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Rien ne m’est sûr que la chose incertaine
Obscur, fors ce qui est tout évident
Doute ne fais, fors en chose certaine

Science tiens à soudain accident.
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Introduction

In many scientific fields, graphs have become extremely useful as rep-
resentations of a wide variety of systems. World Wide Web, gene inter-
actions, social networks, authors citations, are examples of fields where
graph representation can be used to understand the features of these com-
plex networks. As for the Web, nodes represent websites or webpages,
and each edge represents a hyperlink relating two nodes.

The latter example is not neutral and constitutes the main applica-
tion field of this thesis which has been carried out in collaboration with
Exalead, a global software provider in the enterprise and Web search mar-
kets, based in Paris since 2000. Among their activities, search engines reg-
ularly handle the Web graph representation to address many of their page
processing including ranking, spam detection, search, etc. An advanced
understanding of graphs allows to explain the underlying phenomenon
which they are associated with. Such studies yielded the emergence
of mathematical descriptions such as small-world graphs or power-law
graphs that are common properties of real networks. A global overview
of a network and a deeper understanding of the nature of its nodes inter-
actions can be obtained by the study of its structure or topology.

Many strategies have been developed for this purpose and model-
based clustering has provided an efficient way to summarize complex
networks structures. The basic idea of these strategies is to model the dis-
tribution of connections in the network, considering that nodes are spread
among an unknown number of connectivity classes which are themselves
unknown. However, the main drawback of these methods is that they
suffer from relatively slow estimation procedures since dependencies are
complex. This forbids to deal with networks composed of thousands of
nodes, if not more, with a reasonable speed of execution. To circum-
vent this problem, online algorithms are en efficient alternative to clas-
sical batch algorithms. The adaptation of online estimation strategies,
originally developed for the Expectation-Maximisation (EM) algorithm,
to graph models are then an interesting optimization approach to the sta-
tistical analysis of large networks.

Most techniques for clustering graph vertices only use the topology
of connections, while ignoring information about the features of vertices.
Using statistical models with a latent structure characterizing each vertex
both by its connectivity and by a vector of features, one can use both these
elements to cluster the data and estimate the model parameter. For the
Web graph where each vertex represents a page containing occurrences
of certain words, structure can either be then described in terms of the
hyperlinks between web pages, or by the words occurring in the web page.

Successful experiences on the Web graph structure encourage us to
create an online application which could extract and visually explore the
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2 Introduction

connectivity information induced by hyperlinks. This application could
then offer a new way to browse search engine results.

In summary, our contributions are the following,

• Online EM algorithms for random graphs which are based on a mix-
ture of distributions;

• Statistical models with a latent structure characterizing each vertex
both by its connectivity and by a vector of features (or an additional
information) and their related estimation procedure;

• Constellations, an online application intended for the Exalead search
engine, which is able to reveal the connectivity information induced
by the hyperlinks of a user request.

All of these contributions are developed in the four chapters of this thesis.
The first chapter outlines the problem of graph clustering which consists

in assigning the vertices of a graph into clusters taking its edge structure
into account. Since graph clustering literature is very large, this chapter
does not claim to give a comprehensive overview of all the exiting meth-
ods, but rather a general description of the approaches commonly applied.

The second chapter describes in detail a statistical model, called MixNet,
which is used, throughout this thesis, for the description of the network
topology. Since efficient computational procedures are required in order
for structures to be learned, this chapter adapts online estimation strate-
gies. Our work focuses on three methods, the first based on the CEM al-
gorithm, the second on the SAEM algorithm, and the third on variational
methods. We perform a simulation to compare these three algorithms
with existing approaches and we use these methods to decipher the struc-
ture of the French and US political websites network. We show that our
online EM-based algorithms offer a good trade-off between precision and
speed when estimating parameters.

In the third chapter, we propose clustering algorithms that harness both
the topology of connections and the information about the features of ver-
tices. Simulations are carried out to compare our algorithms with existing
approaches. Once again, hypertext documents are used as real data sets.
We find that our algorithms successfully exploit whatever information is
found both in the connectivity pattern and in the features.

The fourth chapter is devoted to the online Constellations application.
Since web content authors tend to link to pages with similar topics or
points of view, this service based on the hyperlink topology offers a new
way to browse the Exalead search results. Indeed, in this application, the
connectivity information induced by hyperlinks between the first hits of a
given search request is extracted, visually explored and analysed via the
MixNet algorithms. Since the Web is an open and large scale hypertext
system with billions of nodes and links, this chapter will also focus on
how to deal with a huge amount data and produce an online service
capable of responding in a very short time.

This thesis has been the subject of various publications: three pub-
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lished papers (Zanghi et al. 2008; 2010a;b) and three conference proceed-
ings.

Furthermore, the Constellations application, currently available at
http://constellations.labs.exalead.com allows to promote
certain aspects of this thesis.





Préambule

Dans de nombreux domaines scientifiques, les graphes sont des out-
ils incontournables de représentation d’une grande variété de sys-

tèmes. Le Web, les interactions entre les gènes, les réseaux sociaux, les
cocitations entre les articles scientifiques sont des exemples pour lesquels
cette représentation peut être utilisée dans le but de comprendre les car-
actéristiques de ces réseaux complexes. Dans le cas du Web, les nœuds
représentent ainsi des sites Web ou pages, et chaque arête représente un
lien hypertexte reliant deux nœuds.

Ce dernier exemple n’est pas anodin et constitue le principal contexte
applicatif de cette thèse réalisée en collaboration avec Exalead, fournisseur
de logiciels de recherche et d’accès à l’information en entreprise et sur le
Web, basé à Paris depuis 2000. Parmi leurs nombreuses opérations, les
moteurs de recherche matérialisent régulièrement le Web sous forme de
graphe pour appliquer divers traitements aux pages y compris la classifi-
cation, la détection de spams ou encore la recherche. Une compréhension
avancée de ces graphes permet d’expliquer les phénomènes sous-jacents
auxquels ils sont associés. Ces études ont permis l’émergence de descrip-
tions mathématiques telles que les phénomènes de "petit monde" ou de
distribution en loi de puissance qui sont des propriétés communes aux
réseaux réels. L’étude de la structure ou de la topologie d’un réseau en
donne une vision globale qui permet une connaissance approfondie de la
nature des interactions entre ses nœuds.

Les techniques de classification automatique, dites de clustering, basées
sur l’utilisation de modèles statistiques ont fourni un moyen efficace
de résumer les structures complexes des réseaux. L’idée de base de
ces stratégies est de modéliser la distribution des connexions dans le
réseau, en considérant que les nœuds sont répartis parmi un nombre
inconnu de classes de connectivités, elles-mêmes inconnues. Cepen-
dant, l’inconvénient principal de ces méthodes concerne les procédures
d’estimation relativement lentes dûes aux dépendances complexes. Ceci
empêche de traiter des réseaux composés de milliers de nœuds, si ce n’est
plus, avec une rapidité d’exécution raisonnable. Les algorithmes incré-
mentaux où les données arrivent au fur et à mesure sont des alternatives
efficaces aux algorithmes classiques qui traitent dans la globalité un lot de
données. L’adaptation des stratégies d’estimation incrémentales, initiale-
ment développées pour l’algorithme EM, aux modèles de graphes sont
ainsi des approches d’optimisation intéressantes aux analyses statisitiques
de grands réseaux.

La plupart des techniques de clustering des nœuds d’un graphe
utilisent uniquement la topologie de leurs connexions, en omettant
l’information que ces nœuds pourraient contenir. En utilisant des modèles
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6 Préambule

statistiques à structure latente qui caractérisent chaque nœud à la fois par
sa connectivité et par un vecteur de caractéristiques (ou un complément
d’information), nous pouvons utiliser ces deux éléments pour grouper les
données et estimer les paramètres du modèle. Pour le graphe du Web
où chaque sommet représente une page contenant des occurrences de cer-
tains mots, la structure peut alors être définie par rapport aux hyperliens
entre les pages Web ou par rapport à la similarité des mots employés entre
celles-ci.

Les expériences réussies sur l’analyse de la structure du graphe Web
nous ont encouragées à créer une application en ligne qui pourrait extraire
et explorer visuellement l’information de la connectivité induite par les
hyperliens. Cette application proposerait ainsi une nouvelle manière de
parcourir les résultats d’un moteur de recherche.

En résumé, nos contributions concernent,

• Des algorithmes EM incrémentaux pour les graphes aléatoires qui
sont basés sur des mélanges de distributions;

• Des modèles statistiques avec une structure latente caractérisant
chaque sommet à la fois par sa connectivité et par un vecteur de car-
actéristiques (ou un complément d’information) et leurs procédures
d’estimations associées;

• Constellations, un service en ligne destiné au moteur de recherche
d’Exalead, qui est en mesure de révéler les informations de connec-
tivité induite par hyperliens entre les résultats d’une requête utilisa-
teur.

L’ensemble de ces contributions est développé au cours des quatre
chapitres de cette thèse.

Le premier chapitre décrit brièvement le problème de clustering de
graphe qui consiste à assigner les nœuds dans des grappes en prenant en
considération la structure des arêtes. Puisque la littérature autour de ce
problème est dense, l’ambition de ce chapitre est d’avantage de proposer
une description générale des approches couramment appliquées que de
prétendre donner un aperçu complet de toutes les méthodes existentes.

Le deuxième chapitre décrit en détail le modèle statistique MixNet qui
est utilisé tout au long de cette thèse pour la description de la structure
des réseaux. Etant donné que des procédures efficaces de calcul sont
nécessaires pour appréhender ces structures, ce chapitre s’intéresse aux
stratégies d’estimation incrémentales. Notre travail se concentre sur trois
méthodes, la première basée sur l’algorithme de CEM, le deuxième sur
SAEM, et le troisième sur les méthodes variationnelles. Nous réalisons
des simulations afin de comparer ces trois algorithmes avec les approches
existantes, et nous les utilisons pour déchiffrer la structure des réseaux
créés par les sites politiques français et américains. Nous montrons que
nos algorithmes EM incrémentaux offrent un bon compromis entre préci-
sion et vitesse lors de l’estimation des paramètres.

Dans le troisième chapitre, nous proposons des algorithmes de cluster-
ing qui utilisent la topologie des connexions ainsi que des informations
sur les caractéristiques des nœuds. Nous réalisons des simulations pour
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comparer les algorithmes existants avec nos propres algorithmes. Nous
évaluons également ces derniers avec des données réelles basées sur des
documents hypertextes. Nous constatons que nos algorithmes exploitent
les informations avec succès quel que soit l’endroit où elles se trouvent: la
connectivité des arêtes ou les caractéristiques des sommets.

Le quatrième chapitre est consacré au service en ligne Constellations.
Étant donné que les auteurs de contenu Web ont tendance à lier des pages
avec des sujets ou points de vue similaires, ce service, basé sur la topolo-
gie hypertexte, offre une nouvelle façon de naviguer dans les résultats
de recherche d’Exalead. En effet, dans cette application, la connectivité
induite par des hyperliens entre les premiers résultats suite à une requête
donnée est extraite, explorée et analysée visuellement via les algorithmes
présentés dans cette thèse. Composé de milliards de nœuds et de liens, le
Web est un système hypertexte vaste et ouvert. Ce chapitre se concentrera
également sur la façon de traiter une telle quantité de données dans le
but de fournir un service en ligne capable d’opérer en un temps très court.

Cette thèse a fait l’objet de divers travaux écrits: trois articles publiés
(Zanghi et al. 2008; 2010a;b) et trois conférences.

De plus, l’application Constellations, actuellement disponible à
l’adresse http://constellations.labs.exalead.com permet de
promouvoir certains aspects de cette thèse.
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The task of assigning a set of objects into groups such that they are com-
posed by similar objects is called clustering. Common technique for

statistical data analysis, clustering belongs to unsupervised learning meth-
ods and is used in many field including machine learning, data mining,
pattern recognition, image analysis and bio informatics. In general, the
clustering is based on some similarity measure defined for data elements.

Graphs are mathematical structures formed by a collection of vertices
(also called nodes) and a collection of edges that are connections between
pairs of vertices. The task of graph clustering consists in assigning the ver-
tices of the graph into clusters taking into consideration the edge structure
of the graph and it is the subject of this survey (See Figure 1.1).
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1.1 Introduction

The problem of graph clustering, sometimes confined to community de-
tection in graphs, has a long tradition and it has appeared in various forms
given the scientific fields. It should not be confused with the clustering
of sets of graphs based on structural similarity. Such clustering of graphs
as well as measures of graph similarity is addressed in other literature,
for instance Robles-Kelly and Hancock (2005) where the technique used is
closely related to the task of detecting clusters within a given graph.

The first study of community structure might be dated back to the
work of Rice (1927) where using similarity of voting pattern, people are
grouped in political clusters. From there, regrouping vertices according to
their mutual similarity, many traditional techniques to find communities
in social networks have been proposed. Such techniques like hierarchical
or partitional clustering are explained in this Chapter 1.5.1.

Nevertheless, the first algorithm especially designed for detecting com-
munity structure might be associated to Weiss and Jacobson (1955). Inter-
ested by the detection of work groups within a government agency, the au-
thors examined the matrix of working relationships between members of
the agency, which were identified by means of private interviews. Briefly,
they proposed to remove the members working with people of different
groups in order to identify the work clusters. Particularly intuitive, this
approach of cutting connectors between groups is now involved in numer-
ous modern algorithms and Section 1.5.2 presents the key points of such
a strategy.

Initially designed for social networks, the identification of structure
in graphs is also a popular topic in computer science. For instance, a
classical parallel computing problem consists of dividing the computer
networks into clusters, such that the clusters are of about same size of
processors and there exists very few connections between these clusters.
Explained in Section 1.5.1, this graph partitioning allows to minimize the
communications between the clusters and increase the use of CPUs. The
first algorithms for graph partitioning were proposed in the early 1970’s.

In 2002, Girvan and Newman proposed in a seminal paper (Girvan and
Newman 2002) a new algorithm, aiming at the identification of edges lying
between communities and their successive removal, a procedure that after
a few iterations leads to the isolation of the communities. In this approach,
the authors detect the inter-community edges according to the values of a
centrality measure, the edge betweenness. This measure expresses the im-
portance of the role of the edges in processes where signals are transmitted
across the graph following paths of minimal length. Following this paper,
a large amount of methods has been proposed in the last years including
spin models, random walks, etc. This chapter focuses on a few elements of
understanding of these tools and technique (Section 1.5.5). During the last
years, the field has also taken advantage of concepts and methods from
computer science, biology, sociology, discrete mathematics.

Although no single definition of "community" is universally accepted,
modularity is one of the most popular function which quantifies the quality
of a division of a network into modules. The basic idea of this concept is to
compare the number of edges inside a cluster with the expected number
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of edges that one would find in the cluster if the network were a random
network with the same number of nodes and where each node keeps its
degree, but edges are otherwise randomly attached. Many algorithms, like
Girvan and Newman (2002), optimize this function to perform a clustering
of vertices.

Transformation of the adjacency matrix are often done to detect com-
munities. One might cite methods related to spectral clustering (Ng et al.
2002) and variants (Boulet et al. 2008) which take benefit of the Laplacian
matrix or methods related to random walk where the probabilities of the
transitions matrix are the basis of the approach (Dongen 2000).

A distinction can be made between model-free (Newman 2006a, Ng
et al. 2002) and model-based methods. Among model-based methods,
model-based clustering has provided an efficient way to summarize com-
plex networks structures. The basic idea of these strategies is to model
the distribution of connections in the network, considering that nodes
are spread among an unknown number of connectivity classes which are
themselves unknown. This generalizes model-based clustering to network
data, and various modeling strategies have been considered (Nowicki and
Snijders 2001, Daudin et al. 2008, Airoldi et al. 2008, Handcock et al. 2006).
EM like algorithms constitute a common core of the estimation strategy of
these graph modelings (Snijders and Nowicki 1997). Since EM is known
to be relatively slow, Chapter 2 will focus particularly on a model-based
modeling (Daudin et al. 2008) and its online estimation strategies.

Since the graph clustering field has has grown quite popular and the
number of published proposals for clustering algorithms is high, this
chapter do not even pretend to be able to give a comprehensive overview
of all the exiting methods, but rather an explanation of the methodologies
commonly applied and pointers to some of the essential publications re-
lated to each research branch. More complete graph clustering reviews
could be found in Schaeffer (2007) and Fortunato (2009).
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Outline of the chapter We first begin this chapter by providing illus-
tration of graph structures in real networks and it is supposed to exhibit
the problem and its relevance to many different fields. Next, graph ter-
minology and basic definitions are provided to prepare the reader to the
description of the graph clustering algorithms. Then, we begin our algo-
rithm review with traditional clustering methods, i. e. graph partitioning,
hierarchical and partitional clustering. A review of methods is divided
into sections based on approaches on which they refer. Since many al-
gorithms may enter into several categories, the classification is based on
what we believe is their main feature/purpose, even if other aspects may
be present. Finally, we finish this chapter by discussing the model-based
methods which provides the basis of the future algorithms described in
this thesis.

1.2 Real-networks and communities

In many scientific fields, systems can be modeled using networks to rep-
resent data relationships. World-wide-web, gene interactions, social net-
works, authors citations, are examples of fields where graph representa-
tion helps interpreting relationships between the nodes. In this section,
some striking examples of real-networks with community structure are
illustrated. The underlying idea is to make the reader understand the use-
fulness of automatically detecting these structures. After these examples,
we also recall some properties that real-networks share together.

Community structure Firstly, note that the word "community" itself
refers to a social context. People naturally tend to form groups, within
their work environment, family, friends. However, it will sometimes be
employed in completely different contexts to describe any grouping of
vertices. Besides, it appears that as social networks any real-networks
share the property of owning a high clustering coefficient: my neighbours
have a high probability to be neighbours themselves. This property cre-
ates important aggregative trend of a graph which takes a special meaning
depending on the context: biological, social, etc.

Thereby, we begin the illustration of real-networks along community
structure in the social context with Figure 1.2. This first example con-
cerns the Zachary karate club network which is a well-known dataset of-
ten used as a benchmark to test graph clustering algorithms. It represents
the friendships between 34 members of a karate club at a US university
in the 1970s who were observed during a period of three years. Edges
connect members who were observed to interact outside the activities of
the club. A clash between the president of the club and the instructor
led to the fission of the club in two opposed groups: one supporting the
instructor and the other the president, respectively (indicated by squares
and circles). This fission can be observed on Figure 1.2 where we can dis-
tinguish two aggregations. The first one is around vertices 33 and 34 (the
president), and the other is around vertex 1 (the instructor). From such
an observed network, the purpose of a community detection algorithm
is to suggest the split into two groups. We can also note that the two
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main structures are linked by several vertices (like 3,9,10) which might be
misclassified by graph clustering methods.

Figure 1.2 – Zachary’s karate club. The colors correspond to the partition found by
optimizing the modularity of Newman and Girvan for two groups.

Next, we propose an example of information flows within the brain
which is subject of intense investigations in biology and bio-informatics.
Since the interactions between cortical regions are fundamental for each
brain function, studying the way cortical regions interact may offer new
research perspectives. Figure 1.3 illustrates 47 brain cortical regions con-
nected by 505 inter-regional pathways in the Macaque Cortex (Sporns et al.
2007). It seems that particular brain regions may act differently. Indeed,
we can observe that some regions are particularly linked to others caus-
ing "central" and more "peripherical" parts in the network. In biological
terms, since a lot of information will pass through "central" zone identify-
ing them can be crucial, as their lesion may compromise the integrity of
the whole network (Picard et al. 2009). In this example, the authors also
note that communities can be related to geographic areas in the cortex.
This can be explained by the geographic organization of the connections
within the brain.

Figure 1.3 – Macaque cortex network displayed with colors for each MixNet class (8
groups) from the paper of Daudin et al. (2008).

Relationships between elements of a system are not necessary recip-
rocal. As an example, the direction of the relationships in predator-prey
food webs have to be precise in order to understand the system as a whole.
Another example extracted from the computer science fields is proposed
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in Figure 1.4. The considered system is the World Wide Web, which can
be seen as a directed graph by representing Web pages as vertices and the
hyperlinks, that allow users to navigate among pages, as directed edges
(Kleinberg et al. 1999). Empirically, we can observe that less than 10% of
the hyperlinks are reciprocal. Communities of the Web graph are groups
of pages having topical similarities. Chapter 4 discusses in detail an ap-
plication based on the Web pages.

Characterized by symmetrical matrices (adjacency matrix, Laplacian,
etc.), all structure detection algorithms can not be easily extended from the
undirected to the directed case. Thus, it is preferable to properly formulate
the problem to solve before designing a strategy.

Figure 1.4 – Community structure in a hypertext document network. Groups, indicated
by the colors, were detected with the CEM algorithm of Zanghi et al. (2008)

In the previous examples, one might be interested in weighting. For
instance, the edges of Zachary’s network of karate (Figure 1.2) could be
weighted by the number of times individuals interacted outside the ac-
tivities of the club. Similarly, the edges of the co-authorship network in
Figure 1.5 could be weighted by the number of papers coauthored by pairs
of scientists. Note that in this example, the collaboration dataset is based
on the largest connected component (379 nodes) of the network of scien-
tists (1,589 total nodes), determined by coauthorship of papers listed in
few articles (for instance (Boccaletti et al. 2006)).

Weights are truly valuable information for edge structure of the graph
and should be considered by the community detection algorithms. Thus,
algorithms handling weighted graph are generally preferred. However,
in many cases methods working on unweighted graphs can be simply
extended to the weighted case. Besides, vertices can also embed crucial
informations which can be combined with the graph structure to build
coherent groups. Chapter 3 will propose algorithms for clustering data
sets with a graph structure embedding vertex features.

Last but not least, we can cite the problem of overlapping communities
which is not considered in this thesis. In such situation, we have to intro-
duces a further variable, the membership of vertices in different communi-
ties that enormously increases the number of possible covers with respect
to standard partitions. Therefore, searching for overlapping communities
is much more computationally demanding than detecting standard parti-
tions (Latouche et al. 2009).
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Figure 1.5 – Co-authorship network : Each of the nodes in the network, which we depict
using a Kamada-Kawai visualization(Kamada and Kawai 1989), is colored according to
its community assignment using a spectral method algorithm.

Thereby, besides the well-illustrated property of high clustering coeffi-
cient, others properties that are shared by real-networks can be listed.

Other properties of real-networks Although these properties are not in
the scope of our work, we briefly recall some properties shared by these
so-called real-networks. Some of them will be detailed for the World Wide
Web graph dataset when we will describe our application in Chapter 4.

• Tree-likeness: The number of edges is linear in the number of nodes.

• Giant component: Connected subgraph that contains a majority of
the entire graph’s nodes

• Scale-freeness: The distribution of nodes in the network follows a
"power law" distribution (a few nodes have many links, and many
nodes have few links).

• Preferential attachment: New nodes are free to associate with any
nodes, but "prefer" to associate with well-connected nodes (nodes
that already have many connections).

• Small World: Most nodes are close to each other (six degrees of
separation in social networks).

These properties are well-studied in the literature and details can be
found in Amaral et al. (2000), Newman (2003), Barabasi and Crandall
(2003), Watts (2004)

1.3 Terminology and definitions

We first propose a review of the graph terminology in order to facilitate
future discussion in the rest of this chapter. Some of the basic definitions of
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computational complexity, approximation algorithms, graph theory, and
Markov chains are provided. Obviously, we advise readers familiar with
the graph terminology to proceed directly to Section 1.4 page 21.

1.3.1 Graph theory

A graph G is a combination of sets G = (V, E) where V is the set of
vertices with the number of vertices n = |V| and E is the set that contains
the edges of the graph. As mentioned in the real-networks examples, the
relationships direction can be crucial. In this case, each edge is an ordered
pair {u, v} and the set of edges form a directed graph or (also called a
digraph). In the other case, they are unordered pairs and form a undirected
graph. The size of the graph is determined by the edge count |E| = m. In
a weighted graph, a weight function w : E → R is defined that assigns a
weight on each edge. A planar graph is a graph that can be drawn on the
plane in such a way that its edges intersect only at their endpoints.

A dense graph is a graph in which the number of edges is close to the
maximal number of edges. The opposite, a graph with only a few edges,
is a sparse graph. Thereby, we define the density of a graph G = (V, E) as
the ratio of the number of edges present over the maximum possible,

δ(G) =
2.m

n.(n− 1)
(1.1)

Since, the maximum number of edges is m = 1/2.n.(n− 1), the maxi-
mal density is 1 (for complete graphs) and the minimal density is 0 (Coleman
and Moré 1984).

In graph theory, vertex u is a neighbour of vertex v if edge {u, v} ∈ E.
The neighbourhood for a given vertex v is defined by the its set of neigh-
bours and is denoted by NG(v). Note that a vertex v is a member of its
own neighbourhood NG(v) if and only if the graph contains a reflexive
edge {v, v} (also called a self-loop).

A path from vertex v to vertex u in a graph G = (V, E) is a sequence of
edges in E starting at vertex v0 = v and ending at vertex vk+1 = u;

{v, v1}, {v1, v2}, · · · , {vk−1, vk}, {vk, u}.

A path with no repeated vertices is called a simple path and a cycle
corresponds to a path such that the first node of the path corresponds to
the last. A graph with no cycle is defined as acyclic (also called a forest). A
connected acyclic graph is called a tree.

