general model. Ambroise et al. (2009) focused on an affiliation model.
This structure opposes intra to inter-cluster connections, assuming the for-
mer to be far more likely than the latter. In the present context, where dy-
namic regulatory networks are represented by directed graphs, the affili-
ation model unnaturally assumes symmetric probabilities for “incoming”
and “outgoing” edges and should be banished. Indeed, adjacency matri-
ces associated to directed gene regulatory networks are asymmetrical. A
typical structure consists of star-shaped networks, in which genes belong
to two completely different groups. While a group of hubs exhibits a high
connection probability to all other genes, the remaining set of genes al-
most only receives edges leaving from the first class. Illustration of this
phenomenon by a gene regulatory network reconstructed on the basis of
biological experimentations and computational biology techniques in the
budding yeast is presented in Section 2.4. This setup can be summarized
as follows:

f fhub (5 Phub)  if g is the hub class,
e freat (; Preat)  if 4 is not the hub class.

Note that this structure only differentiates edges on the basis of their ori-
gin, whether they leave from a hub or not, whatever be the cluster of their
arrival points. In this type of structure built around hubs, the number of
clusters is fixed at 2.
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Laplacian Prior probability
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-1.0 -0.5 0.0 0.5 1.0
ij

Figure 2.3 — Laplace distributions for two parameters pjjg¢. The larger value leads to the
distribution in dashed red line, highly peaked at o, while the smaller value leads to the
distribution in plain green line, more even spread over non zero values.

Allowing for individual prior information about i and j, this model
can be generalized to

f foub (4 ijorap)  if 4 is the hub class,
e fieat (*; PijPlea)  if q is not the hub class.

The Likelihood. As the matrix A has been given a prior distribution, our
aim is to maximize the posterior probability of A, given the data X. For a
fixed structure Z, this is equivalent to maximizing the joint probability

A= argmjlx logP(X, A;Z).

Now, the likelihood P(X, A; Z) is straightforwardly given by
1
2
where c is a constant term and the p x p penalty matrix is defined by

ZinZi
PX = (Pf)ijep = ), ——.
g.eeo Pijgt

logP(X, A;Z) = Tr (VTA) — ZTr (ATSA) — |PZ x Al|; +¢, (2.7)

(2.8)
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Assuming a star-shaped structure, Equation (2.8) takes the form of Equa-
tion (2.9)

Pij = pjj 1. (Pﬁl}bzf,hub + pl_e;fzi,leaf) = A~ Aij - (Ahub/teat Zihub + Zijeat) s

(2.9)
where A > 0 is a common factor to pl:ulb and pl;;f, which can vary so
as to adapt overall sparsity of the network while the ratio P}:ulb / pl;}f =
Ahub/leaf < 1 governs the deflation of the penalty on edges leaving from
hubs. Coefficient A;; can be held fixed at 1 when no individual information
is taken into account or replaced by any well-chosen transformation of an
initial estimate of A in order to provide accurate information on where

true zeros might be.

INFERENCE STRATEGY

Reference Ambroise et al. (2009) developped an EM algorithm to infer the
latent structure as well as the network in an elegant complete likelihood
framework. The great advantage of this all-encompassing method was
that the parameters of the latent clustering should guide the choice of reg-
ularization level. However, in practice the tuning parameter provided in
the E-step (inference of the structure) were far too strong for the M-step
(inference of the network). An other work by Marlin et al. (2009) provides
a refined Bayesian algorithm to implement this approach. In the fo]lowing,
we adopt a fast and straightforward two-step approach illustrated in Fig-
ure 2.4: 1) definition of the latent structure Z and corresponding penalty
matrix PZ, 2) structure adaptive inference of the network. Details about
those two steps are given in the following sections.

Structure Inference

Coming up with a graphical topology, in other words a clustering of the
genes informative with respect to the position of edges, can be realized in
at least two ways. The first one is to find biologically grounded elements
of structure based upon various computational biology or bibliographic
tools. The second is to infer the latent structure using mixture models for
graphs on an initial graph estimate fg.

Examples Where to Find Biological Information about Latent Structure

Many sources can be used as prior biological structures, as long as they
provide information on the pattern of regulations. We only provide here
some hints at what could be useful. However these expert-based topolo-
gies highly depend on the biological model under study and the extent of
expert knowledge available at the time of research.

A first source of information lies within metabolic pathways as avail-
able from the KEGG or BioCarta databases. Genes belonging to the same
pathway are more likely to interact together and be connected in the
regulatory network. This option was explored by Jeanmougin et al.
(2011). When possible, information on which genes in the dataset code for
transcription factors is highly relevant, particularly for time-course data.
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Figure 2.4 — Overall inference strategy in two steps: 1) Definition of the latent structure
by a) collecting prior information on the structure either by initial inference of the network
via a usual ¢ regularized GGM or expert knowledge, b) defining the clustering of genes
based upon step 1-a, c) designing the structured penalty matrix, 2) Structure adative
inference of the GGM.
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When they exist, computational predictions of the number of potential
binding sites for every known transcription factor in the data set is of even
greater use to indicate where to look for potential edges. Such information
is for instance available for S. cerevisiae in the Yeastract database.

Statistical Inference of the Latent Structure

An interesting graph modeling which captures the features of biological
networks is the Stochastic Bloc Model (SBM) framework, providing mix-
ture models for random graphs. This model has been rediscovered many
times in the literature and a non exhaustive bibliography should include
Frank and Harary (1982), Snijders and Nowicki (1997), Nowicki and Sni-
jders (2001), Tallberg (2005), Daudin et al. (2008), Mariadassou and Robin
(2007). The most important parameter, allowing to describe a large panel
of network topologies, is the connectivity matrix 7t = (77,¢), sco, describ-
ing P(i < jli € q,j € £), that is, how genes from each cluster connect to
each others. Note that even though SBM models describe how to gener-
ate edges conditional on the clustering of genes, the use of SBM models
follows the reverse path: the objective is to recover the clustering and con-
nectivity coefficients which best fit the observed network.

Inference of such models, including directed SBM, has been imple-
mented in various R packages, for instance mixer which is of straightfor-
ward use. Details about a large panel of methods to infer SBM can be
found for instance in Daudin et al. (2008), Latouche et al. (2011).

SBM structures are integrated within step 1 by first, inferring an ini-
tial estimate Ao and its correspondmg graph Fo based upon a usual un-
weighted /1 penalty as in Problem 1.11 (step 1a in Figure 2.4); secondly,
inferring the latent structure via an SBM algorithm on To (step 1b); fi-
nally deriving the structured penalty matrix from SBM parameters (step
1¢). Various penalty values can be defined as decreasing functions of the
estimated connectivity matrix 7 . Suppose genes g and & are assigned to
their most probable clusters g and /, then an efficient penalty weight for
edge Og is Agp = 1 — T1gy.

Of course, given the wide variety of topologies offered by SBMs, in-
ferring such models contains a risk of overfitting if the number of obser-
vations is too small. Instead, a much simpler yet more robust model can
prove itself efficient in the time-course setup, namely restricting the mod-
eling of structure to the identification of hubs. To this purpose we suggest
a very intuitive path. A first matrix Ag is estimated using an adequate
single Lasso penalty. Genes are then classified into two groups, hubs and
leaves, according to the values of the £1-norms of the corresponding rows
in Ag In order to account for the particularly strong heterogeneity be-
tween the two groups (differences in size and dispersion), our advice is to
rely on a Gaussian mixture model to obtain the par‘nhon of genes between
the two groups. This defines two submatrices A} and Ao containing re-
spectively the lines corresponding to the first and second groups. Hubs
are then characterized as the class with the maximum mean absolute value
of ﬁg.
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Exact Neighborhood Selection for Network Inference

Once the internal structure has been recovered, inference of A amounts
to optimizing the penalized likelihood (2.7) where Z are fixed parame-
ters. This can be achieved by solving some p independent weighted Lasso
problems in a neighborhood selection spirit (Meinshausen and Biihlmann
2006). Since there is no symmetry constraint on A, in this particular case
and contrary to the i.i.d. setting exposed in Chapter 1, the neighborhood
selection approach is exactly equivalent to maximizing the regularized
likelihood of Equation (2.7). Details about the definition of an active-set al-
gorithm adopting this approach are specified in Charbonnier et al. (2010).

With this approach, the sparsity constraint only applies to each column of A. This

constraint implies that if we use n + 1 time points, S is of rank n and thus no
more than n connections can be activated by the Lasso at most in each column
(assuming the penalty is low enough to accept the activation of all possible edges).
Consequently, the sparsity constraint only applies to incoming edges and not
to outgoing ones. In that sense, sparsity assumptions implied by {1 penaliza-
tion only assume that each node is requlated by a small set of nodes and do not
contradict the existence of hubs regulating a huge set of nodes.

ExXPERIMENTS AND DI1SCUSSION

In this section we apply our algorithm to both synthetic and real data.
Comparison is made first within the family of the weighted-Lasso. We ob-
serve the performances of the Lasso when associated with a single Lasso
penalty or an adaptive penalty. For the adaptive-Lasso, a single Lasso
penalty is used as initial estimator. We then try two different hub penal-
ties: one relying only on the known hub structure and another one infer-
ring the hub structure from the initial Lasso estimator. We denote these
estimators by Lasso, Adaptive, KnwCl, and InfCl respectively. Correspond-
ing penalties can be summarized as follows:

o 1
P?daptive o A.l _v1
1 A:,}ut
< (Ahub/leafZihub + Zi leaf)

P o (Anub /teatZihub + Zieat) /

Lasso

KnwCl

where x V y = max{x, y} and Z denotes the inferred classification. In the
remainder of this section, we fix the ratio Apyb/leaf = 2, thus penalizing
twice as much nodes labeled as leaves as nodes labeled as hubs. Note also
that we choose to maintain the modification of adaptive weights adopted
in Zhou et al. (2009) and prevent the alleviation of penalty parameters.
This trick ensures that the adaptive-Lasso will select a subnetwork from
the network inferred by the initial Lasso estimate. No edge can be in-
cluded if it was already excluded by the Lasso. In this way, the adaptive-
Lasso guarantees a decrease in false positives.
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Apart from our family of weighted-Lasso proposals, comparison will
be made with state-of-the art network inference methods in a VARI set-
ting: the Shrinkage method suggested by Opgen-Rhein and Strimmer
(2007), the Recursive Elastic Net method (Renet-VAR) developed by Shima-
mura et al. (2009) and the method based on dynamic Bayesian networks
proposed by Lébre (2009), available in R within the G1DBN package.

Here, the interest of the inference lies in the recovery of the true edges,
in other words of whether the entries of A are correctly identified as
nonzero. Our estimators are mainly used for discriminating nonzero en-
tries from others. Quantities such as True Positives (TP), False Positives
(FP), True Negatives (TN) and False Negatives (FN) summarize the per-
formances of these classifiers. Precision TP/(TP + FP) is the ratio of the
number of true nonzero elements to the total number of nonzero elements
in the estimated matrix A. Recall TP/(TP + FN) denotes the proportion
of nonzero elements in A which were correctly recovered as nonzero in
the estimation, which corresponds to the usual statistical notion of power.
Fallout FP/(FP+TN) gives on the contrary the proportion of zero elements
in A which were falsely declared as nonzero in the estimation. In sta-
tistical terms, the Recall (or Hit Rate) would be the empirical equivalent
of the power of our classification method considered as a test, while the
Fallout (or False Alarm Rate) would correspond to the first type a error.
Note that, in the context of sparse network inference, the number of total
positives is small compared to the number of total negatives. Thus, small
variations of FP and TP will induce small variations in Fallout and large
variations in Recall. Hence, comparison between Precision and Recall is
generally more relevant than Fallout / Recall comparison in the present
sparse context. This is why we will generally choose to omit Fallout rates
when we need to alleviate the presentation of results.

These rates are easily obtained for the Lasso based methods since they
automatically produce null coefficients. By increasing the penalty param-
eter we obtain sparser and sparser graphs. We start from a large enough
penalty to constrain all coefficients of A to 0 and decrease the penalty until
we include as many variables as allowed by the ratio n/p. We then select
the best penalty from this list as the one maximizing either the BIC or the
AIC criterion.

Like the Lasso, Renet-VAR directly implements variable selection and
penalty choice is included in the algorithm. Concerning G1DBN, we fol-
low the author’s advice to tune the parameters of the test procedure as
described in the additional material of Lébre (2009). When applying the
Shrinkage method developped by Opgen-Rhein and Strimmer (2007), a
supplementary step is required to transform continuous results into a bi-
nary solution. We follow Opgen-Rhein and Strimmer’s advice and rely
on local false discovery rates. This provides each edge with an existence
probability conditional on the corresponding entry in A. We declare as
inferred edge any edge with posterior probability exceeding the threshold
of 80% as the authors do.
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Simulated Data

Simulation Settings. To assess the performances of our approach, we
apply the VAR1 model to a very favorable setup, where existing models
already perform quite well. We then decrease the ratio n/p in order to
observe the response of each method to this increasing lack of information.
On top of that, we consider graphs of different sizes: small graphs of 20
nodes, larger graphs of 100 nodes and a setup with 8oo nodes. For smaller
graphs, we consider three different amounts of observations: 10, 20 and
40. For medium sized graphs, we also consider the cases n = p/2 and
n = p but omit the case n = 2p as unrealistic. The setup p = 800,n = 20
is meant to mimic Spellman et al. (1998)’s dataset.

Simulation of the VAR1 process is based upon the simulation strategy
used by Opgen-Rhein and Strimmer (2007) in order to ease the compar-
isons, but introduces a structure based on hubs in order to better reflect
the structure we could expect from a real data set. A graph is first sim-
ulated, with fixed numbers of nodes and edges. Like Opgen-Rhein and
Strimmer (2007) we simulate sparse graphs, with K = 2p edges. Nodes
are split into two groups according to a multinomial distribution with
probabilities (0.1,0.9), leading to 10% of hubs in average. Edges are then
positioned in the graph according to a multinomial distribution, with 85%
of edges from hubs to leafs, and the remaining set within hubs. Exception
is made for the very large graph, for which we base the number of edges
and their distribution on Spellman et al. (1998)’s data. The matrix A is
synthesized on the basis of this graph: we attribute a random partial cor-
relation value uniformly distributed on [—1, —0.2] U [0.2,1] to all nonzero
coefficients (corresponding to edges in the graph).

From this matrix, a VAR1 observation is generated, using a centered
Gaussian starting value and a centered Gaussian noise, both with variance
0?2 = 0.1. For computing time reasons, this is repeated 500 times for the
small graphs, 200 times for medium sized graphs and 100 times for the
large graph. Results are averaged over all samples.

To gain a better insight into the difficulty of these synthesized datasets
for a Lasso estimator, we checked whether the irrepresentability condition
(Zhao and Yu 2006, Meinshausen and Yu 2009) recalled in Chapter 1 was
validated in all these very simple simulations. First, note that the graph-
ical context requires the irrepresentability condition to be validated for
each of the p genes at the same time, which makes it much more difficult
to hold than in the simple regression context where it is an already strong
hypothesis. In our context, since we solve p independent Lasso problems,
we can check the validity of the hypothesis in each of these individual
problems. For each gene, the irrepresentability condition is tested using
the true sign pattern extracted from the corresponding column of the true
adjacency matrix. Thus the sets of relevant and irrelevant covariates are
allowed to vary from one problem to another. Generating 100 samples of
each simulation setting, we observed that even in a favorable setup with
twice as many observations as variables (p = 20 genes) the irrepresentabil-
ity condition fails for 30% of genes in average. With p = 20 genes and only
n = 10 observations this assumption fails on average for 51% of the genes.
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In other words, for around half of the genes we cannot expect the Lasso
to recover the exact sign pattern. See Table 2.1 for details. Admittedly, the
irrepresentability condition is a really strong assumption, necessary and
sufficient for exact sign recovery, that is to say not only the exact neigh-
borhoods (no false positives, no false negatives) but also the exact signs of
the correlations. Yet since the simulated values are quite well separated
between true zeros and true nonzeros we would have expected that this
hypothesis would have been much more validated. Information about the
validity of the restricted eigen-value assumptions (Bickel et al. 2009) would be
greatly appreciated to compensate for such pessimistic results, but these
are computationally intractable. Adaptation of Juditsky and Nemirovsky
(2008)’s results to the present context could be of great benefit.

n/p \P ‘ 20 100
2 0.30 (0.23) -
1 0.41 (0.23) 0.37 (0.15)
1/2 | 0.51 (0.18) 0.42 (0.12)

Table 2.1 — Awverage proportion of genes for which the irrepresentability condition does
not hold and standard error in each simulation setting (hence the empty cell for p =
100, n = 200).

Discussion of Simulation Results. Results are presented in Figure 2.5
under the form of Barcharts. Figure 2.6 illustrates the case where p = 100
by giving boxplots for the distributions of Precision, Recall and Fallout.

Compared methods differ with the type of setting. First of all, since the
Shrinkage method (particularly the local false discovery rate step) relies on
the hypothesis that p is large, we do not consider it fair to apply it to the
small network setting. Reversely, for computing time reasons we decided
to restrict the application of G1DBN to the graphs of size p = 20.

Penalties for the Lasso based methods were chosen on the basis of
either the BIC or AIC criteria. Although theory states that the BIC ought
to outperform the AIC in terms of model selection (Zou et al. 2007), we
observed that in practice the BIC criterion might be too conservative when
n is small compared to p. In that situation, it might be interesting to favor
the less stringent AIC criterion which will induce a higher recall rate for
not such a large loss in precision. Note that the penalty choice based on
the AIC or the BIC can lead to choose the null model as best model. In that
case, Precision cannot be defined. We thus show the results for precision
over all simulations where at least one variable was included.

The first point worth noting in Figure 2.5 is that in all settings the
Lasso is outperformed by weighted-Lasso methods and others. This quick
check confirms the interest of compensating for the bias induced by /;
regularization on large coefficients. It is also possible that what we ob-
serve about the validity of the irrepresentability condition jeopardizes the
performances of the single-penalty Lasso. In line with Table 2.1, the Lasso
performs particularly badly when the ratio n/p is not favorable, with re-
call and precision rates under 20% when p = 20,n = 10. It even performs
so poorly that it deprecates the inference based on adaptive weights. Prior
information on where the true zeros might compensate for this appar-
ent lack of “neighborhood stability”, using Meinshausen and Biithlmann’s
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vocabulary, and explain why the KnwClI penalty is far more accurate (pre-
cision of 84% in average for a recall of nearly 50% in average for the same
simulation setting p = 20, n = 10).

As expected, in all settings (except when # is really too small com-
pared to p) the Adaptive penalty improves the precision but at the price of a
smaller recall rate. On the contrary, the inferred classification InfCI allows
to improve the precision without undermining the recall rate. However,
both methods are highly dependent on the initial Lasso estimate. There-
fore, the gain in precision resulting from such methods decreases with the
n/p ratio.

Benefitting from a certain amount of supplementary information, the
KnwCl penalty leads to a clear increase in both precision and recall. Partic-
ularly when little information is available in terms of number of observa-
tions, taking prior information about which genes are potential regulators
and which are not into account improves the results dramatically. This is
true when compared to all Lasso based methods but generalizes to Shrink-
age, Renet-VAR and GiDBN. Admittedly, Renet-VAR leads to higher preci-
sion values with medium sized graphs, but it is compensated by smaller
recall rates.

Table 2.5 shows naturally that we cannot expect too much from very
extreme settings (p = 800,n = 20, that is, the Spellman et al.’s settings).
Average Recall rate is less than 20% for all methods except the KnwClI
penalty. In this case, knowledge of potential hubs allows the recall rate
to almost double in average while increasing the precision. Note how-
ever that even with this supplementary information precision rates never
exceed 50%.

To finish with, we would like to lay the emphasis on computing times.
For this we let the number of nodes range from 5 to 185 and fixed the
number of observations at half the maximum number of nodes, i.e. n = 92.
This leads to a ratio n/p ranging from o.05 to 2. Computing times for the
weighted-Lasso with inference of the classification InfCl and selection of
the best penalty, Renet-VAR and G1DBN are presented in the log-log scale
in Figure 2.7. We can see that running times for Renet-VAR and GiDBN
can become a handicap as soon as p gets large while computing times for
InfCl rarely exceed 2 minutes.

Yeast Data

We confronted our model to time measurements of Saccharomyces cerevisiae
gene expression data collected by Spellman et al. (1998). We focus on the
subset of genes they identified as periodic, i.e. genes whose transcription
levels over time show evidence that they are cell-cycle regulated.

Remarks on the Data Set. This dataset is one of the first microarray ex-
periments. It is thus doomed to be rather noisy, contrary to the simulated
data sets. Besides, we had to face the problem of missing values, which
appeared on some of the most important genes. We imputed them as the
mean of the two closer known observations in time for the gene consid-
ered, before and after the time point of interest.
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Figure 2.5 — Bar charts of Precision and Recall rates for each method and simulation
setting, averaged over all simulation samples.

On top of its noisiness, Spellman et al.’s data set is particularly hard to
tackle from a statistical view point. Information is provided on 786 genes
for only 18 time points. This implies that using our algorithm we cannot
activate more than 17 * 786 = 13362 edges out of 789 x 786 = 617796
possible ones, that is to say 2.2%.

However, we can rely on experimental conclusions on yeast gene reg-
ulation networks to collect target information about the true edges of the
graph. We compare our results to the adjacency matrix provided by the
Yeastract database (www.yeastract.com). We retain information on docu-
mented direct relationships, that is to say direct regulations confirmed by
published experimental results.

Note however that this theoretical benchmark is biased in two ways.
First, some true edges might be missing because all regulations might not
have been confirmed by experiments yet. Second, this graph gathers all
reported regulations, whatever the conditions of the experiment. Some
might not actually happen during the precise experiment we consider. We
can suppose the effect of the first bias to be low in a model organism such
as Saccharomyces cerevisine. The effect of the second bias is much more
]ikely however, since measurements are all made while cells are at the
beginning of their growth, growing until ready for DNA synthesis. We
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cannot expect the whole range of possible regulations to happen in such
a small portion of the cell cycle.

This dataset illustrates quite well the biological properties our model
is based upon. First, documented information reveals the existence of
1385 true edges (among more than 600000 possible ones in theory). The
theoretical graph is thus extremely sparse. Secondly, the hub structure is
quite clear: edges leave from only 26 out of 786 genes. Hence knowledge
of the hubs provides crucial information on the position of edges. This
phenomenon also clearly appears on Figure 2.8. Incoming degrees never
exceed 20 but only 1 is null. On the contrary, outgoing degrees are null for
the vast majority of genes. Significant degrees appear as outliers in this
distribution, reaching up to 150 for some of them.
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Figure 2.7 — Computing times on the log-log scale for Renet-VAR, G1DBN and InfCl
(including inference of classes). Intel Dual Core 3.40 GHz processor.
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Figure 2.8 — Boxplots of incoming and outgoing degrees in Yeast theoretical adjacency
matrix

Discussion of the Results. The setting is much harder than in the first
simulated data sets, with a ratio n/p = 2.3% as well as harder than the
last simulated dataset with less separated correlations between existing
and non existing edges. Results presented in Table 2.2 show quite well
the difficulty all methods encounter in front of this data set. Results for
the Shrinkage approach are not shown because the local false discovery rate
step included in this method was heavily flawed by the lack of separability
between edges and non edges. Except for the KnwCl penalty, all Lasso
based estimators are reduced to the null model. Both the BIC and AIC
criteria do not find the increase in likelihood large enough to compensate
for the complexity of any model with at least one edge. Performances
of the KnwCl penalty and Renet-VAR remain lower than what we could
expect from simulated results.

Many reasons for such bad perfomances could be thought of. We al-
ready mentionned the noisiness of the data, which quite hardly differenti-
ated the edges from non edges. Second, homogeneity of the VAR1 model
might be too strong an assumption. Last but not least, when looking more
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Models Lasso Adaptive KnownCl InferCl Renet
Precision - - 0.082 - 0.004
Recall 0 0 0.068 0 0.003
Fallout 0 0 0.002 0 0.002

Table 2.2 — Precision, Recall and Fallout performances for all Lasso based methods and
Renet-VAR on Spellman et al.’s data set. Best Lasso penalties chosen on the basis of the
BIC criterion.

closely at how data were collected we noticed that measurements were
made every 7 minutes, which might be long enough for dependencies to
vanish. Also, since we measure values related to the cell cycle, measure-
ments were necessarily made on different cells each time, thus measuring
the expression levels on different individuals at each time point. In brief,
this apparently longitudinal data set might share more common points
with ii.d. models than with VAR1 processes.

E. coli S.0.S. DNA Repair Network

In this section we quit the high dimensional setup and compare the per-
formances of all methods in a much easier framework. We focus on a
sub-network from E. Coli S.0.S. DNA repair network analyzed by Ronen
et al. (2002) *. Data provide information on the main 8 genes of the S.0.S.
network (uovrD,lexA,umuD,recA,uvrAuvrY,ruvA and polB) across 50 time
points. Measurements rely on precise expression kinetics which allow
Ronen et al. (2002) to monitor mRNA expression levels every 6 minutes
after exposition of the DNA to UV light at time 0. We will not dwell
on the measurement technology here (see Ronen et al. 2002, for details).
Note however that the authors do not measure the actual mRNA quantity
present in the cell at time ¢ but the instant promoter activity of each gene.
Equivalence between the two measurements is guaranteed if the instant
quantity of mRNA in the cell roughly equals its production rate, that is to
say if there is no accumulation of mRNA in the cell. Under this assump-
tion, Ronen et al. (2002) ’s data can be used as any microarray dataset.

E. coli S.0.S. DNA repair network provides a precise benchmark: spe-
cific regulatory interactions in response to DNA damage have been char-
acterized. In other words, we can rely on a theoretical regulatory network
which represents the main direct transcriptory regulations actually taking
place during the experiment. According to the regularly updated Eco-
Cyc database, lexA is the only regulator in this subnetwork, regulating all
genes including itself. Concretly, the protein LexA is at the core of the reg-
ulation network, usually binding sites in the promoter regions of S.0.S.
genes to repress their expression. As soon as RecA senses DNA damage
(by binding to single-stranded DNA), it becomes activated and induces
LexA autocleavage. The decrease in LexA concentration alleviates the re-
pression of S.0.S. genes. When damage is repaired, the level of activated
RecA drops, LexA accumulates and represses again all S.0.S. genes.

Detailed results are presented in Figure 2.9. We can see that perfor-
mances differ a lot from one experiment to another. Particularly, experi-

'data downloadable on Uri Alon’s homepage, http://www.weizmann.ac.il/mcb/UriAlon/
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ments 1 and 4 lead to significantly poor results although nothing should
a priori distinguish them from 2 or 3 (1 and 2, respectively 3 and 4, share
the same U.V. exposure).

As on simulated data, the Lasso leads to poor results. GiDBN shows
similarly poor performances here. Quite surprisingly, Renet-VAR does not
perform as well as we could have expected from simulations. It reaches
50% of recall at the expense of very low precision rates. Adaptive penalty
improves more the quality of the estimation than in the simulation studies.
Now they increase the precision of the Lasso without really undermin-
ing the recall rate. Inference of the classification outperforms these, with
higher recall and precision rates. This is quite interesting since except
in experiments 1 and 4 where the Lasso provide almost no information,
inference of the classes seems quite good although the initial Lasso still
shows mediocre results. To finish with, the KnwCl penalty benefits quite
well here from its extra information since it outperforms all other meth-
ods and manages to reach honest results even in datasets 1 and 4 which
disturbed all other methods.
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Figure 2.9 — Bar charts of Precision and Recall rates for each method and experiment.

Inferred graphs on experiment 2 are shown in Figure 2.10. The regu-
latory activity of lexA is more or less recovered by all methods. What is
interesting is that a common structure recurently shows up among false
positives: regulations due to uvrA. This regulation pattern is particularly
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what dominates experiment 4 and leads to so poor results. Strangely, we
could not find any mention of this regulatory activity in the literature. Ei-
ther there is a need for further biological research on this gene or there
is an undirect regulation blurring the results. Another unknown regula-
tion dominates all inferred graphs: regulation of uvrY by polB. It is all
the more interesting as it survives the bad a priori that the KnwCl penalty
holds against it. Further biological investigation could want to look at this
couple of genes more closely.

In this respect, we could note that the regulatory effect of activated
RecA on LexA does not appear on these graphs, which we could see as a
good point since this is a post-transcriptional regulation. We would also
like to lay the emphasis on the fact that we here check selection consis-
tency of all the methods but not their sign consistency. We only check
whether we identify the right edges and not the activation/inhibition pro-
cesses associated to them. Looking more closely at the estimated matrices,
we can see that the (shrunk) correlations estimated between lexA and the
remaining genes are all positive and not negative as the literature would
tell. This would not be a flaw in all methods but a direct result of the limi-
tations of transcriptomic data. Indeed, we only observe mRNA production
rates. As a consequence, we cannot spot the decrease in concentration of
protein LexA and only observe that the expression of all genes suddenly
increases, lexA included.

CONCLUSION

This chapter presents a weighted-LAsso algorithm designed to tackle time
varying gene expression data taking into account an underlying structure.
In this particular framework, the proposed approach outperforms similar
methods. Even when regulators and regulatees cannot a priori been dis-
tinguished through analysis of the literature, inference of the classification
greatly improves the performances of the Lasso. It therefore seems good
to advice that, whenever available, knowledge about potential transcrip-
tion factors should be taken into account and that basic knowledge on the
topology of biological networks should not be omitted in the modeling
process.
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Figure 2.10 — Graphs inferred by the different methods on experiment 2 data. Lasso

penalties are chosen so as to maximize the BIC criterion. True positives are drawn in
black while false positives are shown in dashed gray.



CONSISTENCY ANALYSIS OF THE
COOPERATIVE-LLASSO

HE cooperative-Lasso was introduced by Chiquet et al. (2011) in the
T context of multiple Gaussian graphical models. More generally, the
cooperative-Lasso tackles the issues of estimation and selection of param-
eters endowed with a known group structure, when the groups are as-
sumed to be sign-coherent.

The present chapter sheds light on the derivation of optimality conditions
and consistency properties of this new regularization. We prove asymp-
totic consistency in terms of model selection and non-asymptotic oracle
inequalites in terms of estimation and prediction.

Finally, we provide an illustration of the benefits of the cooperative-Lasso
in the context of multiple Gaussian graphical model inference on a lon-
gitudinal treatment/placebo experiment in Multiple Sclerosis and on a
case/control study in Breast Cancer.

The asymptotic model selection property has been published as part of
Chiquet et al. (2012), but the remaining of the chapter presents new results.
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INTRODUCTION

The idea of the cooperative-Lasso originates in the inference of joint Gaus-
sian graphical models from distinct but related transcriptomic datasets,
as introduced in Chiquet et al. (2011). Indeed, many transcriptomic ex-
periments are led simultaneously in many close conditions, as part of a
more general experimental scheme. Stress experiments, case/control stud-
ies, placebo/treatment studies form a non-exhaustive list of such multiple
condition experiments.

Multiple Gaussian graphical models are one among a growing list of
applications where several datasets or covariates within the same dataset
provide independant but redundant information about a single statistical
problem: multichannel signals, video denoising or inpainting, multiple
response problems (Turlach et al. 2005), gene signatures based upon clus-
ters of co-expressed genes (Eisen et al. 1998, Park et al. 2006, Ma et al.
2007), etc. In this conﬁguration, there is a clear gain in combining infor-
mation from all datasets in a refined way, compared to the treatment of
each dataset independently from the others. In the same spirit, there is
an increasing interest in combining information provided by highly cor-
related or somewhat redudant variables, instead of letting them compete
against each other in the quest for the unique best model.

These examples illustrate many settings where there is much more in-
terest in considering subsets of covariates jointly rather than letting them
compete in a falsely independent framework. When the same statistical
model is considered in close but distinct experiments, one might be in-
terested in keeping the inference of distinct parameters, but joining infor-
mation across experiments in order to add robustness to the selection of
relevant features. When datasets present lots of highly correlated covari-
ates, one may want to avoid working on a reduced subset of uncorrelated
but arbitrarily chosen covariates, and work instead on the full set of co-
variates, taking advantage from the redundancies in place.

We adopt the linear regression model as main framework for theo-
retical developments. Assume we observe a continuous response vari-
able Y that we want to predict from a vector of p predictor variables
X = (Xy,...,Xp) partitioned into K groups {gk}f:] of respective sizes
{p}X_ ;. Covariates belonging to the same group present some redun-
dance of information, be it dictated a priori by the experimental design
(same covariates in multiple conditions, multichannel signals, several
probes related to the same gene, ...) or be it decided a posteriori because
covariates are too correlated with each other to be treated independently.
We work on the following model:

*

ﬁG1

Bs
Y:Xﬁ*—l-sz [X(_h ng ng} :2 +e, (31)

.

Gk
The error term ¢ is assumed zero-mean Gaussian with variance 2. The
estimation of B* is based on the vector y = (y1,...,y,)T of responses and
an n x p design matrix X whose jth column contains x; = (x1j, ..., X4)T,
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the n observations for variable Xj. For clarity, we assume that both y and
{xj} j=1,...,p are centered so as to eliminate the intercept from fitting criteria.
Multitask datasets easily fall into this framework, as will be illustrated on
joint Gaussian graphical models in Section 3.4.

Many regularization terms have been suggested in the recent years
in order to meet at the same time the requirements of high-dimensional
inference and joint sparsity patterns. Most of them are based on mixed
{1, norms, « > 1, the {1 norm acting as a selection tool at the group-level
embedding a group-specific £, norm which breaks the independence of
covariates within groups. Among those, f1, and /1 are certainly the
most popular.

Independently proposed by Grandvalet and Canu (1999) and Bakin
(1999) and later developed by Yuan and Lin (2006), the mixed f1> reg-
ularization is often referred to as the group-Lasso penalty or block ¢,
regularization, henceforth equivalently referred to as peng,q,..(+) or || - [[1,2:

K
Pengroup(ﬁ) = ];1 Wk ||ﬁgk ||2

Weights w; > 0 adapt the level of penalty within a given group. Typically,
one sets wy = ,/pr, where py is the cardinality of Gy in order to adjust
shrinkage according to group sizes.

Following the propositions by Turlach et al. (2005), Tropp et al. (2006)
there has also been an appeal for block /1 o, regularizations.

K K
Pertio (B) = 1 185, = - max |6

k=1

However, these regularizations completely condition the selection of a co-
variate to the selection of all other covariates within its group. Negahban
and Wainwright (2011) and Huang and Zhang (2010) point out the per-
ils of block-regularizations which suffer from deteriorated performances
compared to a simple Lasso when sparsity patterns within groups get
blurred. In order to overcome this restriction, simulatenous suggestions
were made to combine mixed /1, norms together with an £; penalty, in
the vein of the hierarchical penalties of Zhao et al. (2009). This is the case
of the sparse group-Lasso by Friedman et al. (2010) or of dirty multi-task
learning by Jalali et al. (2010; 2011):

peng,.(B) = a peng,,.,(B) + (1 — ) pen,, (B);
Pengiy (B) = & penyoq (B) + (1 — &) pen,, (B).

The sparse group-Lasso or dirty modeling provide additional flexi-
bility to the selection of covariates within groups but demand an addi-
tional tuning parameter a. Chiquet et al. (2011) introduce a novel penalty
that takes a different stance, with the benefit of requiring a single tun-
ing parameter. The cooperative-Lasso, in short coop-Lasso, performs a
sign-adaptive selection of grouped variables, dissociating the activation of
positive and negative coefficients. Let u™ and u~ denote respectively the
positive and negative parts of any vector u € RP. The cooperative penalty
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is defined as the sum of the group norms of the positive and negative

parts of B:

This strategy presents the advantage of being in full adequacy with
the experimental design of various statistical problems, where groups are
most likely to be sign-coherent. Chiquet et al. (2012) describes three ap-
plications where sign-coherence is a sensible assumption. The first one
considers ordered categorical data, which are common in regression and
classification. The coop-Lasso can be used to induce a monotonic response
to the ordered levels of a covariate, without translating each level of the
categorical variable into a prescribed quantitative value. The second appli-
cation describes the situation where redundancy in probe measurements
related to a same gene causes sign-coherence to be expected. Similar be-
haviors should be observed when features have been grouped by a clus-
tering algorithm such as average linkage hierarchical clustering, which
are nowadays routinely used for grouping genes in microarray data anal-
ysis (Eisen et al. 1998, Park et al. 2006, Ma et al. 2007). In Section 3.4 we
focus on the inference of joint Gaussian graphical models, where underly-
ing biological mechanisms make it sensible to assume that up- or down-
regulations can disappear in some conditions, but are a lot less ]ikely to
reverse from one to the other.

Theoretical properties of £1, and /; o, regularizations have been stud-
ied quite extensively in the past few years, following this enthusiasm for
joint sparsity modeling. Bach (2008b) provides a first asymptotic analy-
sis of the group-Lasso in terms of support recovery, under some irrepre-
sentable condition or mutual incoherence assumption on the design, in
the classical framework where the number of variables p is fixed while the
sample size n grows to infinity. The first results to fit high-dimensional
settings are to be seen in Meier et al. (2008), which derives bounds on
the group-Lasso prediction error in generalized linear models, and Nardi
and Rinaldo (2008), which derives bounds on the group-Lasso prediction
and estimation error in linear regression. Lounici et al. (2009) provides
sharpest sparsity oracle inequalities for prediction and estimation errors
under restricted eigen-value assumptions in multi-task settings, shedding
light on the advantage of block-regularization over the Lasso when spar-
sity patterns coincide with the group structure. In this chapter, we recall
the classical asymptotic results published in Chiquet et al. (2012) validat-
ing model selection properties of the coop-Lasso, under less stringent as-
sumptions than the group-Lasso. To answer the high-dimensional chal-
lenge, we add sparsity oracle inequalities for prediction and estimation
errors in the spirit of Lounici et al. (2009), valid for any sample size and
number of variables.

More recently, Lounici et al. (2011) have extended sparse oracle in-
equalities to linear regressions with grouped variables in general, while
S. Negahban and Yu (2012) provide oracle inequalities under looser as-
sumptions of sparsity. On top of that, high-dimensional model selection
guarantees are provided by Obozinski et al. (2011), along with sample
complexity functions, quanﬁfying the reduction in sample size n required
for selection consistency, as a function of the number of variables p. Ne-
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3.1

3.1.1

gahban and Wainwright (2011) provide similar results for ¢1 , regulariza-
tion. How these state-of-the art results can be adapted to improve our
theoretical analysis of the coop-Lasso will be addressed in discussion.

The first part of this chapter describes the coop-norm, as a sign-
adaptive mixed-norm, in order to derive equivalence relationships and
dual bounds which are essential to further theoretical developments. In
the second part we derive optimality conditions for the coop-Lasso as
well as one of its dual forms. Asymptotic model selection properties are
recalled in a third section, along with sparsity oracle inequalities on pre-
diction and estimation errors in the spirit of Lounici et al. (2009). An
application of the coop-Lasso to the inference of joint Gaussian graphical
models is detailed in the last part.

CoOOPERATIVE NORMS AND RELATED ANALYSIS TOOLS

We take a short detour in the analysis of our problem to study in more
depth the properties of the cooperative norm. Not only some of those are
required to prove oracle inequalities about the cooperative Lasso, but this
also provides a better insight into this sign-adaptive group penalty. We
start by recalling some properties of the group-Lasso penalty, considered
as a mixed-norm, and derive similar properties for the cooperative norm
and its variants. Most of these developments are linked to the central
notion of dual norm | - ||,, defined for the norm || - || by:

Ix[l+ = sup (x,y).
lyll<1

The Group-Lasso Penalty as a Mixed-Norm

The group-Lasso penalty is a special case of general mixed EM norms,
namely with p = 1 and q = 2. Those norms were introduced in func-
tional analysis and are now very popular in the inference of joint sparse
problems in statistics, machine learning and signal processing (Zhao et al.
2009, Kowalski 2009, Szafranski et al. 2010, Obozinski et al. 2011). Besides
the ¢1, norm popularized by the group-Lasso, the /1 o, norm has recently
been the focus of increasing attention (Jalali et al. 2010; 2011, Negahban
and Wainwright 2011). In the finite-dimensional case, mixed norms cor-
respond to the composition of an £, and an £; norm on vectors equipped
with double indices. Double indices naturally arise in many fields: for in-
stance, indivuals and time-points in panel datasets, multichannel signals
in signal processing,.... In the following, we define a hierarchy between
those two labels, and refer to the first label as a group index.

Consider p,q € [1,00]. The mixed £,, norm associated to the group
structure {G}X_; is defined by the £, norm of £, norms on groups Gy.
For every x € IR? with associated group structure {Gy}K_,, the £,, norm
reads:

K 1/p K 1/p
%[l pq = (k_Zl Ingkllf;) = (Z(X Ix;'lq)”/q) ' (3-2)

k=1 jeGy

In the case where p or g are set to oo, the corresponding norm is replaced
by the supremum.
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Observe from Equation (3.2) that for every p > 0, the mixed £, , boils
down to the usual £, norm. Equivalence relationships between mixed £, ,
norms can be straightforwardly derived from usual equivalence relation-
ships between £, norms. As a result of the composition of the £, norm
onto the £; norm, the number of groups replaces the total number of com-
ponents in the compatibility constant. For every x and y € R?, the mixed
norms associated to the group structure {G; }X_, satisfy:

VK x|,

/]2 [

< 12 =
[l < lxlliz = K [x]le2,
[*loz < lxll2 < VK [[%]leo2-

Similarly, Hoélder’s inequality generalizes to mixed norms. For every
x and y € RP, the mixed norms associated to the group structure {G;}X_,
satisfy for every two pairs of conjugates (p,q) and (p’, q’') such that 1/p +
1/g=1and 1/p'+1/q" =1 the following Holder’s inequality:

|Gyl < lx

|p,p’ |b’||q,q" (3-3)

In particular,

|| < llxll2llylleoa:

The direct consequence of Equation (3.3) is that the dual norm of an £,
mixed norm is the £,/ » mixed norm, with p" and ¢’ the respective Holder
conjugates of p and q. Dual norms are of particular interest since they are
closely linked to the definition of the subdifferential of our optimization
problem.

The analytic notion of duality is analog to the geometric notion of
polarity, which is useful to get a geometric insight into dual norms. A
convex body C* is a polar of another convex body C if every point on its
boundary defines a supporting hyperplane for C:

C*={x e RP|(x,z) <0,Vz € C}.

Duality and polarity are linked together by the fact that two norms are
duals of each other if and only if their unit balls are polars of each other.

Some special cases prove straightforwardly the duality of familiar pair
of norms. In particular, the polar of a sphere of radius r is a sphere of
radius 1/r. For instance, the £ norm is its self-dual. Also, the polar of
an intersection of closed half-spaces also shares a simple characterization.
If there exists (ay,...,ag) € RP such that C = {x € RP,xTa; < 1,Vi =
1,...,H}, then the polar is C* = conv(ay, ...,an), where conv denotes the
convex hull. This result typically proves the duality between /1 and (o
norms.

As an illustration, Figure 3.1 provides the unit balls of three pairs of
dual norms: £1 — {o, o3 — €3 and £y — £5.

Cooperative-Lasso Penalties as Sign-Adaptive Mixed Norms

As £, norms and mixed £,, norms, let us define a set of cooperative £,
norms as a generalization of the cooperative norm introduced in Chiquet
et al. (2011). We prove in this Section that all the toolbox available form £,
and mixed £, ; norms extend to cooperative norms.
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& & &

() £; ball (b) £2/3 ball () £, ball
& & &

(d) £e ball () /3 ball () £ ball

Figure 3.1 — Unit balls in R? of three pairs of dual norms: €1 and £« norms, £y,3 and {3
norms, £, and £y norm. For each norm || - ||, the boundary of the set {B € R?, ||B||, < 1}
is drawn.

Definition 3.1 (Cooperative norms) Consider p,q € [1,o0]. For every x € RP associated with
a group structure {G}X_,, the £, 4 coop-norm of x is defined as a sign-adaptive
mixed £, , norm by:

K p
1% eooppg = (2 15 + ||x‘||§) .
k=1
In particular,
Illapre = lx*llz+ 2~ 12 = [l
Ilapze = /S IeHB+ 121 = [l
[ lloopeoz = max ([|xtflwz, [ [lo2) = [x[leoop

It stems from this definition that the cooperative norm plays the role
of a sign-adaptive mixed norm, the £, norm being taken on signed sub-
groups as if they were independent from each other.

Similarly to mixed norms, equivalence relationships generalize to co-
operative norms, except that there is a factor 2 to be paid for the sign-
adpativity in the compatibility constant.

Proposition 3.1 (Equivalence relationships for coop-norms) For every x € R?,

[l < l¥lloop < V2K lx]l2
[*llcoops = [|%[leoop = 2K [|%[|coap*
[*lleoop = llxll2 = V2K [[x[lcoap*
Proposition 3.2 states the existence of dual bounds associated with co-
operative norms and identifies the dual norm associated to || - ||coop-

Proposition 3.2 (Dual norm and dual bound for the coop-norm)  The dual norm of the coop-norm

Il lleoop = I - llcoop,1.2.5 Il - lcoop* = Il - llcoop,e0.2, 50 that for every pair (x,y) € R?,
associated with a group structure { G }&_,, the following dual bound holds:

[, )] < 1l coop |y [l coap-
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In general, for every two conjugate pairs (p,q), (p’,q'), the coop-£, , norm is the
dual of the coop-{, o norm, and they satisfy:

[{x, y)| < ||x||coonp,p’||b’||mp,qfq"

The complete proof is postponed to Appendix A.1.1, but Figure 3.2
illustrates this duality in 2D, assuming B; and B, belong to one single
group. On the left hand side appears the unit ball of the cooperative-norm,
on the right hand side the unit ball of its dual. As illustrated, vectors of
each unit ball define supporting hyperplanes to the dual norm ball.

N

By By

(a) Coop ball and example of sup- (b) Coop* ball and example of nor-
porting hyperplanes defined by the mal vectors to supporting hyper-
Coop* ball planes of the Coop ball

& / @_.-----
N

1 B

(c) Coop ball and example of nor- (d) Coop* ball and example of sup-
mal vectors to supporting hyper-  porting hyperplanes defined by the
planes of the Coop* ball Coop ball

Figure 3.2 — The coop and coop* balls are polars of each other.

THE COOPERATIVE-LASSO PROBLEM AND ITS DUAL

Now that available tools are clarified, let us turn to the coop-Lasso opti-
mization problem:

o1
ﬁcoop = arg min E”Y - Xﬁ”i + An”ﬁucoop- (3-4)
BeR?

Since the regularization is a norm, the problem is convex, which allows the
derivation of various efficient optimization algorithms. However because
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of the singularities in the cooperative-norm, the objective function is not
differentiable. Wherever the gradient is not defined we need to resort to
subgradients.

In this section, we start by recalling the definition of subgradients and
subdifferentials in order to express the first-order optimality conditions of
Problem 3.4. This leads us to the analysis of sparsity patterns achievable
by the coop-Lasso. Then, we recall the definition of Fenchel conjugates in
order to derive an analytical expression of first-order optimality conditions
in terms of dual cooperative-norm. We conclude on the formulation of
a dual problem associated to Problem 3.4. Both the expression of the
subdifferential and the dual problem will be at the core of the proof for
model selection.

3.2.1 Subdifferential and Achievable Sparsity Patterns

Subdifferential and Subgradients. Where the gradient provides a lin-
ear approximation to the objective function, Definition 3.2 recalls that the
subgradient provides a lower-bound approximation.

Definition 3.2 (Subgradients and subdifferential) A vector 6 € R? is a subgradient to function
f:RP — (—o0,+o0] at xo € R if and only if for every x € R?, (6, —1) defines
a supporting hyperplane from below to the curve representing f at xo:

f(x) = f(x0) + (6, x — xo).
The subdifferential of (xo) of f at xq is the set of all subgradients of f at x.

Recall that the epigraph of a function f is defined by epi(f) = {(x,y) €
RP*1, > f(x)} and that a normal cone to a set C at xg is the convex cone
such that Nc(xg) = {y € R, < y,x —x9 >< 0,Vx € C}. In geometric
terms, Definition 3.2 states that when f is convex, its subdifferential is
linked to the normal cone of its epigraph, as illustrated by Figure 3.3.

First-Order Optimality Conditions. Naturally, as the notion of subgra-
dient extends the notion of gradient, the subdifferential can be used to
characterize the optimum of a function. Yet, as expressed in Proposition
3.3 and contrary to the gradient, the lower-bound approximation operated
by the subdifferential does not characterize all (potentially local) optima,
but only global minima.

Proposition 3.3 (First-order condition : characterization of the optimum via the subdifferential)
The vector x* is a global minimum to function f : RP — (—co, 400 with non-
empty domain if and only if O belongs to its subdifferential at x*:

0 € df (x*).

When f is differentiable, the subdifferential reduces to the derivative,
and Proposition 3.3 boils down to the usual first-order condition V f (x*) =
0. Therefore in the convex case, the subdifferential is only of interest when
the function to minimize shows some singularities.

In our case, Problem 3.4 is a combination of a convex and differentiable
function ¢(B;X,y) = |ly — XB||./2 and a convex but non differentiable



3.2. The Cooperative-Lasso Problem and its Dual 67

epi(f)

5 T
= dos——o
9,
195 9’ II."'
3 9:’1 I."II 9,'5
Nepi(£)(%o)
xr

Figure 3.3 — Subgradients 6y, ...65 to f at xq satisfy the condition that vectors 6] =
(61,—1),...,05 = (65, —1) belong to the normal cone N f)(xo) to the epigraph of f

at xo, epi(f) = {(x,y) € RFHL,y > f(x)}.

flz)

0 € af(z*)

T

Figure 3.4 — When the function f is non-convex, the derivative charactizes local optima,
while the subdifferential characterizes global minima.
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norm ||B||coop- The vector B is a global minimum to function £(B;X,y) +
Af(B) if and only if —V£(B;X,y) belongs to the subdifferential of ||B|coop

at B: A .
— Vg(ﬁ, X, Y) = a”ﬁ”coop- (35)

Contrary to points B where ||B||coop is differentiable and its subdif-
ferential 9||B|coop reduces to the unique derivative V||B||coop, points with
singularities have a non-zero probability to be selected as optimal, since
a convex set of possible score vectors V£(B; X, y) satisfy optimality condi-
tions with respect to the same optimal point B. If singularities are placed
at particular points of interest, admitting a specific support for instance,
there is an increased probability for this particular support to be selected
as optimal.