The length of a path is the number of edges on it, and the distance
between vertices v and u is the length of the shortest path connecting them.
Note that the distance from a vertex to itself is zero. If there exist paths
between all pairs of vertices then the graph is connected. Otherwise, the
graph is disconnected. Given a graph G, the minimum number of edges that
would need to be removed in order to make it disconnected is defined as
the edge-connectivity of the graph.

The degree of a given vertex v is derived from its number of incident
edges and is denoted by deg(v). When every vertex of a given graph have
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the same degree, the graph is called regular. A regular graph with vertices
of degree k is called a k-regular graph or regular graph of degree k.

A partition of the vertices V of a graph G = (V, E) into two disjoint
subsets S and V \ S is called a cut and is denoted by (S,V \ S). As the sets
S and V \ S define the same cut, it is often preferred to denote by S the
smaller set, hence requiring |S| ≤ n

2 . The size (or weight) of a cut (S,V \ S)
is the number of edges crossing the cut and is defined by

c(S,V \ S) = |{v, u} ∈ E|u ∈ S, v ∈ V \ S|.
Note that in a weighted graph, the same term is defined by the sum of the
weights of the edges crossing the cut.

A subgraph GS = (S, ES) of a graph G = (V, E) is a graph whose vertex
set S ⊆ V is a subset of that of G, and whose edge set ES ⊆ E is a subset
of that of G restricted to this subset. In such a context, the graph G is a
supergraph of GS

An induced subgraph of a graph G = (V, E) is a subset of the vertices
S ⊆ V with an edge set E(S) that includes all such edges {v, u} in E with
both of the vertices v and u included in the set S:

E(S) = {{v, u}|v ∈ S, u ∈ S, {v, u} ∈ E}.
We denote the subgraph induced by the vertex subset S by G(S) (or by

GS where it is clear that the subgraph is an induced subgraph). A complete
graph is a graph in which each pair of graph vertices is connected by an
edge. A clique is a complete induced subgraph. According to Equation
1.1, the local density of an induced subgraph in G = (V, E) is defined by

δ(G(S)) =
|E(S)|
(|S|2 )

An isomorphism of graphs Gi = (Vi, Ei) and Gj = (Vj, Ej) is a bijection
between the vertex sets f : Vi → Vj such that {v,w} ∈ Ei if and only
if { f (v), f (w)} ∈ Ej. With such a one-to-one correspondence, the two
graphs Gi and Gj are said to be isomorphics

The adjacency matrix is frequently used to represent which vertices of a
graph are adjacent to which other vertices. The adjacency matrix of a given
graph G = (V, E) on n vertices is the n× n matrix denoted AG = (aG

v,u)
where

aG
v,u =

{
1, if {v, u} ∈ E

0, otherwise.

The set of graph eigenvalues of the adjacency matrix AG is called the
spectrum of the graph. Although spectral properties can be computed for
both undirected and directed graphs, as well as unweighted, this section
provides elements of the spectral graph theory involved in the easiest case
(undirected and unweighted simple graphs). Studying the eigenvalues of
the Laplacian matrix L = D− AG is often more convenient than those of
AG itself (Chung 1997). The normalized Laplacian is defined as

L = D−
1
2LD−

1
2 = I−D−

1
2AGD

− 1
2 (1.2)
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where I is a n × n identity matrix (with ones on the diagonal, other
elements being zero) and D is the n × n degree matrix of graph G (with
vertex degree on the diagonal, other elements being zero). A normalized
version of the Laplacian matrix is similarly defined by

Luv =





1, if u = v and deg(v) > 0,

− 1√
deg(u).deg(v)

, if u ∈ Γ(v),

0, otherwise.

Eigenvalues of such symmetrical matrices are real and non-negative.
Using the normalized Laplacian is convenient as all the eigenvalues of L
lie the in the interval [0, 2]. As the matrix is singular, the smallest eigen-
value is always zero, and the corresponding eigenvector is simply a vector
with each element being the square-root of the degree of the correspond-
ing vertex. A comprehensive introduction to this field can be found in
Chung (1997) and application of spectra in real-world graphs in Farkas
et al. (2001)

1.3.2 Markov chains

A Markov chain is a random process where all information about the future
is contained in the present state, i.e. the past is not examined to determine
the future which only depend on the current state. The changes of states
are called transition and the associated probabilities form the transition
matrix of the Markov chain. A convenient way to represent such matrix
is to use a weighted directed graph where each state corresponds to a
vertex and each edge weight corresponds to the probability (nonzero) of
the transition between both concerned states.

When considering an unweighted graph, the transition probability for
moving from one vertex v to any one its neighbours is chosen uniformly
at random with the probability 1/deg(v). This means that the probability
for moving from vertex v to w is simply

pv,w =

{
1

deg(v)
, if w ∈ NG(v),

0, otherwise.
(1.3)

Note that transition matrix P that results from this construction can
also be seen as a normalized adjacency matrix P = D−1AG of the graph
G. Such transition matrix is generally called random walk. However, there
exists many possible definitions of walk in graphs and (Lovasz 1993) pro-
poses an interesting survey about them (and theirs interpretations).

The first passage time is the time taken for a random walker to reach
a specified target and the mixing time is the time until the Markov chain
is "close" to its stationary distribution. The latter defines for each state the
probability that the walk is at that state if a single observation is made
after the walk has been run for a sufficiently long time. This distribution
can be obtained by computing the dominant eigenvector corresponding to
the largest eigenvalue of the transition matrix. The primary eigenvalue λ1

of any transition matrix is one, as is the case for any stochastic matrix.
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To get more insight to the mathematics see for example Behrends (1999),
Grimmett and Stirzaker (2001). As one application, we shall describe in
Chapter 4 how the stationary distribution can be used to rank the pages
of the the World Wide Web.

1.3.3 Computational complexity

Classifying computational problems according to their inherent difficulty
is related to the computer science called computational complexity. Its inter-
est is in characterizing how the running time and memory consumption
of the problem grow when input of size n grows. Except in rare situa-
tions, the complexity of an algorithm is usually taken to be its worst-case
complexity. Let n be a positive integer, to show a upper bound Θ(g(n))
of the problem solving, one needs to show only that there is a particular
algorithm f (n) with running time such that | f (n)| ≤ Θ(g(n)) for all suf-
ficiently large values of n. Then, to show a lower bound of Ω(g(n)) for
a problem requires showing that no algorithm f (n) can have time com-
plexity | f (n)| ≥ Ω(g(n)) for all sufficiently large values of n. Finally, we
write f (n) = O(g(n)) if both f (n) = Θ(g(n)) and f (n) = Ω(g(n)) hold.
The big Oh notation allows to round the function with hiding constant
factors and smaller terms. For more insight to the complexity, the related
definition and notations, we recommend the basic textbook on algorithms
by (Cormen et al. 2001).

A decision problem is a problem in a formal system with a "yes" or
"no" answer, depending on the values of some input parameters. A prob-
lem is said to be in class P (for Polynomial), if it has an algorithm able
to answer with time complexity bounded by some polynomial of the in-
put size n. Unfortunately, there exist many important problems which
have no known polynomial-time algorithms. Nevertheless, such a prob-
lem may still have a polynomial-time verification algorithm in that can
check a feasible solution a problem instance of size n. Precisely, such
proofs have to be verifiable in polynomial time by a deterministic Turing
machine(Papadimitriou and Papadimitriou 1994). Practically, this means
that problems with polynomial-time verification algorithms form the class
NP (for Non-deterministic Polynomial) which contains class P.

Besides, a decision problem S which is reducible to a decision problem
T using a polynomial-time reduction f such that for any n ∈ S, f (n) ∈
T, is denoted by S 6=p

m T. A problem T is NP-hard if S 6=p
m T for all

problems S ∈ NP (any NP-problem can be translated into this problem).
A problem which is both NP and NP-hard is said to be NP-complete.
Further detail of on NP-completeness and the complexity class could be
found in Papadimitriou and Papadimitriou (1994) .

As many clustering algorithms are NP-hard, exact algorithms can only
be employed in very small systems. In such context or to accelerate P

algorithms, approximation algorithms are regularly preferred. Delivering an
approximate solution, with the advantage of a lower complexity, they are
often non-deterministic and commonly used for optimization problems, in
which one wants to find the maximum or minimum value of a given cost
function over a large set of possible system configurations.
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1.4 Graph Clustering

Intuitive at first sight, the problem of graph clustering is actually not well
defined. As the the concepts of community and partition are not rigorously
defined, there are many equally legitimate ways of resolving this prob-
lem. A primary cause of these ambiguities is that the identification of
communities is possible using the concepts of edge density (for example
inside versus outside the community), or using the concepts of similarity
between each pair of nodes (related to data clustering). Thereby, classi-
cal methods for data clustering, sometimes adopted for graph clustering
will be discussed later in the review as well as edges related methods.
However, before attempting an ordered exposition of the fundamental al-
gorithms of community detection, we shall review the notions of commu-
nity and partition.

1.4.1 Communities

The first problem in graph clustering is that no single definition of "com-
munity" is universally accepted. Indeed, most of the time, communities
are algorithmically defined, that means they are just the final result of the
algorithm, without a precise a priori definition. Firstly, each community
should be connected. However, the most common and intuitive definition
consists in finding more edges "inside" the community than edges link-
ing vertices of the community with the rest of the graph. Formally, this
definition can be tackled as follows.

Let us start with a subgraph C of a graph G , with |C| = nc and |G| = n
vertices. Let δint(C) be the intra-cluster density of the subgraph C defined
by

δint(C) =
# internal edges of C

nc(nc − 1)/2
,

which corresponds to the ratio between the number of internal edges of C
and the number of all possible internal edges. Similarly, let δext(C) be the
inter-cluster density defined by

δext(C) =
# inter-cluster edges of C

nc(n− nc)
,

which corresponds to the ratio between the number of edges running from
the vertices of C and the rest of the graph and the maximum number of
inter-cluster edges possible.

For C to be a community, δint(C) has to be larger than the average link
density δ(G) = m/n.(n − 1) of G (with m the number edges in G), and
δext(C) has to be smaller than δ(G).

Obviously, each community C should be connected: there should be at
least one, preferably several paths connecting each pair of vertices. Thus,
on a disconnected graph with several known components, the clustering
should usually be conducted on each component separately.

After a recall of this basic notion, we now aim at introducing the main
definitions of community which have been proposed along the years by
social network analysts, computer scientists and physicists. Actually, three
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classes of definitions can be distinguished: local, global and based on vertex
similarity. This review is not exhaustive and some other definitions will be
introduced with their associated algorithms during this chapter.

Local Definitions

As communities are expected to share more relationships with themselves
than with the whole graph, it is coherent to propose local definitions of
community where the immediate neighbourhood of the subgraph under
study is considered, contrary to the rest of the graph.

The most acknowledged definitions come from social network anal-
ysis and Wasserman et al. (1994) proposes a classification based on the
identified criteria : complete mutuality, reachability, vertex degree and the
comparison of internal versus external cohesion.

We start with the complete mutuality definition which actually cor-
responds to a clique, i.e. a subset whose vertices are all adjacent to each
other (See Figure 1.6). In a social context, It insists that every member or a
sub-group have a direct tie with each and every other member (Luce and
Perry 1949).

Figure 1.6 – Example of cliques: the green clique is the maximal clique over the set of
vertices, {F,D, L}. There is no larger possible clique in the graph containing those three
vertices than the green 4-clique. But the maximal clique in G is actually the 6-clique
containing the vertices {A,G,H, J,K, M}.

Finding whether there is a clique of a given size in a graph (also called
the clique problem) is an NP-complete problem (Bomze et al. 1999) and
the method proposed in Bron and Kerbosch (1973) runs in a time that
grows exponentially with the size of the graphs. Besides, to the computa-
tional difficulty of finding cliques in large graphs, we shall also consider
the strictness of the condition which invalidates this approach . For in-
stance, a subgraph with all possible internal edges except one would be
an extremely cohesive subgroup, but it would not be considered a com-
munity under this definition.

Nevertheless, there exist several ways to relax the notion of complete
mutuality to try to make it more helpful and general. One of them is
related to reachability and defines an n-clique as the maximal subgraph
such that the distance of each pair of its vertices is not larger than n (Luce
1950). Note that for n = 1, this definition is strictly equivalent to a clique.
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The main problem of n-clique is that even a 2-clique is not necessary very
cohesive by finding long and stringy groupings rather than the tight and
discrete ones of the maximal approach. Alternatives, called n-clan and
n-club related to the maximal diameter of the subgraph (the greatest dis-
tance between any pair of vertices) have been proposed by Mokken (1971)
to avoid this problem.

Another alternative way of relaxing the strong assumptions of the
clique is to allow that vertices may be members of a clique even if they
have ties to all but k other members. One can read, in the literature on
social network analysis, two complementary ways of expressing this no-
tion: k-plex and k-core. The first one defines a maximal subgraph in which
each vertex is adjacent to all other vertices of the subgraph except at most
k of them (Seidman and Foster (1978)). Similarly, a k-core is a maximal
subgraph in which each vertex is adjacent to at least k other vertices of the
subgraph (Seidman (1983)). By imposing conditions on the minimal num-
ber of absent or present edges clusters are more cohesive than n-cliques.

More cohesive than k-plexes and k-cores are LS-sets. A key property
of such criteria is that every node in the subgroup has higher edge con-
nectivity with its other members than with any non-member. Using this
criterion for defining a cohesive subset, the Lambda-set is defined as a
subgraph such that any pair of vertices of the subgraph has a larger edge
connectivity than any pair formed by one vertex of the subgraph and one
outside the subgraph. More details can be found in Borgatti et al. (1990).

Last but not least, we can mention methods that identify community
using fitness measures on the considered subgraph. For instance in Garey
and Johnson (1979), the authors tackled the problem of finding subgraph
C with k vertices and δint(C) is larger than a threshold. This problem
is NP-complete as it is equivalent with the NP-complete clique problem
when the threshold is equal to 1. Note that this problem has variants
where the focused quantity to optimize is the number of internal edges of
the subgraph (Asahiro et al. 2002, Feige et al. 2001).

Global Definitions

As previously mentioned, definitions of communities can also be pro-
posed with respect to the graph as a whole. The literature is very vast
and this section does not intend to present a panorama of all the available
definitions. However, an outline can be introduced here and will become
rather detailed with their algorithms in Section 1.5.

The first class of global definitions is based on the idea that a graph
has a community structure if it differs from a random graph. We shall
remind that a Erdös-Rényi random graph is not expected to have commu-
nity structure, as each pair of nodes have the same probability to be ad-
jacent. Thereby, the consists in defining a null model which matches the
original graph in some of its structural features, but which is otherwise
a random graph. The latter is then used to examine if the graph under
study displays community structure or not. One of the most known null
model has been by proposed by Newman and Girvan (2004) and consists
of a randomized version of the original graph, where edges are rewired
at random, under the constraint that each vertex keeps its degree. In the
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next, we will see that the null model is the key concept behind the defini-
tion of modularity: a function which quantifies the quality of a division of
a network into communities (also called modules). In the standard formu-
lation of modularity, a subgraph is a community if the number of edges
inside the subgraph exceeds the expected number of internal edges that
the same subgraph would have in the null model. This expected number
is an average over all possible realizations of the null model.

A second class which can be mentioned concerns statistical model-
based methods. The outline of such methods, for instance the proposal
of Daudin et al. (2008), is to model the distribution of connections in the
network, considering that nodes are spread among an unknown number
of connectivity classes which are themselves unknown. The maximisation
of the global criteria represented by the likelihood leads to a fitting between
the models and the data and allows to estimate both the community of
the graph the model parameters. Chapter 2 will discuss the optimization
strategies of the so-called likelihood.

Definitions based on vertex similarity

In the last class of community definitions we shall introduce those that are
related to vertex similarities i.e. a community is a group of vertices which
are similar to each other. Therefore, defining a similarity measure based
on local and/or global attributes that express the similarity between each
pairs of vertices connected or not, allow to mobilize more classical clus-
tering method, like hierarchical clustering (see Section 1.5.1). Although it
is impossible to review all the applicable measures, we discuss the most
popular used in the literature.

A very common technique consists in embedding the graph vertices
in an n-dimensional Euclidean space. Then, the assigned position of
these vertices, can be used to compute the distance between a pair of
vertices as a measure of their similarity. Let A = (a1, a2, · · · , an) and
B = (b1, b2, · · · , bn) be two data points. Vertex similarities can be com-
puted using any norm, like the Euclidean distance (L2 -norm),

DE
AB =

n

∑
k=1

√
(ak − bk)2,

the Manhattan distance (L1-norm)

DM
AB =

n

∑
k=1

|ak − bk|,

and the L∞-norm

D∞
AB = max

k∈[1,n]
|ak − bk|.

Another popular spatial measure is the cosine similarity, defined as
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ρAB = arccos
a.b√

∑
n
k=1 a2k

√
∑

n
k=1 b2k

.

This non-Euclidean measure is often used in document clustering
where textual data (words) of each document are summarized in a vec-
tor representation.

If the graph cannot be embedded in space, Wasserman et al. (1994) pro-
poses a similarity measure based on the concept of structural equivalence
(Lorrain and White 1977) and defined as

dij =
√√√√∑

k 6=i
k 6=j

(Aik − Ajk)2

where A is the adjacency matrix. Note that two vertices that the same
neighbours and not necessary adjacent themselves are structurally equiv-
alent.

We can also cite methods based on the number of paths running be-
tween two vertices to measure their similarity. The computation of such
quantity is related to the maximum flow problem (Elias et al. 1956).

1.4.2 Partitions

A standard partition is a division of the graph in which each vertex is as-
signed to a community. However, in real systems vertices can be shared
between communities and the detection of their associated partitions refer
to overlapping communities (also called cover) algorithm (Latouche et al.
2009). Another class of partitions called hierarchical may be defined where
each top-level community is composed of communities and so forth. Such
graph partitioning can be naturally represented using a dendrogram. Fig-
ure 1.7 illustrates the dendrogram of a graph with seven vertices in which
each "leave" represents a vertex.

Figure 1.7 – A dendrogram or a hierarchical tree. Horizontal cuts corresponds to parti-
tions of the graph in communities.

Vertices are aggregated in communities by moving upward. Logically
the uppermost level represents the whole graph as a single community.



26 Chapter 1. Graph clustering Survey

Merges of the communities are represented using horizontal lines and
a cut of the dendrogram, at a certain height (dashed line), displays one
partition of the graph. By construction the dendrogram is hierarchical:
each community belonging to a level is included in a community at a
higher level.

Last but not least, the number of possible partitions exponentially
grows with the size of the graph. As all possible partitions are not equally
good with respect to the community concepts, the future proposed algo-
rithms will have to possess a quantitative criterion to assess the global
goodness of a graph partition.

1.5 Algorithms for graph clustering

Keeping in mind the previous community and partition definitions, we
can now introduce the essential publications related to each research
branch.

1.5.1 Traditional method

Graph partitioning

The graph partitioning problem consists in dividing the graph G into Q
disjoint groups of predefined size, such that the number of edges connect-
ing between the groups (also called cut size) is minimal.

Graph partitioning problem is known to be NP-complete, but can be
solved in polynomial time for a bisection (a partition of two groups) of
the graph (Garey and Johnson 1979). Fast heuristics work well in practice
and we propose to give the outline of the well known Kernighan and Lin
(1970) algorithm.

The latter proposes an optimization strategy of a benefit function Q,
which is the difference between the number of edges inside the modules
and the number of edges connecting between them. The algorithm starts
with a balanced initial partition of the n vertices into sets A and B. Then,
the algorithm attempts to find an optimal series of interchange operations
between elements of A and B which maximizes function Q producing a
partition of G. The algorithm is quite fast, scaling as O(n2logn), if only a
constant number of interchanges are performed at each iteration. As the
found partitions by such procedure strongly depend on the initial parti-
tion, it is preferable to start with a good candidate. Therefore the method
is typically used to improve on the partitions found through other tech-
niques, by using them as starting configurations for the algorithm.

Then, partitions into more than two clusters are usually obtained by
iterative bi-sectioning. For instance, in Suaris and Kedem (1988), the au-
thors propose an adaptation of the Kernighan-Lin algorithm to extract
partitions in any number of groups.

Other popular methods for graph partitioning include spectral bisec-
tion, level-structure partitioning, geometric algorithm, multilevel algo-
rithms, etc. A review of these algorithms can be found in Pothen (1997).

Nevertheless, from a practical point of view, algorithms for graph par-
titioning are not suitable for community detection, since both the number
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of groups and their size inputs are required and are most of the time
unknown.

Partitional clustering

Another popular class of methods to find graph cluster is related to parti-
tional clustering. In such methods, the number of clusters Q is predefined.
Embedding graph vertices in a metric space allow them to be represented
as a set of data points. Then, a proximity between each pairs of points
can be computed in this space with respect to a defined distance measure.
Thus, the proximity of points measures the similarity between vertices.
Partitional clustering algorithms aim at assigning the data points in Q
clusters such to maximize a given cost function based on distances be-
tween points and/or from points to centroids.

One of the most popular method in the literature is probably the k-
means clustering algorithm (MacQueen et al. 1966). In this method, the
cost function is equivalent to the total intra-cluster variance

Q

∑
i=1

∑
xj∈Si

||xj − ci||2;

where Si is the subset of points of the i-th cluster and ci its centroid.
The Lloyd (1982) algorithm which solves this problem can be described as
follow. Starting from Q initial "means" points randomly selected from the
data set, the Q clusters are formed by assigning every point (vertex) to the
nearest mean. Then, the centers of mass of the Q clusters are computed
and become a new "means", which allows for a new classification of the
vertices, and so on. The convergence is reached after a small number of
iterations. Note that the obtained partition is not necessary optimal and
strongly depends on the initial means. Generally, to avoid initialisation
issues, the algorithm is started with multiple initializations points and
the solution which yields the minimum value of the total intra-cluster
distance is chosen. There also exists a popular fuzzy method of the k-
means algorithm (Dunn 1973) where each point has a degree of belonging
to clusters rather than belonging completely to just one cluster.

In the same spirit as the k-means, we can cite in the following some of
the most commonly used functions to optimize in partitional clustering:

• Minimum k-clustering: The cost function is related to the diameter
of a cluster i.e. the largest distance between two points of a cluster.
As the method classifies points such that the largest of the Q cluster
diameters is the smallest possible, it leads to very "compact" clusters.

• k-clustering sum: Similar to the minimum k-clustering, but the diam-
eter is replaced by the average distance between all pairs of points
of a cluster.

• k-center: For each cluster i, a reference point xi (also called centroid) is
defined and di is the maximum distances between the i cluster point
from the centroid. The clusters and centroids are self-consistently
chosen in order to minimize the largest value of di.
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• k-median: Similar to k-center algorithm, but the maximum distance
from the centroid is replaced by the average distance.

Although the number of groups is again required for partitional clus-
tering algorithms, the main criticism we can provide to such methods is
that the embedding of graphs in a metric space can appears artificial and
not directly related to the structure of the graph.

Hierarchical clustering

Hierarchical clustering creates a hierarchy of clusters which may be repre-
sented, as previously mentioned, in a tree structure called a dendrogram.
Starting once again, from a similarity n× n matrix X formed by a distance
measure between each pair of vertices, the hierarchical clustering algo-
rithms aim at identifying groups of vertices with high similarity, and can
be classified in two categories:

• Agglomerative algorithms: starts from the leaves (singleton cluster)
and successively merges clusters together.

• Divisive algorithms: starts from the root and recursively splits the
cluster.

Then, we shall concentrate on agglomerative algorithms which is the
most common approach in the literature. Since clusters are merged on the
basis of their mutual similarity, it is essential to define a measure that esti-
mates how similar are the clusters. One can mention several prescription
defined as follow.

In single linkage (or nearest-neighbour) clustering (Sibson 1973), the
similarity between two groups is given by the minimum element Xij

where i and j belongs to different groups. On the contrary, the maxi-
mum element Xij is used in the procedure of complete linkage (or furthest-
neighbour) clustering (Sokal and Michener 1975). In average linkage clus-
tering (Sørensen 1948) one has to compute the average of the Xij. The
Algorithm 1, with an O(n2) computational complexity, illustrates how the
single linkage clustering works.

Let X be the n× n similarity matrix. The clusters are indexed with a
sequence numbers 0, 1, ......, (n− 1). We denote by (m) the cluster of nodes
with sequence number m and X(u),(v) the similarity between clusters (u)
and (v). The level of the q-th clustering is denoted by L(q).

The stopping condition is not necessarily the classification of all the
elements and it can be imposed by an alternative criterion like a given
number of clusters.

The advantage of hierarchical clustering methods is that no prelimi-
nary knowledge is required on the number and size of the clusters. How-
ever, the solutions of such methods depend on the adopted similarity mea-
sure.