An interesting way of illustrating this phenomenon is to rephrase Prob-
lem 3.4 in terms of constrained least squares and amend Equation (3.5) ac-
cordingly. Instead of solving (3.4), minimize the sum of squared residuals
under the constraint that ||B||coop remains smaller than ¢, t > 0. Under this

formulation, a vector ﬁ is optimum if and only if

— VL(B:X,y) € Nc(B), (3-6)

that is to say, the score vector needs to belong to the normal cone to the
feasible set Beoop = {B € R, || B||coop < t} at the optimum. Normal cones
to the coop ball of radius t at singularities are represented on Figure 3.5.

Note that the normal cone to the feasible set Byop at xg is nothing
else than the polar of the set Beoop — X0, which links optimality conditions
to the duality and polarity considerations of the previous section. The
subdifferential associated with the coop-norm is the polar of the coop-
norm unit ball, in other words the unit ball of the coop-dual norm. This
point will be made clearer in the next subsection.

Sparsity Patterns. The constrained minimization formulation and Equa-
tion (3.6) implies that the solution to Problem 3.4 corresponds to the or-

. . . . ~ols
thogonal projection of the ordinary least square estimate B onto a coop
norm ball of a certain radius f. Coefficients will be set to 0 when level
curves of the likelihood hit the ball at singularities, as illustrated in Figure
3.6.

Since the existence and position of singularities influence the range of
amenable sparsity patterns, it is worth comparing the group, sparse group,
and coop feasible sets. Consider for instance a vector B = (B1, B2, B3, Pa)T
with two groups G1 = {1,2} and G, = {3,4}. Figure 3.7 presents cute 3D
views of the unit balls according to (B1, B2, B3) for two different values of
Bs, namely 0 and 0.3. To ease the identification of singularities, following
figures provide various 2D cross-sections.

Figure 3.8 depicts within group cross-sections and illustrates the joint
constraints imposed on (B1, B2) for varying values of B4 (0, and 0.3), B3 be-
ing held at 0. Clearly in all three cases, groups are selected independently
from each other: the activation of B4 has no effect whatsoever on the sin-
gularities of within group balls, and therefore on the selection of either 1
or B2. Naturally though, since we are under the constrained formulation,
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NBeoop (y)

Ba

NBcoop (:‘B)

NBeoap (U)

b

Figure 3.5 — The coop norm ball of radius t in 2D Beogy, on one group of size 2 {B1, B2 }.
Normal cones to Beoop at a differentiable point v = (—sqrt(t/2), —sqrt(t/2)) and
specific points of singularities w = (0, —t),x = (t,0),y = (0,t),z = (—t,0) are rep-
resented in blue. Contrary to the normal cones at w,x,y,z, the normal cone at v is

degenerated.
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Figure 3.6 — Projection B of the Ordinary Least Square estimate ﬁOIS on the coop norm
ball of radius t in 2D, with one group of size 2 {P1, B2}. On panel (a), projection hits on
the Rt x R™ quadrant: all variables are included. On panel (b), projection hits on the

R* x R~ quadrant: B, can be set to 0.
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group-Lasso sparse group-Lasso coop—Lasso

Figure 3.7 — Feasible sets for the coop-Lasso, group-Lasso and sparse group-Lasso penal-

ties. Cuts through (B1, B2, B3) at By = 0 and By = 0.3: (B1, B2) span the horizontal
plane and B3 is on the vertical axis. These 3D views were realized by Yves Grandvalet.

Bs=0

0.3

I
=t
.

group-Lasso sparse group-Lasso coop-Lasso

B2’ B2 |' B2’
fE -1 /\ 1 -1 /\ 1 -1 \ 1
A A ol
- B2 |’ B2|' B2
cﬁ -1 /\ 1 -1 /\ 1 -1 \ 1
S K’/ B1 B K B1

Figure 3.8 — Feasible sets for the coop-Lasso, group-Lasso and sparse group-Lasso penal-
ties. Cuts through (B1, B2) at various values of B, and B3 held fixed at 0.3. These 2D
views were realized by Yves Grandvalet.

the activation of coefficients in one group influences the size of coefficients
in the other, hence the smaller radius of the 2D balls when B4 > 0. As ex-
pected, the group feasible set presents no singularities, thereby illustrating
the fact that the group Lasso cannot but activate all covariates within one
group at the same time. Thanks to the /; supplementary regularization
the sparse group feasible set presents singularities at all axes: the feasible
set of the group-lasso gets shrunk towards the /; ball. The coop feasible
set adds discontinuites on all axes but only on the sides of quadrants of
diverging signs, as emphasized earlier by Figure 3.5.

Figure 3.9 focuses on across group cross-sections, representing (1, B3)
for various values of B, and Bs. On the top-left panel, both B, and By are
switched off, while on the bottom-right panel both of them are activated.
With all three types of norms, there naturally is a similar effect under the
activation of either B, or B4, with rotated but similar balls on top-right
and bottom-left panels. With the group-Lasso, singularities disappear as
soon as the other member of the group is activated. Singularities allowing
to switch off B1 (resp. B3) disappear when B3 (resp. B4) is activated. As
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Figure 3.9 — Feasible sets for the coop-Lasso, group-Lasso and sparse group-Lasso penal-
ties. Cuts through (B, B3) at various values of (B2, Bs). These 2D views were realized
by Yves Grandvalet.

planned for, the sparse group-Lasso feasible sets maintain singularities at
all corners, whatever be the value of other coefficients in the group, hence
its ability to dissociate the selection of any variable from the selection of
other variables in the same group. The coop-Lasso leads to more complex
cuts. Here, singularities remain on the R™ x R™ quadrant in all panels
since values considered for 8, and B4 are positive, but singularities on the
positive side of the axis disappear when positive coefficients are activated
in the group. Note that, in general, there are less new edges with the
coop-lasso than with the sparse group-Lasso, since the new opportunities
to switch off some coefficients are limited to the case where the group-
Lasso would have allowed a solution with opposite signs within a group.
The crucial difference between the coop- and the group- or sparse group-
Lasso is the loss of the axial symmetry when some variables are non-zero:
decoupling the positive and negative parts of the regression coefficients
favors solutions where signs match within a group.
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3.2.2 Fenchel Conjugate Functions and the Coop-Lasso Subdifferential

We now turn to the analytical expression of the coop-Lasso subdifferen-
tial, which was first exhibited in Chiquet et al. (2011). In this section, we
derive the subdifferential for Problem 3.4 with the help of Fenchel conju-
gate functions and exhibit a possible dual form for Problem 3.4 in order
to shed light on following consistency proofs. This section has been en-
riched by the reading of Bach et al. (2012), Boyd and Vandenberghe (2006),
Borwein and Lewis (2006).

Fenchel Conjugation. Fenchel conjugate functions are of great help
when deriving optimality conditions and dual problems. As represented
on Figure 3.10, they measure the supremum gap between a linear function
and the function f of interest. The Fenchel conjugate f* : RP — [—00,0]
of a function f : R? — [—o00, 0] is defined by :

f(z) == sup[(z,x) — f(x)].
xeR?

The Fenchel conjugate is always convex.

f(z)

xr

Figure 3.10 — Construction of the Fenchel conjugate f*(z) := sup,cgp[(z, x) —
f(x)] = (z,x*) — f(x*). When f is differentiable, x* is the point where the differential
equals z.

The Fenchel conjugate admits interesting expressions in the case of
convex functions, norms in particular: the Fenchel conjugate of a norm
f:x € R?P  ||x|| is the indicator function of the unit ball of its dual norm
|| - || For every z in R?:

f*(z) — {0 if ”z”* S 1

+o0o otherwise
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Analytic Expression of the Optimality Conditions. The link between
Fenchel conjugation and optimization is offered by Fenchel-Young in-
equality. The inequality has no real value in itself, since itis a straightfor—
ward consequence of the definition of the Fenchel conjugate. For every x
and z in the domain of a function f : R? — (—o0, +o0], then:

fx)+ (=) < (x2). (37)

However, this inequality offers an efficient characterization of the subd-
ifferential. Indeed, equality holds in (3.7) if and only if z belongs to the
subdifferential of f at x, df (x). In particular, if f is a norm || - ||, we obtain
a concise expression for the subdifferential in terms of the associated dual
norm || - ||+. For every x and y in R,

lIz]l« <1 ifx=0
llz|lx =1and (x,z) = ||x|| otherwise.

zedf(x) & { (3.8)
It suffices to combine this characterization of the subdifferential with
Equation (3.5) and the definition of the dual coop norm to obtain explicit
optimality conditions for the cooperative-Lasso. Since the coop-Lasso acts
as a sign-adaptive group-Lasso, let us introduce some new notations to
clarify the following results. For each group Gi, define sy_1 and sy the
signed subsets of respectively positive and negative coefficients in ng.

Theorem 3.4 (Optimality conditions for the cooperative-Lasso) ~ The vector B is optimal for Prob-

3.2.3

lem 3.4 ifand only if z = —XT(y — XB)/ wyA belongs to the subdifferential of the
coop-norm associated to groups { Gy }X_, at B, characterized by indicator function
of the coop-dual norm || - ||coop=. The vector B is optimal if and only if, for every
group Gy,

max(|zg, |2 llzg,ll2) < 1,
and, in particular, for every group Gy such that positive and/or negative coeffi-
cients are activated:

zg, = ‘st||ﬁsj||_1 for j = 2k — 1 or 2k, such that s; # @.

A strong consequence of Theorem 3.4 is that if both positive and neg-
ative coefficients are activated within the same group, then no other coef-
ficients can be shrunk to zero in that group.

The Dual Problem

We devote a small subsection to the formulation of a dual problem asso-
ciated with the coop-Lasso derived thanks to Fenchel conjugation. Dual
problems can be used in optimization algorithms in order to check the
convergence of the algorithm. The main motivation here for the formu-
lation of this problem is the primal-dual witness construction of support
recovery results.

By definition of the cooperative dual norm, Problem 3.4 can be rewrit-
ten under the following primal form:

1 2 . 1 2
—lly = X A & Sy —X — (&, B).
min 5y =XBlli +A [[Bllcoop min ”u”z:g% Sy =XBllw — (o B)
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This primal problem admits the dual formulation given in Proposition
3.5.

Proposition 3.5 (Dual problem) Problem 3.4 admits the following dual problem:

33

3.3.1

sup  —f*(a).

”“”mop* E’]Ln

where f* is the Fenchel conjugate of f : B — f(B) = |y — XB|[%/2

Proof. Applying the min — max inequality and following the definitions of
the cooperative dual norm and Fenchel conjugate of

. 1 .1
min  sup  S|ly X[ — (&,8) > sup min |y —XB|[; — («,B)
CCDO'P —'n

RP
PER? &)l cqopr <An

1
> sup — sup(a, )—EHY_Xﬁ”i

2| coop* <An  BERP
> sup —f*(a)
| conpr <An

Note that f*(«) is obtained at points B such that

Vf(B) =XT(y —XB) = .

Moreover, both terms of the primal-dual inequality are equal as soon as
the domain of f has non-empty interior, and in that case the duality gap
f(B) + (&, B) — f*(&) between the left and right terms of the inequality
reduces to o. In that condition, we say that strong duality holds. As a
result of Fenchel-Young inequality, it appears that when strong duality
indeed holds, the dual optimal variable & belongs to the subdifferential at
B. This observation is of upmost importance to understand the proof of
model selection consistency.

CONSISTENCY

Beyond its sanity—check value, a consistency analysis brings along an ap-
preciation of the strengths and limitations of an estimation scheme. We
provide two types of results, based upon best achievable results for the
Lasso. First, we derive selection properties in an asymptotic linear regres-
sion framework, based upon an irrepresentable condition which is the
analogue of the sufficient and necessary condition for the selection consis-
tency of the Lasso. Secondly, we prove estimation and prediction sparsity
oracle inequalities, valid non-asymptotically and based upon a Restricted
Eigenvalue assumption.

Asymptotic Properties as a Selection Tool

Here we concentrate on the estimation of the support of the parameter
vector, that is, the position of its zero entries. Our proof technique is



3.3. Consistency

75

drawn from the previous works on the Lasso (Yuan and Lin 2007b) and
the group-Lasso (Bach 2008b).

In this type of analysis, some assumptions on the joint distribution of
(X,Y) are required to guarantee the convergence of empirical covariances.
For the sake of simplicity and coherence, we keep assuming that data are
centered so that we have zero mean random variables and ¥ = E [XXT] is
the covariance matrix of X.

(A1) X and Y have finite 4th order moments E [[|X||*] < oo, E [Y*] < co.

(A2) The covariance matrix ¥ = [E [XXT| € RP*? is invertible.

In addition to these standard technical assumptions, we need a more
specific one, substantially avoiding situations where the coop-Lasso will
almost never recover the true support S. In the sequel, & denotes the true
support of B*, while Sy denotes the intersection between the support and
group Gy.

(A3) All sign-incoherent groups are included in the true support: Vk &
{1,...,K}, i [|(B5,)*] > 0and [|(BE,) |l > 0, then Vj € Gy, Bf # 0.

Note that this latter assumption is less stringent than the one required
for the group-Lasso since it does not require that each group of variables
should either be included in or excluded from the support. For the coop-
Lasso, sign-coherent groups may intersect the support.

The spurious relationships that may arise from confounding variables
are controlled by the so-called strong irrepresentable condition, which
guarantees support recovery for the Lasso (Yuan and Lin 2007b) and the
group-Lasso (Bach 2008b). We now introduce suitable variants of these
conditions for the coop-Lasso. They result in two assumptions: a general
one, on the magnitude of correlations between relevant and irrelevant vari-
ables, and a more speciﬁc one for groups which intersect the support, on
the sign of correlations. These conditions will be expressed in a compact
vectorial form using the diagonal weighting matrix D(B) such that,

vk {1,...,K}, Vi € S(B), (D(B); = willg;(Bg)I™,  (3.9)

whfzre gaj(ﬁgk) is the r?striction of Bg to the subset of its components
which share the same sign as ﬁj.

(A4) For every group Gy including at least one null coefficient (that is,
such that ﬁ;‘ = 0 for some j € G or equivalently S # ©), there
exists # > 0 such that

1 _
w_kH(TSESTséD(ﬁg)ﬁg)|lc00p* <1l-17, (3.10)
where ¥ s7 is the submatrix of ¥ with lines and columns respectively
indexed by § and 7.

(As) For every group Gy intersecting the support and including either
positive or negative coefficients, let vy be the sign of these coefficients
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(e = 1if [|(B5,) || > 0 and v = —1if [|(Bg,) || > 0), the following
inequalities should hold:

1 ¥s:s¥ssD(B5)Bs <0, (3.11)
where = denotes componentwise inequality.

Note that the irrepresentable condition for the group-Lasso only considers
correlations between groups included and excluded from the support. It
is otherwise similar to (3.10), except that the elements of the weighting
matrix D are wy||Bg, || ! and that the self dual £, norm replaces the dual
cooperative norm.

Theorem 3.6 If assumptions (A1-5) are satisfied, the coop-Lasso estimator is asymptotically un-
biased and has the property of exact support recovery:

n

BT and P(SBT)=S) =1, G2

for every sequence Ay, such that A, = Agn™7, v € (0,1/2).

Compared to the group-Lasso, the consistency of support recovery for
the coop-Lasso differs primarily regarding possible intersection (besides
inclusion and exclusion) between groups and support. This additional
flexibility applies to every sign-coherent group. Even if the support is the
union of groups, when all groups are sign-coherent, the coop-Lasso has
still an edge on group-Lasso since the irrepresentable condition (3.10) is
weaker. Indeed, the norm in (3.10) is dominated by the ¢, norm used
for the group-Lasso. The next paragraph illustrates that this difference
can have remarkable outcomes. Finally, when the support is the union of
groups comprising sign-incoherent ones, there is no systematic advantage
in favor of one or the other method. While the norm used by the coop-
Lasso is dominated by the norm used by the group-Lasso, the weighting
matrix D has smaller entries for the latter.

Remark 3.1 Contrary to Negahban and Wainwright (2011) and Obozinski et al. (2011), those
results do not apply to high-dimensional settings where the number of variables
exceeds the sample size. In order to adapt Theorem 3.6, one would need to add
technical assumptions guaranteeing the existence of concentration inequalities,
however assumptions required on the design to obtain exact support recovery
would remain the same as in (Aq) and (As). Since the latter are the only assump-
tions that would differ between Obozinski et al. (2011) and the coop-Lasso, there is
no major interest in rewriting Theorem 3.6 according to those new developments
except for the pleasure of reading them in their up-to-date formulation.

IMlustration We generate data from an ordinary regression model
with g*=(1,1,-1,-1,0,0,0,0), equipped with the group structure
{GeH_, ={{1,2},{3,4},{5,6},{7,8}}. The vector X is generated as a
centered Gaussian random vector whose covariance matrix ¥ is chosen
so that the irrepresentable conditions hold for the coop-Lasso, but not
for group-Lasso, which, we recall, are more demanding for the current
situation, with sign-coherent groups. The random error ¢ follows a cen-
tered Gaussian distribution with standard deviation ¢ = 0.1, inducing a
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Group-Lasso Sparse group-Lasso Coop-Lasso
H % g
%, 2 2 N _
L -1 i) 1 L -1 i) 1 I. -Its_--;_ -1 i) 1
log,,(A) log;,(A) log;,(A)

Figure 3.11 — 50% coverage intervals for the group (left), sparse group (center), and
(right) Lasso estimated coefficients along regularization paths: coefficients from the sup-
port of B* are marked by colored horizontal stripes and the other ones by gray vertical
stripes.

very high signal to noise ratio (R?2 = 0.99 on average), so that asymptotics
provide a realistic view of the finite sample situation.

We generated 1000 samples of size n = 20 from the described model,
computed the corresponding 1000 regularization paths for the group-
Lasso, sparse group-Lasso, and coop-Lasso. Figure 3.11 reports the 50%
coverage intervals (lower and upper quartiles) along the regularization
paths. In this setup, the sparse group-Lasso behaves as the group-Lasso,
leading to nearly identical graphs. Estimation is difficult in this small
sample problem (n = 20, p = 8), and the two versions of the group-Lasso,
which first select the wrong covariates, never reach the situation where
they would have a decisive advantage upon OLS, while the coop-Lasso
immediately selects the right covariates, whose coefficients steadily dom-
inate the irrelevant ones. Model selection is also difficult, and the BIC
criteria provided in Section 1.3.1 select often the OLS model (in about 10%
and 50% of cases for the coop-Lasso and the group-Lasso respectively).
The average root mean square error on parameters is of order 107! for all
methods, with a slight edge for coop-Lasso. The sign error is much more
contrasted: 31% for the coop-Lasso vs. 46% for the group-Lasso, not far
better than the 50% of OLS.

Non-Asymptotic Properties for Estimation and Prediction Pur-
poses

In the high-dimensional framework, where the number of observations
is small compared to the number of variables, it is crucial to understand
the non-asymptotic properties of the estimator. In that respect, we de-
rive non-asymptotic oracle inequalities, based upon restricted eigenvalue
assumptions.

Similarly to the Lasso, bounds on estimation and prediction error for
the cooperative-Lasso are subject to restricted strong convexity assump-
tions. The assumption is roughly speaking the same, except that the cone
on which the assumption relies is defined by the cooperative-norm, and
the sparsity considered is a group sparsity.

Assumption 3.1 (Restricted eigenvalue) There exists x(s) > 0 such that:

min{ |Xull2 2|S| <s,u € R, ||use||cop < 3||t15||mp} > «(s)

Vnllus|2
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Under assumption 3.1 and for a good choice of the tuning parameter
Ap, we obtain prediction and estimation bounds as in Theorem 3.7.

Theorem 3.7 (Oracle inequalities) Under Assumption 3.1, for a choice of A, > 2||XTe/n||, any
solution to Problem 3.4 satisfies the following prediction and estimation oracle

inequalities:
32A2
X * coop 2 < n ,
X(8" =B < s
00! 32A
* coop n
— < -
||ﬁ ﬁ ||500‘P = K(S)zs’
32Ax

IB* — B2 < WS-

In order to explicit the bounds and order of probability in Theorem
3.7, let us restrict ourselves to the case where all groups share the same
size m.

Corollary 3.8 (Oracle inequalities with groups of equal sizes) Under Assumption 3.1 and con-
sidering that the data matrix has been scaled so that all diagonal elements of

Vm+4/1

XTX/n are equal to 1, for a choice of A, equal to U’%, then with prob-

ability larger than 1 — 2/K?, any solution to Problem 3.4 with groups of equal
sizes m satisfies the following prediction and estimation oracle inequalities:

32 s(m+logK+2/mlogK)

”X(ﬁ* - BCOOP)HZ < K(S)2 n ’ (313)
32 s(v/m+ 4/logK)

- 00
18" — B |lcoop <

()2 T , (3-14)

coo S(+/m log K
18— B *’||2§xf’j)2 (\r% 8K)

Remark 3.2 We need to restrict ourselves to groups of equal size because the upper bound on the
probability of the event {A, > 2||XTe/n||} for fixed A, relies on tail bounds of
the maximum of K chi-square distributions. If all groups share the same size, then
we can easily use a union bound on the tails of K independent chi-square with
similar degrees of freedom. Otherwise, each of the K chi-square distributions has
its own degree of freedom, which makes it impossible to upper-bound explicitely
the probalitity of the intersection, unless we use a very raw upper-bound.

(3-15)

In the case of multitask data, where the number of groups actually
corresponds to the number of variables p, the group size is equal to the
number of tasks T, and the number of observations # is in fact equal to
NT where N is the number of observations gathered by condition, the £,
bound reads:

+  pCOOp 32 s log p
I8~ B ||2g@ﬁ(1+ T).

The rate ﬁ shows that like the group-Lasso, the coop-Lasso adapts to

the unknown group-sparsity, but not without paying a price of the order
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y/log p for not knowing in advance the truely relevant groups. The T task
replicates alleviate this cost by a factor /T.

Remark 3.3  There is no improvement compared to the group-Lasso oracle inequalities because we

3.4

3.4.1

cannot exploit the advantages of the cooperative-norm on two fronts. First, the
probability of event A uses an upper-bound of the dual cooperative-norm by the
dual group-norm, because the dual coop-norm leads to chi-square distributions of
unknown degrees of freedom which we cannot control explicitly. Second, what
appears is actually a rate of 2s, twice the group-sparsity: we cannot count the
number of activated signed-groups instead. Indeed, following the terms of S. Ne-
gahban and Yu (2012) the cooperative-norm is only decomposable to group-sparse
subsets, not to signed quadrants: we can write ||& + B||coop = ||&||coop + || B||coop
for every « € M and B € M* for subsets M = {x € RP,Vk € 5%, xg_= 0}
defined by the activation of a subset of groups, but not by the activation of a subset
of signed subgroups.

Recent developments in S. Negahban and Yu (2012) and Lounici et al. (2011)
could help improve the results. The former allows to consider weakly group-sparse
vectors defined as {5 ; bounded vectors instead of group sparse vectors. The latter
allows to work with group-specific penalties A;, which might be interesting for
at least two reasons: first, in order to adapt the amount of penalty to the size of
the groups, second in order to derive oracle inequalities for weighted cooperative
reqularizations. Again, the main difference between the group-Lasso and coop-
Lasso results lies in the Restricted Eigenvalue assumptions. As a result, there is
no major novelty to be learnt from the adaptation of those recent results to the
case of the coop-Lasso.

APPLICATION TO THE INFERENCE OF MULTIPLE GAUSSIAN
GRAPHICAL MODELS

As exposed in introduction, the first motivation of the cooperative-Lasso
is the inference of multiple Gaussian graphical models as in Chiquet et al.
(2011). This section details the adaptation of the cooperative-Lasso for
linear regression to the inference of multiple Gaussian graphical models.
This application is illustrated on two real datasets.

Statistical Modeling

Let us model expression levels by condition-specific Gaussian distribu-
tions with condition-specific means #(©) — which vanish when center-
ing the data condition by condition — and covariance matrix 2. In
each condition, the distribution of the expression vector X(©) is mod-
eled by a Gaussian graphical model with graph of conditional depen-
dencies 1"(‘:), whose edges correspond to the non-zero entries of the in-
verse covariance matrix @), For clarity reasons, we assume that we
gather the same number n of observations in each condition, stored in
an n x p matrix X(¢, Under the natural assumption of independence
between conditions, the log-likelihood within each sample ¢ admits the
same form as in Problem 1.10 and the log-likelihood of the overall sample
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X=X .. x . x©9)¢ M,,»cp factorizes into:
a <
¢X;8) = 3 |} log det@ — (s, 01 —Cplog2n
c=1

where ® = (0D ... ©©) ... ©(9) to alleviate notations and S(¢) denotes
the empirical covariance matrix in condition c.