1.5.2 Betweenness-based methods

In a seminal paper, Girvan and Newman (2002) proposes an intuitive de-
tection community algorithm which detects the edges that connect vertices
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Algorithm 1: Single linkage clustering

Input: X, the similarity matrix.
m = 0
L(0) = 0

while !(If all objects are in one cluster) do
/* Find the least dissimilar pair of clusters in

the current clustering */

X(u),(v) = min(X(i),(j))

/* Merge clusters (u) and (v) into a single

cluster to form the next clustering m. */

m = m + 1
L(m) = X(u),(v)

/* Update the proximity between the new cluster

(u, v) and old cluster (q) */

X(q),(r,s) = min(X(q),(r),X(q),(s))

Result: A hierarchical clustering of X based on a single linkage
criterion

of different communities and remove them in order to disconnect the com-
munities from each other. This paper has strongly influenced the field of
community detection. In such algorithm, edges are selected according to
the values of measures of edge centrality, estimating the importance of
edges according to some property or process running on the graph.

The algorithm can be defined by the following steps:

1. Computation of the centrality for all edges;

2. Removal of edge with largest centrality: in case of ties with other
edges, one of them is picked at random;

3. Recalculation of centralities on the running graph;

4. Iteration of the cycle from step 2.

The edge centrality can be computed in different way and the authors
have been focused on the concept of betweenness. They propose two al-
ternative definitions:

• edge betweenness: the number of shortest paths between all vertex
pairs that run along the edge. In Newman and Girvan (2004), the
authors show that using techniques based on breadth-first-search,
betweenness of all edges of the graph can be calculated in a time
that scales as O(mn), or O(n2) on a sparse graph

• random-walk betweenness: the frequency of the passages across the
edge of a random walker running on the graph (Newman 2005).
The computation of such measure requires the inversion of an n× n
matrix (once), followed by obtaining and averaging the flows for
all pairs of nodes. The first task requires a time O(n3), the second
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O(mn2), for a total complexity O((m + n)n2), or O(n3) for a sparse
matrix.

Since many shortest paths connecting vertices of different communities
will pass through them, it is straightforward to see that inter-community
edges have a larger value of the edge betweenness (see Figure 1.8), than
intra-community edges.

Figure 1.8 – Hue (from red=0 to blue=max) shows the node betweenness.

Thus, by removing the edge with the largest value and recalculating
the betweenness for the remaining edges, the groups are separated from
one another and the underlying community structure of the network is
revealed. The re-computation of the betweenness is necessary because the
removal of an edge can cause a previously low-traffic edge to have much
higher traffic. Note that calculating edge betweenness is much faster than
random walk betweenness (O(n2) versus O(n3) on sparse graphs. Then,
we have to repeat these previous steps until we obtain a set of isolated
nodes. The end result of the algorithm is a dendrogram (produced from
the top down).

Nevertheless, although the betweenness-based methods are especially
intuitive, it tends to produce relatively poor results for dense networks,
and may appear too slow for many large networks.

1.5.3 Modularity-based methods

The modularity proposed in Girvan and Newman (2002) is probably the
most popular function which quantifies the quality of a division of a net-
work into modules. Since random graphs are not expected to have a clus-
ter structure, the possible existence of clusters is revealed by the compar-
ison between the actual density of edges in a subgraph and the expected
density of a subgraph where edges are attached regardless of community
structure. The expected edge density is defined by a null model which is
a copy of the original graph keeping some of its structural properties but
without community structure.

Let Pij be the expected number of edges between vertices i and j in the
null model and let δ be the function which yields 1 vertices i and j belong
to the same cluster, 0 otherwise. Then, modularity can then be expressed
as follows

Q =
1

2m ∑
ij

((Aij − Pij)δ(Ci,Cj), (1.4)
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where A is the adjacency matrix, m the total number of edges of the
graph. Although, the choice of the null model graph is in principle arbi-
trary, the most common version of such model imposes that the expected
degree sequence preserve the actual degree sequence of the graph. In this
case, the expected number of edges falling between two vertices i and j
following randomization is kik j/2m where ki is the degree of vertex i, and
hence the previous Equation 1.4 of the modularity can finally be expressed
as

Q =
1

2m ∑
ij

((Aij −
kik j

2m
)δ(Ci,Cj). (1.5)

The value of the modularity lies in the range [−1, 1] and is positive if
the number of edges within groups exceeds the number expected on the
basis of chance.

The modularity maximization method detects communities by search-
ing over possible divisions of a network for one or more that have partic-
ularly high modularity. Since exhaustive search over all possible divisions
is usually intractable, practical algorithms are based on approximate opti-
mization methods such as greedy algorithms (Clauset et al. (2004), New-
man (2004)), simulated annealing (Guimera and Amaral (2005), or spectral
optimization (Newman and Girvan (2004), Newman (2006a), with differ-
ent approaches offering different balances between speed and accuracy. In
fact, greedy algorithms are fast heuristics intended to be applied to net-
works with millions of nodes or more. Recently, the autors of Blondel et al.
(2008) have proposed a heuristic method based on modularity optimiza-
tion which outperforms all other known community detection methods in
terms of computation time. Other methods provide more sophisticated
but slower means to identify high-modularity partitions.

Importantly, many modularity-maximization techniques are easy to
generalize for use with other related quality functions because it is far
from clear that modularity is the best function to optimize. For example,
modularity has a known resolution limit 1 that might cause one to miss
important communities (Fortunato and Barthélemy 2007). A few alter-
natives to modularity have been considered Hofman and Wiggins (2008),
Lancichinetti et al. (2009).

1.5.4 Spectral algorithms

Spectral clustering methods involves information obtained from the spec-
trum (eigenvalues and eigenvectors) of a matrix describing the graph to
group its vertices. Generally, the considered matrix that represent the
graph is a combination of the weight and the degree matrix called Lapla-
cian matrix L. Such matrix has components Lij = kiδ(i, j) − Aij , where
ki is the degree of node i (or, in a weighted network, its strength), and
δ(i, j) is the Kronecker delta (i.e., δ(i, j) = 1 if i = j, and 0 otherwise). First
studied in the context of graph theory (Fiedler 1973), spectral methods

1In its original formulation the modularity misses communities that are smaller than a
certain threshold size that depends on the size of the network and the extent of intercon-
nectedness of its communities
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have become quite popular in the machine learning community especially
after Schölkopf et al. (1998), Shi and Malik (2000), Ng et al. (2002). Since
spectral clustering does not make assumptions on the form of the cluster,
it can solve problems such as intertwined spirals. Besides, spectral clus-
tering can be implemented efficiently for large sparse graphs. Several of
these algorithms are summarized in Verma and Meila (2003) and can be
categorized given the number of eigenvectors they use. Indeed, one can
cite algorithms which work on the k largest eigenvectors in combination
with clustering algorithms, such as k-means Ng et al. (2002) or algorithms
which recursively use a single eigenvector to cluster the data (Shi and
Malik 2000, Newman 2006b).

Next, one can remark that modularity can also be involved to obtain
spectral partitioning Newman (2006a). By reformulating the scalar quan-
tity of modularity in terms of a modularity matrix B, with components

Bij = Aij − Pij, (1.6)

spectral partitioning can be directly applied to heuristically optimize the
modularity

Q =
1

2m ∑
i,j

Bijδ(CiCj), (1.7)

where similarly to Section 1.5.3 components of null model is defined by

Pij =
kik j

2m and δ(CiCj) indicates that the Bij components are only summed
over cases in which nodes i and j are classified in the same community.

As for Laplacian based methods, one can use several eigenvectors of
B for clustering the vertices, but it is effective (and simpler) to recur-
sively subdivide a network using only the "leading eigenvector"(Newman
2006b). Bi-partition of vertices is repeated until the modularity can no
longer be increased with additional subdivisions. Note that this method
can be generalized by considering different quality functions, allowing
steps that decrease global quality in order to further subdivide the com-
munities.

1.5.5 Random Walk algorithms

Random walks can be envolved to detect community structure. Indeed,
a random walker tends to be trapped in dense part of a network corre-
sponding to communities. In the following, we describe the most popular
clustering methods based on random walks. All of them can be trivially
extended to the case of weighted graphs.

A first interesting approach is based on a distance measure defined be-
tween pairs of vertices (Zhou 2003). Here the distance dij between vertices
i and j refers to the average number of edges that a random walker has to
cross to reach j starting from i. Defining a global attractor of a vertex i as
the closest vertex of i and a local attractor of i as its closest neighbour, two
types of communities are can be defined, according to local or global at-
tractors i.e. a vertex i has to be put in the same community of its attractor
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and of all other vertices for which i is an attractor. The found commu-
nities must be minimal subgraphs which means that they cannot include
smaller subgraphs which are communities according to the chosen crite-
rion. There exists variants of this method where vertex i is associated to
its attractor j only with a probability proportional to exp(−βdij), β being
a sort of inverse temperature or where random walker is biased moving
preferentially towards vertices which share a large number of neighbours
with the starting vertex. Concerning the computational complexity of the
procedure, the distance matrix is obtained in O(n3).

In Pons and Latapy (2005), the authors have introduced a different dis-
tance measure also based on random walks. Here, the distance dij between
two vertices i and j is equivalent to the probability that the random walker
moves from a i to j in a fixed number of steps. As the number of steps has
to be large enough to explore a significant portion of the graph but but
not too long to not depend of the whole graph and its stationary distribu-
tion, a compromise has to be chosen. Then, an agglomerative hierarchical
clustering technique based on Ward’s method (Ward Jr 1963) is applied on
the distance matrix to cluster the vertices. The best partition of the den-
drogram is selected using the modularity. The computational complexity
of the algorithm 2 is O(n2d) on a sparse graph, where d is the depth of the
dendrogram.

The last method which concludes this section is known as Markov
Cluster Algorithm (MCL)(Dongen 2000). It is based on simulations of
flow diffusion in a graph. Starting from the transition matrix R of the
graph, where element Rij of the stochastic matrix indicates the probability
that a random walker, sitting at vertex i, moves to j, the author proposes
an iterative algorithm where each iteration is composed by two steps. The
first step is called expansion and corresponds to computing random walks
of higher length transforming R into M (usually p = 1 matrix multipli-
cation of R). Thus, the entry Mij gives the probability that a random
walker, starting from vertex i, reaches j in p + 1 steps (diffusion flow).
The inflation refers to the second step which consists in raising each sin-
gle entry of the matrix M to some power α, where α is now real-valued.
Since this operation enhances the weights between pairs of vertices with
large values of the diffusion flow, it have the effect of boosting the proba-
bilities of intra-cluster walks and will demote inter-cluster walks without
any a priori knowledge of cluster structure. Eventually, iterating expan-
sion and inflation results in the separation of the graph into different
segments. There are no longer any paths between these segments and
the collection of resulting segments is simply interpreted as a clustering.
Figure 1.9 illustrates this algorithm where code can be downloaded from
http://www.micans.org/mcl/.

Since the expansion step requires a matrix multiplication, the compu-
tational complexity scale as O(n3), even if the graph is sparse. Note that
several optimizations are considered such that keeping reference to a max-
imum number k of non-zero elements per column reducing the complexity
to O(nk2) on sparse graphs.

The main problem of this method is that the found partition is sensitive

2The software of the algorithm can be found at http://www-rp.lip6.fr/

~latapy/PP/walktrap.html.
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Figure 1.9 – MCL algorithm. The color of a bond between two nodes indicates the
maximum amount of flow taken over the two directions. The color of a node indicates
the total amount of incoming flow. A dark bond between a light node and a dark node
thus indicates that all flow is going from the lighter node in the direction of the darker
node. It is seen that flow is eventually separated into different regions, yielding a cluster
interpretation of the initial graph.

to the parameter α used in the inflation step. Thereby, several partitions
can be proposed, and it is not clear which are the most meaningful.

1.5.6 Model-based methods

Among model-based methods, model-based clustering has provided an
efficient way to summarize complex networks structures. Due to the in-
terpretability of the results, clustering procedures based on probability
models are naturally preferred over the previous heuristic methods. The
basic idea of these strategies is to model the distribution of connections
in the network, considering that nodes are spread among an unknown
number of connectivity classes which are themselves unknown. This gen-
eralizes model-based clustering to network data, and various modeling
strategies have been considered. Nowicki and Snijders (2001) propose a
mixture model on dyads that belong to some relational alphabet, Daudin
et al. (2008) propose a mixture on edges, Airoldi et al. (2008) propose
mixed labels for a given node, and Handcock et al. (2006) consider contin-
uous hidden variables.

Indeed, even if the modeling strategies are diverse, EM like algorithms
constitute a common core of the estimation strategy (Snijders and Nowicki
1997), and this algorithm is known to be slow to convergence and to be
very sensitive to the size of the dataset.

This issue should be put into perspective with a new challenge: the
analysis of large network datasets. Then the development of optimization
strategies, with a reasonable speed of execution, are necessary to deal with
networks composed of tens of thousands of nodes, if not more.
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To this extent Bayesian strategies are limited, as they may not han-
dle networks with more than a few hundred nodes (Snijders and Now-
icki 1997, Nowicki and Snijders 2001), and heuristic-based algorithms may
not be satisfactory from the statistical point of view (Newman and Leicht
2007). Variational strategies have been proposed as well (Daudin et al.
2008), but they are concerned by the same limitations as EM. Thus, per-
forming efficient model-based clustering from a computational point of
view on very large networks is the topic of the following Chapter 2.

Chapter Conclusion

This chapter has attempted to give a comprehensive overview of all the
existing graph clustering methods. Since this field has grown quite pop-
ular and the number of published proposals for clustering algorithms is
huge, we have chosen to provide key publications related to each research
branch. The reader may easily extend its knowledge with more detailed
reviews like the ones of Schaeffer (2007), Fortunato (2009).
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The statistical analysis of complex networks is a challenging task, given
that appropriate statistical models and efficient computational pro-

cedures are required in order for structures to be learned. One line of
research has aimed at developing mixture models for random graphs,
and this strategy has been successful in revealing structures in social
and biological networks. The principle of these models is to assume
that the distribution of the edge values follows a parametric distribution,
conditionally on a latent structure which is used to detect connectivity
patterns. However, these methods suffer from relatively slow estimation
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procedures, since dependencies are complex and do not necessarily al-
low for computational simplifications. In this chapter we adapt online
estimation strategies, originally developed for the EM algorithm, to the
case of models for which the probability of the missing data conditionally
on the available observations is not tractable. Our work focuses on three
methods, the first based on the CEM algorithm, the second on the SAEM
algorithm, and the third on variational methods. We perform a simula-
tion to compare these three algorithms with existing approaches and we
use the method to decipher the structure of the French and US political
websites network. We show that our online EM-based algorithms offer a
good trade-off between precision and speed, when estimating parameters
for mixture distributions in the context of random graphs.

The present chapter is collaborative work with Franck Picard and Vincent
Miele.
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2.1 Introduction

As mentioned in Chapter 1, analyzing networks has become an essential
part of a number of scientific fields. In this chapter, we focus on a type of
network for which nodes represent web sites or web pages, and each edge
represents a hyperlink relating two nodes. In particular, we consider two
one-day snapshot of the Web taken during the 2008 U.S.and 2007 French
Presidential campaigns.

Many strategies have been developed for studying a network’s struc-
ture and the previous chapter lists the main approaches (see Section 1.5).
Among model-based methods, model-based clustering has provided an
efficient way to summarize complex networks structures. The basic idea of
these strategies is to model the distribution of connections in the network,
considering that nodes are spread among an unknown number of con-
nectivity classes which are themselves unknown. This generalizes model-
based clustering to network data, and various modeling strategies have
been considered. Nowicki and Snijders (2001) propose a mixture model
on dyads that belong to some relational alphabet, Daudin et al. (2008) pro-
pose a mixture on edges, Airoldi et al. (2008) propose mixed labels for a
given node, and Handcock et al. (2006) consider continuous hidden vari-
ables. In this chapter, our concern is not to assess neither to compare the
appropriateness of these different models, but we focus on a computa-
tional issue that is shared by most of them. Indeed, even if the modeling
strategies are diverse, EM like algorithms constitute a common core of
the estimation strategy (Snijders and Nowicki 1997), and this algorithm is
known to be slow to convergence and to be very sensitive to the size of
the data set.

This issue should be put into perspective with a new challenge that is
inherent to the analysis of network data sets is the development of opti-
mization strategies with a reasonable speed of execution, and which can
deal with networks composed of tens of thousands of nodes, if not more.
To this extent Bayesian strategies are limited, as they may not handle net-
works with more than a few hundred nodes (Snijders and Nowicki 1997,
Nowicki and Snijders 2001), and heuristic-based algorithms may not be
satisfactory from the statistical point of view (Newman and Leicht 2007).
Variational strategies have been proposed as well (Daudin et al. 2008), but
they are concerned by the same limitations as EM. Thus the new question
we assess in this work is “how to perform efficient model-based clustering
from a computational point of view on very large networks ?”.

Online algorithms constitute an efficient alternative to classical batch
algorithms when the data set grows over time. The application of such
strategies to mixture models has been studied by many authors (Titter-
ington 1984, Wang and Zhao 2002). Typical clustering algorithms include
the online k-means algorithm (MacQueen 1967). More recently, Liu et al.
(2006) modeled Internet traffic using a recursive EM algorithm for the es-
timation of Poisson mixture models. However, an additional difficulty of
mixture models for random graphs is that the computation of Pr(Z|X), the
distribution of the hidden label variables Z conditionally on the observa-
tion X cannot be factorized due to conditional dependency (Daudin et al.
2008). In this work, we consider three alternative strategies to deal with
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this issue. The first is based on Classification EM strategy (CEM), where
only the prediction of Z is considered, leaving apart the problem of com-
puting Pr(Z|X) (Zanghi et al. 2008). The second one is based on the Monte
Carlo simulation of Pr(Z|X), leading to a SAEM algorithm (Delyon et al.
1999) and the third one is the variational method proposed by Daudin
et al. (2008) which consists in a mean-field approximation of Pr(Z|X). The
latter strategy has also been proposed by Latouche et al. (2008) and by
Airoldi et al. (2008) in the Bayesian framework.

Outline of the chapter In this chapter, we apply online algorithm to the
MixNet model that has been proposed by Daudin et al. (2008). First of
all, we recall, in the first section, the basic principles of parameter esti-
mation for mixture models using the well-known EM algorithm. In the
second section, we present the MixNet model in its general form, where
the conditional distribution of the connections is assumed to belong to the
exponential family. Then we derive online strategies for CEM, SAEM and
variational methods in the context of random graphs. We use simulations
to show that online methods are very effective in terms of computation
time, parameter estimation and clustering efficiency. Finally, we illus-
trate the method to uncover the connectivity structure of the 2008 U.S.
and 2007 French Presidential Webspheres, and we show the gain of using
model-based clustering instead of module search algorithms. We provide
a computer software that is detailed in Appendix A.8. We also propose a
web search engine which takes advantage of the online MixNet algorithm
to reveal the connectivity information induced by hyperlinks. It is avail-
able at http://constellations.labs.exalead.com/, and is fully
described in the Chapter 4.

2.2 Mixture Model and the EM algorithm

2.2.1 Finite Mixture Model

The first uses of finite mixtures of distributions can be dated back to the
work of Newcomb in 1886 for the detection of outlier points, and then
by Pearson (1894) to identify two separate populations of crabs. Since,
they have been applied to model a wide variety of random phenomenon.
These models assume that measurements are carried out on a set of indi-
viduals where each of them belong to a particular subpopulation which
is unknown. For instance, in the Pearson’s crab data, we know the ratio
of forehead to body of each crab, but not the subspecies. Therefore, mix-
ture models are a useful tool to handle the heterogeneity of a population,
and are especially well suited to the problem of clustering. Although the
literature of this scientific field is vast and ever expanding the McLachlan
and Peel’s book McLachlan and Peel (2000) is a highly detailed reference
when addressing the problem of mixture models. First, we briefly recall
the model and the problems of estimating its parameters.
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The model

Let the data X = (x1, . . . , xn) be a sample of n independent observations
of a random variable X in R

p from a finite mixture of Q components. The
density can be expressed as

f (xi) =
Q

∑
q=1

αq fq(xi), ∀i ∈ I (2.1)

where fq are the density of each component and αq are the mixture
proportions (αq ∈]0, 1[∀q and ∑q αq = 1). Mixture model is a generative
model: it assumes, given the proportions α1, . . . , αQ and the distributions
fq of each class, that the data are generated according to the following
mechanism:

• z: each individual is allocated to a class according to a multinomial
distribution with parameters α1, . . . , αQ ;

• x: each xi is assumed to arise from a random vector with probability
density function fq.

In addition, it is usually assumed that the component density fq be-
longs to a parametric family of densities f (., θq). The density of the mix-
ture can therefore be written as

f (xi,Φ) =
Q

∑
q=1

αq f (xi; θq), ∀i ∈ I (2.2)

where Φ = (α1, . . . , αQ, θ1, . . . , θQ) is the parameter of the model.
For example, the density of a mixture model for two univariate Gaus-

sian distributions of variance 1 in R is expressed as

f (xi; α, µ1, µ2) = αφ(xi; µ1, 1) + (1− α)φ(xi; µ2, 1) (2.3)

where φ(.; µ, σ2) is the density of the univariate Gaussian distribution
of mean µ and variance σ2.

Figures 2.1 uses the density obtained from a mixture of two Gaussian
components in R to illustrate this concept of a probability mixture.

Estimation of parameters

Since the work of Pearson (1894) which uses the method of moments to
estimate the five parameters (µ1, µ2, θ1, θ2, α) of a univariate Gaussian mix-
ture model with two components (the method requires to solve polyno-
mial equations of degree 9), a variety of approaches have been envisaged
to estimate parameters of mixture distributions (McLachlan and Basford
1988, Titterington et al. 1985). Indeed, from the initial method of moments,
they include graphical methods, minimum-distance methods, maximum-
likelihood and Bayesian approaches. It is regularly argued that a reason
for the huge literature on estimation methodology for mixtures is due
to the non-existence of explicit formulas to parameter estimates. For in-
stance, in the Gaussian case, the maximum-likelihood method, which is
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Figure 2.1 – Densities of Gaussian mixture models. On the left a well separated (black
line) case where µ1 = 0 (red points), µ2 = 4 (blue points)and σ2 = 1. On the right a
more intertwined case where µ1 = 0, σ2

1 = 1, µ2 = 2 and σ2
2 = 2.

the most widely used, for the mixing proportions and component means
and variances/covariances cannot be written in closed form and have to
be computed iteratively. In this chapter we shall restrict ourselves to this
method using the EM algorithm. However, before examining this method
in Section 2.2.2, we first recall to the reader two difficulties which the esti-
mation of parameters of a mixture model present:

• Identifiability: The density of the mixture needs to be identifiable.
A number of studies have addressed this problem and several diffi-
culties can be observed. A mixture is identifiable when equality in
density implies equality in parameters. Let M = {Pφ, φ ∈ Φ} be a
latent class model of parameter φ. The identifiability may hold, only
up to label swapping, if for any φ, φ′ ∈ Φ,

Pφ = Pφ′ ⇒ φ ∼ φ′.

Indeed, we can notice a difficulty due to the numbering of the classes
where any permutation of cluster indices give rise to the same
model. For example, in the case of a mixture with two components,
the parameters (α1, α2), (θ1, θ2) and (α2, α1), (θ2, θ1) , although differ-
ent, obviously yield the same probability density function (pdf): a
mixture is consequently never identifiable. Depending on the esti-
mation algorithms, this difficulty is more or less problematic. In the
Bayesian framework it does cause a major problem known as the
label-switching problem while in the case of the EM algorithm that
does not matter. The second difficulty, considerably more tricky, may
arise from the very nature of component pdf. Indeed, although mix-
tures of Gaussian, exponential and Poisson distributions are iden-
tifiable, it may easily be established that a mixture of uniform or
binomial distributions is not.

• Number of components: Sometimes in practice, using physical
facts, the number of components have a precise understanding and
may be fully determined. However, most of the time, the number
of components is unknown and must itself be estimated. Consider-
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ing the number of components as an additional parameter, the mix-
ture model may be seen as a semi-parametric compromise between
a classical parametric estimation problem when the number of com-
ponents corresponds to a fixed constant, and a non-parametric esti-
mation problem when the number of components is equal to the size
of the sample. In the following, we will assume that the number Q
of components is known to estimate the mixtures and also propose
solutions to achieve this difficult choice.

2.2.2 The EM algorithm

Missing information principle. The Expectation-Maximization EM algo-
rithm is especially designed for finding maximum likelihood estimates
(MLE) of parameters in probabilistic models, where the model depends
on unobserved latent variables. Explained in a well-known seminal paper
Dempster et al. (1977), the principle of this iterative method is to express
the likelihood considering that the observed data X correspond to a par-
tial knowledge of unknown data which are termed complete data. The
complete data might for instance be of the form Y = (X,Z), in which case
Z is known as missing information.

Complete data and complete-data likelihood. The log-likelihood Lc(Φ)
calculated from these complete data is termed complete-data likelihood or, in
the case of the mixture model, classification log-likelihood. Starting from the
relation f ((X,Z);Φ) = f (X;Φ) f (Z|X;Φ) between the densities, we obtain
the likelihood relation

Lc(Φ) = L(Φ) + log f (Z|X;Φ) (2.4)

L(Φ) = Lc(Φ)− log f (Z|X;Φ) (2.5)

between the initial log-likelihood L(Φ) and the complete-data log-
likelihood Lc(Φ).

Alternating optimization algorithm. The EM algorithm assumes that
maximizing the complete-data likelihood is a simple task. Since this
likelihood cannot be calculated - Z is unknown - an iterative procedure
based on the conditional expectation of the log-likelihood for a value
of the current parameter Φ′ is used as follows. First, calculating the
conditional expectation for the two members of relation 2.4 respectively
Q(Φ,Φ′) = E(Lc(Φ)|X,Φ′) and H(Φ,Φ′) = E(log f (Z|X;Φ)|X,Φ′), we
obtain the fundamental relation

L(Φ) = Q(Φ,Φ′)− H(Φ,Φ′). (2.6)

Introducing the parameter Φ′ allows us to define an iterative algorithm
to increase the likelihood. Using Jenssen’s inequality (Dempster et al.
1977) it can be shown that, for fixed Φ′ , the function H(Φ,Φ′) is maximum
for Φ = Φ′. The value Φ which maximizes Q(Φ,Φ′) therefore satisfies the
relation
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L(Φ) ≥ L(Φ′). (2.7)

The EM algorithm involves constructing, from an initial solution Φ(0),
the sequence Φ(p) satisfying Φ(p+1) = ArgmaxQ(Φ,Φ(p)) and converges
to a fixed point using iteratively the two following steps:

• Estimation Step: Compute Q(Φ,Φ′) = E(Lc(Φ)|X,Φ′)

• Maximization Step: Compute Φ(p+1) = ArgmaxQ(Φ,Φ(p))

Relation 2.7 shows that this sequence causes the criterion L(Φ)to grow.

Application to mixture models. An early version of the EM algorithm
dedicated to mixture was already proposed by Wolfe (1970). Considering
a mixture model, the complete data are obtained by adding the original
component zi to each individual member of the sample:

Y = (y1, . . . , yn) = ((x1, z1), . . . , (xn, zn)). (2.8)

Coding zi = (zi1, . . . , ziQ) where ziq equals 1 if object i belongs to class
q and 0 otherwise, we obtain the relations:

f (Y;Φ) =
n

∏
i=1

f (yi;Φ) =
n

∏
i=1

Q

∑
q=1

ziqαq f (xi; θq), (2.9)

Lc(Φ) = log( f (Y,Φ)) =
n

∑
i=1

Q

∑
q=1

ziqlog(αq f (xi; θq)) (2.10)

and

Q(Φ|Φ′) =
n

∑
i=1

Q

∑
q=1

E(ziq|X,Φ′) log(αq f (xi; θq)). (2.11)

Let τiq be the probability Pr(ziq = 1|X,Φ′) that object i belongs to class
q, the EM algorithm takes the following form 2:

The parameters θq are obtained by solving the likelihood equations
that depend on the mixture model employed. For instance, in a Gaussian
mixture, the maximization of Q(Φ|Φ′) provides the optimal value of the
parameters summarized in the following relations:

µ
(m+1)
q =

1

∑
N
i=1 τ

(m)
iq

N

∑
i=1

τ
(m)
iq xi (2.12)

and

Σ
(m+1)
q =

1

∑
N
i=1 τ

(m)
iq

N

∑
i=1

τ
(m)
iq (xi − µ

(m+1)
q )t(xi − µ

(m+1)
k ) (2.13)
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Algorithm 2: EM Algorithm for mixture model

Data: X, data matrix
/* Arbitrarily initialization of the parameters */

Φ(0) = (α
(0)
1 , . . . , α

(0)
Q , θ

(0)
1 , . . . , θ

(0)
Q )

m = 0

while not convergence do
/* Estimation step */

/* Compute τik the probabilities of i belonging

to the classes, conditionally on the current

parameter:*/

foreach i ∈ {1, ...,N} do
foreach q ∈ {1, ...,Q} do

τ
(m+1)
iq =

α
(m)
q f (xi ,θ

(m)
q )

∑
Q
l=1 α

(m)
l f (xi ,θ

(m)
l )

/* Maximization step: maximize the

log-likelihood conditionally on τ
(m)
iq */

/* re-estimate the distribution parameters to

maximize the likelihood of the data */

foreach q ∈ {1, ...,Q} do
α

(m+1)
q = ∑

N
i=1 τ

(m)
iq /N

θ
(m+1)
q = Argmaxθq

Q(Φ|Φ(m))

m = m +1

Result: Estimated parameters Φ̂ and posterior probabilities τiq
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Convergence properties of EM algorithm. Under certain conditions of
regularity, it has been established that the EM algorithm converges to a
local likelihood maximum. It shows good practical behavior, but may
nevertheless be quite slow in some situations. This is the case, for instance,
when classes are very mixed.

Relation to variational Bayes methods. In order to obtain a full Bayesian
version of the EM algorithm, we simply have to provide a probability dis-
tribution over Φ as well as the latent variables (Friedman 1998). In this
context, the optimization is realized over each k latent variables (includ-
ing Φ), one at the time. Thus, the distinction between the E and M step
disappears and gives rise to k optimization steps per iteration.

Extensions of the EM algorithm. The EM algorithm has spawned nu-
merous variants in the context mixture models. Many of them can be
found in a McLachlan and Krishnan’s book (McLachlan and Krishnan
1997). One of them is of particular interest because it allows connections
between the EM algorithm for mixture model algorithms and k-means: it
is the Classification EM algorithm (CEM) (Celeux and Govaert 1992). This
algorithm incorporates a classification step between the E and M steps of
EM. This step transforms the posterior probabilities τiq calculated in Step
E for all individuals by distributions requiring a certain mass of 1 on the

assumption most probable. This is equivalent to modifying the τ
(m)
iq by

replacing them with the nearest 1 or 0 values. This algorithm is also an al-
ternating optimization algorithm, but the criterion used is not a likelihood;
it leads to biased estimates parameters of models. However, when the en-
tropy of the distribution a posteriori on hidden variables is low, the bias
remains small and this algorithm has the advantage of converging faster
than the classic EM algorithm. Moreover, its interpretation is quite natural
when the objective is not the estimation of parameters but the search for a
optimal classification data. More details could be found in Section 2.4.

Other extensions of the EM algorithms focused on the problem of its
local convergence. To avoid this problem, SEM algorithm developed by
Celeux and Diebolt (1985) incorporates a simulation step S (for stochastic)
between the E and M steps of EM. In this step, a class is drawn for each
individual using the posterior probabilities calculated in Step E. This step
aims at preventing the algorithm getting trapped in a local minimum of
the likelihood. In practice, when the sample of observed data is small, it
appears that stochastic perturbations in SEM can involve important vari-
ance of the parameters (Celeux et al. 1995) and provide results less efficient
than a classical EM. This is the reason why Celeux and Diebolt (1991) have
introduced the SAEM (for Simulated Annealing EM) algorithm. The main
idea is to keep the stochastic nature of the algorithm going to from pure
SEM at the beginning towards pure EM at the end. A confusion is not
uncommon concerning this designation. Indeed, SAEM also refers to the
Stochastic Approximation EM algorithm of Delyon et al. (1999). This ap-
proach approximates the expectation of the complete data log-likelihood
using Monte Carlo simulations and is described in Section 2.5.
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2.3 A Mixture Model for Networks

In this section we present the MixNet model. In its classical form, the
model deals with networks without valuation. Here, we introduce the
model in a more general form extending it to weighted graph.

2.3.1 Model and Notation

Let us define a random graph G, where V denotes the set of fixed vertices.
We suppose that nodes are spread among Q hidden classes and we denote
by Ziq the indicator variable such that {Ziq = 1} if node i belongs to class
q. We denote by Z = (Z1, . . . ,Zn) the vector of random independent label
variables such that

Zi ∼M(1, α = {α1, ..., αQ}),

follows a multinomial distribution with α the vector of proportions for
classes.

Conditional distribution. Random edges are described by a set of ran-
dom variables X = {Xij, (i, j) ∈ V2}, |V| = n, X coding for the nature
of connection between nodes i and j. MixNet is defined using the condi-
tional distribution of edges given the label of the nodes. Knowing group
q of node i and group l of node j, Xij is distributed as f (., ηql) := fql(.)
where fηql

is a probability distribution known up to a finite dimensional
parameter ηql :

Xij|i ∈ q, j ∈ l ∼ f (., ηql) := fql(.).

Xijs are supposed to be conditionally independent:

Pr(X|Z; η) = ∏
ij

∏
q,l

Pr(Xij|ZiqZjl = 1; ηql)
ZiqZjl .

and Pr(Xij|ZiqZjl = 1; ηql) is supposed to belong to the regular expo-
nential family, with natural parameter ηql :

log Pr(Xij|ZiqZjl = 1; ηql) = ηt
qlh(Xij)− a(ηql) + b(Xij),

where h(Xij) is the vector of sufficient statistics, a a normalizing constant
and b a given function. Consequently, the conditional distribution of the
graph is also from the exponential family (See Figure 2.2):

log Pr(X|Z; η) = ∑
ij,ql

ZiqZjlη
t
qlh(Xij)− ∑

ij,ql

ZiqZjla(ηql) + ∑
ij

b(Xij).

Up to a relabeling of the classes, the model is identifiable (Allman et al.
2009) and completely specified by both the mixture proportion α and the
connectivity matrix η = (ηql)q,l=1...Q. We denote β = (α, η) the parameters
of the model.

In the following, formulas are derived in the case of directed networks,
but could be easily generalized to the non directed case (Xij = Xji).
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Figure 2.2 – MixNet and its exponential family generalization.

Models comparison. The MixNet model is related to other clustering
models for networks (Figure 2.3.1). The stochastic blockstructure model
(Snijders and Nowicki 1997, Nowicki and Snijders 2001) considers a mix-
ture on dyads (Xij,Xji) whereas we consider a model on the edges of the
network. This implicitly assumes the independence of Xij and Xji condi-
tionally on the latent structure. Each edge Xij is considered as a random
variable which can be discrete or real. As for the comparison with the
Mixed membership model (Airoldi et al. 2008), the hidden variables of
their model can stand for more than one group for one node, whereas
MixNet only considers one label per node. Airoldi et al. (2008) also model
the sparsity of the network, which could be done also with MixNet as well
introducing a Dirac mass on zero for the conditional distribution of edges.
Here we consider that the conditional distribution belongs to the exponen-
tial family. It allows us to model both discrete and real valued relational
data while being able to estimate the parameters via an EM algorithm.
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Examples of distributions. Numerous classical distributions fit into this
framework (Mariadassou and Robin 2007). For example, when the only
available information is the presence or the absence of an edge, then Xij is
assumed to follow a Bernoulli distribution:

Xij|ZiqZjl = 1 ∼ B(πql)





ηql = log
πql

1−πql
,

h(Xij) = Xij,

a(ηql) = log(1− πql),

b(Xij) = 0.

(2.14)

Figure 2.3 illustrates a graphical representation of the MixNet Model.

Figure 2.3 – Graphical representation of the MixNet Model with a Bernoulli distribution
of edges. The squares represent discrete random variables.

Some properties concerning this Bernoulli Erdös-Rényi mixture model,
like the distribution of degrees or the between group connectivity are
available in the appendix A.1. An interesting property which can be
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quoted is that this model allows to explicitly compute the distribution
of the degree Ki of node i with approximately a Poisson mixture:

Ki ∼ ∑
q

αqB(n− 1, π̄q) ≈ ∑
q

αqP(λq) (2.15)

where π̄q = ∑ αlπql and λq = (n − 1)π̄q. Such a distrubution allows a
better fit to the degree distributions of real-networks.

If additional information is available to describe the connections be-
tween vertices, it may be integrated into the model. For example, the
Poisson distribution might describe the intensity of the traffic between
nodes. A typical example in web access log mining is the number of
users going from a page i to a page j. Another example is provided by
co-authorship networks, for which valuation may describe the number of
articles commonly published by the authors of the network. In those cases,
we have

Xij|ZiqZjl = 1 ∼ P(λql)





ηql = logλql ,

h(Xij) = Xij,

a(ηql) = −λql ,

b(Xij) = Xij!

(2.16)

However, we will only consider Bernoulli Erdös-Rényi mixture models
in the experiment and application sections of this chapter (respectively
Section 2.8 page 62 and Section 2.9 page 68).

Joint distribution. Since MixNet is defined by its conditional distribu-
tion, we first check that the joint distribution also belongs to the exponen-
tial family. Using notation





Nq = ∑i Ziq,

Hql(X,Z) = ∑ij ZiqZjlh(Xij),

Gql(Z) = ∑ij ZiqZjl = NqNl ,

αq = exp(ωq)/∑l exp(ωl),

(2.17)

and




T(X,Z) =
(
{Nq}, {Hql(X,Z)}, {Gql(Z)}

)
,

β =
(
{ωq}, {ηql}, {−a(ηql)}

)
,

A(β) = n log∑l expωl ,

B(X) = ∑ij b(Xij),

(2.18)

we have the factorization logPr(X,Z; β) = βtT(X,Z) − A(β) + B(X),
which proves the claim. Details of this factorization are given in Appendix
A.2. The sufficient statistics T(X,Z) of the complete-data model are the
number of nodes in the classes (Nq), the characteristics of the between-
group links (Hql through function h) and Gql the product of frequencies
between classes. In other words, if the considered graph is directed, undi-
rected, has or has not self-loops, valued or not, the MixNet model can
be fully described using these sufficient statistics. An explicit detail of
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the joint distribution of MixNet (in Bernoulli Erdös-Rényi mixture case)
via the complete log-likelihood computation is given in appendix A.3 and
can provide an example of this factorization. In the following we aim at
estimating β.

2.3.2 Sufficient statistics and Online Recursion

Online algorithms (Figure 2.4) are incremental algorithms which recur-
sively) update parameters, using current parameters and new observa-
tions. We introduce the following notation. Let us denote by X[n] =(
Xij

}n

i,j=1
, the adjacency matrix of the data, when n nodes are present,

and by Z[n] the associated labels. A convenient notation in this context is
Xi,• = {Xij, j ∈ V}, which denotes all the edges related to node i. Note
that the addition of one node leads to the addition of n + 1 potential con-
nections.

��������

	

Figure 2.4 – Online algorithms are incremental algorithms which recursively update
parameters using current parameters and additional information provided by new obser-
vations

The use of online methods is based on the additivity of the sufficient
statistics regarding the addition of a new node. We can show that:





N
[n+1]
q = N

[n]
q + Zn+1,q,

Hql(X
[n+1],Z[n+1]) = Hql(X

[n],Z[n]) + ξ
[n+1]
ql ,

Gql(Z
[n+1]) = Gql(Z

[n]) + ζ
[n+1]
ql ,

(2.19)

with

ξ
[n+1]
ql = Zn+1,q

n

∑
j=1

Zjlh(Xn+1,j) + Zn+1,l

n

∑
i=1

Ziqh(Xi,n+1)

ζ
[n+1]
ql = Zn+1,qN

[n]
l + Zn+1,lN

[n]
q .

Then if we define T(Xn+1,•,Z[n+1]) =
(
Zn+1,q, {ξ

[n+1]
ql }, {ζ

[n+1]
ql }

)
which

shows the following proposition:
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Proposition 2.1

T(X[n+1],Z[n+1]) = T(X[n],Z[n]) + T(Xn+1,•,Z[n+1]).

Those equations will be used for parameter updates in the online al-
gorithms.

2.3.3 Likelihoods and online inference

Inspired by the criterion of Scott and Symons (1971), the log-likelihood of
the complete data set is

Lc(X,Z; β) = log Pr(X,Z; β) = ∑
i

∑
q

Ziqlogαq + ∑
i,j

∑
q,l

ZiqZjl log fql(Xi,j)

Further details (like directed/undirected graph and self-loops) con-
cerning the derivation of the expression of the complete log-likelihood in
a Erdös-Rényi mixture are given in the appendix A.3.

The likelihood of the incomplete data set can be obtained by sum-
ming Pr(X,Z) over all possible Z’s: Pr(X) = ∑Z Pr(X,Z). This summation
involves Qn terms and quickly becomes intractable. Existing estimation
strategies are based on maximum likelihood, and algorithms related to
EM are used for optimization purposes. The aim is to maximize the con-
ditional expectation of the complete-data log-likelihood

Q(β|β′) = ∑
Z

Pr(Z|X; β′) log Pr(X,Z; β),

and the main difficulty is that Pr(Z|X; β′) can not be factorized and needs
to be approximated (Daudin et al. 2008).

In this chapter, we will propose three approximation strategies to esti-
mate the model parameters:

• CEM: A first interesting approach is to consider a Classification EM-
based strategy (CEM), where only the prediction of Z is considered,
leaving apart the problem of computing Pr(Z|X). Optimizing di-
rectly the Classification log-likelihood Lc, this approach is known
to give biased estimates. However, it is very efficient from a com-
putational point of view. Section 2.4 and (Zanghi et al. 2008) are
concerned with this online approach.

• SAEM: The second approach is based on the Stochastic Approxima-
tion EM approach (Delyon et al. 1999) which approximates Pr(Z|X)
using Monte Carlo simulations. The stochastic nature of this method
can also avoid local convergences of the estimation. Section 2.5 ex-
plains this strategy.

• VEM: The last strategy (See Section 2.6), called variational approach,
consists in approximating Pr(Z|X) by a more tractable distribution
on the hidden variables.
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In their online versions, while nodes are added, the CEM algorithms
directly maximizes the criterion Lc(X,Z; β), whereas SAEM and VEM al-
gorithms optimize Q(β|β′) sequentially. To this extent, we introduce no-
tation:

Qn+1(β|β[n]) = ∑
Z[n+1]

Pr(Z[n+1]|X[n+1]; β[n]) log Pr(X[n+1],Z[n+1]; β),

with [n + 1] being either the number of nodes or the increment of the
algorithm, which are identical in the online context.

2.4 Classification EM algorithm

The Classification EM (CEM) algorithm is an iterative clustering algorithm
which simultaneously yields the parameters and the classification. From
a practical point of view, this algorithm is faster than EM algorithm and
converges in a few iterations. In the mixture model context the CEM
algorithm can be regarded as a classification version of the EM algorithm,
involving a classification step between the E-step and the M-step. The
paper of Celeux and Govaert (1992), showed that each iteration of the CEM
algorithm increases the classification log-likelihood criterion Lc and its
convergence is reached after a finite number of iterations. It is noticeable
that the CEM algorithm exactly corresponds to the k-means algorithm,
when assuming Gaussian mixtures with equal proportions and covariance
matrices equal to the identify matrix. Therefore, this algorithm can be
regarded as a generalization of the k-means algorithm ables to handle
non-spherical covariances matrices and non-uniform proportions.

2.4.1 Classification log-likelihood

According to the previous notation where [n + 1] corresponds to either
the number of nodes and the increment of the algorithm, we can write the
classification log-likelihood as

Lc(X
[n],Z[n]; β) = log Pr(Z[n]; β) + log Pr(X[n]|Z[n]; β).

For the sake of illustration, further details concerning the derivation of
the expression of the classification log-likelihood in both Bernoulli and
Poisson distributions are given in the appendix A.3.

We can remark that a maximization of the log-likelihood criterion ac-
cording to (Z, β) is equivalent to a maximization of the criterion

Lc(X
[n], β) = max

Z[n]
[Lc(X

[n],Z[n]; β)].

This alternative formulation of the log-likelihood criterion allows us to
consider the CEM algorithm as a parameter estimation algorithm like EM
algorithm.
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2.4.2 Online Estimation

This section describes an original incremental Classification version of the
EM algorithm. As previously argued, incremental algorithms recursively
update parameters, using current parameters and new observations. Us-
ing the previous notation, we note X[n] the adjacency matrix of a graph
with n nodes and Z[n](β), the classification matrix verifying:

Z[n](β) = argmax
Z
Lc(X

[n],Z[n], β).

Let β[n] be the parameter vector maximizing Ln
c (X

[n],Z[n](β[n−1]), β) the
complete log-likelihood expressed in function of n nodes. When a new
node and all attached edges Xn+1,• become available, the new complete
log-likelihood of β is expressed as the sum of the previous complete log-
likelihood and a new term function of the edges between the new node
and the existing network:

Ln+1
c (X[n+1],Z[n+1](β[n]), β) = Ln

c (X
[n],Z[n], β) + Lc(Xn+1,•,Z[n+1], β).

The principle of the recursive algorithm consists in computing the pa-

rameter β[n+1] maximizing Ln+1
c (X[n+1],Z[n+1](β[n]), β) and exploiting the

fact that the new estimates are function of the old ones. But prior to com-
pute the new estimate of the parameter vector, it is necessary to find the

partition Z[n+1](β[n]) which maximizes Ln+1
c (X[n+1],Z[n+1](β[n]), β).

A suboptimal solution, which increases the complete log-likelihood,
consists of assigning to the new node the most probable class (Maximum
A Posteriori strategy) without changing the class of all the other nodes.
Once the new classification matrix is estimated, the maximisation of the
complete log-likelihood is straightforward and leads to new estimates of
the parameter vector.

The recursive algorithm is then described by the two following steps
each time a new (n)th node (and corresponding vertices) is considered:

• Classification step: assign each new node n to the class q∗ which
maximizes

Lc(Xn,•, q; β) = log αq + ∑
l

∑
j 6=n

Zjl log fql(Xn,j).

Thus set Znq equal to 1 if q = q∗, 0 otherwise.

• Estimation step:

– Update the sufficient statistics according to equation 2.3.2.

– Update the parameters for all classes.
{

α
[n+1]
q = N

[n+1]
q /(n + 1),

ψ
[n+1]
ql = Hql(X

[n+1],Z[n+1])/Gql(Z
[n+1]),

with the notation ψql =
∂a(ηql)

∂ηql
.

This algorithm increases the complete-log likelihood at each step, and
requires at most as many iterations as the number of nodes. It can be
considered as a special case of online reinforcement learning Likas (1999)
where all clusters are strongly dependent.
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Parameters update in the Bernoulli and Poisson cases. The connectivity
estimator ψql can be expressed as:

ψ
[n+1]
ql =

Hql(X
[n+1],Z[n+1])

Gql(Z[n+1]))
=

Hql(X
[n],Z[n]) + ξ

[n+1]
ql

Gql(Z[n])) + ζ
[n+1]
ql

, (2.20)

using the notation of Equation 2.19. Dividing the numerator and
denominator by Gql(Z

[n])) and using relation Gql(Z
[n]) = Gql(Z

[n+1])) −
ζ

[n+1]
ql leads to

ψ
[n+1]
ql =




ψ
[n]
ql +

ξ
[n+1]
ql

Gql(Z[n+1]))− ζ
[n+1]
ql︸ ︷︷ ︸

A







Gql(Z
[n+1])− ζ

[n+1]
ql

Gql(Z[n+1])
︸ ︷︷ ︸

B


 .

Using the notation α[n+1] =
ζ
[n+1]
ql

Gql(Z[n+1])
, we can express the A term of the

previous equation as,

ξ
[n+1]
ql

Gql(Z[n+1])− ζ
[n+1]
ql

=
ξ

[n+1]
ql

ζ
[n+1]
ql

α[n+1]

1− α[n+1]
,

and the B term simply as,

Gql(Z
[n+1])− ζ

[n+1]
ql

Gql(Z[n+1])
= 1− α[n+1].

Finally, the relation γ[n+1] = 1− α[n+1] allows to express Equation 2.20
in the following form:

ψ
[n+1]
ql = γ[n+1]ψ

[n]
ql + (1− γ[n+1])

ξ
[n+1]
ql

ζ
[n+1]
ql

. (2.21)

Revisiting the nodes. Still the parameters can be further improved and
the complete log-likelihood further increased by revisiting each node a
few times. When m the number of iterations is greater than n the size of
the network, it is possible to apply the above described recursive principle,
and the algorithm can be continued as follows:

• Classification step: find a node Xi,•, whose class change improves
the classification log-likelihood.

• Estimation step:

– Update the sufficient statistics according to equation 2.3.2 tak-
ing into account the class change of node i.

– Update the parameters for all classes with Equation 2.21.
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When the classification step does not improve the classification log-
likelihood, the algorithm can be stopped. Notice that this second phase of
the algorithm can be related to relaxation labeling Rosenfeld et al. (1976),
Hancock and Kittler (1990). In this context, the label of node i is the class
vector. Using the notation Z\i which stands for the class of all nodes
except node i, the label of this node is changed to the class q maximizing
the posterior probability

Pr(Ziq = 1|X,Z\i) =
Pr(Ziq = 1,Z\i,X)

Pr(Z\i,X)
,

=
Pr(Ziq = 1,Z\i,X)

∑
Q
q=1 Pr(Ziq = 1,Z\i,X)

,

=
eLc(Xi,•,q;β)

∑
Q
ℓ=1 eLc(Xi,•,ℓ;β)

,

and then fixed, before relaxing another node label.

2.4.3 Bernoulli affiliation model

One might reduce the complexity of the model by reducing the number
of parameters. An interesting approach is to consider an simple affiliation
model where two types of edges exist: edges between nodes of the same
class and edges between nodes of different classes. Thus, each type of
edge has a given probability: πqq = λ and πql = ǫ (q 6= l). Self-loops are
not taken into account (see for example Figure 2.5 page 62).