Similarly to the ii.d. setting, this problem can be solved via an appro-
priate regularization of the likelihood:

© = arg min £(X; ©) + A pen(®). (3.16)

Adopting a neighborhood selection strategy, regularizations presented
in the previous sections in the general linear regression framework are
directly transposable to the case of multiple Gaussian graphical models.
Instead of solving Problem (3.16), p independent problems like Problem
(3.18), one for each gene g.

C
min ) (X7 — X287 + Awpen(By) (G17)
g c=1

Each Problem (3.18) can be rephrased as a unique linear regression
with partionned variables as originally in Equation (3.1). Denote by X\,

the nC x n(p — 1) block diagonal matrix formed with the {X{?},{: =
1,...,C by Xg the size-nC vector concatenating the observations for gene
g in the C conditions, and finally by B the size n(p — 1) vector concate-

nating all ﬁg)’s, forc =1,...,C. Then Problem (3.18) is equivalent to

min [Xs = XgB % + Aupeng (By), (3.18)

£
using the partition

G=(1,2...,C,1,2,...,C,...).
e’

p—1 times

The different regularization terms pen(@) presented in the previous
sections will result in the estimation of different sparsity patterns linked
to different assumptions on the amount of heterogeneity across conditions.
Indeed, we assume that measurements in all conditions focus on the ac-
tivity of the same set of genes P, but need to loosen the fundamental i.i.d.
assumption across conditions in different ways that we detail now. We are
focus on four different assumptions on the similarities between partial cor-
relations structures across conditions, as four different condition-specific
variations around a common structure represented by 2*, ©* and I'*.

(C1) Identically distributed: All conditions share the same covariance and
therefore concentration matrices ©* and ®*. For every condition ¢
and every pair of genes (g, h) € P?

(c) .
Ogn = Ogns



3.4. Application to the Inference of Multiple Gaussian Graphical Models

81

(C2) Identical partial correlation structures: All conditions share the same
graph of conditional dependencies I'*. For every condition ¢ and
every pair of genes (g,h) € P?,

9;? £0& 65 £0, ie. TO=T%

(C3) Almost identical partial correlation structures: All conditions share the
same graph of conditional dependencies I' except for a small set of
condition speciﬁc edges, such that for every condition ¢ and every
pair of genes (g, 1) € P?

9;? £0= 05 A0, ie I*CI0;

Note that this assumption encompasses cases where edges would be
missing in some conditions when compared to the common bench-
mark I'*. This configuration fit into assumption (C3) as long as I'* is
defined as the reunion of all condition-specific graphs.

(C4) Almost identical sign-coherent partial correlation structures: All condi-
tions share the same graph of conditional dependencies I', with all
el sharing the exact same sign-pattern, except that, for each edge,
there can exist a subset of disagreeing conditions where this edge
can either disappear or switch to the opposite sign. For every pair
of genes (g,) € P?, the edge (g, h) either shares the majority sign
sign(ﬂgh) or the minority sign sg;,. For every condition ¢ and pair of

genes (g,h) € P?,

sign(6%) € {sign(63,), 5g1-}

Note that even though this assumption is called sign-coherent, it al-
lows for positive edges in a majority of conditions to cohabit with
negative edges in the remaining conditions. However it forbids sit-
uations where the same edge would be positive in some conditions,
negative in others, and absent in a last subset of conditions.

Under any of those four assumptions, combining observations from
different conditions into one single inference problem is a way of alle-
viating the burden of high-dimension, in the spirit of panel datasets or
multi-task experiments. Assumption (C1) corresponds to the highly un-
likely case where all conditions actually happen to form a larger i.i.d.
dataset. We only add it to stress the fact that discarding the heterogeneity
and naively merging all information into one single estimator is doomed
to be incorrect.

Assumption (C2) alleviates assumption (C1) by allowing edges to dif-
fer in intensity across conditions. This setting corresponds to the group-
Lasso penalty:

C 1/2
PN (@) = Y (m;;))z) .
(gh)eP? \e=1

As assumption (C2) suggests, the group-Lasso results in different [e)0)
estimates but in a single common conditional dependency structure. If
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the objective in mind is to compare the regulatory networks inferred in
each condition, this is a momentous drawback. In the context of systems
biology, the identification of modifications in the regulatory mechanisms
between different conditions is often the very purpose of the experimental
design. We can think of case/control studies comparing regulatory mech-
anisms in diseased patients and sane controls, placebo/treatment exper-
iments analysing the effect of a specific treatment on regulatory mecha-
nisms compared to the placebo group. Stress experiments can lead to a
large variety of gene expression profiles. More generally, even when the
experimental design does not define prior sets of conditions, any known
partition of some phenotypes can define a posteriori as many interesting
sets of conditions. In all these settings, differential analyses are often led
to identify the univariate variations in gene expression profiles that best
distinguish those conditions. In a similar way, GGMs can be used to iden-
tify variations in conditional dependency structures across distinct condi-
tions, hopefully unveiling changes in gene regulation mechanisms. This is
the ambition of the regularizations linked to assumptions (C3) and (Cyg),
namely the sparse group-Lasso and the cooperative-Lasso.

Il1lustration on Real Datasets

A thorough simulation study has been conducted by Chiquet et al. (2011),
we therefore refer to this paper for numerical experiments comparing the
performances of the cooperative-Lasso and group-Lasso in terms of edge
detections under various settings.

In this subsection, we illustrate the benefits of the cooperative-penalty
on two datasets, first of all a multiple sclerosis dataset issued from a
collaboration with J.C. Corvol which led to the presentation of a poster
at the European Comitee for Treatment and Research Multiple Sclerosis
(ECTRIMS 2012) and secondly, a cancer dataset kindly provided by M.
Jeanmougin. In both cases, the objective of the experiment is to compare
the gene regulatory networks of two subpopulations.

Multiple Sclerosis Dataset. Gene expression profiles were taken from
26 patients with secondary-progressive multiple sclerosis (MS) included
in a placebo-controlled, multiple-ascending dose, double-blind study (Ko-
valchin et al. 2010). Measurements were taken at baseline and once a
month over the next three months. Among them, 19 patients (active group)
were administered doses of amino acid copolymer PI-2301, which is en-
visaged as an alternative therapy for MS, while 7 patients (placebo group)
received a placebo. We adopt a candidate gene approach and infer a Gaus-
sian graphical model on 23 genes known or suspected to be genetically
associated with MS.

The specificity of this dataset is that it is longitudinal. We therefore
combine the VAR1 modeling and cooperative penalty. In order to correct
for patient-specific effect, the data is centered and scaled patient by pa-
tient. The networks presented in Figure 3.12 were selected according to
the BIC criterion.

The networks seem to share some of the paths, organized around
IL2RG and IL7, but disagree on the activation of JAK1 regulations. The
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Figure 3.12 — Gaussian graphical models inferred by the coop-Lasso on active (top-left
panel) and placebo (top-right panel) groups, common (bottom-left) and condition-specific
(bottom-right) edges. The amount of penalty is chosen by BIC.

main question is whether this discrepancy is merely an estimation artefact,
or if this discrepancy is statistically significant and could be interpreted as
a real (potentially indirect) inhibition of JAK1 regulations by the adminis-
tration of the drug.

Cancer Relapses Dataset. The dataset consists in 82 transcriptomes from
patients suffering from breast cancer, extracted from the study conducted
by Guedj et al. (2012). Patients are split into two subpopulations: 31 of
them suffered from metastatic relapses (n0tRFS group), 51 did not (relapse-
free survival (RFS) group). We restrict ourselves to the analysis of a signa-
ture of 62 genes selected by M. Jeanmougin using the approach described
in Jeanmougin (2012). The networks selected by BIC criterion are pre-
sented in Figure 3.13.

Among the bulk of edges, only one (CRAP2-MMP1) happens to differ
between the two sets of patients. Again, the question is whether this
discrepancy is significant or not.
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Figure 3.13 — Gaussian graphical models inferred by the coop-Lasso on RFS (top-left
panel) and notRFS (top-right panel) groups, common (bottom-left) and condition-specific
(bottom-right) edges. The amount of penalty is chosen by BIC.



HoMOGENEITY TESTS FOR
HicH-DIMENSIONAL LINEAR
REGRESSION

His chapter presents some ongoing work in collaboration with E. Villers
T and N. Verzelen in an attempt at providing two-sample homogeneity
tests for high-dimensional linear regression, hence the heterogeneity in
the depth of analysis of the various methods explored.

We study an adaptation of the one-sample testing procedure described
in Verzelen and Villers (2010) to the two-sample framework, including
theoretical controls on type-I error and power.

We also include a more recent and less advanced investigation of an adap-
tation of higher-criticism to the two-sample testing problem, which we
think particularly interesting in terms of computing time when facing
high-dimensional dataset.

We provide numerical experiments illustrating the performances of those
testing strategy in a rather simple design setting. We hope to gather soon
some results under more complex designs.
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INTRODUCTION

As exposed in previous chapters, the recent flood of high-dimensional
data has motivated the development of a vast range of sparse estimators. If
theoretical guarantees have been provided in terms of prediction, estima-
tion and selection performances (among a lot of others Bickel et al. 2009,
Wainwright 2009a, Meinshausen and Yu 2009), only a rather small pro-
portion of the research effort focuses on quantifying the uncertainty sur-
rounding the estimate on a given data set with given design proportions, be it
in terms of confidence intervals or parametric hypothesis testing schemes
guaranteeing a control on type I errors. Yet, quantifying the uncertainty is
essential in applications where further experiments or developments rely
on selected models and estimated coefficients.

This chapter is mainly motivated by the validation of differences ob-
served between Gaussian graphical models inferred on transcriptomic
data from two subpopulations, as many potentially new drug or knock-
out targets. Of course, graph theory comes with a vast literature about
graph comparisons. Yet, we would like to stress here that our objec-
tive is not to compare two graphical structures taken for granted, but to
test whether the divergences in estimated graphical structures could come
from estimation uncertainties. Following literature terms, we identify the
two subpopulations as two samples, but the reader might keep in mind
that those two samples can also be referred to as conditions or tasks, as in
Chapter 3, depending on the research field.

In the sequel, we keep this motivation in mind but adopt the high-
dimensional linear regression model as theoretical framework. Formally,
we consider the following statistical model

Yy — X(l)ﬁ(l) +e® (4.1)
Y? = x@p@ 4 2

where the size p row vectors XM and X follow Gaussian distributions
N(0,,21)) and N(0,,2(2)), whose covariance matrices remain unknown.
The noise components e® and €@ are independent from the design
matrices and follow a centered Gaussian distribution with unknown stan-
dard deviations o) and ¢®.

The objective is to test whether the models (4.1) and (4.2) are the same,
that is
Ho : ﬁ(l) — ﬁ(2) oW =@ and =M =3x@

This problem also amounts to test whether (Y(|X(1) ~ (Y?)|X(?) ass.
and 2(V) = 2@

The addition of (V) = £.2) to the null hypothesis is arquable, and clearly depends

on the random design assumption. This choice comes from our motivation to
derive tests for Gaussian graphical models.
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Literature in Close Frameworks

The literature on high-dimensional two-sample tests being very light, most
of the state-of-the-art concerns two close subjects: high-dimensional tests
for the equality of means and high-dimensional linear regression tests for
the nullity of coefficients. Since tests for the equality of means corresponds
to linear regression designs where X and X are both equal to the iden-
tity matrix I, the objective is to extend the former to non-orthogonal de-
signs, exploiting ideas from the latter. Besides, since our main motivation
is to deal with Gaussian graphical models, we need to find out a testing
strategy adapted to random design regression.

In both scenarios as in high-dimensional estimation, the fundamental
key to high-dimension is the assumption of sparsity. How to introduce
sparsity and exploit it distinguishes the different approaches.

Tests for the Equality of Means. In the classical min(n1,13) > p frame-
work, it is natural to test for the equality of means via the multivariate
form of the student t-statistic, the Hotelling T? statistic. Denote respec-
tively by Y® and £ the empirical mean of the Y® and common empirical
covariance. The Hotteling statistic is defined by:

2 NMi+ny—p—1 ninp
 (mp+ny—2)p np+ny

(?(1) _ ?(2))T2n(?(1) _ ?(2))’

which follows a Fisher distribution with parameters p and n1 +n, —p —1
under the null hypothesis. However, as underlined by Bai and Saranadasa
(1996), the asymptotic power of the Hotelling test statistic suffers from
the inaccurate estimation of £ when p is of the order of min(ny,12). As
a result, the main challenge is to improve the inference of the common
covariance matrix X under difficult design sizes. Some results suggest to
rely on diagonal estimates, like Bai and Saranadasa (1996), Chen and Qin
(2010), Srivastava and Du (2008). Yet, the gain in power due to the faster
convergence of ¥ is made at the price of the omition of potential corre-
lations in the design. More recently, to refine the estimation of the full
covariance matrix, Lopes et al. (2011) make use of sparsity assumptions
and compute repeatedly the Hotelling test statistic on small random sub-
sets of variables, before taking the average over all random subsets. This
random projection method achieves greater power than methods based
on diagonal estimates of X. like Bai and Saranadasa (1996), Chen and Qin
(2010), Srivastava and Du (2008) as soon as variables are correlated and
most of the variance can be captured by small subsets of variables.

Tests for the Nullity of Coefficients. Tests for the nullity of coefficients
in high-dimensional linear regression form a one-sample analog of our
problem. It can be considered as a limit of the two-sample test in the
case where B is known and equal to 0, and the sample size n; is con-
sidered infinite so that we perfectly known the distribution of the second
sample. A first series of papers provide high-dimensional p-values for the
nullity of coefficients in the high-dimensional linear regression framework

Ho,; ﬁm = 0, in the objective of testing for the significance of each
coefficient individually.
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Despite the problem of fitting a model with more variables than ob-
servations, which can be solved using regularized regression, the main
problem in high-dimensional linear regression is to correctly estimate the
variance and covariance components, just as in the test for the equality of
means. Following the enthusiasm for /1 regularized least squares, there
has been attempts at providing confidence intervals for the Lasso through
an estimation of the standard errors. Tibshirani (1996) adresses this is-
sue but suggests an estimator of the standard error which inappropriately
gives a null variance for all coefficients which are set to zero. Osborne
et al. (2000) provide a new approximation which corrects this problem but
cannot be used when the number of variables exceeds the sample size.
Besides, they raise the question of whether the uncertainty surrounding
Lasso coefficients can be adequately summarized by standard errors, since
their distribution is likely to be distorted around zero. A somewhat an-
swer to this issue would be provided by Bayesian approaches like the
Bayesian Lasso Kyung et al. (2010), which provides posterior credible in-
tervals for each coefficient.

In order to overcome the burden of dimension, another line of work
adopts a two-step approach through ha]f-sampling. Indeed, Wasserman
and Roeder (2009) suggests to split the sample in half and apply model
selection on the first half in order to test for the significance of each coef-
ficient using the usual combination of ordinary least squares and Student
t-test on a model of reasonnable size on the second half. To reduce the
dependency of the results to the splitting, Meinshausen et al. (2009) advo-
cate to use half—samp]ing B times, and aggregate the B p-values obtained
for variable j in a way which controls either the family-wise error rate or
false discovery rate. They note that both methods require a Bmin condition
to guarantee that relevant covariates enter the model in the first step. Yet,
the main issue with the procedure based upon half-sampling is that the
cost of splitting the sample in half is paid twice: first, the model selec-
tion step lacks in robustness, second, the testing step is rendered strongly
conservative.

The last two pieces of work manage to get rid of the B,,;, assump-
tion. They start from a regularized regression and build compent-wise
confidence intervals or p-values for regularized estimates once corrected
for bias. The approach by Zhang and Zhang (2011) provide in a way
an answer to the question of confidence intervals based upon the Lasso.
They define a Low-Dimensional Projection Estimator, following the effi-
cient score function approach from semi-parametric statistics. Under clas-
sical restricted eigenvalue assumptions to guarantee the convergence of
the initial Lasso estimate, as well as assumptions linked to the scaled Lasso
(Antoniadis 2010, Sun and Zhang 2010; 2011) to guarantee a consistent es-
timation of the noise variance, they provide robust confidence intervals
for each individual component of B. Bithimann (2012b) develop a simi-
lar idea, building upon the Ridge estimator. Under mild conditions on
the design, this work derives component-wise confidence intervals based
upon stochastic upper-bounds for bias-corrected Ridge estimates. How-
ever, it seems from their simulated experiments that the use of stochastic
upper-bounds results in a highly conservative type-I error control.

The second work also leads to p-values for tests of joint nullity
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'Hbg : B = 0, for a given subset of variables S C {1,..., p}. This testing
scheme allows to test whether the true model lies within a given subspace,
or whether some important variables are missing. This is the point of view
adopted by Verzelen and Villers (2010). Yet in high-dimension, if it is pos-
sible to compute a sparse enough model under the null hypothesis, the
full alternative model is still intractable by usual least squares. The idea of
Verzelen and Villers (2010), based upon the work of Baraud et al. (2003),
is to approximate the alternative H : 3j € S, ﬁ;‘ # 0 by a collection

of tractable alternatives {HS™ : 3j € m C S°, B; # 0,m € M} work-
ing on models m of reasonable size. The null hypothesis is rejected if the
null hypothesis H§ : p* is rejected against at least one of the alternatives
'H‘lg”" at levels corrected for multiple testing. This approach is in a way
analog to Lopes et al. (2011), since a collection of reduced models is used
to approximate an untractable high-dimensional statistic.

If global testing approaches like in Verzelen and Villers (2010) is
clearly less informative than approaches providing individual significance
tests like Meinshausen et al. (2009), Zhang and Zhang (2011), Bithlmann
(2012b), global approaches can reach better performances for fewer sam-
ple sizes. A typical and now popular example of this phenomenon is
given by higher-criticism, which is known to reach optimal rates for the
detection of rare and weak signals for an extremely competitive comput-
ing time. Higher-criticism was originally introduced in orthonormal de-
signs (Donoho and Jin 2004, Hall and Jin 2008), but has been proved to
reach optimal detection rates in high-dimensional linear regression as well
(Arias-Castro et al. 2011, Ingster et al. 2010). In the end, higher-criticism
is certainly highly competitive in terms of computing time, but requires
strong assumptions on the design. The strategy adopted in Verzelen and
Villers (2010) is indeed much more intensive in terms of computing, but
corresponding theoretical results remain valid without any assumptions
on the design.

Last but not least, we need mention a quite popular solution among
biologists because of its ﬂexibility, which is to run permutation tests. Sam-
ple indices are permuted N times in order to create N fictive samples

(XSP, ng)) mimicking the null hypothesis that the two samples come from
the same distribution. The statistic of interest T(x!,x2) is computed on
each permuted sample in order to simulate its distribution under the null.
It then suffices to compare the observed statistic T(XM,X?) to its per-
muted quantile f}a(T(x}fﬂ),xﬁf))). However efficient empirically, permuta-
tion tests present two main drawbacks beyond their computational cost.
First, if the strategy seems quite natural, it is not as trivial to justify them
from a theoretical point of view. Second, performances rely on the crucial
identification of a relevant statistic T(xl,xz), which is again not as trivial

as it might seem.

Suggested Approach.

We recall that our main objective is to test for the homogeneity of sample-
specific coefficients B(1) = B(2) in design proportions such that the estima-
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tion of high-dimensional parameters is only accessible via biased regular-
ized estimators, whose variance terms are even harder to estimate.

To answer this question, we build upon the procedure of Verzelen and
Villers (2010). The idea is to project the main statistical testing problem
onto a collection of subspaces of lower dimension, and combine the results
of low dimensional tests by multiple testing calibrations. In order to adapt
this approach, we need to precise three steps: first, the construction of
a good parametric statistic to run our tests in low dimension, second,
the selection of a good collection of low dimension subspaces, third, the
choice of an efficient calibration procedure. Here is a short overview of
our answers to these three points.

Choice of a Good Parametric Statistic. Note that the two-sample test
problem can be rephrased as a one sample test problem using the notation

Y™ X1 o B e
[Y(2) ] - [ 0 X2 ] [ B2 } + [ b)) } . (4.2)

Under this formulation, it appears quite clearly that a simple Fisher statis-

tic testing for linear constraints ﬁm = ﬁ(z) can be used under classical
design proportions, that is to say, provided the least square estimator
is defined. Therefore, a first naive option is to combine the procedure
of Verzelen and Villers (2010) with classical Fisher statisﬁcs However,
more than testing Ho, the Fisher statistics is testmg for fi = ﬁ(z) un-
der the assumption that oV = 42 , and x( 2). In order to
test ’Ho a bit more accurately and be able to reject the null if ¢V #* o)
or X(1 76 X2 we introduce a new likelihood-ratio-type statistic quan-
tifying roughly-speaking how much the sample-specific estimates are far
from adequately fitting the opposite sample. We prove that the procedure
achieves optimal rates in the minimax sense, adapting itself to the un-
known sparsity of the difference f(1) — (2, under minimal assumptions
on the maximal sparsity to remain tractable.

Selection of a Powerful Collection of Models. The ideal collection mod-
els or subspaces in which to lead tests in small dimension must be exhaus-
tive enough, so that we miss none of the most informative models. Yet,
the computing time being linear in the size of the collection, we need
to keep the number of models reasonably low. In order to find the best
tradeoff between those two competing objectives, we investigate the use
of deterministic as well as data-driven collections of models.

Multiple-Testing Calibration. The fine tuning of this last step is crucial
to maintain a strong control on type-I Error without compromising the
power of the test. We first focus on Bonferroni calibration for its sim-
plicity of implementation as well as to derive fine theoretical controls on
type-I error and power. Yet, as explained in more detail in Section 4.2,
the strategy used to control the quantiles of the suggested likelihood-ratio
statistic makes Bonferroni calibration even more conservative than usual.
Therefore we also investigate the performances of a calibration by permu-
tation, which admittedly takes a lot more computing time, but achieves
greater power.
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Quick Look at Two-Sample Higher Criticism Given the detection per-
formances proved for higher-criticism in high-dimensional linear regres-
sion for such a competitive computing time, we investigate the possible
adaptation of higher-criticism to the two-sample test problem. Yet, the
theoretical side of two-sample higher-criticism is still to be explored.

After a short clarification of the notations, we devote Section 4.2 to
the description of the adaptive likelihood-ratio procedure, along with the-
oretical controls of type-I error and power. Section 4.3 defines higher-
criticism and explores its possible adaptation to two-samples tests. Sec-
tion 4.4 provides simulated experiments comparing the performances of
the suggested procedures. Section 4.6 provides additional details about
the technique used in Section 4.2 to control the quantiles of the likelihood-
ratio statistic.

Notation

We mention here some notation to used throughout the chapter. We con-
sider an ni-sample of the first model and an n-sample of the second
model. In the sequel, the size ny (resp. nz) vector of the responses y(®)
(resp. Y?)) is denoted Y1) (resp. Y(z)). Similarly, the design of size n1 x p
and n,; x p are denoted XM and X, Moreover, Y and X respectively
stand for the concatenation of YV and Y@ and of X! and X®.

Yy — X(l)ﬁ(l) + e (4-3)
Y? = XxQpQ2 4

Also, £ (resp. £?)) denotes the log-likelihood of the first (resp. sec-
ond) sample normalized by n1 (resp. n2). Given a subset S C {1,. .., p}

of size smaller than nq A n,, (Agl),ﬁé])) stands for the maximum likeli-

hood estimator of (8(1),07) with the constraint that the support of B(Sl) is

included in S. Similarly, we note (BZ),5%)) for the maximum likelihood

corresponding to the second sample, and (Bs,@s) the maximum likeli-
hood corresponding to the constrained model, pooling the two samples

into one. Similarly, ﬁ(slj and ﬁgz) denote the restriction of (1) and B to
model S.

In general, respecting the notations already adopted in previous chap-
ters, £, norms are denoted || - ||,, except for the Euclidean norm which
is sometimes referred as ||.|| to alleviate notations. For any positive defi-
nite matrix X, ||.||z denotes the Euclidean norm associated with the scalar
product induced by X: for every vector x, ||x ||z = xTXx. Besides, for every
set S, |S| denote its cardinality. For any integer k, Iy stands for the identity
matrix of size k. For any square matrix A, @max(A) and @min(A) denote
respectively the maximum and minimum eigenvalues of A. When the
context makes it obvious, we may omit to mention A to alleviate notations
and use @,y and @y instead.

To finish with, L refers to a positive numerical constant that may vary
from line to line.
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ADAPTIVE HOMOGENEITY TESTS

The overall testing scheme adopted in this section is based upon the
high-dimensional parametric testing procedure described in Verzelen and
Villers (2010), itself adapted from the general scheme designed by Ba-
raud et al. (2003) in order to derive statistical tests against non-parametric
alternatives. The testing procedure approximates the untractable high-
dimensional test of Ho : B = B2 against H; : B # B by a mul-
tiple testing construction. The approximation relies on the fundamental
assumption that the true model is sparse and lies in a subspace of rea-
sonnable dimension, compared to the sample sizes n1 and n>. If S stands
for any subset of {1,...,p} that satisfies 2|S| < n1 A nz, we approximate
the test of Hy against H; by a collection of tests {Hysv.s.H1s}ses in re-
duced dimension:

Hos: B =B, ¢ =0c®, and =) =5,
His: (51) + ﬁgz) , Or o # ol2).

0

The hypothesis H implies Ho s for any subset S C {1,...p}.

Proof. Under Hy, the random vectors of size p 4+ 1 (Y1), X)) and

(Y®, X®) follow the same distribution. Hence, (Y |X{)) ~ (Y@ |x?)
for any subset S. O

By contraposition, it suffices to reject at least one of the Hy s hypoth-
esis to reject the global null. Obviously, it would not be reasonable in
terms of algorithm complexity to test for each null hypothesis of reduced
dimension, since there would be 27 of them. As a result, we must restrain
ourselves to a relevant reduced collection of tests {'Hgls, scs }, where the
collection of support S is potentially data-driven. On the one hand, by
adding a calibration for multiple testing, we can guarantee a control on
type I error. On the other hand, if the collection S is judiciously selected,
then we can manage not to lose too much power compared to the full
deterministic collection.

This framework can be described through three major steps:

1. a parametric statistic for the tests of reduced hypotheses Hy s;
2. a powerful data-driven collection of models S ;
3. a calibration procedure guaranteeing the control on type I error.

The next three sections discuss interesting options for these three steps.

Parametric Test Statistic

Naive Fisher Statistic. For a given model S of reasonable size |S| <
Diax = (11 A np) /2, testing ‘Hy s against the specific alternative that

His: ﬁ(sl) + ﬁ(sz) , but ¢ =¢@ and Xgl) ~ XgZJ,

one can naturally rely on a usual Fisher statistic testing for linear con-
straints ﬁ(;) = gz) = PBs on regression coefficients of model (4.2). Because
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the two samples are independent, the residual sum of squares of the un-
constrained model (4.2) decomposes into the sums of squares of the two
sample-specific models. The Fisher statistic, with (p,n — 2p) degrees of
freedom reads:

a ~(1
Y = XBs|? — Y —XOB|? — YD - XPBEPn—2p -
1 2
||Y(1)_x(l)§s)||2+||y(2) x(z)ﬁ( )”2 p

Fig =

Likelihood-Ratio Statisticc. However, if we keep in mind our objective
to derive homogeneity tests for GGMs, the assumptions that o) = ¢2)
and particularly that ¥ = 22 can be overly restrictive, which leads
us to introduce a new parametric statistic taking the form of a two-sample
likelihood-ratio, measuring how far the sample-specific estimates disagree
with the opposite sample. To do so, let us define the likelihood ratio at
(B, o) with respect to sample i = 1,2 as

Df)(B,0) = L) (BY,30) - L1 (B,0).

We can now consider the following statistic:
Fs =2 | D) (B, ) + DY (B, 51). (45)

The staﬁstic Fs amounts to comparing the estimators (ﬁsl ,351 ) and

,or through their corresponding log-likelihoods. In order to sim-
s s 8 P g 108
plify the analysis, we decompose the test statistic Fs into the sum of three
terms Fg1 + Fss + Fs 3, where
(1 (2
R = oy YO XOBDR/m YO —XOBE |/ m,
g 2 (1
[Y® X2/ YO —XDBS 2/ my
2)/2(1) (2
X (B — BS) |12/ m2
IY® — XOBY|12/ny
1,41 22
R, = IXO@ - BO)IP/m
IY® —x@BE|2/n2

While Fg; evaluates the discrepancies in terms of conditional vari-
ances, Fs, and Fs3 compare ﬁm to ﬁ(2). Proposition 4.2 characterizes the
distribution of each of these terms. To simplify notations, let us denote by
g the non-negative function defined on R* mapping x to —2+x+1/x.

Proposition 4.2 (Conditional distributions of Fs 1, Fs2 and Fs3 under Hy)

1. Let Z denote a Fisher random variable with (ny — |S|, ny — |S|) degrees of
freedom. Then, under the null hypothesis,

o efpmmols]
Ho

ny(ny —|S|)




4.2. Adaptive Homogeneity Tests

95

2. Let Z1 and Zz be two centered and independent Gaussian vectors with
covariance XS [(X m)(gl))_1 + (xg"”*x?))—l] XE;Z)* and I, _s). Then,
under the null hypothesis,

|1 Z1]1%/ 12

1Z21?/ 1

A symmetric result holds for Fgs.

In order to calibrate a multiple testing procedure based on these para-
metric statistics, we shall compute the corresponding p-values. Although
the distributions identified in Proposition 4.2 are not familiar distributions
with ready-to-use quantile tables, they all share the advantage that they
do not depend on any unknown quantity, such as design variances »(1)
and 2(2), noise variances ¢!) and 0(2), or even true signals ﬁ(]) and ﬁ(z)
In the sequel, we note Qg 5/ (1Xs) (resp. Qy5)(#|Xs) and Qy 5 (u[Xs)) for
the conditional probability that Fs; (resp. Fs; and Fs3) is larger than u.
Consider some 0 < x < 1. By Proposition 4.2, the quantile Q; |1S| (x]Xs) is
easily computed analytically as a function of the quantile of a Fisher dis-
tribution. Since the conditional distribution of Fs, given Xg only depends
on |S|, n1, n2, and Xs, one could compute Q>(u|Xs) by Monte-Carlo sim-
ulations. However, this approach is computationally prohibitive for large
collections subsets S. This is why we shall use an explicit upper bound of
Qy5(#]|Xs) based on Laplace method, as given by Proposition 4.3.

Proposition 4.3 (Upper-bound on Fs and Fs3 quantiles) Lef us note a = (ay, ..., ag)) the posi-

4.2.2

tive eigenvalues of

m 2) (W*y 1) -1 (2)#4,(2)y—1] y(2)*
S (67X 7+ XX

For any u > ||a||;, take

|S| S oy
Q2|5|(”|Xs) = exp !——zlog (1—2A%a;) — 2| |l og (1+ t9|)]

where A* is explicitely defined in Section 4.6. Then, for any u > ||a||;,
Qa1 (]Xs) < Qy 5 (u|Xs).

To simplify notations, we also define é],|5| as equal to @1!|5|. This

abusive notation must not mask the essential difference between QLI s|and
'QU2!|5| or QS,ISI‘ Indeed, Q1,|S| is the exact quantile of Fs1 while QZ,|S| and
éS,I S| only are upper-bounds on Fs» and Fs3 quantiles. The consequences

of this asymetry in terms of calibration of the test will be adressed in
Subsection 4.2.3.

Choices of Test Collections

Many collections S can be thought. The ideal collection S must satisfy the
best tradeoff between the inclusion of the maximum number of relevant
models S and a reasonable computing time, which is linear in the size of
the collection |S|. In the following, we distinguish deterministic and data-
driven collections, which we differentiate by adding a hat on data-driven
collections S.
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Deterministic Collections. Among deterministic collections of tests, the
most straightforward collections consist of all size-k subsets of {1,..., p},
which we denote &;. This kind of family is interesting in at least two
ways. First, it neglects none of the variables: we cannot miss any sig-
nal. Second, it provides collections of tests which are independent from
the data, thereby reducing the risk of overfitting. However, as we allow
the model size k or total number of candidate variables p to grow, these
deterministic families can rapidly reach unreasasonble sizes. Admittedly,
81 always remains feasible, but reducing the search to models of size 1
can be costly in terms of power. As a variation on size k models, an in-
teresting collection in terms of theoretical developments is the collection
of all models of size smaller than k, denoted S.; = Ule Sj. Note that
deterministic collections can also include prior information on the model,
particularly if part of the model is already known. The main point is that
prior information cannot have been extracted from the same dataset.

Data-driven Collections. In order to investigate models of varying sizes
while keeping the size of the collection moderate, we suggest to de-
rive data-driven collections of tests S. The idea is to start from a de-
terministic family S and define an algorithm an algonthm mapping
(XM, x@,y(1) y?) to some data-driven collection S C S of restricted
size. In practlce we start from S<p_,, where Dmax = [(11 A n2)/2],
and derive the collection S from the Lasso regularization path of a
reparametrized joint regression model, presented in Equation (4.6).

vy XM  x® o) e
{ YO ] = { X® _x® } [ 0@ ] + [ @ ] ' 4-6)
In this reparametrized model, 8!) captures the mean effect (BY) + ) /2,
while 8(2) captures the discrepancy between the samp]e-speciﬁc effect ﬁ(i)
and the mean effect 81), that is to say 2 = (BY) — g?)/2. Combin-
ing this reparametrization with variable selection by the Lasso, we aim
to select, on the one hand, variables presenting strong common effects
through 9(1), on the other hand, variables presenting strong diverging ef-
fects through 0(2). We denote by AW = {ay,...,ap__} the Dmax-uple of
the first D, selected variables by order of activation (as the penalty term
of the Lasso program decreases), and by A® = {al,. .. ,aDmM} its restric-
tion of the variables actlvated within 6@, if at most Dpax,2 variables are
selected within the 62 part
We build two families of models from this reparametrized model: first,
the increasing family M) of variables included by the Lasso in the 02
part, by order of activation, second the increasing family M of variables

included by the Lars algorithm, independently from its activation in the
02 or o1 part

k k
Mooy ={Ja; k=1,...,Dmax2}, M={Jaj; k=1,..., Dyax}.

The justification of the first model family is that we want to focus on vari-
ables which have disagreeing effects between the two samples. However,
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the divergence between effects might only appear conditionaly on other
variables with similar effects, this is why the second family is chosen to
include both types of variables. In the end, we consider the collection
gmsso, consisting of the reunion of both model families and &;,

Slasso = MU Mg(z) U &y.

Of course, this part of the testing strategy is highly flexible: any other
relevant model selection strategy can be used.

Calibration of the Testing Procedure

Suppose that we are now F{Nen ade termlms‘uc collection & of subsets and
an algorithm mapping (XY, X®), Y1), Y(?)) to some data-driven collection
S C S of restricted size. The purpose of this Section is to calibrate a mul-
tiple testing procedure based on the parametric statistics (Fs 1, Fs, Fs3),
S e §, so that the type-I error rate remains smaller than a chosen level a.
For the sake of simplicity, we first assume that @ ;(_ S.

Bonferroni Calibration (B). The null hypothesis H) is rejected when the
statistic

TSE: min  min {éi,|5| (Ps,f|xs)—ﬂ¢s} (4-7)
Ses ie{1,2,3}

is negative. The collection of weights {ag, S € S} satisfies
Y Bas<a. (4.8)
S5es

For the collection Sgk, a natural choice is

S -1
“5:;7(|p|) , (4.9)

Alternatively, one can give a Bayesian flavor to the choice of the weights «g,
S € 8. In fact, TSE corresponds to a Bonferroni multiple testing procedure,
which allows to control the size of the corresponding test, as expressed in
Proposition 4.4.

Proposition 4.4 (Size of TZ) ~ The statistic Tg satisfies Py, [Tg <0 <a

Proof. By definition, we control the deviations of Q}I s foreach § € § and
each i € {1,2,3} under H.

Pr, Qs (FsilXs}) < as|Xs| < s

Applying a union bound and integrating with respect to X allows to con-
trol the type I error.

Py [TE < 0] < ZZIP[Q;W (FsilXs}) < as]

SeSi=

< v Zﬂzxs [P Qi) (FsilXs}) <as|
SeSi=

< Z 3ag <.

S5es
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Remark 4.2 (Bonferroni correction on S and not on S) Note that even though we restrict our-
selves to the collection S, the Bonferroni correction must be applied to the initial
deterministic collection S including S. Indeed, if we replace the condition (4.8) by
the condition } g _s3as < a, then the size of the corresponding is not constrained
anymore to be smaller than a. This is due to the fact that we use the same data
set to select S C S and to perform the multiple testing procedure. As a simple
example, consider S = S[1, p| and

3
S = {argrsrggti\l Qi s| (Fs,i|XS)} -

Then, computing TP is exactly equivalent to performing a multiple testing proce-
dure on S.

The same difficulty has been tackled differently by Wasserman and Roeder
(2009) and Meinshausen et al. (2009). To get rid of the dependency between
model selection and hypothesis testing, both papers rely on half-sampling: model
selection and hypothesis testing are led on separate halves of the dataset. How-
ever, given the small number of obversations available, half-sampling suffers from
an even more reduced sample size on both fronts: model selection is rendered
unstable, while testing power vanishes.

If procedure TE is computationally and conceptually simple, the size
of the correspondmg test can be much lower than a because of three diffi-
culties:

1. Independently from our problem, Bonferroni corrections are known
to be too conservative, especially when the number of parametric
tests is large.

2. As emphasized by Remark 4.2, while the Bonferroni correction
needs to be based on the whole collection S, only the statistics
(Fsj,Fsp, Fs3), for S € S are considered. Provided we could af-
ford the computational cost of testing all models within S, this loss
cannot be compensated for if we use the Bonferroni correction.

3. As underlined in Subsection 4.2.1, for computational reasons, we
do not consider in (4.7) the conditional p-value Q, s (Fs2[Xs)

Qs,5/(Fs3|Xs) of them. We therefore overestimate the type I er-
ror due to Fs and Fg 3.

We address the three aforementionned issues applying a permutation ap-
proach.

Calibration by permutation (P). Given a permutation 77 of the set
{1,...,n1 + ny}, one gets Y™ and X™ by permuting the components of
Y and the rows of X. This allows to us to get a new sample (Y”'(]), Y”'m,
X”'(]), X7(2) ) Using this new sample, one computes a new collection
S™ and parametric statistics FZ'y, FZ,, FZ,, respectively. We note P the
uniform distribution over the pérmu:ratioﬁs of size ny + ns.
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For i € {1,2,3}, define é;'lp as the 1 — a/3-quantiles with respect to P

min {Qus (50 (19) }

In practice, we estimate the quanhles C, p by sampling a large number N
of permutations. Given (C1 P, C2 p,Cs p), we build the statistic TY. The
hypothesis Hy is rejected when the statistic

of

Ses ie={1,23}

1
T§:=mir3 min {Qi,|5|(FS,i|xS)_Ci,P(|£|) } (4.10)

is negative. Proposition 4.5 proves that the procedure by permutation
allows to control the type-I error rate at level a.

(Size of Tg) The statistic Tg satisfies
@/3 <Py, [TE <0 <a.

Proof. Consider i € {1,2,3}. Under H, the distribution of

i {Qun a0 ()}

is invariant with respect to the permutation 71. Hence, we derive

p < A'
(|S|) = Gip

Applying a union bound and integrating with respect to X allows us to
conclude. -

Py, [mi{‘l Qis| (Fs;i
Ses

Xs} :&/3.

Through the three constants 61 P, 62 p and 63 p, this permutation approach corrects
simultaneously for the three losses mentioned earlier due to the Bonferroni cor-
rection, the restriction to a data-driven class S and the upper bounds of Qs and
Qs

Yet, the level of TE is not exactly a because we treat separately the statistics
Fs1, Fs and Fs 3 and apply a Bonferroni correction at this second level. It would
be possible to calibrate all the statistics simultaneously in order to constrain the
size of the corresponding test to be exactly a. However, this last approach would
favor the statistic Fs 1 too much, because we would put on the same level the true
quantile Qg 1 and the upper bounds Qs and Qs,.

Power of the Procedure

In this section, we consider some number § € (0,1). The objective is to
prove that TSE reaches powers exceeding 1 — 4 on a large set of values

(BY, V), B2),02)) in the alternative. Because of the difficulties intro-
duced by permutations, we are still working on the proofs concerning T§
and ultimately TSE. For now, we rely on simulated experiments to illustrate

that Tg and Tg actually achieve great power values.
As the analysis is more straightforward, we start by considering the
power of Tg with a deterministic collection S.
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Power of Tg for a Deterministic Collection Intuitively, Tg should re-
ject Ho with large probability when (B(1), 01) is far from (8?),02) in some
sense. A classical way of measuring the divergence between two distribu-
tions is the Kullback-Leibler discrepancy. In the sequel, we note

K []PYUHX; ]PY(2)|X] . (4.11)

the Kullback discrepancy between the condlhonal distribution of Y1)
given X1 = X and conditional distribution of Y2 gwen x@ = x. Then,
K1 denotes the expectation of this Kullback dlver%ence (4.11) with respect
to X ~ X, Exchanging the roles of XM and X@), we also define K:

K1 :=Exq {:‘C [Py(1)|X}PY(2)|X]} , Ky :=Exq {}C []PY(zan]PWnXH :

The sum K; + K, forms a semidistance with respect to (B(1),¢7) and
(B®, ) as proved by the following decomposition

2 2
0’(1) 0'(2) ||ﬁ(2) ||):(2} ”ﬁ(z) - ﬁ(l)”%m
2(k1+Ka) = (g(—n) +(m) A ) S T

We therefore adopt this semidistance as a measure of proximity between
(ﬁ(l),oq) and (ﬁ(2 ,07).

In the case where Xm and X® do not follow the same distribution,
in other words £(1) # %), we also need to quantify the distance between
their distributions, equwalent]y measured by the distance between the
covariance matrices. Given a model S € &, we use the fol]owing measure

of proximity between Zgl) and 222):
2 1), — 2 1 2)\ 1
s = pmx { V2 ) V2P 4 2P ) 1VEPL

First, we control the power of Tg for a collection S = S with k <
(11 Anz)/2 and the weights (4.9). We write SY(12) for the union of the sup-
ports of (1) and B(?). Furthermore, we define S2(12) := [j, ﬁgl) #+ ﬁgz)}
as the set of indices such that the components of B and B?) are different.

The following proposition, which gives two different conditions un-
der which testing procedure TE achieves greater power than 1 —4, is a
consequence of a more general result stated as Theorem 4.7. Part (a) of
Proposition 4.6 provides a general condition, valid when X1 and X@ do
not necessarily follow the same distribution. Part (b) provides a weaker
condition, but which remains valid in the special case where X1 and
X® follow the same distribution only. Remark 4.4 gives insights into the
optimality of those conditions.

Proposition 4.6 (Power of T% for S = S<x) There exists positive numbers Ly and Ly(a, &) such

that the following holds. Assume that log(1/(ad)) < Li(n1 A ny) and define k*
as the largest integer satisfying

k*log(p) < L1 (n1An2) . (4.12)
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(a) The hypothesis H, is rejected by TS with probability larger than 1 — & for
and

K1+ Ky = La(a,8) pgunz — log (p) , (4.13)

(b) If £V = £ = %, the hypothesis Hy is rejected by TE with probability
larger than 1 — & for any (B, ) satisfying |SA(12)| < k Ak, and
B0 BRI 1 g ISRV
A2 Var Y(i)lx(f) 1A\ n2
—1 SA(12)

log(p) . (414)

e Assume that the true vectors are sparse, that is |SY(12)
®s2 is bounded. Then, condition (4.13) tells us that TE is powerful as
long as

| u12)|

Ki+K2 2 log (p) -

1 Ang
The rate depends on the sparsity index of the union of the supports.

o If=(1) =2, then TE is powerful as long as
18Y — B 130 |58

/\f:]Var [ )lxsa 1,2 ]

log (p) - (4.15)

i~

np Anp

Here, the rate only depends on |S2(12)|, which corresponds to the sparsity
of the difference p1) — B2). The cardinality |S2(12)
than |SY(2)|, when BV and @) share many common coefficients. In the
specific case where B?) = 0, o1 = 03 and ny = co (one-sample testing
problem), (4.15) has been proved (Verzelen and Villers 2010) to be optimal
in the minimax sense. In this sense T3 is adaptive to the unknown sparsity

of the difference g — g2,

o Condition (4.12) roughly tells us that the maximal sparsity k* should satisfy
a condition of the type klog(p) < (n1 Any). This condition has been
shown Verzelen (2012) to be minimal to obtain rates of testing of the form
(4.13) in the specific case where ﬁm = 0,01 = 0» and ny — oo,

Let us turn to a more general control of the power of Tg for arbi-

trary collections S. To do so, we need to consider the Kullback discrep-
ancy between the conditional distribution of Y given Xgl) = Xg and
the conditional distribution of Y2 given Xéz)

K []PYUHXSF]PY(?HXJ' For short, we respectively note K1(S) and K5(S)

K1i(S) := IEXQ} {KJ []PYUHXS;]PY(ZHXJ} ,

Ka(S) = IEXE}{}C []PY(Z}IXS;]PW”XSH.

= Xg, which we denote

Intuitively, K1(S) 4+ K3(S) corresponds to some distance between the re-

(1)

gression of Y@ given X¢’ and of Y2) given ng).
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Theorem 4.7 (Power of T2 for any deterministic S) ~ There exist positive constants Ly and Ly («, 5)

such that the following holds. Consider the subcollection " C S consisting of
subsets S that satisfy

log[16/ (6as)] < Li(n1Anz). (4.16)

The hypothesis Hy is rejected by TE with probability larger than 1 — & for any
(BY, B2, 1,05, (1), £.2)) belonging to the set

Fs(d) == {(ﬁ(”, BD 01,05, W @), 35 € 81 K4(S) +Ka(S) > A(S)},

where

A(S) := La(a, 8) ¢s (nl—] + nl_g) [|S| +1log(1/as)] . (4.17)

Remark 4.5 The test TE is powerful as long as for some S* € S', K1(S*) + K2(S*) is larger

than A(S*). The term A(S) plays the role of a variance term and increases with
the cardinality |S|. Furthermore, the semi-distance K1(S) + Ky(S) has also a
tendency to increase with |S|. Thus, TE rejects Ho with large probability if the
tradeoff between —[K1(S) + K2(S)] and A(S) is negative. Our multiple testing
approach allows us to reject without knowning in advance for which model S*
the tradeoff is achieved. Nevertheless, we have to pay a price for this feature
of adaptation: A(S) in Equation (4.17) becomes logarithmically larger with the
size of S through the term log(1/ag). This phenomenon also occurs in adaptive
testing in the Gaussian linear model Baraud et al. (2003).

Power of TB with the Lasso Collection 313550 The test Ts with the
collection S = 54 (n1Anp)/2 18 computationally expenswe since its size is

non polynomial with respect to p. The collection SLaSSO has been intro-

duced as a way to fix this issue, as its size is linear in n1 A ny. Theorem

4.8 states that the power of TB is also optimal under further assump-
Lass

tions on the covariance matrices (1) and (). In the statement below,
Pz refers to a positive quantity that only depends on the largest and

the smallest eigenvalues of (M and 2. The expression of Py 5 is
made explicit in the proof.

Theorem 4.8 There exist positive constants Ly, Ly and Lz(«, &) such that the following holds.

Remark 4.6

Assume that
log[24/ (ad)] < Li(nq Any).

The hypothesis Hy is rejected by Tghss with probability larger than 1 — § for any
(B, B2)) satisfying

np Anp

)| < 17072
= L2¢E(1);(2) log(p‘) ’ (418)
and
|SU(1,2)
K1+ K2 = La(a, 6) 950 s — log(p) - (4-19)
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o The rates of testing (4.19) and sparsity condition (4.18) are analogous to
what has been obtained in Proposition 4.6 for a deterministic collection.

e Dependencies of (4.18) and (4.19) on 2 and ©.2) are unavoidable because
the collection Syasso is based on the Lasso estimators which require design
assumptions to work well (Candes and Plan 2007). Nevertheless, one can
improve (4.18) and (4.19) by using restricted eigenvalues instead of largest
eigenvalues (See Section A.2.4 for a sharper statement).

HicHER-CRITICISM DETECTION OF HETEROGENEITY

Considering the growing cases of high-dimensional samples, it is
worth considering computationaly efficient testing methods like Higher-
Criticism (HC). Besides, Higher-Criticism is proved optimal in terms of
signal detection in one-sample linear regression by two independent and
simultaneous works, Ingster et al. (2010) and Arias-Castro et al. (2011),
when the signal is so sparse and weak in intensity, that usual ANOVA
methods or multiple testing fail to detect it. Yet, it is often observed in
genetics, be it with Single Nucleotide Polymorphism (SNP) or transcrip-
tomic data, that among the thousand, if not millions, of candidate genes,
only a few of them share tiny effects on the outcome. Higher-criticism
is based on the idea that facing such stringent design proportions and
rare and weak signals, under some assumptions on the design, one might
not be able to idenﬁfy the exact position of nonnull signal components,
but might still be able to detect the presence of a nonnull signal through
the detection of distorsions in the distribution of p-values. The objective
is therefore to test for the global null hypothesis that Hp : p* = 0 in
the one-sample linear regression scenario, without necessarily being able
to identify which are the exact components being responsible for the
rejection of the null.

In the sequel, we recall the principle of higher-criticism in one-sample
high-dimensional linear regression before suggesting an adaptation to our
two-sample testing problem.

One-Sample High-Criticism under the Rare and Weak Model

Before suggesting an adaptation of higher-criticism to the detection of dif-
ferences between samples, let us recall the principle of higher-criticism in
the context of one-sample linear regression. We are given a size-n response
vector Y and an n x p design matrix X, linked through the following lin-
ear regression model : there exists a signal * and a Gaussian noise vector
with unknown covariance ¢2 such that

Y = XB* +e

The Rare and Weak Model. The rare and weak model features two pa-
rameters 17 and r, which respectively determine the sparsity and strength
of the signal. The number of non zero components of p* is modeled by
s = p'77,  €]0,1], while all non zero components share the same value
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u = y/2rlogp, r €]0,1[. This parametrization maps two quantities de-
pending on p to the square |0, 1[x]0, 1].