When considering this model (in an undirected graph without self-
loops), the parameters are β = {α1, ..., αQ−1,λ, ǫ}. Observing that

ZiqZjl log (π
Xij

ql (1− πql)
1−Xij) takes four different values according to the

class of i and j, and their neighbourhood relationship, the classification
likelihood can be expressed as:

Lc(X,Z; β) = ∑
q

nq log αq + nλ logλ + n1−λ log(1− λ)

+nǫ log ǫ + n1−ǫ log(1− ǫ),

where nλ, n1−λ, nǫ and n1−ǫ are the number of node pairs defined by class
and neighbourhood relationship (see Table 2.1).

neighbours not neighbours

same class nλ = ∑q nqq n1−λ = ∑q
nq(nq−1)

2 − nλ

different class nǫ = ∑q 6=l nql n1−ǫ = n(n−1)
2 − nλ − n1−λ − nǫ

Table 2.1 – Statistics of the affiliation model computed from nql = ∑i>j xijziqzjl , the
number of edges having nodes in class q and l, and nq = ∑i ziq, the number of nodes of
class q.

Using Equation 2.21, the parameters β̂ which maximize this criterion
for a given partition in an undirected Bernoulli affiliation model are as
follows: 




α̂q =
nq

n , ,

λ̂ = nλ
nλ+n1−λ

,

ǫ̂ = nǫ
nǫ+n1−ǫ

.
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The adaptation of the proposed algorithm to the affiliation model is
straightforward and requires only the computation of the four statistics

of the affiliation model (see Table 2.1) from the n
[m]
ql . This approach ac-

celerates the estimation procedure in comparision with complete model
involving πql parameters to estimate.

A last remark about this affiliation model is that it allows to explicitly
compute the distribution of the degree Ki of node i, which is approxi-
mately a mixture of Poisson distribution P((n− 1)[(1− αq)ǫ + αqλ]).

2.4.4 Initialization and online supervised classification

If one is mainly interested in finding clusters of nodes which have strong
interconnection and weak between-connection, the above described algo-
rithm can be, once again, simplified and accelerated by working with fixed
parameter values. An example based on a real data set extracted from the
Web is provided in Section 2.9.1 page 68. A possible interesting choice
for clustering consists in choosing a high value for the probability λ of
within-connection and a small one for the probability ǫ of between-group
connection (i.e. λ = 0.8 and ǫ = 0.05). This choice implicitly assumes the
existence of clique-like clusters. Concerning the proportions, without any
additional knowledge, it seems reasonable to consider clusters of the same
size α1 = ... = αQ = 1

Q .
Repeating step 2, with a given value of the parameter vector, produces

a partition in a finite number of iterations. Starting from a random parti-
tion z0, each iteration considers a randomly chosen node and assigns this
node to the cluster which results in the greatest increase of the classifica-
tion log-likelihood. It is obvious this relaxation procedure increases the
classification log-likelihood at each iteration and converges toward a local
maximum since the criterion is upper-bounded.

This minimal clustering algorithm can be used as an effective initializa-
tion strategy for the previously described online MixNet algorithm. Notice
that as all local optimization algorithms, the proposed online MixNet esti-
mation strategy depends strongly on the initialization. A common way to
circumvent this problem consists in testing multiple initialization points
and selecting the best partition and parameters in terms of likelihood.

2.5 Stochastic Approximation EM for Network Mix-
ture

2.5.1 A short presentation of SAEM

An original way of estimating the parameters of the MixNet model is
to approximate the expectation of the complete data log-likelihood us-
ing Monte Carlo simulations corresponding to the Stochastic Approxima-
tion EM algorithm (Delyon et al. 1999). In situations where maximizing
Q(β|β′) is not in a simple closed form, the SAEM algorithm maximizes

an approximation Q̂(β|β′) computed using standard stochastic approxi-
mation theory such that

Q̂(β|β′)[k] = Q̂(β|β′)[k−1] + ρk

(
Q̃(β|β′)− Q̂(β|β′)[k−1]

)
, (2.22)
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where k is an iteration index, {ρk}k≥1 a sequence of positive step size and

where Q̃(β|β′) is obtained by Monte Carlo integration. This is a simula-
tion of the expectation of the complete log-likelihood using the posterior
Pr(Z|X}. Each iteration k of the algorithm is broken down into three steps:

Simulation of the missing data. This can be achieved using Gibbs Sam-
pling of the posterior Pr(Z|X). The result at iteration number k is
m(k) realizations of the latent class data Z: (Z(1), ...,Z(m(k))).

Stochastic Approximation of Q(β|β′) using Eq. 2.22, with

Q̃(β|β′) =
1

m(k)

m(k)

∑
s=1

log Pr(X,Z(s); β) (2.23)

Maximization of Q̂(β|β′)[k] according to β.

As regards the online version of the algorithm, the number of iterations
k usually coincides with n + 1, the number of nodes of the network.

2.5.2 Simulation of Pr(Z|X) in the online context

We use Gibbs sampling which is applicable when the joint distribution
is not known explicitly, but the conditional distribution of each variable
is known. Here we generate a sequence of Z approaching Pr(Z|X) using
Pr(Ziq = 1|X,Z\i} where Z\i stands for the class of all nodes except node i.
The sequence of samples is a Markov chain, and the stationary distribution
of this Markov chain corresponds precisely to the joint distribution we
wish to obtain. In the online context, we consider only one simulation to
simulate the class of the last incoming node using

Pr(Zn+1,q = 1|X[n+1],Z[n]) =
Pr(Zn+1,q = 1,Z[n],X[n+1])

∑
Q
ℓ=1 Pr(Zn+1,ℓ = 1,Z[n],X[n+1])

.

=
exp

{
βtT(Xn+1,•,Z[n],Zn+1,q)

}

∑
Q
ℓ=1 exp

{
βtT(Xn+1,•,Z[n],Zn+1,ℓ)

}

∝ exp

(
ωq +

Q

∑
ℓ=1

ηqℓ

n

∑
j=1

Zjℓh(Xn+1,j) +
Q

∑
ℓ=1

N
[n]
ℓ

a(ηqℓ)

)
.

2.5.3 Computing Q̂(β|β′) in the online context

As regards the online version of the SAEM algorithm, the difference be-
tween the old and the new complete-data log-likelihood may be expressed
as:

log Pr(X[n+1],Z[n+1], β)− log Pr(X[n],Z[n], β) = log αq + ∑
l,i<n+1

Zil log Pr(Xn+1,i|Zn+1,qZil),

where the added simulated vertex label is equal to q (Zn+1,q = 1).
Recall that in the online framework, the label of the new node has been

sampled from the Gibbs sampler described in Section 2.5.2. Consequently
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only one possible label is considered in this equation. Then a natural way
to adapt Equation 2.22 to the online context is to approximate

Q̃n+1(β|β[n])− Q̂n(β|β[n])

by

logPr(X[n+1],Z[n+1], β)− log Pr(X[n],Z[n], β).

Indeed, this quantity corresponds to the difference between the log-
likelihood of the original network and log-likelihood of the new net-
work including the additional node. Notice that the larger the net-
work, the larger its associated complete expected log-likelihood. Thus
logPr(X[n+1],Z[n+1], β) becomes smaller and smaller compared to Q(β|β′)
as n increases. The decreasing step ρn is thus set to one in this online
context. We propose the following update equation for stochastic online
EM computation of MixNet conditional expectation:

Q̂n+1(β|β[n]) = Q̂n(β|β[n]) + log αq + ∑
l,i<n+1

Zil log Pr(Xn+1,i|Zn+1,qZil),

where Zn+1 is drawn from the Gibbs sampler.

2.5.4 Maximizing Q̂(β|β′), and parameters update

The principle of online algorithms is to modify the current parameter es-
timation using the information added by a new available [n + 1] node
and its corresponding connections Xn+1,• to the already existing network.

Maximizing Q̂n+1(β|β[n]) according to β is straightforward and produces
the maximum likelihood estimates for iteration [n + 1]. Here we have pro-
posed a simple version of the algorithm by setting the number of simula-

tion to one (m(k) = 1). In this context, the difference between Q̂n(β|β[n])

and Q̂n+1(β|β[n]) implies only the terms of the complete log-likelihood

which are a function of node n + 1. Using notation ψql =
∂a(ηql)

∂ηql
, we get

{
α

[n+1]
q = N

[n+1]
q /(n + 1),

ψ
[n+1]
ql = Hql(X

[n+1],Z[n+1])/Gql(Z
[n+1]),

where (ξql , ζql) were defined in the previous Section. Notice that updating
the function ψql of the parameter of interest is often more convenient in
online context than directly considering this parameter of interest. An
example of parameter update is given for the Bernoulli and Poisson cases
in the Appendix A.3.4.

Once all the nodes in the network have been visited (or are known),
similarly to the online CEM algorithm, the parameters can be further im-
proved and the complete log-likelihood better approximated by continu-
ing with the SAEM algorithm described above.

2.6 Application of online algorithm to Variational
EM methods

Variational EM (VEM) methods constitute an alternative to SAEM. Their
principle is to approximate the untractable distribution Pr(Z|X; β) by a
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newly introduced distribution on Z denoted byR. Then this new distribu-
tion is used to optimize J (X,R(Z); β), an approximation (lower bound)
of the incomplete-data log-likelihood logPr(X; β), defined such that

J (X,R(Z); β) = log Pr(X; β)−DKL(R(Z)|Pr(Z|X; β)),

with DKL(•|•) being the Kullback-Leibler divergence between probability
distributions (Jordan et al. 1999). Then one must choose the form ofR, and
the product of Multinomial distributions is natural in the case of MixNet,
with logR(Z) = ∑i ∑q Ziq log τiq, and the constraint ∑q τiq = 1. In this
case, the form of J (X,R(Z); β) is:

J (X,R(Z); β) = ∑
Z

R(Z; τ) log Pr(X,Z; β)−∑
Z

R(Z; τ) logR(Z; τ),

= Q(τ, β) +H(R(Z; τ)),

with Q(τ, β) an approximation of the conditional expectation of the
complete-data log-likelihood, and H(R(Z; τ)) the entropy of the approx-
imate posterior distribution of Z.

The implementation of variational methods in online algorithms relies
on the additivity property of J (X,R(Z); β) when nodes are added. This
property is straightforward: Q(τ, β) is additive thanks to Proposition 2.1
(because R(Z) is factorized), and H(R(Z; τ)) is also additive, since the
hidden variables are supposed independent under R and the entropy of
independent variables is additive. The variational algorithm is very sim-
ilar to an EM algorithm, with the E-step being replaced by a variational
step which aims at updating variational parameters. Then a standard M-
step follows. In the following, we give the details of these two steps in the
case of a variational online algorithm.

2.6.1 Online variational step

When a new node is added it is necessary to compute its associated vari-
ational parameters {τn+1,q}q. If we consider all the other τiq for i < n + 1
as known, the {τn+1,q}q are obtained by differentiating the criterion

J
(
X[n+1],R(Z[n+1]); β

)
+

n+1

∑
i=1

Λi

(
Q

∑
q=1

τiq − 1

)
,

where the Λi are the Lagrangian parameters. Since function J is additive
according to the nodes, the calculation of its derivative according to τn+1,q

gives:

ω
[n]
q +

Q

∑
l=1

n

∑
j=1

τ
[n]
jl

(
η

[n]
ql h(Xn+1,j) + a(η

[n]
ql )
)
− log τn+1,q + 1+ Λn+1 = 0

This leads to

τn+1,q ∝ α
[n]
q exp

{
Q

∑
l=1

n

∑
j=1

τ
[n]
jl

(
η

[n]
ql h(Xn+1,j) + a(η

[n]
ql )
)}

, ∀q ∈ {1, ...,Q}.

(2.24)
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2.6.2 Maximization/Update step

To maximize the approximated expectation of the complete log-likelihood
according to β, we solve

∂Qn+1(τ, β)

∂β
= ER[n]

(
∂ log Pr(X[n+1],Z[n+1]; β)

∂β

)
= 0. (2.25)

Differentiating Equation 2.25 with respect to parameters {ωq} gives the
following update equation:

α
[n+1]
q =

1

n + 1

(
n

∑
i=1

τ
[n]
iq + τn+1,q

)
.

The other update equation is obtained by considering parameters {ηql},
and using notation ψql , which gives:

ψn+1
ql =

ER[n]

(
Hql(X

[n+1],Z[n+1])
)

ER[n]

(
Gql(Z[n+1])

) ,

Thanks to proposition 2.1, which gives the relationships between sufficient
statistics at two successive iterations, parameters can be computed recur-
sively using the update of the expectation of the sufficient statistics, such
that

ER[n]

(
N

[n+1]
q

)
= ER[n]

(
N

[n]
q

)
+ ER[n]

(
Zn+1,q

)
,

ER[n]

(
Hql(X

[n+1],Z[n+1])
)

= ER[n]

(
Hql(X

[n],Z[n])
)

+ ER[n]

(
ξ

[n+1]
ql

)
,

ER[n]

(
Gql(Z

[n+1])
)

= ER[n]

(
Gql(Z

[n])
)

+ ER[n]

(
ζ

[n+1]
ql

)
.

An example of parameters update is given in Appendix A.3.5 for both
the Bernoulli and the Poisson distributions. Note the similarity of the
formula compared with the SAEM strategy. Hidden variables Z are ei-
ther simulated or replaced by their approximated conditional expectation
(variational parameters).

2.7 Choosing the number of clusters

As the algorithm relies on a statistical model, it is possible to use the
Integrated Classification Likelihood (ICL) to choose the optimal number
of classes Biernacki et al. (2000). This choice is done by running our online
algorithm concurrently for models from 2 to Q classes and selecting the
solution which maximizes the ICL criterion.

In our situation, following Daudin Daudin et al. (2008), the ICL crite-
rion can be written as:

ICL(Q) = −2Lc(X, β)︸ ︷︷ ︸
A

+ (Q− 1) log(n) + Q2 log(n(n− 1))︸ ︷︷ ︸
B

where n is the number of nodes, A is related to the classification log-
likelihood, B to the free number of parameters. The first term of B weights
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the information of Q proportions αqs involved by n data and second
term ponders Q2 probabilities ηqls involved by n(n − 1) terms (number
of edges). The ICL criterion is essentially the ordinary BIC considering
the complete log-likelihood instead of the log-likelihood. Consider for ex-
ample Figure 2.6 which exhibits this strategy for synthetic data of Figure
2.5.

Figure 2.5 – Simulation of a 100 nodes graph with 5 classes according to an affiliation
model (see Section 2.4.3 page 2.4.3).

The ICL criterion computed for models with 2 to 16 clusters shows
a clear maximum for 5 clusters, which is the real number used for data
simulation.

Figure 2.6 – Integrated Classification Likelihood Criterion in function of the number of
clusters computed for the simulated graph of Figure 2.5.

2.8 Experiments using simulation

Experiments are carried out to assess the trade-off established by online
algorithms in terms of quality of estimation and speed of execution. We
propose a two-step simulation study. We first report simulation experi-
ments using synthetic data generated according to the assumed random
graph model. In this first experiment we use simple affiliation models to
check precisely the quality of the estimations given by ours online algo-
rithms. Results are compared to the batch variational EM proposed by
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Daudin et al. (2008) to assess the effect of the online framework on the
estimation quality and on the speed of execution. An ANSI C++ imple-
mentation of the algorithms is available, as well as an R package named
MixeR , along with public data sets. Further details concerning the soft-
ware are given in Appendix A.8.

2.8.1 Comparison of partitions

Comparing the estimated partition with the true partition is not as
straightforward as comparing the parameter estimates. In order to evalu-
ate the agreement between these two partitions, we use the adjusted Rand
index Hubert and Arabie (1985) which lies between 0 and 1. The compu-
tation of this index is based on a ratio between the number of node pairs
belonging to the same and to different classes when considering the true
partition and the estimated partition.

Definition 2.1 Given a set of n elements E = {E1, . . . , En} and two partitions of E to compare,
X = {x1, . . . , xr} and Y = {y1, . . . , ys}, we define the following:

• n1: the number of pairs of elements in E that are in the same set in X and
in the same set in Y,

• n2: the number of pairs of elements in E that are in different sets in X and
in different sets in Y,

• n3: the number of pairs of elements in E that are in the same set in X and
in different sets in Y,

• n4: the number of pairs of elements in E that are in different sets in X and
in the same set in Y.

The Adjusted Rand index, AR, is:

AR =
2(n1n2 − n3n4)

((n1 + n4)(n4 + n2) + (n1 + n3)(n3 + n2))

Two identical partitions have an adjusted Rand index equal to 1.

2.8.2 Comparison of algorithms

Simulations set-up. In these experiments, we again assume that edges
are Bernoulli distributed. We consider a simple affiliation model where
two types of edges exist: edges between nodes of the same class and
edges between nodes of different classes. Each type of edge has a given
probability, respectively πqq = λ and πql = ǫ. Five affiliation models are
examined (see Table 2.2) with λ = 1− ǫ to limit the number of varying
parameters in the experiment.

The parameter λ controls the complexity of the model. The differ-
ences between the five models relate to their modular structure, which
varies from no structure (almost the Erdős-Rényi model) to strong modu-
lar structure (low inter-module connectivity and strong intra-module con-
nectivity, or strong inter-module connectivity and low intra-module con-
nectivity). Figure 2.7 illustrates three kinds of connectivity which allows
to represent graphically models 1, 4 and 5.
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Model ǫ λ

1 0.3 0.7
2 0.35 0.65
3 0.4 0.6
4 0.5 0.5
5 0.9 0.1

Table 2.2 – Parameters of the five affiliation models considered in the experimental
setting.

Figure 2.7 – Top left: low inter-module connectivity and strong intra-module con-
nectivity (model 1), Top right: strong inter-module connectivity and low intra-module
connectivity (model 5), Bottom center: Erdős-Rényi model (model 4).
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For each affiliation model, we generate graphs with Q ∈ {2, 5, 20}
groups mixed in the same proportions α1 = ... = αQ = 1

Q and with n ∈
{100, 250, 500, 750, 1000, 2000} nodes. We thus generate a total of 45 graph
models, each being simulated 30 times.

Algorithms set-up. In Appendix A.4 and in (Zanghi et al. 2008), we
showed that the variational MixNet approach was more accurate than
other methods like spectral clustering (Ng et al. 2002) and a k-means
like algorithm. We also showed that the online CEM MixNet produced
similar results to variational MixNet while significantly reducing the com-
putational cost. Consequently, the online SAEM and online variational
algorithms developed here will be compared with the online CEM and
batch variational (batch MixNet) as references. To avoid initialization is-
sues, each algorithm is started with multiple initialization points and the
best result is selected based on its likelihood. Thus, for each simulated
network, the algorithm is run 10 times and the number of clusters is cho-
sen using the Integrated Classification Likelihood criterion, as proposed in
Section 2.7, which almost never makes a mistake on simulated networks.
In these first experiments we use for the online algorithms the same stop-
ping condition than the variational batch MixNet condition which is based
on a stabilization of the estimated parameters. The parameter comparison
is done at the end of each epoch (one visit of all network nodes).

Simulations results. A first result is that every algorithm shows neg-
ligible bias and variance for highly structured models (models 1, 2, 5,
Table 2.3). While this is also true for intermediate cases (model 4), this
result does not stand for less structured cases (model 3). Even if the Batch
MixNet still performs well in this case, the online CEM is the most efficient
among online versions (followed by the online variational algorithm).

online SAEM online Variational batch MixNet online CEM
Model ǭ λ̄ ǭ λ̄ ǭ λ̄ ǭ λ̄

model 1 0.30 0.69 0.30 0.70 0.30 0.70 0.30 0.70
model 2 0.36 0.60 0.35 0.64 0.35 0.65 0.35 0.64
model 3 0.44 0.44 0.44 0.45 0.40 0.60 0.43 0.47
model 4 0.51 0.48 0.50 0.50 0.50 0.50 0.51 0.48
model 5 0.10 0.90 0.10 0.90 0.10 0.90 0.10 0.90

Table 2.3 – Parameters of the five affiliation models in the experiment. The Q modules
are mixed in the same proportion. Each model considers n = 500 nodes and Q = 5
groups.

We also focus on the Rand Index for each algorithm. Indeed, even if
poor estimation of λ reveals a small Rand Index (Table 2.4), good esti-
mates do not always lead to correctly estimated partitions. An illustration
is given with model 3 for which algorithms produce good estimates with
poor Rand Index, due to the non modular structure of the network. Then
Figure 2.8 shows that the online CEM and online variational algorithms al-
ways perform better than the online SAEM. As expected, the performance
increase with the number of nodes (Table 2.5).
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online SAEM online Variational batch MixNet online CEM

Model rand σrand rand σrand rand σrand rand σrand

model 1 0.98 0.02 0.98 0.02 0.99 0.02 0.98 0.02
model 2 0.96 0.07 0.97 0.07 0.98 0.01 0.97 0.07
model 3 0.13 0.13 0.10 0.15 0.85 0.14 0.25 0.16
model 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
model 5 1 0.00 1 0.01 1 0.01 1 0.01

Table 2.4 – Means and standard deviations of the Rand Index for all models with q and
n fixed.
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Figure 2.8 – Rand Index evolution for λ ∈ {0.58, 0.59, . . . , 0.68}. The plain line
represents the online SAEM algorithm, the △ line represents the online CEM algorithm
and the ◦ line represents the online variational algorithm.
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Since the aim of online methods is to provide computationally efficient
algorithms, the performance mentioned above should be put in perspec-
tive with the speed of execution of each algorithm. Indeed, Table 2.5 shows
the strong gain of speed provided by online methods compared with the
batch algorithm, with the online variational algorithm being the fastest.
Actually, altought the same computational cost to handle a node is shared
by the different algorithms (approximatively O(nq2)), the main gain of
speed obtained by the online algorithms is due to the realization of a sin-
gle epoch to provide the final results (contrary to the batch algorithm that
performs 10 iterations). Since the quality of partition estimation remains
strong, the online variational algorithm appears very attractive and suit-
able for large graphs. Note that similary to the other MixNet algorithms,
a weakness of this algorithm is that it is not easily parallelizable with a
distributed computing framework (see Section 4.3.4 page 114).

online SAEM online Variational batch MixNet online CEM

N rand time rand time rand time rand time

n = 100 0.14 0.07s 0.14 0.11s 0.26 0.21s 0.14 0.07s
n = 250 0.47 0.76s 0.48 0.77s 0.99 2.08s 0.48 0.74s
n = 500 0.64 0.97s 0.67 1.02s 1 25.00s 0.66 0.95s
n = 750 0.82 2.20s 0.83 2.36s 1 125.30s 0.83 2.14s
n = 1000 0.91 9.44s 0.92 9.60s 1 805.93s 0.92 9.37s
n = 2000 0.98 147.67s 0.99 148.31s 1 13136.66s 0.99 147.33s

Table 2.5 – Means of the Rand Index with speed of the algorithms. q = 5, model 2.

The above results show that a strong case may be made for the on-
line variational algorithm when choosing between alternative clustering
methods. Consequently, we shall now compare it with two suitable "ri-
vals" for large networks: a basic spectral clustering algorithm (Ng et al.
2002), and one of the popular community detection algorithms (Newman
2006a). The spectral clustering algorithm searches for a partition in the
space spanned by the eigenvectors of the normalized Laplacian, whereas
the community detection algorithm looks for modules which are defined
by high intra-connectivity and low inter-connectivity.

For our five models with arbitrary fixed parameters n = 1000, Q =
3, we ran these algorithms and computed the Rand Index for each of
them. From Table 2.6 we see that our online variational algorithm always
produces the best clustering of nodes.

Community Detection Spectral Clustering online Variational

Model rand σrand rand σrand rand σrand

1 1.00 0.00 0.97 0.14 1.00 0.00
2 0.99 0.01 0.98 0.00 1.00 0.00
3 0.97 0.02 0.97 0.00 1.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.92 0.19 1.00 0.00

Table 2.6 – Means and standard deviation of the Rand Index for the five models computed
over 30 different runs for graph clustering competitors and Variational algorithms.



68 Chapter 2. Strategies for Online Inference of Model-Based Clustering in large Networks

Since generated networks favor MixNet algorithms, these results cor-
respond to what was expected: the online variational algorithm always
yields the best node classification. Apart from model 4, it will also be
remarked that the spectral algorithm is fairly efficient with a slight bias,
and so the spectral clustering algorithm is consistently more accurate than
the community algorithm, the latter failing completely when applied to
model 5. Although the community algorithm appears less well adapted
to these experiments, we shall see in the next section that this algorithm is
particularly suitable when partitioning data sets whose nodes are densely
interconnected.

2.9 Application

Finally, we propose to illustrate our online EM-like algorithms on real and
large data sets extracted from the Web. Taking advantage of the MixNet
model allows us to reveal the connectivity information induced by hy-
perlinks which differs from classical module detection algorithms. In the
first experiment, we apply the online CEM "clustering" algorithm using
fixed parameters on a sample of the French Political Blogosphere. The
agreement between the real and the estimated degrees distribution is also
considered. In a second step, we use this data set as a starting point to
simulate growing networks with complex structure, and to assess the per-
formance of online methods on this type of networks. Then, a second
network representing the 2008 U.S. Presidential WebSphere is studied to
analyse the MixNet results and theirs interpretations. We are also inter-
ested in the differences between MixNet groups and Newman’s modules.

2.9.1 French Political Blogosphere network

Data presentation. The data set consists of a single day snapshot of
over 1,100 political blogs automatically extracted the 14 october 2006 and
manually classified by the "Observatoire Présidentielle” project: www.

observatoire-presidentielle.fr. This project is the result of a
collaboration between Linkfluence 1 and Exalead 2 and aims at analyzing
the French presidential campaign on the Web.