The reasoning behind the parametrization of non zero components
appears clearly if we make the simplifying assumption that the design re-
duces to the identity matrix X = L. In that context, keeping u smaller than
\/2log p ensures that in expectation, y remains smaller than the largest
y; under Hy : B* = 0. On the contrary, if one would allow u to exceed
v/ 2log p, there would be such a distorsion of extreme values under H1
that the testing problem would get trivial asymptotically.

To provide some insight into the sparsity parametrization, it is useful
to recall some optimality results in terms of detection boundary derived
repeatedly, first on the detection of Gaussian mixtures (Donoho and Jin
(2004), Cai et al. (2007), Donoho and Jin (2009), Haupt et al. (2008; 2010))
and more recently extended to linear regression under different alterna-
tives and assumptions on the design matrix X (Ingster et al. 2010, Arias-
Castro et al. 2011). The question of the detection boundary consists in
identifying the smallest signal intensity (measured in some specific sense)
such that it remains possible to detect it. It is an asymptotic version of sep-
aration distances studied in the power analysis of Section 4.2.4. A testing
strategy is optimal if it is successful in detecting signals lying at the bound-
ary. For instance, testing the joint nullity of coefficients with ANOVA
is only optimal under mild levels of sparsity,  €]0,1/2|, that is to say,
s €]y/P,p[- On the other side of the spectrum, multiple testing combined
with a Bonferroni correction is only optimal under very strong sparsity,
1 €]3/4,1], or s €]1, p}/4[. Only higher-criticism reaches optimality in be-
tween, for strong, but also very strong levels of sparsity, with i 6]1/2, 1],
s €]1,,/p[. Under the additional assumption that p!~7logp = o(v/n),
the optimal detection rate can be expressed precisely for strong levels of
sparsity, coinciding in both Gaussian mixture and linear regression frame-

works:
()_ n—3 if%'(qgé'
P =Y (1= /T=)2 ifd<py<1’
Figure 4.1 represents this phenomenon as a phase diagram, adding for
comparison the estimation boundary as given in Donoho and Jin (2004).

1

HC statistic. Following Ingster et al. (2010), the higher-criticism (HC)
statistic for linear regression is based upon the univariate p-values

[jj:]P(N(O,l) > Kﬂﬁi")l), i=1...,p

The HC statistic is defined by as the supremum of the scaled and centered
ernpirica] process of the p—values

1vP
Y 1{gi<a}—a
HC*= su i
OS“SI':MM \/E V |‘I(1 - a)

For a given g, this statistic can be understood as a second-level signiﬁcance
test, answering the question: are there many more signiﬁcant univariate
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Figure 4.1 — Phase diagram representing the detection and estimation boundaries
(Donoho and [in 2004).

hypotheses at level a than merely by chance under the global null hy-
pothesis? HC* takes the supremum of this quantity over a range of levels
a € [0, Xmax)-

Denoting by () the ordered p-values, the HC statistic can be equiva-
lently found under the following form, which is directly computable from
the ordered sequence of p-values:

R
=Lplagy<ense /) (1 = 4(5)

Calibration. Asymptotic theory of empirical processes gives that under
the global null hypothesis

HC*
v 2loglog p

This convergence in probability leads most papers (Donoho and Jin 2004,
Ingster et al. 2010, Hall and Jin 2010, Arias-Castro et al. 2011) to ad-
vocate the fol]owing decision rule: reject Hy as soon as HC* exceeds
(14 ap)4/2loglog p, with a, tending to 0. Yet this rule does not allow
us to calibrate the test for a given p.

In the following subsection, we suggest an adaptation of HC to the
detection of heterogeneity in the two-sample linear regression framework
and derive a calibration based on Monte-Carlo simulations.

2.1, when p — .

Two-sample Higher-criticism

Two-sample HC statistic. Since the principle of HC is to replace a high-
dimensional multivariate statistic with the second-level analysis of the
distribution of p-values testing for univariate hypotheses, any univariate
statistic testing for ﬁﬁl) = ﬁ§2) has a potential interest to adapt HC to the

two-sample test. In the sequel, we define the two-sample HC statistic upon
the Fisher statistics testing for the equality of coefficients in each model of
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44
4-4-1

size 1. Denoting by RSSI' the residual sum of squares of the pooled re-
gression of the concatenation of YD and Y@ on X;, the concatenation of

XI(U and X}ZJ, and respectively by RSSI(U and RSS?) the residual sums of
squares in sample-specific regressions, the new statistic is given by
(1) (2
P RSSI' — RSSI, — RSSI, n_—2

=
RSS}” + RSSI@ 1

i

Since zf follows a Fisher distribution with parameters (1,7 — 2) under the
null hypothesis, we can consider the p-value qf associated with the Fisher
distribution and define the corresponding HC statistic:

/ . F'
HCF -— sup ﬁ%
=Leplafy <o /(1 =)

Correcting for Common Effects. The main disadvantage of the HC ap-
proach in the detection of heterogeneous components in the two-sample
framework is that heterogeneous effets might appear only conditionaly to
some common effect with respect to other features. Also, if large common
coefficients are not corrected for, then their effect passes through the noise
vectors e(1) and ¢(2). As a result, larger estimated conditional variances 0
and 0, will make it more difficult to detect small heterogeneous effect as
significant. Attempts at a correction for common effects will be presented
in Section 4.4.

Calibration. All HC statistics only rely on a sequence of p p-values. If
one can assume that those are independent from each other, then the se-
quence of p-values is a realization of p i.i.d. uniform distributions. There-
fore, for a given number of variables p, one can estimate quite efficiently
the right-hand-side quantile of level & of any HC statistic under H,y. We
suggest to use this quantile to calibrate the tests based on HC statistics.
In practice, numerical experiments as those presented in Section 4.4 show
that this calibration works well.

NUMERICAL EXPERIMENTS

Synthetic Linear Regression Data

Simulation Framework. In order to calibrate the difficulty of the testing
task, we simulate our data according to the parametrization of the Rare
and Weak framework presented in Section 4.3. We choose a large but still
reasonable number of variables p = 200, but restrict ourselves to cases
where the number of observations remain smaller than p. With equal
sample sizes, we let n1 = n, = n take the values n = 25, 50, 100, and for
each simulated sample, we generate two sub-samples:

YO = XMBM ),
YO — X@pB® 4 @)
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Setting 7 fcommon 7, #B? specific Signals

B

Hgg - 0 - (o] 5(2)—
5(1)

Hy 5/8 7 - 0 o
5(1)

1 - 0 5/8 7 B
5(1)
3(2)

2 5/8 7 5/8 7 ’ -
5(1)
3(2)

3 7/8 1 5/8 7 ? _
B
5(2)

4 5/8 7 7/8 1 -

Table 4.1 — Summary of the six different simulation scenarios under study.

In this chapter, we present preliminary results where XD and X are
always generated under the simple scenario where observation follows a

standard multivariate Gaussian distribution, th) ~ N(0,1,), and noise

components sgl) and 552) admit the same variances ¢(1) = ¢(2) = 1. We ex-

pect to gather soon some new simulation results under wider assumptions
on the design matrices X and X2,

We study six different scenarios summarized in Table 4.1. The first
two check for type I error control. The last four allow us to compare
the performances of the various statistics under different sparsity levels
and proportions of shared coefficients. These alternative scenarios are
parametrized by the number of non zero common coefficients pl_’?, the
number of non zero coefficients p!~72 activated in () only, and the mag-
nitude p = /2rlog p of all non zero coefficients. We choose the support
of BV to be included in B(?), so that either coefficients are common to
both coefficients, or they are activated in B2 only. The Parameters # and
12 are chosen to generate strong and very strong levels of sparsity. The
last column of Table 4.1 illustrates the signal sparsity patterns of g D and
B?) associated with each scenario. The two patterns of scenario 4 are so
close that the illustration might be misleading: the two patterns not equal
but actually differ by only one covariate. In all scenarios, the magnitude
ranges from r =0 to r = 0.5.

We repeat the experiment 1000 times, except for the case n = 100, for
which we only gathered 500 simulations.

We start by considering the three statistics exposed in Sections 4.2 and
4.3, namely the likelihood ratio statistic Fg, the Fisher statistic Fig and the
HC statistic HCF. The first two statistics are combined wift{n a determinis-
tic and data-driven model collection, respectively &1 and Sy ass0, as well as
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with a Bonferroni (B) or Permutation (P) calibration. Note that in prac-
tice, we consider the Lars approximation of the Lasso regularization path
(Efron et al. 2004), in order to classify variables according to the order in
which they enter the activated set of variables and construct gmsso. Figure
4.2 summarizes the legend used in the following graphical representations
for those seven testing strategies.

o—Oo—0——0 Fg- & - (B}

Fs-8 - (P)

o— oo o Fs-Spaue-(B)
Fs - Spasso - (P)
Fis- & - (B)
Fis- 8 - (P)

A A A Fis-8paso- (B)
FiS - §Lasso - (P}
HCF

Figure 4.2 — Colors, symbols and line types used for representing the seven strategies in
Figures 4.3, 4.4, 4.5, 4.6

Validation of Type I Error Control

Control Under Hqy. Table 4.2 presents level checks under a restricted
null hypothesis Hoo, such that (1) = B(2) = 0, along with 95% Gaussian
confidence intervals. Note that confidence intervals for n — 100 are based
upon 500 simulations only, and therefore larger than other confidence in-
tervals.

As expected, the Bonferroni calibration combined with the majoration
of quantiles or data-driven model collections is, by far, much too con-
servative. Even with the Fisher statistic, for which we know the exact
quantile, it is unthinkable to use Bonferroni calibration as soon as adopt
data-driven model collections instead of deterministic ones. Last but not
least, the Monte-Carlo calibration works quite well for the two-sample HC
statistic.

Control Under Hy Only. Figure 4.3 presents level checks under Ho but
with non null B1) = B(2) =£ 0. Conclusions are perfectly similar to the
case Hgp: all methods behave well, except the Bonferroni calibration for
Fs (using both model collections) and for Fig as soon as we use the data-

driven model collection §Lmo instead of the deterministic collection Sy.

Power Analysis. For clarity purposes, we split the results into four dif-
ferent figures. Figure 4.4 represents power performances for the likeli-
hood ratio statistic, Figure 4.5 focuses on the Fisher statistic while Figure
4.6 compares the previous two to HC. Naturally settings 1 and 3 are easier
than settings 2 and 4, since there are fewer common coefficients.
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(a) Fs statistic

Model collection S §Lasso
Calibration (B) (P) (B) (P)
n=25 0.1+02 6415 01+02 6415
n =150 0.1+02 41412 014+£02 41412
n = 100* 00 65422 00 65422

(b) Fig statistic

Model collection S S asso
Calibration (B) (P) (B) (P)
n=25 514+14 53414 08+06 5414
n =150 5+£14 56414 03+03 48413
n = 100* 514+19 48419 00 39417

(c) HC statistic
Statistic HCF

n =25 52+1.4
n =50 55+1.4
n=100* 55+2

Table 4.2 — Estimated test levels in percentage along with 95% Gaussian confidence
interval (in percentage) under Hoyy for the seven different strategies, based upon 1000
simulations. *: simulations for n = 100 are based on only 500 simulated samples.

n=25 n=>50 n =100

Figure 4.3 — Estimated test levels in percentage under Ho for the seven different strategies
for varying magnitudes of common non null coefficients, based upon 1000 simulations.

Focusing on either the usual Fisher statistic Fig in Figure 4.5 or the
likelihood ratio statistic Fs in Figure 4.4, the Bonferroni calibration is al-
ways less powerfu] than the calibration by permutation, but results are not
as bad as we would expect from the level values obtained in Table 4.2 and
Figure 4.3 in settings 1 and 3 for Fs.

The influence of data-driven model collections is stronger on Fisher
statistics, but is always alleviated in settings 1 and 3 where there is never
more than one common coefficients. Indeed, under these settings any
model of size 1 containing one of the variables activated in only ﬁ(z) can
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suffice to reject the null, which is why collection S; performs actually very
well. However, in more complex settings 2 and 4, where larger models are
required to correct for common effects, model collection §La550 performs a
lot better than the collection Sj.

Figure 4.6 compares the previous multivariate statistics to HC. Both
the likelihood ratio and Fisher statistics are represented with calibration
by permutation and data-driven model collection, which performed best
in general. Roughly speaking, the likelihood ratio statistic seems to out-
perform the usual Fisher statistic in settings 1 and 3, especially when the
number of observations is very small (n = 25). Yet as soon as the number
of common coefficients increases, in settings 2 and 4, the Fisher statis-
tic seems to correct better for common effects. The HC statistic, though
really interesting in terms of computing time (compared to the 1000 per-
mutations required for the calibration of Fs and Fig), would not retain our
attention by its performances on this Figure. However, as mentioned in
Section 4.3, contrary to other statistics, HC does not take into account the
correction for common effects. Therefore, we would like to try and correct
for these in a two-step approach, described and evaluated numerically in
the next paragraph.

Two-Step Strategy Correcting for Strong Common Effects. To correct
for strong confounding common effects, we suggest to run the HC test in
two-step approach: first, correct for possible common effects by fitting a
joint model of reduced dimention, second, apply the HC strategy on the
residuals. The best joint subset of covariates S is chosen with the package
LINselect based upon the procedure developed by Baraud et al. (2010),
in order to select the model with minimum Euclidean risk along the Lasso
regulanzahon path. We then fit the joint ordinary least square estimator

ﬁs, and compute HCF on the residuals Y/ = Y() X( ﬁs, fori =1,2. Since
at least Fs seems to suffer from the existence of common effects in settings
2 and 4, for comprehensiveness we also try this strategy on Fs and Fis.
The legend associated with the following figures appears in Figure 4.7.

As we have no theoretical developments yet to guarantee the control of
type I error for this two-step approach, we rely on Table 4.3 and Figure 4.8
to guarantee that the required 5% level is satisfied. The two-step strategy
appears to be deleterious to the Fisher statistic, which becomes much too
conservative as soon as the magnitude of common effects increases.

Figure 4.9 compare the test statistics represented in Figure 4.6 to their
two-step counterpart. Fortunately, the two-step approach does not im-
pair the results when no common effects should be detected in settings
1, but improves already a little the results of HC in settings 3. As seen
from level checks, the two-steps approach damages the performances of
the Fisher statistics when common effects are to be detected as in settings
2 and 4. On the contrary, both the likelihood ratio statistic and HC statistic
get improved by the two-step approach. In settings 2, the likelihood ratio
statistics outperforms the usual Fisher statistic when n = 25 and performs
as good when n = 50 or 100. Finally, both the likelihood ratio and HC
statistics, which had a lot of troubles dealing with settings 4, now per-
form far better, reaching really outstanding powers for n = 50 and even
outperforming the Fisher statistics.



Settings

g

oo
5.7 L

]
ol

4.4. Numerical Experiments

111

n=25 n =50 n = 100
o o o
o — (el ] 4
= W = r =
0 0 o7 ||
0] ° |
=3 =3 = “
o ““ i 29 |
z E z |
2 2 ) |
20 | 2o | 2o |
~ < Sal
ik o =4
C’*d) (el [k}
0.0 01 02 03 04 05 00 01 02 03 04 05 00 01 02 03 04 05
T T T
o o
=7 =] =]
o =3
o0 0 o0
)
o =3
e =O
) o)
2z 2
) >
2o | 20 |
< S
o ’/‘/,,,,4 e o
1 N
¢ © 0]
of®/®/® =
0.0 0.1 02 03 04 05 00 01 02 03 04 05
r T
o o
34 =
— —
=3 =3
[ee] [ee]
(=X (el \‘“
5@ e |
z z |
2 2 |
2o 2o |
<t <F |
= Sk
o0 =y
0.0 0.1 02 03 04 05 00 01 02 03 04 05 00 01 02 03 04 05
r T T
o o o
S - =
— i —
(el (el
[*'e] 0 o0
(=X (el (=B
3 z z
> ) >
20 | 2o | 20 |
<t <t <
(=X (el [e=h
[a\] [a\] [\l
e® & — o . oo o —— -
o4 0—0—0 : 0] o{0—0—0 : o} =%
00 01 02 03 04 05 00 01 02 03 04 05
T T

Figure 4.4 — Power for likelihood ratio statistics, comparing the influence of the choices

of model collection and calibration on power under different settings.



112

Chapter 4. High-dimensional Homogeneity Tests

Settings
8L

Ral

o
5 ﬁ(Z)‘L

o
Nal

] _
ol

n=25 n =50 = 100
g =t A A =8 $ ‘T—?
— — — y
A %
o | =3 =3
0 3] 0
H%’ :-4%’ A A u%’
L [} L
2 z 2 |
S A o) 2 |
o | 2o | A 2o |
< A < <7 |
A & ‘
ol 4 o o
I A X Q
A — A
g i
1 =F o
0.0 01 0.2 03 04 05 0.0 01 02 03 04 05 0.0 071 02 03 04 05
T T T
=1 = S{ a4 a A A
— — A —
A
=3 o . =3
0 53] 0
=3 o e =3
2D 9 2D
z z z
2 2 e .
<1 1 ) 1 a4 A
A
o | =3 oA
N [\l [\l
A A A A
AA A & A AA,A/A—&
cIADD— AN A oA NN j=3
0.0 01 0.2 03 04 05 0.0 0.1 02 03 04 05 0.0 01 02 0.3 04 05
T T T
g = . - TR
A
2 2 2 A
= = N
: = A :
S) 5 S)
2o | 20 | A Po ] |
< < =7
A X :‘
A
o A A =3 4
N . [a\l
A : 4
AN A
o bh oA SRS
0.0 01 0.2 03 04 05 0.0 0.1 02 03 04 05 0.0 01 02 03 04 05
T r T
87 87 A 87 A A
i — i
(=3 (=3 A (=3
0 0 0
v
o | =3 =3
=D LD =D
) ) )
z s z
S) 5] S)
< < <
A A
=3 =3 (=3
] A N A N A A A A
A / A A
A A A A A
ofAi~7‘A7*A oIANAN— AN A O,A/A*‘Ai gAY —A
00 01 02 03 04 05 00 01 02 03 04 05 00 01 02 03 04 05

T

Figure 4.5 — Power for Fisher statistics, comparing the influence of the choices of model
collection and calibration on power under different settings.



Settings

oo
5.7 L

]
ol

4.4. Numerical Experiments

113

n=25 n =50 n =100
o o o
=3 - — e ° =3 g =3
=, S BRI ;
o | o | ol /]
0 0 0 |
n o
(=3 (el |
2 2 2
2o . LA A 2o |
< e < “1a
- A
Siemoa Ry s
A
1 oA =3
00 01 02 03 04 05 00 01 02 03 04 05 00 01 02 03 04 05
r r
o (e o
[k (k] [k A
~ - A - ? ? T
= 2 2 9
o =3 A =3
2 2 F® Z n " .
2o | 2o | 2o e g
< < <
° L ° A
[ (el oln
e = ™ N
3 sn 2 1 -
1 oA =y
00 01 02 03 04 05 00 01 02 03 04 05 00 0.1 02 03 04 05
r r
o o o
I=¢ ° e =% c—x—f =%
= . - Sre '
A
(=3 [y (=X
[ee] [e9) [ee]
.
n L
o | (=3 ol
3 z n z
2 o) 2
< <+ <
A o u
n = A
Sie u : 1 S
A
X 2
1 (=% =y
00 01 02 03 04 05 00 01 02 03 04 05 00 0.1 02 03 04 05
r r
o o o
=3 =% A S4 A
— i — //T
/
= = = /
) /
A /
3 21 2 /
£ 5© 5*° /
3 z z
> ) > '3
32 &= 2
A A /
= = Rl ,w o .
a0 S —® a¥® - = 3
<1 (=% =3
00 01 02 03 04 05 00 01 02 03 04 05 00 01 02 03 04 05

Figure 4.6 — Power comparisons for likelihood ratio, Fisher and HC statistics.



114

Chapter 4. High-dimensional Homogeneity Tests

442

(a) Fg statistic

Model collection S S Lasso

Calibration (P2) (P2)

n=25 6.3+15 64+15

n=2>50 43413 41412

n = 100* 6.7 22 6.5+22

(b) Fig statistic (c) HC statistic

Model collection S Slasso Statistic HCS
Calibration (P2) (P2) n=25 52414
n=25 53414  48+13 n=>50  55+14
n =50 54414  45+13 n=100" 552
n = 100* 51+19 42418

Table 4.3 — Level checks under Hyy for two-step strategies in percentages, along with
95% Gaussian confidence intervals (in percentages). *: simulations for n = 100 done for
only 500 simulated samples.

o—o—-o—o Fs-5-(B)
Fg-& -(P)
00— 00 FS - §Lusao - (B}
FS - S;Lusao - (P}
D D L - FS - Sbusao - (Pz}
Fig- &, - (B)
Fis- & - (P)
A nn Fig- -f:":basso - (B)
M M M 2 Fis - Spaaso - (P}
A e P hemm e & FiS - ‘§Lasso - (Pz}
. . . . HCF
O------- O------- O------- o HCY

Figure 4.7 — Colors, symbols and line types used for representing the seven strategies in
Figures 4.8 and 4.9.

Real Transcriptomic Data

The procedures developed in Sections 4.2 and 4.3 can be adapted to the
case Gaussian graphical models as in Verzelen and Villers (2009). The idea
is to run for each gene in the network a neighborhood test conducted at
level a/ p in order to correct for multiple testing.

At first sight, we would like to test for the equality of neighborhoods,
in other words testing for the equality of the supports of (1) and (2.
However, in terms of biological interpretation, the test for ﬁm = ﬁ(2) also
brings a relevant answer to question of whether the regulatory relation-
ships are altered in sample 2 compared to sample 1. As such, we can
detect activations replaced by inhibitions, or differences in the strength of
the activation or inhibition.

We apply the procedures on the cancer dataset presented in Chapter 3.
We run all permuted tests as well as the HC-test in two steps at level /62,
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Figure 4.8 — Estimated test levels in percentages under H for two-step strategies for
varying magnitudes of common non null coefficients, based upon 1000 simulations.

with & = 5%. Neighborhoods rejected at that level for at least one of the
statistics are reported on Table 4.4.

Fs Fig

Hcg Sl S]_.asso S 1 SLasso

P) @) (P2 ) @) (P2)
PSMBS 0 0 0 0 1 0 0
TAP1 0 0 0 0 1 0 0
CXCL10 0 1 1 0 1 1 1
CXCLg o o] 0 o 1 o 0
HLA-DOB 0 0 0 0 1 0 0
CYBB 0 0 0 0 1 0 0
NCE2 0 0 0 0 1 0 0
CXCL11 0 1 1 0 1 0 0
CD247 o o] 0 o 1 o 0
CD2 0 0 0 0 1 0 0
CD38 0 o o 0 1 0 0
RYR2 1 0 0 0 0 0 0
RYR3 0 o o 0 1 0 0

Table 4.4 — Summary of rejected neighbordhood tests at level 5% corrected by Bonferroni,
according to the different testing procedures.

Discussion

We develop two different testing schemes tackling the problem of two-
sample homogeneity tests. We suggest an adaptive likelihood-ratio test
which reaches minimax high-dimensional rates of testing, which actually
demonstrates great empirical performances thanks to a calibration by per-
mutation which achieves the required type-I error rate. We would like to
confirm those performances under more complex simulated designs.

We note that the calibration by permutation is highly time-consuming,
which can be highly restrictive in the range of possible applications, par-

0:2

T

03

04
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ticularly if we think of Gaussian graphical models applied to the inference
of gene regulatory networks.

On the contrary, the two-step adaptation of higher-criticism looks
rather promising for an excellent performance over computing-time ra-
tio, as observed empirically. In the view of its interesting empirical perfor-
mances, we would like to explore the theoretical properties of the two-step
higher-criticism approach.
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4.6 TECHNICAL DETAILS

This Section explicits the upper bounds Q, 5/ (1|Xs) and Q35 (1Xs). Be-
cause of the symmetry between F, s and F35, we only provide develop-
ments for Fg,. Let us note a = (ay, ... ,a|5|) the positive eigenvalues of

nq

@ [(xOTyxDy-1 Ty @1
PTTRSEIA [(x xM)=1 4 (xP1x@P)- ]xs .

Definition 4.1 (Recall of the definition of the upper-bound QZ,I s|(u[Xs))  Consider some number

u > ||a||1. If all the components of a are equal, then we take

e u—lall
2u(|lallo + )

If a is not a constant vector, then we define A* by

a1

lal
b S ||
Talw(ns =180 * "+ Talls ~ Il

du (u — lally) ( ||a||2)

A = b?2_ N Lt L2 B )
(i =TS0l I~ Tl (4:20)

1

AT = b—VA (4.21)

(Ha” B |“||2) ( )

We recall that (j2!|5| (u|Xs) is defined as follows

Is| S 277
Q2 |s|(u|xs) = exp !—— Zlog (1 —2A*a;) — 2 — 15| log (1 + o TS| )] .