In this data set, nodes represent hostnames (a hostname contains a set
of pages) and edges represent hyperlinks between different hostnames.
If several links exist between two different hostnames, we collapse them
into a single one. Note that intra domain links can be considered if host-
names are not identical. Finally, in this experimentation we consider that
edges are not oriented which is not realistic but which does not affect the
interpretation of the groups. This network presents an interesting com-
munities organization due to the existence of several political parties and
commentators. We assume that authors of these blogs tend to link, by
political affinities, blogs with similar political positions. A sample of 196
blogs of this political blogoshere is provided within the MixeR package
(see Section A.8) and can be seen on Figure 2.9.

1see http://linkfluence.net/
2see http://exalead.com/
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Figure 2.9 – Network of the blogopole www.blogopole.fr.

Six known communities compose this network: Gauche (”french
democrat”), Divers Centre (Moderate party), Droite (french republican),
Ecologiste (green), Liberal (supporters of economic-liberalism) and finally
Analysts. Proportions of blogs in these communities are respectively 0.36,
0.23,0.21, 0.08, 0.08 and 0.04.

Finding clusters. Although the optimal number of clusters is 11 (with
the MixNet parameters given in Table 2.8 page 71) according to the pe-
nalized likelihood criterion discribed in Section 2.7), we are interested, in
this experimentation, in finding six groups of blogs using the online CEM
clustering algorithm of Section 2.4.4 for a given pair of ǫ and λ. The num-
ber of groups is then fixed to six in order to compare the true partition of
blogs with the estimated partition running our algorithm. The "optimal"
couple of parameters is obtained using a grid search approach in order
to maximize the agreement between the real and estimated partitions. Fi-
nally, the pair (λ = 0.55 , ǫ = 0.04) gives the maximal agreement between
both partitions with an acceptable Rand index value (0.34) and validates
the assumption that political affinities can be detected using the structure
of the political blogosphere.

Estimated
DC A D E G L

DC 172 32 4 18 3 25

A 2 22 2 5 5 5

True D 3 27 165 11 1 26

E 1 2 0 80 1 0

G 5 97 12 66 181 45

L 1 1 3 1 0 82

Table 2.7 – Contingency table comparing true and estimated partitions

Table 2.7 shows a contingency table of the counts of given and esti-
mated blogs classes. Except for the A class, we can observe a relative
coherence between these two partitions. In fact, the A class is a hub class
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constituted of blogs which links the other classes in order to analyze and
comment the French political news. Our algorithm overestimates the num-
ber of blogs contained in this class and generates important classification
differences. We can also observe that there are classification errors pro-
duced by the political proximity of parties. For example, the estimated E

class has many blogs belonging to the real G class. Finally, we illustrate
on Figure 2.10 the density of links using the adjacency matrix projection
of the network after reordering by class estimation. We can observe that
there is a higher density of intra-group links than inter-groups which val-
idates our MixNet model. Note that classification errors of the A class
can be observed creating horizontal and vertical bands by linking blogs of
other classes.

Figure 2.10 – Adjacency matrix of the blogopole network after reordering according to
the estimated partition.

Degrees distribution. As mentioned in Section 2.4.3, the affiliation
model allows to compute the distribution of the degree which is approx-
imately a mixture of Poisson distribution. Figure 2.11 illustrates both the
observed and the estimated distributions.

Figure 2.11 – Degree distribution of the websites of the blogopole network. The histogram
and the curve respectively represent the observed and the estimated distributions.
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Realistic networks growthing over time As the algorithm is motivated
by large data sets, we are interested in simulating a realistic complex struc-
ture and studying its growthing over time. For this purpose, we use the
previous sample of the French Political Blogosphere network as a starting
point. This complex connectivity pattern of Figure 2.9 is summarized by
the MixNet parameters given in Table 2.8 using the algorithm of Daudin
et al. (2008).

1 2 3 4 5 6 7 8 9 10 11

1 8 . . 13 . . 15 . . . .
2 . 100 . . . 19 89 6 . 66 .
3 . . 39 83 12 6 10 . . . .
4 13 . 83 10072 38 67 . . . .
5 . . 12 72 83 17 20 . . . .
6 . 19 6 38 17 15 60 . . . .
7 15 89 10 67 20 60 10021 . 19 19

8 . 6 . . . . 21 35 . . .
9 . . . . . . . . 93 . .
10 . 66 . . . . 19 . . 22 .
11 . . . . . . 19 . . . 55

Table 2.8 – The table corresponds to the probabilities (×100) of connection between
the 11 selected clusters (using a penalized likelihood criterion discribed in Daudin et al.
(2008)). Dots in the table correspond to connections lower than 1%.

We generate 200 nodes networks from this model, then we simulate
the growth over time of theses networks by adding new nodes according
to the same model and we use the online algorithm to update parameters
sequentially. The result is striking: even on very large networks with
∼ 13,000 nodes and ∼ 13,000,000 edges, the online algorithm allows us
to estimate mixture parameters with negligible classification error in ∼ 6

minutes (Table 2.9). This is the only algorithmic framework that allows to
perform model based clustering on networks of that size.

# nodes (previous+new) ave. # edges ave. rand ave. cpu time (s)

200 3131.72 0.94 0.9
200 + 200 50316.32 0.998 0.4
400 + 400 12486.24 0.999 1.4
800 + 800 201009.5 1 5.7

1600 + 1600 803179.6 1 22.8
3200 + 3200 3202196 1 91.9
6400 + 6400 12804008 1 371.1

Table 2.9 – Quality of the clustering procedure in terms of Rand Index when the network
grows over time. Each configuration has been simulated 100 times.

2.9.2 The 2008 U.S. Presidential WebSphere

Data presentation. As mentioned in Adamic and Glance (2005), the 2004
U.S. Presidential Election was the first where the web and, in particu-
lar, blogging played an important role. Although only a small minor-
ity of Americans actually used these Weblogs, their influence extended
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far beyond their readership, as a result of their interactions with na-
tional mainstream media. With the impact of new social network web-
sites like Myspace and Facebook, the web had a stronger influence during
the U.S.political campaign in 2008. In this real community extraction ex-
periment, we used a real data set obtained on November 7th 2007 by the
French company Linkfluence (Information Networks, Territories and Ge-
ography) using a specific methodology similar to Fouetillou (2007). This
data set consists of a one-day snapshot of over 130,520 links and 1,870
manually classified websites (676 liberal, 1,026 conservative and 168 inde-
pendent) where nodes are connected if there exists a citation from one to
another.

The 2008 U.S. Presidential WebSphere acquisition This data set con-
sists of a one-day snapshot of over two thousand websites, one thousand
of which featured in two online directories: http://wonkosphere.com
and http://www.politicaltrends.info. The first site provides a
manual classification, and the second an automatic classification based on
text analysis. From this seed of a thousand sites, a web crawler (Drugeon
2005) collected a maximum of 100 pages per hostname. External links
were examined to check the connectivity with visited and unvisited web-
sites. If websites were still unvisited, and if there existed a minimal path
of distance less than two between a hostname which belongs to the seed
and these websites, then the web crawler collected them.

Using this seed-extension method, 200,000 websites were collected,
and a network of websites was created where nodes represent hostnames
(a hostname contains a set of pages) and edges represent hyperlinks be-
tween different hostnames. Multiple links between two different host-
names were collapsed into a single link. Intra-domain links were taken
into account if hostnames were not similar. For this web network, we
computed an authority score (Kleinberg 1999) and keyword score TF/IDF
(Salton et al. 1975) on focused words (political entities) in order to identify
respectively nodes with high-quality websites (high authority scores) and
centered on those topics (on a political corpus). 870 new websites emerged
out of these two criteria. They were checked by experts and the validity of
the seed was confirmed. The final tally was 130,520 links and 1,870 sites:
676 liberal, 1,026 conservative and 168 independent. Figure 2.12 illustrates
a layout of this network using Gephi3 which is described in Bastian et al.
(2009).

Comparison with a community detection algorithm. A first step con-
sists in comparing the results of MixNet with the community detection
algorithm proposed by Newman (2006a)4. If the political classification is
used as a reference, the community algorithm produces better agreement
with a randIndex = 0.59, compared with a randIndex = 0.25 for MixNet.
However, it appears that this comparison favors Newman, whereas the
methods have different objective. Indeed, the community algorithm aims
at finding modules which are defined by high intra-connectivity and low

3http://gephi.org/
4Note that the comparison should be almost similar using newer modularity based

methods such as Blondel et al. (2008)
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Figure 2.12 – Graph Layout of the 2008 U.S. Presidential WebSphere using Gephi. The
red dots represent Conservative websites, the yellow are the Independents and finally the
blue dots the Liberal websites.

inter-connectivity. Given that websites tend to link to one another in line
with political affinities, the link topology corresponding to the manual
classification naturally favors the community module definition. The ob-
jective function can also help to explain the community algorithm’s suit-
ability for this data set, since the quality of a partition in terms of New-
man’s modules can be expressed in terms of the modularity, which is max-
imized. The value of this modularity is a scalar between -1 and 1 and
measures the density of links inside communities as compared to links
between communities (Newman 2006a). When applying both algorithms
on our political network with Q = 3, the online variational algorithm
yields a modularity = 0.20, whereas the community algorithm yields a
modularity = 0.30, which is close to the manual partition modularity of
0.28. As MixNet classes do not necessarily take the form of modules, one
might expect our approach to yield a modularity index that is not "opti-
mal". Nevertheless, the two class definitions are complementary, and both
are needed in order to give a global overview of a network: the community
partition to detect dense node connectivity, and the MixNet partition to
analyze nodes with similar connectivity profiles. However, as mentioned
by Adamic and Glance (2005), the division between liberal and conser-
vative blogs is "unmistakable", this is why it may be more interesting to
uncover the structure of the two communities rather than detecting them.

Interpreting MixNet results. As mentioned by Adamic and Glance
(2005), the political websphere is partitioned according to political ori-
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Conservative Independent Liberal

cluster 1 734 135 238

cluster 2 290 26 8

cluster 3 2 7 430

Table 2.10 – Contingency table comparing the political partition and MixNet partition.

entations. The optimal number of groups found by MixNet is Q = 21 (see
the Integrated Classification Likelihood Criterion of Figure 2.13).
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Figure 2.13 – Integrated Classification Likelihood Criterion for the 2008 U.S. Presiden-
tial WebSphere.

Interestingly when looking at Figure 2.14 that presents MixNet results,
one striking structure is that political communities are linked only via
main US online portals (C17, made of nytimes.com, washingtonpost.
com, cnn.com, msn.com). It means that political blogs don’t directly
cite political oponents, which reinforces the political cyberbalkanization
trend that was already observed in 2004. This "mass-media" cluster can
be thought as a group of central hubs that make opponent websites com-
municate. Interestingly, the connections seem to be stronger towards the
liberal part of the weblogs (Table A.8).

Then the question is to determine what are the structural characteris-
tics of the liberal and conservative weblogs organization (note that inde-
pendent sites do not seem to be structured on their own). MixNet reveals
three substructures in the liberal part of the network. There is a set of
blogs (clusters C7, C8, C12, C13 and C20) that show very strong intra and
inter group connectivities which nearly forms a clique (Table A.8). Cluster
C20 for instance is made of 3 weblogs which appear to have a determi-
nant role in the structuration of the liberal community: reachm.com,
mahablog.com, juancole.com. Then this set is connected to two other
clusters which do not cite each other: clusters C4 and C6 only communi-
cate via clusters C13 and C20, with very strong connections (π̂20,6 = 99%
for instance). The last substructure is made of cluster C11, which shows
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Figure 2.14 – Network summary of US political websites. Each vertex represents a
cluster. Each pie chart gives the proportions of liberal, conservative and independent
tagged websites in the cluster. The outer ring color of the vertices is proportional to the
intensity of the intra-connectivity: the darker, the weaker. Edges are represented when the
inter-connectivity is among the 20% of the largest among all connectivity values.

intermediate connections with liberal blogs. Actually, this sub-division is
also present in the conservative part of the network. Indeed, clusters C1
and C2 are very lightly connected with the conservative blogs, whereas
clusters C3, C14, C16, C18, C19 constitute the core of the conservative
web-sphere, with very famous websites like foxnews.com (C14). The
difference lies in the intensity of connection, which is lower for the con-
servatives.

Overall MixNet emphasizes the basic structures of the political web-
sphere. Both communities are characterized by a small set of sites which
use the Internet in a very professional and efficient way, with a lot of cross-
linking. This results in a core structure to which other sites are linked,
these other sites being less efficient in the citations to other websites. This
could be explained either by a tendency to ignore other elements in the
debate, or by a use of the Internet which is less efficient. Interestingly,
this structure is very similar between conservatives and liberals, with the
liberal core being more tight. This interpretation is reinforced by the dif-
ferent betweenness centralities of MixNet classes. Betweenness is based
on the number of shortest geodesic paths that pass through a vertex. Fig-
ure 2.15 shows that MixNet betweenness is higher for MixNet core classes
on average in both policital structures, whereas the betweenness patterns
of the liberals and conservatives look very similar. Deeper sociological
conclusions could be drawn from MixNet results, but would be beyond
the scope of the present chapter.
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Figure 2.15 – Boxplot of MixNet classes betweenness (in log).
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Chapter Conclusion

In this chapter we propose an online version of estimation algorithms for
random graphs which are based on mixture of distributions. These strate-
gies allow the estimation of model parameters within a reasonable com-
putation time for data sets which can be made up of thousands of nodes.
These methods constitute a trade-off between the potential amount of data
to process and the quality of the estimations: even if online methods are
not as precise as batch methods for estimation, they may represent a solu-
tion when the size of the network is too large for any existing estimation
strategy. Furthermore, our simulation study shows that the quality of the
remaining partition is good when using online methods. In the network of
2008 US political websites we could uncover the structure that makes the
political websphere. This structure is very different from classical mod-
ules or "communities", which highlights the need for efficient computa-
tional strategies to perform model-based clustering on large graphs. The
online framework is very flexible, and could be applied to other models
such as the block model and the mixed membership model, as the online
framework can be adapted to Bayesian algorithms (Opper 1999).





3Model based graph
clustering using both graph
structure and vertex
features

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2 The World Wide Web . . . . . . . . . . . . . . . . . . . . . . . . 104

4.2.1 The advent of the Web . . . . . . . . . . . . . . . . . . . . . 104

4.2.2 The structure of the Web . . . . . . . . . . . . . . . . . . . . 106

4.3 Constellations Resources Building . . . . . . . . . . . . . . . . 109

4.3.1 Introduction to Web Search Engines . . . . . . . . . . . . . 110

4.3.2 Crawling and Indexing the Web . . . . . . . . . . . . . . . 111

4.3.3 Ranking the Web . . . . . . . . . . . . . . . . . . . . . . . . 112

4.3.4 Reverse Web graph using a MapReduce-like framework . 114

4.3.5 BigGraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.3.6 Graph simplification . . . . . . . . . . . . . . . . . . . . . . 118

4.4 Constellations Back-end . . . . . . . . . . . . . . . . . . . . . . . . 119

4.4.1 Handled Queries . . . . . . . . . . . . . . . . . . . . . . . . 120

4.4.2 Graph Search . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.4.3 Layout Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 123

4.4.4 Nodes attributes . . . . . . . . . . . . . . . . . . . . . . . . 125

4.4.5 XML response of the back-end . . . . . . . . . . . . . . . . 126

4.5 Constellations Front-end . . . . . . . . . . . . . . . . . . . . . . . 127

4.6 Services derived from Constellations . . . . . . . . . . . . . . . 129

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Large data sets with interactions between objects are common to nu-
merous scientific fields including the social sciences and biology, as

well as being a feature of specific phenomena such as the Internet. The
interactions naturally define a graph, and a common way of exploring
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and summarizing such data sets is graph clustering. Most techniques
for clustering graph vertices use only the topology of connections, while
ignoring information about the features of vertices. In this chapter we
provide clustering algorithms that harness both types of data, based on
statistical models with a latent structure characterizing each vertex both
by its connectivity and by a vector of features (or an additional informa-
tion). We perform simulations to compare our algorithms with existing
approaches and also evaluate our methods using real data sets based on
hypertext documents. We find that our algorithms successfully exploit
whatever information is found both in the connectivity pattern and in the
features.

The present chapter is collaborative work with Stevenn Volant.
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3.1 Introduction

Classical data analysis has been developed for sets of objects with features,
but when explicit relationships exist between objects, classical data anal-
ysis cannot take these relationships into account. Much recent research
has, however, been concerned with analyzing graphs, for example when
seeking relationships in the social sciences, studying gene interactions in
biology, or analyzing hyperlinks in computer science, which has led to a
deeper awareness of the nature of the interactions in these different net-
works (Schenker et al. 2005, Cook and Holder 2007). Many approaches to
graph analysis have been proposed. As mentioned in Chapter 2, model-
based approaches, i.e., methods which rely on a statistical model of net-
work edges and vertices, such as those first proposed by Erdös-Rényi , can
often provide insights into the structure of networks, enabling deductions
to be made regarding their internal properties.

An interesting alternative to using the basic Erdös-Rényi model (often
ill-suited to real networks) is to consider a mixture of distributions (Frank
and Harary 1982, Snijders and Nowicki 1997, Newman and Leicht 2007,
Daudin et al. 2008) where it is assumed that nodes are spread over an un-
known number of latent connectivity classes. Conditional on the hidden
class label, edges are still independent and Bernoulli distributed, but their
marginal distribution is a mixture of Bernoulli distributions with strong
dependencies between the edges. Several names have been suggested for
this model, and here we have chosen to use the term MixNet, which is
closely related to the Block Clustering of Snijders and Nowicki (1997). De-
tails about this model can be found in previous chapter (see Section 2.3).

In addition to the network data used in the methods mentioned above,
vertex content will sometimes be available. A typical example is the most
famous implementation of Ted Nelson Hypertext (see Figure 3.1) : the
World Wide Web. This information network where information are related
to each other in some fashion, can be described either in terms of the
hyperlinks between web pages or by the words occurring in the web pages:
each vertex represents a web page containing occurrences of certain words,
and each directed edge represents a hyperlink.

Figure 3.1 – The hypertext diagram from Ted Nelson (Nelson 1987) which allows to
develops complex and dynamic systems of linking and cross-referencing. Hypertext doc-
uments can either be static (prepared and stored in advance) or dynamic (continually
changing in response to user input). The Web is an implementation of the hypertext
paradigm.

The additional information corresponding to the vertex features is
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rarely used in network clustering, but can provide crucial information.
Here we combine information from vertex content, traditionally used in
classical data analysis, with information inherent in the graph structure,
with the aim of clustering objects into coherent groups. This chapter pro-
poses statistical models, CohsMixi (for Covariates on hidden structure using
Mixture models) which consider dependent structures of the data and the
relation with vertex features in order to capture a hidden structure. The
upper index i will be used to distinguish the three different proposed
models.

Considering spatial or relational data neighbourhoods is not an inno-
vative approach in clustering. For instance, Hidden Markov Random Fields
(HMRF) are well adapted to handling spatial data and are widely used
in image analysis. When the spatial network is not given, it is generally
obtained using Delaunay triangulation (Ambroise et al. 1997).

Hoff (2003) proposed a new way of dealing with covariates. He sug-
gested modeling the expected value of the relational ties with a logistic
regression. The problem with this method is the dependency between the
observations conditional on the regression parameters and the covariates.
He therefore proposed incorporating random effect structures in a gener-
alized linear model setting. The distribution of dependencies among the
random effects determines the dependencies among the edges.

There are also approaches based on non-statistical frameworks. In
particular, there is clearly a strong similarity between multiple view and
graph models with covariates. Multiple view learning algorithms (Ruping
and Scheffer 2005) consider instances which have multiple representations
and make use of these views simultaneously so as to obtain a consensus
partition.

Outline of the chapter First, the chapter introduces the proposed
CohsMixi models, which are extensions of the previous MixNet model.
Since the models consider a great number of dependencies, the proposed
estimation schemes include a variational approach of the EM algorithm,
which can deal with larger networks than the Bayesian framework is able
to handle. We then introduce practical strategies for initializing and choos-
ing the number of groups. In the third section extensive simulations illus-
trate the efficiency of the these algorithms, and real data sets dealing with
hypertext documents are examined.

3.2 A Mixture of Networks with covariates

This section introduces network models which are able to deal with addi-
tional information corresponding to the vertex features (CohsMix3 model)
or to extra relationships between vertices (CohsMix1 and CohsMix2 mod-
els). First, we explain the different forms that vertex features (or covari-
ates) can take. We then take an interest in representing two kind of depen-
dencies between the additional information and connectivity. The first ap-
proach (CohsMix1 and CohsMix3 models) assumes that the informations
and the edges conditional on the node classes are mutually independent
and both can be explained by the class. Thus, this model assumes that
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edges have no influence on the values of covariates . Then, we propose a
second approach (CohsMix2) which deals with dependencies between co-
variates and edges conditional on the node classes. In the web context, the
latter approach considers that the similarity between the occurring words
of two web documents, and somehow between their topics, depends on
the existence of a hyperlink between them whereas the first approach con-
siders that a given class contains documents that are similar not only in
the words they contain, but also in their connectivity patterns with doc-
uments inside and outside the class. Although this assumption does not
explicitly model the idea that authors tend to link similar topics (words
that occur) thus creating a thematic locality (Davison 2000), it nevertheless
allows clusters with local themes to be detected. Its simplicity makes it a
robust model well suited to a real-network like the Web.

3.2.1 Connectivity Model

Here, we briefly remind MixNet model (see Section 2.3) for the Bernoulli
case. Let us define a random graph G, where V denotes the set of vertices.
Our models assumes that V is partitioned into Q hidden classes. Let us
denote by Ziq the indicator variable such that {Ziq = 1} if node i belongs
to class q. Z = (Z1, . . . ,Zn) is the vector of random independent indicator
variables such that

Zi ∼M(1, α = {α1, ..., αQ}), (3.1)

with α the vector of class proportions. Edges are Bernoulli random vari-
ables

Xij|ZiqZjl = 1 ∼ B(πql), (3.2)

conditionally independent, given the node classes

P(X|Z) = ∏
ij

∏
q,l

P(Xij|ZiqZjl = 1)ZiqZjl .

In this chapter we consider that graphs are directed. We also assume
that there are self-loops, i.e. a node can be connected to itself (Xii = 1).
Nevertheless, the methods can easily be modified to encompass undi-
rected graphs without self-loops.

3.2.2 Remarks about Vertex Features Model

We shall consider n objects described both by their connections and p
features. The data can consequently be represented in different forms.
One might, for example, wish to characterize each object using a two-part
vector, where the first part contains the feature of the object Yi and the
second part contains a binary vector representing the connection to all
n− 1 other objects Xi,•. This form of data representation will be handled
by CohsMix3 (Section 3.2.4). Continuing our example of the World Wide
Web, Web pages can be viewed either as a vector of word-occurrences
with hyperlinks, or as two matrices, one based on the adjacency matrix
describing the topology of the graph generated by the hyperlinks and the
other by the features matrix generated by the word-occurrences in each
web page.
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Another way to represent the data consists in using two squared ma-
trices. One for describing the structure of the graph and the other for de-
scribing a valued relation between each pair of nodes (or object features).
Concretely, we consider n objects described both by their graph topology
and another type of relation. In order to illustrate this data representa-
tion, we can cite a previous example of the Chapter 2, where a traffic
information of users going from page i to a page j is added to the hyper-
text connectivity. In this example, it is obvious that link of graph structure
have significative influence on covariate’s value. The next section explains
this kind of representation (CohsMix1 and CohsMix2 models) with dif-
ferent dependencies between edges and covariates, then we will describe
data with connections and p features.

3.2.3 Models with additional Matrix Information

Here, we consider the second alternative of vertex features model where
additional information on edges are added to the graph structure of
MixNet model. This additional information are stored in squared matrix
Y.

The proposed mixture models are derived from different decomposi-
tion of the joint distribution of the graph adjacency matrix X, the informa-
tion matrix Y and the hidden structure Z (Figure 3.2).

Figure 3.2 – Graphical representation of the two CoshMix Models. The first one does not
take into account the dotted line and assumes independence between X and Y conditional
on the hidden structure Z. The second model introduces an additional dependence between
graph structure and vertex features. The squares represent discrete random variables and
circles continuous random variables.

CoshMix1: Assuming independence of X and Y conditional on Z.

Considering the independence between graph structure and additional
information, the log-likelihood of the complete data set can be written as:

Pr(X,Y,Z) = Pr(Z)Pr(X,Y|Z) = Pr(Z)Pr(Y|Z)Pr(X|Z).

We assume that Yij, the additional information between node i and j,
are normally distributed

Yij|ZiqZjl = 1 ∼ N (µql , σ
2) (3.3)
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and conditionally independent, given the node classes

Pr(Y|Z) = ∏
ij

∏
q,l

Pr(Yij|ZiqZjl = 1)ZiqZjl .

Again, for the sake of simplicity we can consider an affiliation model,
where the parameter µql has two possible values:

{
µqq = µ1, ∀q ∈ [1,Q],

µql = µ2, ∀q, l ∈ [1,Q]q 6= l.

In the following, this model will be called CoshMix1. The indepen-
dence between additional information and graph structure is a strong
assumption. Thus, we proposed an alternative model which takes into
account a dependency between the information (Y) and edges (X) (see
Figure 3.2).

CoshMix2: Introducing dependence between X and Y conditional on Z.

It is reasonable to assume that the information Yi,j between vertices i and
j depends on the node classes but also on the existence of an edge Xij

between those vertices. Thus we propose to model the distribution of
informations Y conditional on both the graph and the latent structure.
The following decomposition of the joint distribution is considered:

Pr(X,Y,Z) = Pr(Z)Pr(X|Z)Pr(Y|X,Z).

We preserve the assumption of conditional independence given the
node classes

Pr(Y|X,Z) = ∏
ij

∏
q,l

Pr(Yij|Xij,ZiqZjl = 1)ZiqZjl

where the conditional distribution of the Yij’s are Gaussian. The distri-
bution of Y will differ depending on existing links of the graph structure
between each pair of nodes. In order to write this distribution, we provide
two new notations: µql and µ̃ql respectively the means of two Gaussian
distributions which correspond to the presence or absence of an edge.
We also assume that variance σ do not vary regardless of the connection
between edges. Then, we can write the distribution of Y as follows:

{
Yij|Xij = 1,ZiqZjl = 1 ∼ N (µql , σ

2),

Yij|Xij = 0,ZiqZjl = 1 ∼ N (µ̃ql , σ
2).

Therefore, the conditional distribution corresponding to the added in-
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Figure 3.3 – Simulation of two 150 nodes graphs with 4 classes according to the parame-
ters 3.1. Edges are represented with black dots and information vary from white (weak) to
red (strong). The left figure illustrates the CohsMix1 model and the right the CohsMix2

model where in presence of edges we can notice stronger information.

formation Y can be written as follows:

log(Pr(Y|X,Z)) = ∑
i,j

∑
q,l

ZiqZjlXij log(Pr(Yij|Xij))

+ ∑
i,j

∑
q,l

ZiqZjl(1− Xij) log(Pr(Yij|Xij))

= ∑
i,j
i 6=j

∑
q,l

ZiqZjlXij

(
(Yij − µ̃ql)

2

2σ2
− (Yij − µql)

2

2σ2

)

−∑
i,j
i 6=j

∑
q,l

ZiqZjl

(Yij − µ̃ql)
2

2σ2
+ ∑

i,j
i 6=j

∑
q,l

ZiqZjl log

(
1√
2πσ2

)
.

Once again, for the sake of simplicity we can consider an affiliation
model, where µql and µ̃ql are defined by:{

µqq = µ1, ∀q ∈ [1,Q],

µql = µ2, ∀q, l ∈ [1,Q], q 6= l,
and

{
µ̃qq = µ̃1, ∀q ∈ [1,Q],

µ̃ql = µ̃2, ∀q, l ∈ [1,Q], q 6= l.

In the following, this model will be called CoshMix2. Both models,
CoshMix1 and CoshMix2 are generative and can thus be used for networks
simulation. For instance, simulations of arbitrary CohsMix1,2 parameters
(see Table 3.1) are represented in Figure 3.3.

Model Parameter Value

α (0.2,0.3,0.1,0.4)
πqq 0.2
πql 0.05

CohsMix1,2 σ2 1

µqq 2

µql 4

µ̃qq 5

CohsMix2 µ̃ql 7

Table 3.1 – Arbitrary parameters of two CohsMix1,2 models

In the next section, we describe the data model when each object (or
node) is characterized by a vector of p features and its binary connections
to all n− 1 other objects.
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3.2.4 CoshMix3: Model with additional Vertex features

Hereafter, we consider that the n objects are described both by their con-
nections and p features. The data can consequently be represented in
different forms. We choose to characterize each object using a two-part
vector, where the first part contains the feature of the object Yi and the
second part contains a binary vector representing the connection to all
n− 1 other objects Xi,•.

Then, we consider that the p dimensional feature vector associated to
object i is defined by:

Yi =




Y
(1)
i

Y
(2)
i
...

Y
(p)
i




We assume that the feature vectors Yi are multivariate normally-
distributed

Yi|Ziq = 1 ∼ N (µq,Σq) (3.4)

where

µq =




µ
(1)
q

µ
(2)
q
...

µ
(p)
q




and Σq = σI the covariance matrix is proportional to

the identity.
Notice that this assumption is not systematically supported by the

data. As the class structure is not available beforehand, assuming that
the data is normally distributed within each class, is difficult to check a
priori. It thus would be a reasonable practice to check a posteriori.

The random feature vectors Yi are conditionally independent, given
the node classes

Pr(Y|Z) = ∏
i

∏
q

Pr(Yi|Ziq)
Ziq .

The conditional distribution corresponding to covariate can be written as
follows:

log Pr(Y|Z) = ∑
i

∑
q

Ziq log Pr(Yi|Ziq)

= ∑
i

∑
q

Ziq

[(
log

1

2π
n
2 det(Σ)

1
2

)
− 1

2
(Yi − µq)

Tσ−1(Yi − µq)

]
.

In this model description, called in the following CoshMix3, the pro-
posed mixture model assumes an independence of X and Y conditional
on Z. Therefore, given this independence between edges and covariates,
the complete log-likelihood can be written as (Figure 3.4):

Pr(X,Y,Z) = Pr(Z)Pr(X,Y|Z) = Pr(Z)Pr(Y|Z)Pr(X|Z).

However, it is important to note that as in the previous model (see Sec-
tion 3.2.3), we could introduce a dependency between the vertex features
Y and the graph structure X conditional on the node classes Z.
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µ µ

Figure 3.4 – Graphical representation of the CohsMix3 Model. The squares represent
discrete random variables and circles continuous random variables.

The following section proposes an estimation scheme for the
CohsMix1,2,3 models.

3.3 Variational EM algorithm for CohsMix1,2,3

In the classical em framework developed by Dempster et al. (1977), where
X and Y are the available data, inferring the unknown parameters Θ

spread over a latent structure Z involves the following conditional ex-
pectation:

Q
(

Θ|Θ(m)
)

= E

{
logLc(X,Y,Z;Θ)

∣∣X,Y;Θ(m)
}

= ∑
Z∈Z

Pr
(
Z
∣∣X,Y;Θ(m)

)
logLc(X,Y,Z;Θ) (3.5)

where

Θ
(m+1) = Argmax

Θ

Q(Θ,Θ(m)).

The usual em strategy would be to alternate an E-step computing the
conditional expectation (3.5) with anM-step maximizing this quantity over

the parameter of interest Θ. Unfortunately, no closed form of Q
(

Θ|Θ(m)
)

can be formulated in the present case. The technical difficulty lies in the
complex dependency structure of the model. Indeed, Pr(Z|X,Y;Θ) can-
not be factorized, as argued in Daudin et al. (2008). This makes the direct

calculation of Q
(

Θ|Θ(m)
)
impossible. To tackle this problem we use a

variational approach (see, e.g., Jordan et al. 1999, for elementary results
on variational methods). In this framework, the conditional distribution
of the latent variables Pr(Z|X,Y;Θ(m)) is approximated by a more conve-
nient distribution denoted by R(Z), which is chosen carefully in order to
be tractable. Hence, our EM-like algorithm includes the following approx-
imation of the conditional expectation (3.5)

ER {logLc(X,Y,Z;Θ)} = ∑
Z∈Z

R(Z) logLc(X,Y,Z;Θ). (3.6)
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In the following section we develop a variational argument in order
to choose an approximation R(Z) of Pr(Z|X,Y;Θ(m)). This enables us to
compute the conditional expectation (3.6) and proceed to the maximiza-
tion step.

3.3.1 Estimation of the latent structure (E-step)

In this part Θ is assumed to be known, and we are looking for an ap-
proximate distribution R(·) of the latent variables. The variational ap-
proach consists in maximizing a lower bound J of the log-likelihood
logPr(X,Y;Θ), defined as follows:

J (Θ) = log Pr(X,Y;Θ)−DKL

{
R(Z)‖Pr(Z|X,Y;Θ(m))

}
(3.7)

where DKL is the Küllback-Leibler divergence. This measures the differ-
ence between the probability distribution Pr(·|Θ) in the underlying model
and its approximationR(·). An intuitively straightforward choice forR(·)
is a completely factorized distribution (see Mariadassou and Robin 2007,
Zanghi et al. 2008)

R(Z) = ∏
i∈P

hτi
(Zi), (3.8)

where hτi
is the density of the multinomial probability distribution

M(1; τi), and τi = (τi1, . . . , τiQ) is a random vector containing the vari-
ational parameters to optimize. The complete set of parameters τ ={

τiq

}
i∈P ,q∈Q is what we are seeking to obtain via the variational infer-

ence. In the case in hand the variational approach intuitively operates
as follows: each τiq can be seen as an approximation of the probability
that vertex i belongs to cluster q, conditional on the data, that is, τiq es-
timates Pr(Ziq = 1|X,Y;Θ), under the constraint ∑q τiq = 1. In the ideal
case where Pr(Z|X,Y;Θ) can be factorized as ∏i Pr(Zi|X,Y;Θ) and the
parameters τiq are chosen as τiq = Pr(Ziq = 1|X,Y;Θ), the Küllback-
Leibler divergence is null and the bound J reaches the log-likelihood.
The Küllback-Leibler distance can be written as

DKL

{
R(Z)‖Pr(Z|X,Y;Θ(m))

}
= ∑

Z

R(Z) log

( R(Z)

Pr(Z|X,Y;Θ(m))

)

After simplification, the lower bound J to be maximized in order to
estimate τ can be expressed as

Jτ = ER(Z) {J (Θ)} = ER(Z){log(Pr(X,Y,Z))|X,Y;Θ} −∑
Z

R(Z) log(R(Z)).

The detailed expressions for the different models are given in Ap-
pendix A.6. The optimal approximate distribution R and the optimal
parameters Θ are then derived by direct maximization of Jτ .

3.3.2 Estimation of the parameters (M-step)

Concerning the parameters estimation of class proportion and connectiv-
ity, it is noticeable that our three CoshMix1,2,3 models have common op-
timal formulations. Therefore, only estimators of the normal distribution
require an adjustment.
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Optimal parameters for all CohsMix1,2,3 models The maximization of
Jτ provides the following proposition which is valid for the CoshMix1,2,3

models.

Proposition 3.1 The optimal parameters αq,πql i.e. the parameters maximizing Jτ satisfy the
following relations:

α̂q =
1

n

n

∑
i=1

τiq,

π̂ql =

∑
i 6=j

τiqτjlXij

∑
i 6=j

τiqτjl

(3.9)

Proof. In Appendix A.7.1.

Optimal parameters for CohsMix1

Proposition 3.2 The optimal parameters µql and σ, i.e. the parameters maximizing Jτ satisfy the
following relations:

µ̂ql =

∑
i 6=j

τiqτjlYij

∑
i 6=j

τiqτjl

and σ̂ =

∑
i 6=j

∑
q,l

τiqτjl(Yij − µ̂ql)
2

∑
i 6=j

∑
q,l

τiqτjl

. (3.10)

Proof. In Appendix A.7.2.

Proposition 3.3 Let all the parameters π̂ql , α̂q, µ̂q and σ̂ be known. The following fixed-point
relationship holds for the optimal variational parameters τ̂ = argmaxτ Jτ .

τ̂
(m+1)
iq ∝ αq∏

j 6=i
∏
l

[
π̂

xij

ql (1− π̂ql)
1−xij

]τ
(m)
jl

×
[

1√
2πσ2

exp

(
1

2σ2

[
−(Yij − µ̂ql)

2
])]τ

(m)
jl

Proof. Similar to A.7.3.

Optimal parameters for CohsMix2

Proposition 3.4 The optimal parameters µql , µ̃ql and σ, i.e. the parameters maximizing Jτ satisfy
the following relations:

µ̂ql =

∑
i 6=j

τiqτjlxijyij

∑
i 6=j

τiqτjlxij

, ˆ̃µql =

∑
i 6=j

τiqτjl(1− xij)yij

∑
i 6=j

τiqτjl(1− xij)
,

σ̂ =

∑
i 6=j

∑
q,l

τiqτjl

[
xij

(
(yij − µ̂ql)

2 − (yij − ˆ̃µql)
2
)
+ (yij− ˆ̃µql)

2
]

∑
i 6=j

∑
q,l

τiqτjl

(3.11)

Proof. In Appendix A.7.3.
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Proposition 3.5 Let all the parameters π̂ql , α̂q, µ̂ql , ˆ̃µql and σ̂ be known. The following fixed-point
relationship holds for the optimal variational parameters τ̂ = argmaxτ Jτ .

τ̂
(m+1)
iq ∝ αq∏

j 6=i
∏
l

[
π̂

xij

ql (1− π̂ql)
1−xij

]τ
(m)
jl

×
[

1√
2πσ2

exp(
1

2σ2

[
xij

(
−(yij − µ̂ql)

2 + (yij − ˆ̃µql)
2
)
− (yij − ˆ̃µql)

2
]]τ

(m)
jl

Proof. In Appendix A.7.3.

Optimal parameters for CohsMix3

Proposition 3.6 The optimal parameters µq and σ, i.e. the parameters maximizing Jτ satisfy the
following relations:

µ̂q =

∑
i

τiqYi

∑
i

τiq

and σ̂ =

∑
i
∑
q

τiq(Yi − µ̂q)
T(Yi − µ̂q)

∑
i
∑
q

τiq

. (3.12)

Proof. The proof of this proposition is obvious. Given the expression of
the normal multivariate distribution in the equation of Jτ , we simply use
the known maximum likelihood estimators.

Proposition 3.7 Let all the parameters π̂ql , α̂q, µ̂q and σ̂ be known. The following fixed-point
relationship holds for the optimal variational parameters τ̂ = argmaxτ Jτ .

τ̂
(m+1)
iq ∝ α̂q∏

j 6=i
∏
l

[
π̂

xij

ql (1− π̂ql)
1−xij

]τ
(m)
jl

p

∏
k=1

[
exp

(
1

2σ̂2

(
−(Y

(k)
i − µ̂

(k)
q )

)2)]
.

(3.13)

Proof. The proof is similar to Appendix A.7.3.

For completeness, we summarize the variational EM algorithm for
CohsMix3 in the Algorithm 3. Of course, this algorithm can be applied
using the correct estimators for CohsMix1 and CohsMix2.

3.3.3 Model selection: ICL algorithm

As the number of clusters is an unknown parameter of our statistical
model, it is possible to use the Integrated Classification Likelihood (ICL)
to choose the optimal number of classes (Biernacki et al. 2000). The ICL
criterion is essentially derived from the ordinary ICL considering the com-
plete log-likelihood instead of the log-likelihood. This optimal number is
obtained by running our algorithm concurrently for models from 2 to Q
classes and selecting the solution which maximizes the ICL criterion. In
our situation where additional covariates are considered, the ICL criterion
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Algorithm 3: Variational EM CohsMix3 Algorithm

Data: Matrices of connectivities X and similarities Y
/* Initialization of the parameters */

Θ
(0) =

(
α

(0)
1 , ..., α

(0)
Q ,π

(0)
11 , ...,π

(0)
QQ, µ

(0)
1 , ..., µ

(0)
p , σ(0)

)
,m = 0

while not convergence do
/* Estimation step */

/* Compute τ =
{

τiq

}
i∈P ,q∈Q the probabilities that

vertex i belong to cluster q finding fix point

of g() */

foreach i ∈ {1, ...,N} do
foreach q ∈ {1, ...,Q} do

τ
(m+1)
iq = g(τ(m)) (see Equation 3.13)

/* normalize posterior probabilities */

scale = ∑
Q
q=1 τiq

τiq = τiq
1

scale , ∀q ∈ {1, ...,Q}
/* Maximization step */

/* re-estimate the distribution parameters to

maximize the likelihood of the data */

Update parameters according to Equations 3.9 and 3.12
foreach q ∈ {1, ...,Q} do

α
(m+1)
q = Argmaxαq

Jτ(Θ)

µ
(m+1)
q = Argmaxµq

Jτ(Θ)

foreach l ∈ {1, ...,Q} do
π

(m+1)
ql = Argmaxπql

Jτ(Θ)

m = m +1

Result: Estimated parameters Θ and posterior probabilities τiq
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can be written as:

ICL(Q) = max
Θ

logL(X,Y,Z;Θ,Q)−Q2 log(n(n− 1))︸ ︷︷ ︸
related to πql

− (Q− 1) log(n)︸ ︷︷ ︸
related to αq

− p(p− 1) log(n(n− 1))− pQ log(n(n− 1))︸ ︷︷ ︸
related to µq and σ

This expression of the ICL criterion is based on the method described in
Daudin et al. (2008).

As an example, Figure 3.5 illustrates the ICL criterion of two generated
networks (See Figure 3.3) for CohsMix1 and CohsMix2 models. In these
examples, the optimal BIC values correspond exactly to the real number
of simulated classes.
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Figure 3.5 – Integrated Classification Likelihood Criterion in function of the number of
clusters for (a) CohsMix1 and (b) CohsMix2. The associated models are identicals to 3.3

3.4 Experiments

In this section we report experiments to assess the performances and lim-
itations of the proposed models in a clustering context. We consider
both synthetic data generated with respect to the assumed random graph
model and real data from the web. Synthetic graphs are useful for eval-
uating the quality of parameter estimation. In parallel, we also compare
classification results with alternative clustering methods using a ground
truth. The real data sets consist of hypertext documents retrieved from a
web search queries in the Exalead search engine.

Notice that for all the experiments, to avoid initialization issues, algo-
rithms are stated with multiple initialization points and the best results
are selected based on theirs likelihoods. An R package we have called
CohsMix is available upon request. Section A.8 add some details about
this software.
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3.4.1 Parameters estimation

CohsMix1 and CohsMix2 First, we have simulated 30 networks for the
models proposed in Table 3.1 and run our CohsMix1/CohsMix2 algo-
rithms to estimate the model parameters. Table 3.2 shows that the esti-
mation is very close to the true parameters. The adjusted rand Indexes
2.8.1 are equal to 1.

Model Parameters Real Values Estimated Values
CohsMix1 CohsMix2

πqq 0.2 0.18 0.18
πql 0.05 0.044 0.047

CohsMix1,2 σ2 1 0.99 1.003
µqq 2 2.04 2.03
µql 4 4.02 3.99
µ̃qq 5 5.01

CohsMix2 µ̃ql 7 7.01

Table 3.2 – Means of the estimated parameters for CohsMix1,2 models computed over 20

different runs.

Notice that these models are highly structured with a strong modu-
lar structure (low inter-module-connectivity and strong intra-module con-
nectivity) and also a significant distinctness on the added informations Y.
Thus, these good results were expected and they confirm the correctness
of CohsMix1/CohsMix2 algorithms.

CohsMix3 After verifying that the proposed algorithm for this model
detect the correct number of group, one again we decide to check the ac-
curacy the algorithm analyzing the agreement between the true and esti-
mated parameters. For these simulation, we choose to use the same graph
structure model as in the previous experiments and make adjustments
on the additional informations. Indeed, we fix a the number of covariates
nbCov = 3 which means that each vertex disposes of a vector of dimension
p = 3. Vertex vectors are simulated via a multivariate normal distribution
with a covariance matrix equal to the identity (I3), and mean vectors are
defined as

µ =




7 2 7 9
8 7 3 3
2 2 6 6



 and Σ =




1 0 0
0 1 0
0 0 1





Composed by 4 classes and 3 covariates, we then obtain a matrix
µ ∈ M3,4. Applying CohsMix3 on this simulated data set produces the
following connectivity estimates

Parameters Real Value Estimated Value

π̂qq 0.2 0.19
π̂ql 0.05 0.06

and the multivariate estimates of the vertex features distribution
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µ̂ =




7.26 2.08 6.77 8.95
7.75 7.19 3.21 2.81
2.14 1.94 5.99 5.86



 and Σ̂ =




1.29 0.16 0.25
0.16 0.77 0.06
0.25 0.06 1.35



 .

Therefore, this simple simulation allow us to check the good imple-
mentation our algorithm which produces estimates very close to the true
parameters and an adjusted rand Index equal to 1.

Finally, whatever the model used (CohsMixi), the hidden structure
and model parameters are estimated accurately. However, the simulations
were ideally suited to our models and parameters of different classes were
significantly distinct. In the following, we will simulate less obvious struc-
tures.

3.4.2 Comparison of algorithms

In these experiments, we choose to focus our attention on CohsMix3 model
studying its behavior with more complex and less conducive simulation
networks. We also compare this algorithm with competitors.

Simulation setup We consider simple affiliation models with two pa-
rameters defining the probabilities of connection between nodes of the
same class and between nodes of different classes, respectively πqq = λ

and πql = ǫ, and equal mixture proportions α1 = ... = αQ = 1
Q . Models

have n = 150 nodes.
Graph models were generated in order to evaluate the performances

of the algorithm as the difficulty of the problem varies. The clustering
problem increases in difficulty with the number of classes Q, the number
of features nbCov, the Euclidean distance d(λ, ǫ) between intra and extra
connectivity parameters, and the distance d(µq, µl) between the feature
mean vectors of classes. We decided to focus on these parameters to pro-
duce data with different levels of structure and used 43 different graph
models whose description are summarized in Table 3.3. Each model is
simulated 20 times.

Experiments Q nbCov d(λ, ǫ) d(µ
(j)
q , µ

(j)
l )

a {2, ..., 12} 3 0.4 4

b 5 {2, ..., 15} 0.2 4

c 3 3 {0, ..., 0.5} 4

d 3 3 0 {4, ..., 8.5}
Table 3.3 – Parameters of the four different settings which are used to generate the 43

affiliation models considered in the experiments.

Alternative clustering methods Additionally to the CohsMix3 algorithm
study, we compared it with two "rivals": a multiple view learning algo-
rithm (Ruping and Scheffer 2005, Zhang et al. 2006), and a Hidden Markov
Random Fields (Ambroise et al. 1997):
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• Spectral Multiple View Learning (SMVL): There exits a strong similar-
ity between multiple view and graph models with covariates. Multi-
ple view learning algorithms consider instances which have multiple
representations and use these views simultaneously to obtain a con-
sensus partition. This is achieved via spectral clustering on a linear
combination of a standard kernel corresponding to the graph struc-
ture and a kernel corresponding to vertex proximity.

• Hidden Markov Random Fields (HMRF): Hidden Markov Random
Fields are commonly used to handle spatial data and are widely
used in image analysis. We use a classical Potts model on the latent
structure, which encourages spatial smoothing of the cluster. This
kind of approach uses the graph structure to smooth the partition
of the vertex over the graph, whereas the approach proposed in this
paper uses the graph structure directly to estimate the vertex parti-
tion.

Simulations results We focus our attention on the Rand Index for each
algorithm, inasmuch as a well-estimated partition yields good estimates.

As expected, the performance of the three algorithms deteriorates as
the number of groups increases (Figure 3.6 a).

A first interesting result is that where there is a modular structure
(Figures 3.6 a,b and c) in the network and weakly-informative features,
CohsMix3 algorithms always perform better than the SMLV and HMRF
algorithms.

It is noticeable that the performance of CohsMix3 improves as the num-
ber of features increases, and/or as the distance between mean vectors
increases (Figure 3.6 b and d). The HMRF algorithm with a Potts model
will generally use the neighbourhood structure for smoothing the parti-
tion. A vertex whose neighbours are all in the same given class has a high
probability of also being assigned to this class, but HRMF does not take
advantage of the graph structure as fully as CohsMix3 . Our model is thus
particularly suited to data sets with an existing graph structure.

When there is no graph structure at all and few informative fea-
tures (Figure 3.6 d ) the CohsMix3 is no match for HMRF or SMLV. The
CohsMix3 algorithm is more sensitive to the total absence of graph struc-
ture than its competitors.

In all other setups, however, the quality of partition estimation remains
good with different kind of models, the CohsMix algorithm appears very
attractive and suitable for structured graphs with vertex features. We shall
see in the next section that this algorithm also performs well on real web
data sets.

3.4.3 Real data

Exhaustivity is an essential feature for information retrieval systems like
Web search engines. However, ambiguous queries tend to produce a huge
diversity of responses that can be a real impediment to understanding. A
common way of circumventing this problem is to organize search results
into groups (clusters), one for each meaning of the query. This has been a
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Figure 3.6 – Comparison of HMRF, Spectral MLV and CohsMix. (a) Varying Q the
number of classes. (b) Varying the number of Features. (c) Varying the distance between
intra and inter connectivity parameters. (d) Varying the distance between the mean vector
of the classes.

focal point within the information retrieval community (Hearst and Ped-
ersen 1996, Zamir and Etzioni 1998) since the early days of the Web. More
recently, academic (Zeng et al. 2004) and industrial (Bertin and Bourdoncle
2002) (exalead.com or clusty.com) offerings have made the clustering
of search results a common feature for a WWW user. Such approaches do
not have to be confused with supervised classification techniques which
use training examples to learn a decision function (Denoyer et al. 2001).