Proof of Proposition 4.3. For the sake of simplicity, we note N = n; — [S|,
(Zl,...,Z|5|) a standard Gaussian random vector and Wy a x2 random
variable with N degrees of freedom. We apply Laplace method to upper
bound P[Fs > ul:

IS] 5|
PlFs >u] = t;:a,vz;? > uWN/N] < ;ILI;_E]E exp )Lt;aizg —AuWN/N]
- .
- 0<;L1<Ir£|w/2exp [ ()]
where L8
S
N 2Au
Pu(A) = —= zlog(l 2Aa;) — - log (1 + T) .

The sharpest upper-bound is given by the value A* which minimizes
Pu(A). We obtain an approximation of A* by cancelling the second-order
approximation of its derivative. Deriving ¢, gives

IS

f/’t _ a; . u )
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which admits the following second order approximation :

2A||all3 u

— . (4.22)
1—2[aljer 14+ _‘%‘*

llalls +

Cancelling this quantity amounts to solving a polynomial equation of
the second degree. The smallest solution of this equation leads to the
desired A*. O
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Figure 4.9 — Influence of the correction for common effects on the power performances of
the likelihood ratio, Fisher and HC statistics.






Di1scussiON AND PERSPECTIVES

This thesis investigates the inference of high-dimensional Gaussian
graphical models from non identically and independently distributed
transciptomic data in the objective of recovering gene regulatory net-
works. In the context of high-dimensional statistics, the heterogeneity of
the dataset fruitfully paves the way to the definition of structured regular-
izers via weighted and block-sparse penalties. We also examine the crucial
issue of validating the answers provided by high-dimensional estimators.

Admittedly, the application of Gaussian graphical models to real tran-
scriptomic dataset reveals the limitations of our modeling of regulatory
phenomena. As exemplified by E. coli S.0.S. network in Chapter 2, the
multiplicity of actors and levels of regulation left out by transcriptomic
data compromises the interpretation of inferred networks. Yet, it is hard
to imagine a solid statistical model integrating data from all relevant fields
of data (proteomic, transcriptomic, genetic, methylation, etc).

Besides, it remains difficult to correctly evaluate the performances of
our methods, even to define what a correct evaluation would be. Indeed,
simulated experiments provide a comparison of competing estimators in
perfectly identified and controlled settings. Yet they are too close to our
statistical modeling assumptions to provide a realistic evaluation of ac-
tual performances on real datasets. On the contrary, applications to real
datasets lack of trustful benchmarks: even for model species like E. coli, it
is not obvious to reconstruct the actual set of regulations that should take
place in a given condition. Available gene regulatory networks might still
miss some actual regulations or include some regulations that exclusively
happen under some particular stress but not in the conditions under study.
Those incertainties result in fuzzy estimations of false negatives and false
positives.

As a result, we are avidly waiting for the emergence of clear bench-
mark networks validated experimentally on small model species in order
to finally evaluate to what extent Gaussian graphical models actually cap-
ture the transcriptomic regulatory mechanisms in place.

As a by-product, there are some information theoretic questions still
pending as to how difficult the question of infering Gaussian graphical
models really is, depending on the actual structure of biological networks.
Information theoretic limits in high-dimensional linear regression state
that depending on the number of observations available and the number
of variables considered, one cannot hope to recover more than a certain
number edges (Wainwright 2009b, Verzelen 2012).

Information theoretic results about model selection in Gaussian graph-
ical models underline the difficulty associated, again, with a growing
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number of neighbors or the detection of too small conditional dependen-
cies (Wang et al. 2010), but most importantly difficulties arising with large
eigenvalues of the partial correlation matrix (Anandkumar et al. 2011). In
other words, star-shaped networks where some few genes play the role of
hubs or highly correlated subsets of genes, both highly probable scenarios,
could be troublesome to the statistical inference, even under the assump-
tion that the data perfectly follows some unknown Gaussian graphical
model.

These results could explain why in practice we often observe that the
inferred networks are highly unstable from a strict point of view, while
competing paths in fact roughly speaking reflect the same flow of infor-
mation: a path from i to j being replaced by a path from i to k to j. This
phenomenom leaves the feeling that considering the design proportions
available or the high-levels of correlation among genes, we might be too
ambitious looking for graphical representations at a so fine level. In other
words, it could be beneficial to look for less precise representations but
where we could hope to obtain more robust results.

In that spirit, causal inference based upon intervention data sets
(Maathuis et al. 2010, Hauser and Biihlmann 2012, Bithlmann 2012a) is
a way to provide effective answers to biologists while zooming out of the
problem of dissecting regulatory mechanisms by integrating out the un-
certainties about the precise chain of regulations.

Another way to change the scale of analysis would be to build hierar-
chical Gaussian graphical models, considering too highly correlated genes
as repeated measurements of a single metagene. The model would ig-
nore to recover the conditional dependences among these highly correlatd
subsets genes but focus instead on conditional dependences among meta-
genes. We could hope that combining redondant information about the
same main regulations would add robustness to the inference process. We
are currently investigating to what extent some fllw b]ock-regularization
could solve such hierarchical models.
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PrROOFS FOR CHAPTER 3

Hoélder inequalities for cooperative norms (Proposition 3.2)

Consider x and y € R?. By discarding successively the negative terms, the
scalar product can be upper bounded by:

(x,y) =Ny + (")
<@ty + T y)
<@yt + Ty,

such that

[y < [ty D)+ [, y7) ).
Let us now apply Holder’s inequality for mixed norms on each of the two
terms:

[(xy)] < Jlx*

Y llpa + 12 llpally” llpq

< lI*llcoop,pg

pal

y| coop,p’,q'+

To prove that | - ||coop,p,q actually is the dual norm of || - ||coop, 4, We
need to exhibit x and y such that ||x||coop,p,q < 1and < x,y >= [|¥||coop,p',q'-

Optimality conditions for the coop-Lasso (Theorem 3.4)

Plug the characterization of the subdifferential of a norm (3.8) in combi-
nation with the definition of the coop dual norm into Equation (3.5) to
obtain:

{maxk:],...,K(”Z—gi_k”Z llzgll) <1 if =0

G : : )
man:],...,K(”ZEk”z; ||ng||) =1and (B,z) = ||Bllccop otherwise.

Now, recall that by Hélder’s inequality, |(B,z)| < ||B|lcoop|Zlcoop*-
Therefore, the equality in (A.1) is only possible if for every group Gy such
that ﬁgk # 0, Holder’s inequality is saturated and ||zg, ||coopr = 1. Note

that since the coop-norm dissociates the positive and negative parts of B,
the second equality constraint is only active on signed subgroups, but the
first equality adds a companion constraint on complementary indices. For
clarity, we introduce a notation for signed subgroups s, r = 1,...,2K,
defined such that for every k =1,...,K:

Sok—1 = {} € gk,ﬁj > 0} and sy = {} = gk,Bj < 0}

In this case, the second equality constraint implies for every activated
signed subgroup s : (B, zs5,) = By llcoop = ||B,|l, which leads to the
required expression

_ ﬁ Sk

z L
* 1B |

To guarantee in turn the first equality constraint, the subdifferential re-

quires that for every activated sign subgroup sy, coefficients from a differ-

ent sign or equal to zero should correspond to a subgradient with opposite

sign.

sign(zg,\s,) = —sign(zs,)- (A.2)
Since ||zs, [|coopr = 1, it suffices to require ||zg, ||coop < 1 to obtain (A.2).
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A3

Lemma A.a

Support Recovery (Theorem 3.6)

We follow the three-step proof technique proposed by Yuan and Lin
(2007b) for the Lasso, applied by Bach (2008b) for the group-Lasso, and
referred to as primal-dual witness construction proofs in Negahban and
Wainwright (2011), Obozinski et al. (2011), Wainwright (2009a), Jalali et al.
(2011):

1. restrict the estimation problem to the true support and complete this
estimate by o outside the true support, thereby deﬁm’ng a primal
solution with desired support;

2. exhibit the subgradient (or dual solution, as explained in Section
3.2.3) associated with the primal solution of step 1;

3. prove that this primal-dual pair is optimal asymptotically.

The main differences between asymptotic results as in Yuan and Lin
(2007b) or Bach (2008b) and non-asymptotic results as in Negahban and
Wainwright (2011), Obozinski et al. (2011), Wainwright (2009a), Jalali et al.
(2011) lie in step 3: this last line of work gets rid of the asymptotic control
on error terms by restricting themselves to events of high-probability on
which error terms are controlled.

To end the proof, remark that under assumption (Az2), the solution is
unique, leading to the conclusion that the coop-Lasso estimator equal to
this artificial estimate with probability tending to 1.

As a first step, we prove two simple lemmas. Lemma A.1 states that
the coop-Lasso estimate, restricted on the true support S, is consistent
when A, — 0. Lemma A.2 provides the basis for the inequalities (3.10)
and (3.11) that express our irrepresentable conditions.

Assuming (A1-3), let f}g be the unique minimizer of the regression problem
restricted to the true support S:

=n .1 2 _
Bs =argmin|ly = Xsv[u+As ), wellvs [+ v )
veRIS| kS, #0
where || - ||,, = || - || /n denotes the empirical norm.

If A — 0, then B -2 B

Proof. This lemma stems from standard results of M-estimation (Van der
Vaart 1998). Let ¢ = y — XB*, and write ¥" = XTX/n. If A, — 0, then
under (A1-2), for any v € RIS

1 _
Zn(v) = 5lly —Xsvllz+2A. Y, we(IvE N+ Ilvs )
kS £D

= LBy T8 — v) - LeX (B —v) + EE
2 S S8 S n S 2?1

+ A Y wi(IVE N+ [lvs )
kS £D

tends in probability to

Z(v) = 5(B5 V) ¥ss(B5 —v) + 50°
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It follows from the strict convexity of Z, that arg min Z,,(v) E, arg minZ(v) = B
(Knight and Fu 2000), which ends the proof. U

Lemma A.2  Consider a sequence of random variables Sy such that S, L. Suppose there
exists 6 > 0 such that for a given norm y the limit S is bounded away from 1:

u(S) <1-5.

Then,
P(u(Ss) <1)—1.

Proof. By triangular inequality and thanks to the constraint on u(S):
P(u(Sn) 1) = P(u(S —5) < 1— (S)) = P(u(S. — 5) <3) ,
Convergence in probability of S, to S concludes the proof:
P(u(Sn —S) <8) — 1, therefore P(u(S,) <1)—1.
O

Let us consider the full vector B with coefficients f}:; defined as in
Lemma A.1 and other coefficients null, ﬁgc = 0. We now proceed to
the last step of the proof of Theorem 3.6, by proving that B" satisfies the
coop-Lasso optimality conditions with probability tending to 1 under the
additional conditions (A4-5). The final conclusion then results from the
uniqueness of the coop-Lasso estimator.

First, consider optimality conditions with respect to ﬁs. As a result
of Lemma A.1, the probability that B;l # 0 for every j € § tends to 1.
Thereby, B:; satisfies the conditions of Theorem 3.4 on the restriction of
X to covariates in & with probability tending to 1. As f}gc = 0, then
XB" = X sBs and for every j € S, lp; (Bs)" I = ||¢I(ﬁgk)||, therefore
B:; satisfies optimality conditions of Theorem 3.4 in the original problem
with probability tending to 1.

Second, ﬁ;c should also Verify the optimality conditions with proba-

bility tending to 1. With assumption (A3), we only have to consider two
cases that read:

e if group k is excluded from the support, one must have

P (max (||((X.3;)T(Xﬁ" ) s ||((X_3§)T(XB" _ y))_”n) < /’ank) —1;
(A.3)

e if group k intersects the support, with either positive (1 = 1) or
negative (1x = —1) coefficients, one must have

P ({u(Xp)T(XB" — y) = 0} N {[|(Xgp)T(XB" = y)lln < Awtwn}) — 1.
. (Ag)
To prove (A.3) and (A.4), we study the asymptotics of (X.s¢)T(XB" —y)/n
for any group such that S; is not empty. As a consequence of the existence
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of the fourth order moments of the centered random variables X and Y,
the multivariate central limit theorem applies, yielding:

T n T !
XX Iy =¥+0p(n12), X2 Ly e = 0p(n1?)
n ni= n n.=
L (A.5)
Then, we derive from (A.5) and the definition of B~ that
1 ~ 1 ~ 1
E(X.sg)T(Xﬁn —y)= ;(X-Sf)Tx(ﬁn —B) - (Xs)Te
1 _
=+ (X)) ™X.s(B — B3) + Op(n)
= ¥s;s(Bs — B5) +Op(n?) . (A.6)

While the combination of (A.5) and optimality conditions 3.4 on ﬁ; leads
to:

¥ss(Bs — Bs) = —AuD(Bs)Bs +Op(n1?) , (A7)
where D(-) is the weighting matrix (3.9). Put (A.6) and (A.7) together to
finally obtain:

%(x.s;)T(xﬁ" —y) = —M¥s:s¥siD(Bs)Bs +O0p(n™V/2) . (A8B)

Now, define for any k such that Sf is not empty:

_ 11 1
kn = WrAn N Wy

Limits (A.3) and (A.4) are expressed:

(Xse)T(XB" —y) and Ry =——Fs5es¥5iD(B5)BS

e if group k is excluded from the support, one must have
P (max (IRE, L IR, ) <1) =1 ;

e if group k intersects the support, with either positive (v = 1) or
negative (v = —1) coefficients, one must have

P ({vkRn = 0} N {[[(viRia) T <1}) — 1.

Remark that, as a continuous function of B, D(B5)Bs converges in
probability to D(pB%5)Bs. Therefore, with a decrease rate for A, chosen
such that n1/2),, — oo, equation (A.8) implies

P
Rgn — Rg . (A.9)

It now suffices to successively apply Lemma A.2 to the appropriate
vectors and norms to show that f}:;c satisfies (A.3) and (A.4):

e if group k is excluded from the support, (A4) assumes that there
exists 7 > 0, such that

max([|R [, IR ) <1 -7,
and Lemma A.2 applied to u(u) = max(||u™||, |[#~||) provides
P{max(|[R, [l IR, [) <1} —1 .
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e if group k intersects the support, with either positive (1 = 1) or
negative (v = —1) coefficients,

P ({1l (vkRen) Tl < 1} N {viRy,, = 0})
=1—P ({||[(kRa) "[| > 1} U {vkRg, < 0})
>1—P ([|(%Ren) | > 1) =P (yRy, < 0)

> 1P (max([[R, I, I1Rg,, ) > 1) = P (vRin < 0) -

As previously, the first probability in the sum tends to 0 because of
(Ag4) and Lemma A.2. The second probability tends to 0 from (As5)
and of the convergence in probability of Ry, to Ri. Therefore the
overall probability tends to 1.

Denote by Ay, these events on which coefficients in Sy are set to 0. We
just showed that individually for each group k with true null coefficients,
P(Akn) — 1. This implies that,

P U A;,n S Z ]P(A;,n)_)[)’
k:Sf#@ k:SE;é(Z)

which in turn concludes the proof:

Pl ) Akn| =1
kSE#O

Oracle Inequalities stated in Theorem 3.7 and Corollary 3.8

The sketch of the proof is very similar to the one adopted for the Lasso
Bickel et al. (2009) or group-Lasso Lounici et al. (2009). Particularly inter-
esting improvements have more recently been suggested in Lounici et al.
(2011) and S. Negahban and Yu (2012). Those results make use of dual
bounds and equivalence relationships between coop-norms, as exhibited
in Section 3.1.

For every B € RP, the coop-Lasso solution Bcoop satisfies the following inequali-
ties on the event that {||XTe/n||coope0 < An/2}:

IX(B* = B +Aull B — B lleoop < IIX(B* = B)II7 +42ul|Bs () — Bsp)llcoop.

coop

N N 3
IXTX(B™® = )/ nlaapso < S0

Proof of lemma A.3

First inequality It follows from the definition of the coop-Lasso given in
Equation that for every g € R? :

ly = XB 117 + 22018 llcoop < lly —XBII% + 224 [ Bllcoop-
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From the decomposition of y into Xp* + ¢ we deduce:

~COOp ~COOp
IX(B* = B~ 7+ 22 B llcoop

<IX(B* ~ B + 22 Blloop + 2ETX(B—BF). (A10)

Now, the dual bound derived for the coop-norm provides a bound on the
scalar product on the right hand side of inequality (A.10).

2
~eTX(B - BT) < 2||—||coop,

|ﬁ - ﬂcoop ”coop-

On event A = {2||XTs/n||cooplw < An}, inequality (A.10) rewrites

IX(B* = B2 + Anll B — B l|coop
2 ~CO0p ~C00p
< IX(B" = Bz +2An (11Bllcoop — 1B lcoop + 18— B lcoop
A close look at the last term on the right hand side shows that all terms
corresponding groups i such that || [|coop = 0 disappear. Denoting by
S(B) the group support of B, that is to say {k =1..., K| ||Bg |lcoop > 0},
coop-norm triangular inequalities lead to:
2 CO0 ~ 000
1Bllcoop = 118" llcoop + 1B = B llcoop
COO CO0Y
= ||ﬁs(ﬁ)||c00p ”ﬁs ,sp)”coop + ”ﬁs( S ,sp)”coop
COOp
< 2|[Bs(g) — Bs(g) | coop-

All in all, we obtain that for every g € R?:

IX(B* = B )15+ Anll B~ B llcoop
< [X(B* = Bz +42ullBs(g) — Bs(p) lcoop- (A.11)

Second inequality From optimality conditions given in Theorem 3.4 we
deduce that for every group k € {1,...,K}:

1 N
EHXT(Y - Xﬁcoop)”coop,oo S /’ln- (A.12)

Combining inequality (A.12) and the definition of event A we obtain
the following bound:

IXTX(B™ = B*)/ 1lcoopeo < XT(y = XB™F)/11]|coop,e0 + [XTe/1]|coopco
<A+ An/2
3

< EA,I. (A.13)

Proof of Theorem 3.7

Prediction Error We apply Lemma A.3 with B = B* and denote by S =
S(B*) the set of true active group indices. Assume S is of cardinality at
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most 5. On event 4, using equivalence relationships between || - [|coop and
|| - llcoop,2, inequality (A.11) becomes:

IX(B* — B 12 < 4Au)l (B — B 5lcoop
< 44, V25| (B* — B ) slcoop,2
< 40, V25|(B* — B)sl.

Now, remark that thanks to (A.11), any coop-Lasso solution satisfies

1(B* — B™™) s llcoop < 311(B* = B lcoop-

Therefore, if Assumption 3.1 is satisfied,

IX(B" =B D)
Vil g = Fsl ="

In other words,

e geoony 1 < IXB =B
I8 = =)ol < L,

which leads to

1X(B" = B2 < ar,v s XE =B Dl

6
IX(B* = B < 41, Y5

<)
Ix(g — BRI < 2,

Estimation Error Similarly, apply the previous lemma with g = B*. On
event A, inequality (A.11) leads to:

An”ﬁ* - BCOOPHCOOp < 4/"?1”(3* - BCDDP)SHCOOp
Combining Assumption 3.1 and (3.13), we obtain:
AnllB* = B llcoop < 4AnV25(|(B* — B7)s|

<, v XE x—(f?)m")lln

3212
x(s)2°

5 321
coop n
||ﬁ* - ﬁ “coop S WS.

<

Proof of Corollary 3.8: Probability of event .4 when groups are all of
equal size.

The choice of A, is guided by Lemma 5 of S. Negahban and Yu (2012),
which we recall here, for a* = 2, for K groups of equal size py = m
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Lemma A.4 (Lemma 5 of S. Negahban and Yu (2012)) Suppose that X satisfies the block
column normalization condition, and the observation noise € is sub-Gaussian.
Then we have:

P | max, [(X7e)g,/nll > 2.7 (v + logK) | < 22

Recall that event A is defined by {||XTe/n||coop,c0 < An/2}. Now, be-
cause for every z € R?, max(||z™ ||, [|z~||) < ||z]

P [[[(X7e)/lccopeo > An/2] = P [m max(|(XTe/n), |, ||(XTe/m)g, ) > An/2

=1..,

<P | max [ (XTe/n)g, | = A2

=1..,

Choosing A, = %(\/ﬁ—l— v/10gK), Lemma 5 from S. Negahban and Yu
(2012) gives the desired lower bound:

P(A) >1—2K2

A.2 PROOFS FOR CHAPTER 4

These proofs have been established by N. Verzelen. We join them to the
manuscript for the sake of exhaustivity.

Additional Notations. Given a subset S, Hgl) (resp. ng)) stands for the

orthogonal projection onto the space spanned by the rows of Xg]) (resp.

ng)). Moreover, H(l) denotes the projection along the space spanned by

SJ_
the rows of Xg]c).

Besides, we adopt a small change of notations in order to alleviate the
equations: £, norms are now denoted by | - |, instead of || - ||, except for
the Euclidean norm, which remains denoted by || - ||, with omission of the
index 2.

A.2.1  Fg1, Fsp and Fs 3 distributions (Proposition 4.2)

Let us consider the regression of Y™ (resp. Y @) with respect to Xgl) (resp.

xP).

YO = xOpd 4 e

YO = xPpP 4 e,

where X0V = E[Y|x(V] and XPBP = E[v|x?] as. We note
(05(1))2 = Var(eg])) = Var[Y“”XS)] and (Uéz))2 = Var(eg)) =
Var[Y(2)|X§2)]. Under Hgs, we have ﬁ(sl) = (52) and Uél) = U§2). For
the sake of simplicity, we write Bg, os for these two quantities.



A.2. Proofs for Chapter 4 133

Define the random variable T; and T, as

1 1 2) (2
S Il
- 1 27 _ 2 2°
(m1 —15]) (08 (n2—15]) (o)

Conditionnally to X, Ti/T: follows a Fisher distribution with
(n1 — |S|,n2 — |S|) degrees of freedom. Observing that

Fo1=—2+ Tima(n —|S]) | Tam(nz2 —|S])
' Tany(n2—|S|) ~ Tyna(ng —|S])

allows us to prove the first assertion of Proposition 4.2.

Let us turn to the second statistic F, 5

For — _oom U
%27 na(m —[S)Th
where
2 2 2)y — 2 2 2 1 1)y — 1 1
U — ”xg )(xg )Txg )) 1xg )Teg ) o xg )(xg )Txg )) 1xg )Teg )”2

03
Conditionnally to X, U is independent of T; since T; is a function of
Hgll) egl) while U is a function of (egz),ﬂg])egl)). Furthermore, U is the
squared norm of a centered Gaussian vector with covariance

2 1 1)y — 2 2)\ — 2
X@ [(XOTXD) 1 4 (@TX@) 1] X

A.2.2 Power of TE for a Deterministic Collection S (Theorem 4.7)

The objective is to exhibit a subset over which the power of TZ is larger
than 1 — 4. This subset is such that the distance between the two sample-
specific distributions is large enough that we can actually reject the null
hypothesis with large probability. As exposed in Section 4.2, the distance
that naturally arises is the sum K7 + K3, which forms a semidistance be-
tween (B(1),07) and (B?),02). We recall that K; 4 K, decomposes into
three terms which correspond respectively to the statistics Fs, Fs» and
FS!3I

eD\? /@)
2(K1(S) + Ko (S)) = (%) + (L) -2 (A.14)
Ts

o
182 — |2,
x
(P2
2 1
Hﬁ(s) - ﬁ(s )”}2:(1)
G

+

~ The prooins split into ﬁvemmain lemmas. First, we upper bound
Q15 (x[Xs), Oy 5i(x[Xs), and Oy (x|Xs) in Lemmas A.5,A.6 and A.7.
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Then, we control the deviations of Fs, Fsy, and Fs3 around the three
corresponding terms of (A.14) under Hj s in Lemmas A.8 and A.g
Based on these lemmas, we can provide conditions on each of the three
terms of K1 + K in order for the power of TE to exceed 1 — 4.
Throughout this proof, we assume that , and S < (17 Any)/2

log(12/8) < 27B(ny Any), log(1/as) <27(ny Any), (A.15)

for any S € S’. These two conditions allow to fix the constant L in the
statement (4.16) of Theorem 4.7.

Lemma A.5 (Upper-bound on Ql_llsl(xp(s) ) Consider some 0 < x < 1 such that

8log(2/x) < ni Amny . For any subset S of size smaller than (n1 A nz)/2,
we have

2

ninz

We recall that a = (a1, ey, a|5|) denotes the positive eigenvalues of

m @ [(xOTxD\-1 | x@Tx@)-1] @1
i TS |x™X) T 4 (xPTXE) Y X

Lemma A.6 (Upper-bound on Q£|15|(x|x5) ) Iflali <u < (n1—|S|)|ale and if |S| < 27n4,

B (u —|a]1)? N (u — |aj1)u® ‘
4 [|aleo(u — lal1) + al3] ~ 2(ny — |S]) [|aeo(u — |al1) + |a[2]?

log [ Q5/(u[Xs)| <

Forany 0 < x < 1, satisfying
2%log(1/x) < ny —|S], (A.17)

we have the following upper bound

Qs (¥1Xs) < e [|s| +24/2|S|log(1/x) —|—810g(1/x)} . (A8

Lemma A.7 (Upper-bound on |a|,) Consider § a positive number sastifying log(4/6) <
(n1 A n2)277. With probability larger than 1 — §/2, we have

2 1)y — 2
L e V)P

2l < 100

Lemma A.8 (Deviations of Fs;) Assume that log(1/8) < 27'%(n1 A ny). With probability
larger than 1 — &, we have

Y G D 152 (o + 7 ) +108(3) (5 + 5 ) [caa9)
— — — og( — — — .1
512 0, 2" nz) T O8S \n Tng ?

Ug 'Og 1
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Lemma A.g (Deviations of Fs,) Assume that
log(12/8) < 271 (ny A ny) . (A.20)
With probability larger than 1 — 6 /2, we have

189 — B 120 1og (6/9)
8(0’9)2 12

Fsp > 200 l 8] +<p5] , (A21)

where ||. ||y is the euclidean norm relative to £(2).

B Consider some S € §. Combining Lemmas A.5 and A.S,
Qy,15/(Fs,1/Xs) < as holds with probability larger than 1 — 4 if

(0572 = (@52 | o 59 (% + ) +1ogii/astl (= + )]

(Uél))z(géz))z 1 2 ny

Similarly, combining Lemmas A.6, A.7 and A.9, 0
probability larger than 1 — ¢ if

2 1
1B — B2,
(Uél))z

>1600 (s +1) (i + l) (5] + 51og{6/ (das)}]

2\ 2
L1600 (s )\ (6
m \,0 ] 8\s)"

[S]

Consequently, Q;,_ 1|
with probability larger than 1—-4if

1

Ka(S)+ KaS) = 2y (a*%) [15] + 6log{6/ (s8)}]

@)\ 2 M\ 2
+160010g(6/6) | L+ L] [ [ ZsL) 4 (T
n ng (1) o2
s
Since 640010g(6/5) < nj A ny, the last condition is fulfilled if

Ka(S) + Ka(S) > 22gs (nl_l + niz) (1] +710g{6/ (s6)}] (A.22)

We now proceed to the proof of the five previous lemmas.

Proof of Lemma A.5. Let u € (0,1) and Fﬁj\,(u) be the 1 — u quantile of a
Fisher random variable with D and N degrees of freedom. According to
Baraud et al. (2003), we have

e = 103 () (500 o (o (2) -
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Let us assume that 4/Nlog(1/u) < 1. By convexity of the exponential
function it holds that

_ 1 1 1 4 8 1
FD!}\J(;:) < 1 —I—Z\/(D + N) log (E) (5 + ﬁ) log (E) .

Under the hypothesis Hy,

Ty ny(n2 —|S[)
T2 nz(ny —|S|)

Consider some x > 0 such that [4/(n1 — |S|) V4/(n2 — |S|)]log(2/x) <1
Then, with probability larger than 1 — x /2 we have,

~ Fisher(ny — |S|, 1y — [S]) .

?2 - ?‘11(?‘12—|S|) 1 — |S ?‘I2—|S

|S|(n1 —na) log(Z/x log(Z/x
(“m(nzsn( Y R )

since |S| < (11 An2)/2. Similarly, with probability at least 1 — x/2, we
have

T> |S|(n2 —n1) log(2/x) log(2/x)
T < l(l + na (1t — |S|)) (1 + 12\/T + 12\/}12)] A 18A.23)

Depending on the sign of T1 /T, — 1, we apply one the two following iden-
tities:

T, T T 2T, T, T T I
1+22_(11)_2 1+22_(21)_1‘

T4 - (1+|S|(n1—n2) (1+8 log(2/x)+8 10g(2/x))§18

[/

T, T T, L' T, T T T,

Combining the different bounds, we conclude that with probability larger
than1 — x,

T T 12 (|S|(H1—H2)) H1+n2
— 4+ =2 < 2 —— =) +log(2/x .
T, Th ninz 82/ 12

O

Proof of Lemma A.6. As in the proof of Proposition 4.3, we note N =

—|S]. Recall that Q2,|5|(x|xs) is defined as infocj<a|,/2€Xp Px(A) =
exp Px(A*). We start by upper-bounding ,(A*), which in other words
proves the first upper-bound on the logarithm of the tail probability
log Qs s/ (1|Xs). We then exhibit a value u, such that ¢,, (A*) < logx.

Upper-bound on the tail probability. Since the equation (4.22) is in-
creasing with respect to A and with respect to N, A* decreases with N.
Consequently,

u—lal;

AF <AL = .
= 2 (afeo(u — |alr) + [af]
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By convexity, 1 — /1 —x > x/2 for any 0 < x < 1. Applying this inequal-
ity, we upper bound bound VA and derive that

u —laly

Az A= 7 2 lahu] ”
|a|eo(u — |al1) + |a]3 + 55*

Since # < N|a|eo, 2A*u < N. Observing that —log(1 —2x)/2 < x +
x%/(1 —2x) for any 0 < x < 1/2, we derive

/12 |a|2 (A*)ZHZ
AT B ol bl R
(u — |a|1)? 272 42

— + 5 L (A=A
4 [laleo( — lal1) +al3] = N

(1 — 1) (u — |a])u’

" laleo(u — [aft) + 1aB] " 2N [Jaleo(it — [al2) + o]’

Upper-bound on the quantile. Let us turn to the upper bound of
Qy |]S|(x|X5). Consider u, the solution larger than |a|; of the equation

(u — |al1)? o lon(1/
4 [|afeo(u — |a1) + |a3] = 2log(1/x),

and observe that

2|ajzy/log(1/x) < uy — |af; < 2\/§|a|2\flog(1/x) + 8|a|e log(1/x) .

By Condition (A.17), uy < N|a|e. We now prove that i, e, (A*) < logx.
If uy > 2|a|y, then u3 < 8(uy — |a|1)? and it follows that

28 log(l/x)] -

Pu, (A") < log(1/x) [—Z—I— N —log(1/x)

by Condition (A.17).
If uy < 2|a|1, then |a|?/(|a|e|al1 + |a]3) > 8log(1/x) and

2 24 2
al? !1 af?

4 [|aloolals + |a]3] N [lalelaly +al3]

4’ux\f|a|1 (’1*) <

since |S| < 27%n,.
All in all, we conclude that

'QU2_,|]S|(x|X5) < upV2|aly < lal1+ [2\/§|a|2\flog(1/x) +8|a|mlog(1/x)} Valq -

O

Lemma A.7. Upon defining Zgl) = Egl) Xg and Z =14/Z s X(z) it
follows that Zgl) and Zgz) follow standard Gaussian distributions.

—log(1/x),
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m @271, /5@ v M)y1 (7(DT7(1) -1 (Dy-1y(2)#(2)
-
|ﬂ|°° = H2(H1—|S|) [1+(Pmax {Z z‘S (Z‘S ) (ZS ZS ) (Z‘S ) z‘S ZS }]
(2)1(2)
2 (Pmax[zs Z ] (2) /(1)
< n_2+2 1)] max[\!z (E ) VZ‘S

19 Prmax [Z(l)TZ

In order to conclude, we control the largest and the smallest eigenvalues
of Standard Wishart matrices by applying Lemma A.16. O

Lemma A.8. By symmetry, we may assume that (o, {1)) /’(Uéz))2 > 1.

CASE 1. Suppose that T1 /T, = 1.

( )2T (0(2))2T ((U(]))Z—(U(z))2)2 ( 1))2 (0.(2))2 T.
TP R (D ey (%) ey (%-1)
((05)2 = (022
(Uél))z(oéﬂ)z '

(A.24)
CASE 2. Suppose that T1 /T2 < 1.

2
(5 VL, @PT _ (@ L) @)Pn
(U )2T2 (Uél))2T1 (0,;2))2 Th (Uél))zTg

11 ((c8")* = (037)2)?

15,(1}2
B a7 ()

(5"5 )2

We now need to control the deviations of T>/ T;. Using the bound (A.23),
we get

Tz |S|(n2 —n1) log(1/6) log(1/9)
T (1+H2(H1—|5|)) (1+12\/ n +12\/ 2 ) ’

with probability larger than 1 — é. Since |S| < (n1 A nz)/2, we derive that

; 2|s| o /1og(1/5 | o /1og(1/5 -5

In conclusion, we have

1 2 1 2
(@P1, @2 (@) - (@)

2 (1 1 2
@R (2T~ 16(0d) (ol

with probability larger than 1 — 4, as long as

(@) = @2 [|S|2 Isf?

1
41 1/6 ( —)] . (A.26
051))2({%2))2 og(1/9) - (A.26)

”1 2
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Combining (A.24), (A.25), and (A.26), we derive

CRT GORT (S CEF ISy (L4 1))
(0(2))2 T (0(1))2 T1 16(0’ ))2(0,8))2 n )|’
with probability larger than 1 — 4. O

Lemma A.9. We want to lower bound the random variable Fs, =

()L where R is defined
(crs 2T (n1—|S])

R:= X (BY - pY) + 1P e — (o))t | /2 .

Let us first work conditionally to Xgl) and ng). Upon defining the Gaus-
sian vector W by

WNN[O,( )2 +( él))zx (X Tx ))( )ngJT] )

we get R = ||X (ﬁs - (1)) + W||?/n2. We have the following lower

bound:
2
(ﬁm (1))
R > (|IX§2)(ﬁ§2)— é”)||+< s /2
||xs (ﬁ( )
2) /o2 1 2 1 2
X6 —BIP 1 [, X (B ~BS)
- 2n, Ny ”x (ﬁ(z) (1))”
The random variable ||Xg2)(ﬁg2) — ﬁ(sl))||2/||ﬁ(s (1)||}:(2 follows a

x? distribution with 75 degrees of freedom. Conditionally to Xg,

<w, X2 (B2 —p3)
X (89—
able with 1 degree of freedom and its variance is smaller than

2 2 1 1)\ (— 2 1
(7572 + gmax (X5 (XX X (0572,

Applying Lemma A.15, we derive that with probability larger than
1—=x/6,

(2) (1)
R > S zﬁs (3 llz 108(1z/x)]

2
> is proportional to x? distributed random vari-

12

4B C2T0 (5032 1 (6102 gy (XD (XX ) DXET)]
2

Using the upper bound |S| < (11 Anz)/2 and Lemma A.16, we control
the last term

2 1 1)\ (— 2
@max [xg )(xg )Txg ))( 1)xg )T} < 50?’5 ,

with probability larger than 1 — 2exp[—(n1 A 12)0.042/2]. By condition
(A.20),

||ﬁ£52) (1) Bs’ 3o _log(12/6)

12

R 200 [af)m +0? )|S|(P5} (A.27)
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with probability larger than 1 —46/2.

Let us now upper bound the random variable Ty(11 — |S|)/n1. Since
(n1 — S)T follows a x? distribution with 17 — |S| degrees of freedom, we
derive from Lemma A.15 that

Ty(n—|S|)/m < 1+21/]°g(6/5) S-log(6/6) <2, (A.28)

with probability larger than 1 —6/6. Gathering (A.27) and (A.28), we
conclude that

2 1
> 185~ BS I log (6/9) 516 !‘722) s
e = 1
8(c{")> "2 7%
with probability larger than 1 —46/2.

’

+¢s

1,181

Power of quk (Proposition 4.6)

This proposition is a straightforward corollary of Theorem 4.7. If the con-
stant L1 in (4.12) is large enough, then condition (4.16) is fulfilled for
any subsets S of size less than k A k,. Assume first that §u(12) # @ or
sn12) £ @, Applying Theorem 4.7, we derive that T? rejects Hy with
probabilit?/ larger than 1 — & when K1(SY(12)) 4 Ky (SV(12)) > A(sU(12)
or K1(8"12) 4 Ko(s"12)) > A(S"(12). Working out K;(SV(?)) and
K1(57(12)) allows us to conclude. If SY(2) = @ or 712 = @, then
we consider any subset of size 1.

Power of TgL (Theorem 4.8)
For S1mp11c:1ty we assume in the sequel that ﬁ # 0 or B@ £ 0, the case
B = B(2) = 0 being handled by any set S € Stasso Of size 1.

Given a matrix X, an integer k, and a number M, the largest and small-
est eigenvalues of order k and the compatibility constant x[M, k, X] (see
Raskutti et al. (2010)) are respectively defined by

X6
o,1<lolo<k [6]> ’

X0|?
@0 = s IR @0
68,1<|8lo<k

K[MKX] = min [Ixol)
T,0: |T|<k, beccm,T) | ||6]

where C(M,T) = {6 : |0r<|1 < M|fr|1}. Define k, as the largest integer
that satisfies
2(ks +1)log(p) <275(n1 Ana) . (A.29)

We also consider the quantity
Viz12 B, (VZO)
Niz12 Pr,— (VED) A1 ,%2[10,[BD o + [BP) o, /2]

that measures the closeness to orthogonality of 2(1) and (2, The next
proposition is a sharper result than Theorem 4.8.

’

Tz,52,8 =
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Proposition A.10  The following positive numerical constants c1, ¢y, and c are introduced in the
proof of Lemma A.11 below Assume that

log [(24V c1)/(ad)] < (27 Acy)(n1 Any) . (A.30)
The hypothesis H, is rejected by TB with probability larger than 1 — & for any
(BY, B2)) satisfying
i—12 Dr. L (VZD)
Viz12 e+ (VED) —_|su(2)| < (2—14 A cgl) ke.  (A31)
Niz1,2% {10;2 sUD)|, v E(’)]

and

(Is02] v 1) log(p) + log{1/ (a6)}

n1 A na

K1+ K2 = Lysozep

This proof of Proposition A.10 is divided in two main steps. First, we
prove that with large probability the collection SMSSD contains some set S, A
close to

§Y12) = supp(BM) Usupp (@) .
Then, the statistics (Fg 1 s,\ o s 3) allow to reject Hy with large proba-

bility. Recall that the col]ectlon SLaSSO is based on the Lasso regularization
path of the fol]owing heteroscedastic Gaussian linear model,

X = [m Xy ][]+ (] @

which we denote for short:
Y = WH,+ e
Given a tuning parameter A, é}L refers to the Lasso estimator of :
6y =arg inf |[Y—WO|>+Al6];.
AcR2r

In order to analyze the Lasso solution 5,1, we need to control how W acts

on sparse vectors.
Lemma A.11 (Control of the design W)  The event

XMg|2 X@g|2
A = Vst |0 <k 1/2< ” I <2and1/2gwg2 .
P n2|10(|5e)

(10,16 + P10, X/ | x 10,1800+ BPho XP/ ]
K {10, 1BW o+ |B®|o, \/ﬁ} K [10, 1BD o+ |B@]o, \/ﬁ] -
has large probability P [A] > 1 — é/4. Furthermore, on the event A,
G (W) < 4 [0, (VED) v (VED)]
(W) > & (VD) A @y (VEZD),

for any k < k..
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The following lemma is a slight variation of Theorem 14 in Koltchinski
et al. (2011) and Lemma 3.2 in Giraud et al. (2012).

Lemma A.12 (Behavior of the Lasso estimator fﬂ) The event

Lemma A.13

Lemma A.14

5= {|Welo < 2001 02) /20, (W) logp)}

occurs with probability larger than 1 — 1/ p. Assume that

A > 8(01V 03),/ 201 1. (W) log(p) -
Then, on the event A N B we have
26)2
x2[10, |60|o, VED] A x2[10, |60]o, VE®D)]
Dy, 4 (V) v Dy, + (VZO)
x2[10, |6o|o, VED] A x2[10, |6o|o, VEZD)]

In the sequel, we fix

IW (62 — 60) || < [6olo - (A.33)

Br]o < 212 6olo < k./2, (A34)

A =16(01 Vv 0'2)\/2 [¢1,+(\/ﬁ) v ¢1,+(\/z(z>)} log(p) -

and we consider the set 5, = supp(@ﬁl)) U supp(%z)). On the event AN B,

this set §;L belongs to QLM and its size is smaller or equal to k, by Lemma
A.12. We shall prove that

ier{riglg,} Qf}|§,\| (P§A;f ng) < 23

with prgbability @rger than 1 — /2. In the following lemma, we relate
the X; (S;L) + }CZ(S,’L) to K1+ Ko

On the event AN B,

~ ~ 1
K1(S2) +K2(S)) = vl K1+ K]

_o19 Vic12 @, + (VED) Vs @14 (VED)  |sU(12)
Niz12 Pk, — (VED) A\j—q1 5 x2[10, |60, VED] 11 A2

log(p) -

Then, we closely follow the arguments of Theorem 4.7 to state that TB
rejects Ho with large probability as long as K1(S) + K2(Sa).

If on the event AN B,

Ka(80)+Ka(S1) = 2205, (o + - ) [1515i Hog(p) + 71og {6/ (w)) + 210g(p)]

then, min;c g 5 3 Q, 5,|(Fs, i X5 ) < ag, with probability larger than 1 —6/2.
We derive from (A.34) that on the event AN B,

Vie12 @, + (VED)
Ai=1,2%2[10, |60 o, VE®D]

Gathering Lemmas A.13 and A.14 allows us to conclude.

|§}L| < 29 |SU(],2)

’
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Lemma A.11. In order to bound P(.A), we apply Lemma A.16 to simul-
taneously control (pmax(xgl*)xg”), <pmax(X§2*)X§2)), <pmm(x§1*)xg”), and

(pmm(xgz*)xg’”) for all sets S of size k.. Combining an union bound with
Conditions (A.29) and (A.30) allows us to prove that

M2
_ IxWe]

P <
nq ||9||§(1)

2)pl12
{ve st 0] <k,, 1/2 <2and1/2 < X201 gz}] >1-6/6

n2||9||}2:(2)

Applying Corollary 1 in Raskutti et al. (2010), we derive that there exist
three positive constant c1, ¢2 and c3 such that the fo]lowing holds. With
probability larger than 1 — c1 exp[—ca(n1 Any)|, we have

x [10, 18D o+ [0, X(i)/\/n—i]
>
i=12 K [10, 1BW]o + 8P|, \/E(i)]

: 1 2 Vi12®1,4+ (VEWD)
if (lﬁ( )lg —+ |ﬁ( )|0) log(p) < C3 Al_::l’zxz[10j|,28(1‘;|0+|ﬁ(2)|0!@] (H] A ?’12). Hence,

we conclude that P[A] >1-46/3.
Consider an integer k < k, and 6 a k-sparse vector. Under the event A,
we have

IXW 7 /(0D +0@) |2+ [X® //na (6 — 62))||7
201(6@ + 0@ +2]10D — 6P| 2,

4@, (VED) v & (VED)] 6]
1
5 (160 + P30 + 60 6P|, |

[d)k,_ (VED) A _(V 2(2))]

Iwe|?

[/

[/

Iwe|?

Y

vV

O

Lemma A.12. A slight variation of Theorem 14 in Koltchinski et al. (2011)
ensures that

/12
K2[5, |90|0, W]

on the event B. Consider a set T C {1,...,2p} of size smaller or equal to
k and define T" C {1,...,p} byi € T'ifi € Tor i+ p € T. Consider some

p(1)
o — ( o ) cC,T),

then either 8(1) +6() € C(10, T’) or 81 — () € C(10, T'). Hence,

W (B, — )% < |6olo (A.35)

IWol? _ [XO(E® + o) | X (0 — 6002
Gk ol 0T
0@ + e 0 0O [\ 5 o
. G N\ (kX0 i)

Y

K2 (10,k,X(])/\/n_1) A K2 (10,k,x(2)/\/5)]
27 [« (10,k, VEO) A% (10,k,VED)]

Y
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where the last inequality proceeds from Lemma A.11. Hence,
262[5, |80, W] > [x2 (10,k, \/2(1)) A K2 (10,k, V@ )} .
Gathering this bound with (A.35), it follows that
26)2

W (B — 60)1* < 160lo ,
K2[10, |90|0, \% 2(])] AN x"’-[l[), |90|0, 2(2)]

which allows us to prove (A.33). Lemma 3.1 in Giraud et al. (2012) tells us
that on the event B,

A?[Brlo < 16@y5, . (W)[[W(Bx —60)I* -

B3 Jo,+
Gathering the two last bounds and Lemma A.11, we obtain

<I)|§/\|n,+ (W)
x2[10, |90|0, VZ(])] A x2[10, |90|0, 2(2)]

B30 < 21° l|6olfo-

The upper-bound @5, (W) < (1+ [6alo/k.)®%, (W) and Lemma
A.11 enforce

51 < o2 P (VED) vy, (VI®) o1 |1 162 p
Oxlo - = 6olo |1+ 36)
x2[10, |6olo, VEM] Ax2[10, |6g|o, VZ?)] k.
= (k*+|§a|n) /2,

where the last inequality follows from (A.31) and |o]o < |80 + |B?]o.
Hence, |§;L|0 < k. Coming back to (A.36), we prove (A.34).
O

Lemma A.13. Given the Lasso estimator 0, of 6 in the model (A.32), we
define B\ and B{? by

i1 37 E
Jm N

On the event A N B, we upper bound the difference between (1) and ﬁﬁl)
and B and B

(1
Bl =

1 2
18D — BV, + 8@ — B2,

XM ~ x@) —~
< 211222 (M — g2 1 | 2= (8@ — g2
< 217 (B0 =BV + 12— (6% — B
2 ~ 5
< _
< W@ -8y

017 Vie12 @14 (VZED)  |su(12)
Ni=1,2 x2[10’ |60o, @] ni1 Anp

log(p) (e vo®)?,
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where the last inequality follows from Lemma A.12. Let us now lower
bound the Kullback discrepansy 2 [!Cl (§;L) + Ks (é}L” which equals

1 1 2 1 2 1
(05 (03))? B 182 =B 120 182 — BY 112,

2
(og?)z (02 (03 s,

CASE 1 % > 2. By symmetry, we can assume that o) > #2)

! 1
@D)2 = (D)4 [0 - D2, > (o)
2 1
(Ué/\)y = (c@)2 4 BW — B{Sﬁ,\)”%m
Vic1a @14+ (VED)  |sU012)]
Ni=1.2 x2[10, [6o]o, \/ﬂ] n1 Az

»)?2
< @@y 1,

< (e@)? 427 log(p)(@® v o)?

where we used conditions (A.29) and (A.31) in the last inequality. This
enforces
~ ~ 1
>
2[1 (81) +52(5)] = 13
(cWvel2))2

CASE 2: @A) < 2. Let us note

Viep @14 (VZD) 5002
Ai=12%2[10, [8olo, VED] 111 A 12

A=2" log(p)

Arguing as in CASE 1, we derive that
(002 < (@) [1+ 4] <203,

2)32
g < (@) [1+A] <203

Let us lower bound k; (§;L) + !Cz(g,l) in terms of K1 + K,. First, we con-
sider the ratio of the variances

(o (1))2 o2 . o
U§§ + (:Sf\)z -2 = !EG’(Z);Z E ;2 /(14+A)-2
r A SA
((7(1))2 (0'(2))2 A (0.(1))2 (o (2))2
— (c@)2 +( (1))2 —2- 1+A [ (c®@)2 + (0(1))2]
(eM)2  (¢@)2
= (@ T gme 2T (A37)

Let us now lower bound the remaining part of K1(S)) 4+ K(5,) For i =
1,2, the number of non zero components of ﬁ(f) — BT{J is smaller or equal
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to k,.

1Y

”):(2) + ||ﬁ(1) - ﬁ(2)||)2:(1}
(e )2 (c@)

2
1 2 1 2
< )2/\ s 1 1BV = B2 + 182 — B 2 + 1185 — B 12 ]

03 i1
< )2/\{72 ”1 L2 +E\/\/:; Z”ﬁ” ﬁ,x ||2 +Z||ﬁm 'i)”)zg(f}]

2 ”ﬁS g ||2(E) Vie12 @i, (VZD)
2 ,\ 3 i=12 *k,.,+ A
[z ] 2 Ni=12 P, _(VZO)

i=1 (t+1)mod 2

Gathering the last inequality with (A.37) yields

\/; 12 P, +(\/—)

K K K1+ K] —
1(511)_'_ 2(511) [ 1 ] /\t I,Z(Dk (\/—)

[

Lemma A.14. For any non empty set S of size smaller or equal to k,, define

-1
55 = 5 (2(5k.) . By definition (A.29) of k. and by Hypothesis (A.30),
the following conditions are satisfied

log(12/8s) < 2783 (ny Any), log(1/as) <270(ny Any) .

Arguing as in the proof of Theorem 4.7, we have

r [:EI{T{lgls}Q |5,\|( S,\:lst) < g ] >1—4ds

as long as

K180+ Ka(81) = 225, (=-+ 1) [15(5illog(p) + 71og {6/ (a8)) + 210g(p)]

Applying an union bound over all sets S of size smaller or equal to k
allows us to conclude.
O

A.2.5 Technical lemmas

In this section, some useful deviation inequalities for x2 random variables
Laurent and Massart (2000) and for Wishart matrices Davidson and Szarek
(2001) are reminded.

Lemma A.15 For any integer d > 0 and any positive number x,

P (;(2(0‘) <d-— 2\/@) < exp(—x),
P (XZ(d) >d —I—2\/E—I—2x) < exp(—x).
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Lemma A.16 Let ZTZ be a standard Wishart matrix of parameters (n,d) with n > d. For
any positive number x,

r {mem (ZTZ) = n ({1 - \/g— x} vV O) } < exp(—nxz/Z) ,
y 2
P [qpm (Z7Z) <n (1 + \/;4—:() ] < exp(—nx2/2).

and
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