The main drawback of many web page clustering methods is that
they only take account of the topical similarity between documents in
the ranked list, without considering the topology formed by hyperlinks.
In competitive or controversial queries (such as "abortion", or "Scientol-
ogy") such methods fail to reveal community information visible in the
link topology: by affinity, authors tend to link to pages with similar top-
ics or points of view, which creates a thematic locality (Davison 2000). In
addition, ambiguous queries like "orange" or "jaguar" might also harness
link topology so as to produce a more accurate separation of results. Com-
bining topological and topical clustering methods is a proven strategy in
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building an effective system. One of the most relevant contributions to the
literature is He et al. (2002), which describes a web page clustering system
taking into account the hyperlink structure of the Web, considering two
web pages to be similar if they are in parent/child or sibling relations in
the web graph. A more general multi-agent framework based on the path
between each pair of results was proposed by Bekkerman et al. (2007), but
these methods, not model-based, use various heuristics and fine tunings.

Data sets setup We use the exalead.com search engine in our real
data experiments. For each query, we retrieve the first 150 search re-
sults in order to build our graph and feature structures. The web is a
very sparse graph and thematic subgraphs may amplify this property,
creating unconnected components which reduce the feasibility of using
classical graph clustering algorithms directly on the observed adjacency
matrix. In order to increase the graph density, that is to say the proba-
bility of there being a link between two nodes, we propose using the site
graph of exalead.com, based on the concepts of Raghavan and Garcia-
Molina (2003). In this graph, nodes represent websites (a website con-
tains a set of pages) and edges represent hyperlinks between websites.
Multiple links between two different websites are collapsed into a single
link. Intra-domain links are taken into account if hostnames/websites are
not similar. The site graph is previously computed. It will be remarked
that this methodology is similar to the Exalead application Constellations:
constellations.labs.exalead.com.

Text features are extracted from the content of the web page returned
by the search engine. The features are built using various text-processing
techniques including normalization, tokenization, entity-detection, noun-
phrase detection and related term detection. Rare features which do not
appear more than twice are removed. The resulting feature vectors are ap-
proximately of dimension p = 100 and summarize the entire text returned
pages.

Algorithm results We have selected one ambiguous query ("jaguar") and
one controversial query ("Scientology") to illustrate the behavior of our al-
gorithm with real data sets. In Figure 3.7, corresponding to the query
"Scientology", we observe a well structured graph which fits our esti-
mated latent partition with an optimal number of classes Q = 3. Basically,
this partition yields the pro- and anti-Scientology clusters, and identifies
a gateway cluster (composed for example by http://en.wikipedia.

org/wiki/Scientology) bridging the pro- and anti- clusters. We then
focus on the most representative text features of each class q. To this end
we select the best occurrence-of-term features in the different µq. Once
again (see 3.7), we notice pro-terms ("self esteem", or "providing real so-
lutions") and anti-terms ("criticism of dianetics", or "truth about Scientol-
ogy"). The interface class is composed of common terms describing the
Church of Scientology. Thus, in a web context, the CohsMix3 algorithm is
enable to name the different partitions obtained, which is very useful for
communicating rapidly a global overview of the hidden structure.

Another example of controversial query ("Abortion") is given in Fig-
ure 3.8. Similarly to the previous example we observe pro-choice ("med-
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Figure 3.7 – Representation of the results of a clustering of the webpages returned by
the controversial query "Scientology" using CohsMix3 . The graph structure is repre-
sented on the left and on the right are the main features. Colors indicate the CohsMix3

classification.

ical abortion", "problem pregnancy") and pro-life ("Jesus", or "abortion
trauma"). We also find a class regrouping juridical terms ("supreme court",
"states).
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Figure 3.8 – Representation of the results of a clustering of the webpages returned by the
ambiguous query "jaguar".

Finally, the results of the processing of the ambiguous query "jaguar"
is represented in Figure 3.9. CohsMix3 clearly identifies three contexts:
computer, animal and car model related web pages.
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Figure 3.9 – Representation of the results of a clustering of the webpages returned by the
ambiguous query "jaguar".

The above results illustrate that our algorithm CohsMix seems well
adapted to detecting ambiguous or controversial queries by WWW search
engine users.
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Chapter Conclusion

This chapter has proposed algorithms for clustering data sets that can be
modeled with a graph structure embedding vertex features (or additional
information on edges). Characterizing each vertex both by its connectivity
and by a vector of features (or a matrix information), the CohsMixi algo-
rithms, based on a variational approach of EM, uses both these elements to
cluster the data and estimate the model parameters. Simulation and com-
parison results show our algorithms to be attractive and competitive for
various kind of models. When CohsMix3 is used to cluster web search re-
sults based on hypertextuality and content, the relevance of this approach
is amply demonstrated. We find that our algorithm successfully harnesses
whatever information is found both in the connectivity pattern and in the
features. In the short term we plan to investigate how to focus on one type
of information, graph or features, when it becomes predominant.



4A Web Application:
Constellations

This chapter describes a new service based on hyperlink topology,
called Constellations, which offers a new way to browse the Exalead

search results. It exploits the fact that web content authors tend to link
to pages with similar topics or points of view (Kleinberg 1999, Davison
2000). Available at http://constellations.labs.exalead.com/,
this online application extracts, visually explores and takes advantage of
the MixNet algorithm to reveal the connectivity information induced by
hyperlinks between the first hits of a given search request. Since the Web
is an open and large scale hypertext system with billion of nodes and
links, this chapter will also focus on how to deal with a huge amount of
data and produce an online service capable of responding in a very short
time.

The present chapter is a collaborative work with the engineers of the Exalead
team especially with Guillaume Esquevin, Jim Ferenczi, Sébastien Richard and
Tristan Chapel.
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4.1 Introduction

Since its creation and enhanced by its recent social aspect (Web 2.0), the
World-Wide-Web is the space where individuals use Internet technologies
to talk, discuss and debate. Such space can be seen as a directed graph
where the pages and hyperlinks are respectively represented by nodes
and edges. From this graph, many studies, like Broder et al. (2000), have
been published and Section 4.2.2 recalls the key properties of the Web
structure. However, this chapter rather focuses on local studies by con-
sidering that the Web is formed by territories and communities with their
own conversation leaders and participants (Ghitalla et al. 2003). Here,
we define a territory as a group of websites concerned by the same topic
and a community as a group of websites in the same territory which may
share the same opinion or the same link connectivity. These communi-
ties, revolving around topics (high-tech, finance, etc.), places or common
affiliations (associations, political parties, etc.) shape the territories. One
usually assumes that the existence of a hyperlink between two pages im-
plies that they are content-related (Kleinberg 1999, Davison 2000), and that
this similarity is independent of the hyperlink direction. By exploring the
link page exchanges, one can actually draw the borders of web territories
and it is the aim our application Constellations. The key innovation of this
chapter, is to provide a tool which instantaneously extracts, explores and
analyses the hyperlink connectivity of the Web, such as the experiments
in Section 2.9, according to a user request.

In order to study topological properties of the Web induced by the
hyperlinks (also called Web graph), the first necessary task consists in re-
trieving the largest part of the graph. Search Engines whose key tasks are
briefly described in the following sections are the more prepared to fulfil
these goals. For instance, the ranking of the pages is partly based on the
transition matrix of this graph (see Section 4.3.3). Besides, the indexation
of the documents allows to obtain the subgraph corresponding to a given
territory (or topic). It suffices to only consider the pages (and their links)
which match with the query terms.

Since this graph has about a billion nodes today, several billion links,
and appears to grow exponentially with time, its storage and its algorith-
mic manipulation is a real challenge (Bharat et al. 1998, Boldi and Vigna
2004). Even simple operations on such a dataset, like reversing a graph,
require many computational resources. This context implies to take ad-
vantage of distributed computing. Besides, MapReduce-like framework is
an interesting computational paradigm (Dean and Ghemawat 2008) which
can be used to build the resources of our application. Furthermore, ex-
ploiting the empirical observations and the compression techniques of
Boldi and Vigna (2004), this chapter also presents a graph framework
named BigGraph which allows us to manage very large graphs.

Any real application has to deal with heuristics to handle a whole real
system. Our application is not an exception to the rule and some heuristics
have to be considered. For instance, as explained in Section 4.3.3, the initial
Web graph can be transformed in a website graph to increase the density.

Generally, in software architecture, an application is composed of two
main components: the front-end which provides a user-friendly inter-
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face which provides a visualization solution of the data and the back-
end which provides the necessary information to the front-end. The
latter will have the responsibility of building the subgraphs and com-
puting the group, positions, rank of the returned vertices. The front-
end should layout the search results to the user according of the un-
derlying nature of the data and allow interactions. Constellations is not
a finished tool but it meets the requirements to access the demo page
of Exalead. To keep informed of its evolution, one can simply follow
http://twitter.com/LookAtTheWeb.

Last but not least, the built resources and several parts of the Constel-
lations service can be exploited for numerous other applications. Some of
them, with similar approaches based on named entity recognition, will
be mentioned in the following, but others, too far from our application,
will unfortunately not be presented here. For instance, Web graph and its
structure may help to identify the artificial clusters created by link farms in
order to grant pages a higher ranking (Wu and Davison 2005). Detecting
these farms links might discourage this unfair practice.

Outline of the chapter. We first begin this chapter explaining the birth
and some structural properties of the Web. Then, since Constellations is
derived from the recent search engine technology, we briefly recall the
key tasks necessary to build a search engine. A review of the necessary
resources used by our service and their construction is then given. Some
heuristics will be also described. Next, we focus our attention on the back-
end of the service which is the internal process performed from the initial
user query to the front-end input. The latter is described in the last part
of this chapter.

4.2 The World Wide Web

4.2.1 The advent of the Web

Before the Web. The World Wide Web was born in the early 1990s by
merging ideas that have been formed and evolved throughout the twenti-
eth century. It ensues from two key concepts: hypertext and user interface.
Although Otlet (1935) defined what should be the "scholar’s workstation"
by describing a system of transcription, annotation, and consultation of
documents, the majority of the scientific community ascribes authorship
of the concept of hypertext to Vannevar Bush. Indeed, at the end of the
Second World War, he published an essay, As We May Think, where he
raised the problematic of the documentary explosion, especially the loss
of discoveries within the documentation generated by the past. Efforts
must be provided to allow scientists to access to past discoveries more
easily. According to Bush, a document must be supplemented, enhanced,
classified and searchable in order to be scientifically useful. Thereby, Bush
(1945) described the principles of a system called MEMEX for "Memory
Extender" which fulfilled the above features. Then, to reflect the function-
ing of the human mind, he proposed the concept of associative trails among
the documents which made him one of the fathers of hypertext.
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In 1965, Theodor Nelson invented the word "hypertext" for "non-
sequential writing". Initially, it was primarily a writing tool which al-
lowed authors to link ideas without being constrained by the linearity
of traditional text. In parallel, recovering the concept of associative trail,
he launched a digital library project, called XANADU, which aimed to
permanently host all the available scientific publications. This project re-
flected both the project itself and the technological system able to concre-
tise it.

Whereas the previously described works were focused on the ability to
produce documents in a non-linear fashion, Douglas Engelbart showed a
specific interest in finding tools to facilitate human-computer interactions.
It is the inventor of a pointing device which is now universally known :
the mouse. Focusing on networks and interfaces, it created the first oper-
ating system able to deal with hypertext, NLS, for oN Line System. This
system allowed the collaborative work using a computer network. In the
1970s and 1980s, some other functional hypertext systems were emerging:
hypert in 1983, and Hypercard in 1987.

Tim Berners-Lee. Computer scientist at CERN in 1989, he wrote an ar-
ticle entitled Information Management: A Proposal which drew a bitter criti-
cism on information management, especially on some fundamental prin-
ciples of data classification,

• keywords: About a same topic, two different people would not nec-
essarily associate the same keywords;

• hierarchical classification (or tree): Tree structures do not represent the
functioning of human thought: two similar concepts will eventually
be connected by a common father rather than a bridge between them.

Inspired by the internal organisation of the CERN which was a vast web
of researchers linked to each other by different kind of relationships, he
proposed to model informations in the same form. The resulting sys-
tem used hypertext to remedy problems of this period (Berners-Lee 1989).
Then, by adding the properties to be an open and decentralized system of
documents, Inquire was created in the early 1980s. Continuing this work,
WorldWideWeb : Proposal for a HyperText Project (Berners-Lee and Cailliau
1990) describes what will become the Web. Here, the authors define three
basic tools necessary for the operations of a hypertext system built on top
of the Internet network :

• URL: an Uniform Resource Locator which specifies where an identi-
fied resource is available.

• HTTP: a HyperText Transfer Protocol which transfers hypertext re-
quests and information between servers and browsers.

• HTML: a HyperText Markup Language which codes tags and rules
then interpreted by the web browser to format documents in a par-
ticular way.

Besides, Berners-Lee and his team also developed a first version of web
server and browser.
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The Web and its evolution. In 1992, one year after leaving the site of
the CERN laboratories, several web browsers and servers appeared. Then,
in 1993, CERN opened all its Web related developments to the public do-
main. This was also the birth of the Mosaic browser developed by the
NCSA. With the ability to handle images and forms, it will served as the
basis for Netscape Navigator.

1994 marked a turning point with the founding of the World Wide
Web Consortium (also called W3C), which works to harmonize the Web.
This was also the birth of the first directory, Yahoo!, and Netscape Navigator
succeeded to Mosaic. The hegemony of Netscape Navigator only lasted for a
year. Indeed, in 1995, Microsoft struck back and launched Microsoft Internet
Explorer (MSIE). Apache, the open-source server, as the first search engine,
AltaVista appeared in 1995.

In 1998, Netscape had to renounce ahead MSIE and then decided to
open its code by creating the Mozilla project. The same year, the first
search engine of second generation was emerging: Google. To become the
reference organization, the W3C had to interpose in the browser market.
Until 2000, as the look and feel of the browsers were different, web de-
velopers had to design several versions of the same site for the different
browsers. These behaviors had ceased: browsers implemented the stan-
dards carefully and were less permissive. Although the Mozilla project is
a success, MSIE still owns more than 2/3 of the market.

The term Web 2.0 appeared in 2003 with the emergence of Web ap-
plications that have facilitated interactive information sharing, interoper-
ability, and collaboration on the World Wide Web. It was consolidated
in O’Reilly (2005), examples of Web 2.0 include web-based communities,
hosted services, web applications, social-networking sites, video-sharing
sites, wikis, blogs, mashups and folksonomies. These kind of applications
and the search market with its variants are still the most active technology
areas of the Web.

4.2.2 The structure of the Web

After nearly a decade of Web growth, Broder et al. (2000) were interested
in building a global map of the Web. For this project, the authors used
the index of pages and links of AltaVista which was one of the largest
commercial search engines at the time. Since this study, similar analyses
on larger snapshots of the Web have been carried out including an early
index of the Google search engine (Bharat et al. 2001) and large research
collections of Web pages (Donato et al. 2007). We take advantage of this
section to describe the main feature of the Web graph structure. Detail
about this emerging research area can be found in Hendler et al. (2008)
and Chakrabarti (2003).

Exponential Growth. The Web graph induced by the hyperlinks struc-
ture is very large : in July 2000, Murray and Moore (2000) estimated that
it contained about 2.1 billions vertices and 15 billions edges. Moreover,
about 7.3 millions pages were estimated to be added every day, and many
others modified or removed. Recently (2008), Google search engineers af-
firmed that their system, processing links on the Web to find new content,
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hits a milestone: 1 trillion of unique URLs on the Web at once1. However,
not all of them lead to unique web pages. Many pages have multiple URLs
with exactly the same content or very similar of each other (for example :
the calendar)(Bar-Yossef et al. 2006). For any search engine, the size of the
Web really depends on the definition of what is a useful page, and there is
no exact answer. For instance, Exalead currently considers that 16 billions
of pages should be indexed.

A Giant Strongly Connected Component. As a map of the Web may
not resemble the geographical maps, Broder et al. (2000) define an abstract
map partitioning the Web into a few large groups, and showing in a styl-
ized way how these groups interact together. Firstly, the authors observed
that the Web contains a giant strongly connected component. As men-
tioned in Section 1.2, many real-world networks have a giant connected
component, i.e. a single component containing a significant fraction of
all the nodes. It means that from major “starting page” sites like search
engine or directory-like pages, one can reach the home pages of many
of the major commercial, governmental, and non-profit organizations in
the world. From here, one can reach most of the pages within each of
these large sites. Since many of the pages within these sites link back
to the search engines and directory pages themselves, all these pages are
mutually reachable, and hence all belong to the same strongly connected
component (also called SCC) which is by construction giant. Note that
there is almost surely at most one giant SCC, since if there were two giant
SCCs, any reciprocal links between them would require them to merge
into a single SCC.

The Bow-Tie Structure. The relationships between all the remaining
SCCs and the giant one were also studied in Broder et al. (2000). The
authors suggest to classify nodes by their ability to reach and be reached
from the giant SCC. First, two large sets can be identified and defined by

• IN: contains nodes that can reach the giant SCC but cannot be
reached from it. It corresponds to pages that have not been “dis-
covered” by members of the giant SCC.

• OUT: contains nodes that can be reached from the giant SCC but
cannot reach it. It corresponds to pages that may receive links from
the giant SCC which choose not to link back.

The macroscopic structure of the IN, OUT and the giant SCC rela-
tionships is represented in Figure 4.1. Here, the well-known “bow-tie”
denomination of the Web structure is clearly illustrated. As the figure
comes from the 1999 AltaVista search engine, the size of the different sets
are long since obsolete but the relevant point is that all three of these sets
are very large. One can also observe that there are pages that belong to
none of IN, OUT, or the giant SCC. Thus, such pages can neither reach
the giant SCC nor be reached from it. The following classification is then
proposed:

1http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html



108 Chapter 4. A Web Application: Constellations

• Tendrils: contains (a) the nodes reachable from IN that cannot reach
the giant SCC, and (b) the nodes that can reach OUT but cannot be
reached from the giant SCC.

• Tube: contains nodes that satisfy both (a) and (b). They travel from
IN to OUT without touching the giant SCC.

• Disconnected: contains nodes that would not have a path to the giant
SCC even if we completely ignored the directions of the edges.

Figure 4.1 – A schematic picture of the bow-structure of the Web (image from Broder
et al. (2000).

It is important to consider that the boundaries of the sets defined by the
above classification are highly dynamic since pages and links constantly
appear or disappear. However, subsequent studies suggest that, even as
the detailed structure changes continuously, the schematic picture remains
relatively stable over time.

While the classification based on page reachability gives us a compre-
hensive overview of the Web structure, it does not give us insight into the
more fine-grained connectivity patterns i.e. connections which could serve
to highlight important Web pages or communities of thematically related
pages. Addressing these latter issues will be provide by the Constellations
application.

Degree Distribution. Parallel to the Web structure studies, researchers
have been interested in measuring and modeling the degree distribution
of pages. A first approximation is to consider that both in-degree and
out-degree follow the power-law distributions:

Pr(outdegree = k) ∝ 1/kaout

Pr(indegree = k) ∝ 1/kain

To explain the appearance of the power-law distribution, Albert and
Barabasi (2002) proposed mechanism where nodes are continually added
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to increase the size of the graph, as it is eminently the case with the Web,
with a preferential attachment. This key property dictates that a new node is
linked to existing nodes not uniformly at random, but with higher prob-
ability to existing nodes that already have large degree. Such growing
strategy has been called the “winners take all" phenomenon.

Let the Web graph be undirected to simplify the following discussion.
Starting with m0 nodes, at each step (discrete time) a new node u comes
with a fixed number of m edges (m ≤ m0), which connect to nodes al-
ready existing in the graph. Suppose at this time step an existing node v
is incident on deg(v) existing edges. One can associate to v, the attach-

ment probability p(v) = deg(v)
∑w deg(w)

, where w ranges over all existing nodes.

Then, all the m neighbours v of the node u are chosen with the attachment
probability p(v).

If the system runs for a long time (t → ∞), Albert and Barabasi (2002)
show that degree distributions follow power-law. Such distributions have
been confirmed by a number of other measurements, such as by Broder
et al. (2000). Figure 4.2 show that exponents range between ain = 2.1 and
aout = 2.5. However, one can observe that the pure power-law model does
not fit well for low values of k. Empirically, it seems that winners does not
quite take all the degree distribution of nodes with low value of k creating
imperfect power-law.

(a) (b)

Figure 4.2 – The (a)in- and (b)out-degree of Web nodes closely follow power-law distri-
butions, except at low degrees.

4.3 Constellations Resources Building

After this brief description of the Web history and several of its properties,
we now present the resources required to build a Web search service like
Constellations. Derived from the latest search engines, we first remind
the history of their quick evolution. Then, we discuss the main tasks,
with their associated technologies, that Constellations has to deal with in
order to reach, store, manipulate and interrogate the huge quantity of
data. Finally, computational and storage issues for the Web graph will be
more detailed for it constitutes the core the Constellations application.
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4.3.1 Introduction to Web Search Engines

Several alternatives are offered to users to discover documents: free navi-
gation (following hyperlinks), bookmarks, directories and search engines.
Much of the success of the Web is due to the last two alternatives.

The directories are constructed and maintained by a community of vol-
unteer editors. A short description of the content is indexed and websites
are classified in pre-existing categories. Considering the growing size of
the Web, it is obviously unthinkable to seek completeness in a directory.
Besides, one can note that directories handle pointers to the websites and
do not have an internal representation of their contents. Search engines
fill the gaps of directories offering automated indexing to the pages con-
tents. Automation is achieved by using crawlers that traverse the World
Wide Web and stores, in repositories, copies of the pages downloaded.
These pages are then processed in order to optimize and accelerate future
searches. Technological details about search engines are given in Section
4.3.2.

First generation. The early search engines, even if they only indexed
URLs and titles of pages, were not scalable, i.e. they could only operate
small sets of pages. The first improvements concerned the adaptation of
techniques from content analysis, originally employed in the information
retrieval field, to the Web and its specificities. Thus, the ranking of the hits
was provided according to algorithms based on Vector Space Model with
TFIDF (Term Frequency-Inverse Document Frequency). Refinements were
also proposed, for instance "bold text is more important than regular text",
to better adapt to the specificities of Web documents.

Released in 1994, Lycos is probably one of the most famous search en-
gines of this generation. Described in Mauldin and Leavitt (1994), this
search engine indexed, for each document, the full headers (title, meta-
data, etc.), the 100 most relevant words (identified through TFIDF) in the
first 20 lines, its total number of words and its weight. All operations
were achieved in the same process: indexing and ranking were part of the
crawling task.

Second generation. By considering only the content of Web pages, the
first generation of search engines have ignored an informative type of
data: the structure of the Web. The transition to a second generation of
search engines is characterized by the addition of specific processings on
the hyperlinks structure. Thus, PageRank algorithm of Google, described
in Section 1.3.2, might be considered as the turning point of this evolu-
tion. Indeed, using the graph structure, the PageRank algorithm assigns
a numerical weighting to each pages with the purpose of "measuring" its
relative importance within the Web. Thereby, when a search is performed,
all the relevant documents are ranked according to theirs pagerank scores
and then returned to the user. It is important to notice that the topological
processing is totally independent of the semantic processing. PageRank is
not the only algorithm to take into account the hypertext topology, since
the Teoma search engine or the TARENTe exploring tool (Ghitalla et al.
2004) have also been inspired by the HITS algorithm (Kleinberg 1999).
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Moreover, the topological processings are accompanied by several in-
novations in the way of designing a search engine. For instance, we can
notice that crawlers have become scalable using distributed architectures
and dissociating the crawl and indexing the phases (see also Section 4.3.2).
Concerning model and data structures, as for the first generation of search
engines, the literature on the second generation lacks information.

Third generation. This is the current available search engines on the
Web. Designed to combine the scalability of previous search engines with
new and improved relevance models, the current search engines bring
into the equation user preferences, collaboration, collective intelligence, a
rich user experience, and many other specialized capabilities that make
information more productive. Now, competitive search engines, such as
Exalead, ensure successful search with user aids like faceted navigation
of results, support for natural language queries, related query sugges-
tions, fuzzy matching tools like phonetic, approximate spelling matches
and spelling corrections. Besides, the user experience is also improved
with seamless mashups and unified search of internal or external content,
regardless of source or format (structured like database content, or un-
structured like user-generated content, Web content, or multimedia files).

Finally, most of innovative Web 2.0 features are generally integrated
like social search, advanced image and video search, maps and visual
mapping of results (like Constellations), contextual Wiki information, etc.
The latest innovations of the search engines may be found at their labora-
tory pages (see for example: http://labs.exalead.com/).

4.3.2 Crawling and Indexing the Web

Crawling the Web. The first task to achieve when studying the Web con-
sists in gathering the largest possible part of it. Note that, since it grows
exponentially and a large part of its content is hidden (Bergman 2001)
(also called deep Web), it is impossible to get the whole Web at a given
time. Obtaining parts of it as large as possible is yet a key challenge.

Retrieval of data from the Web is called crawl and is performed by
computer softwares referred to as crawlers, spiders, robots, etc. (Brin and
Page 1998, Heydon and Najork 1999, Najork and Heydon 2001, Boldi et al.
2004, Drugeon 2005). In general, a crawler browses the Web in a auto-
mated way which can be viewed as a breadth-first search in a graph: it
starts with a list of URLs to visit, called seeds, identifies all the hyperlinks
in these pages and adds them to the list of URLs to visit (called crawl fron-
tier). Then, the process is iterated from the newly visited pages according
to a set of policies. Indeed, to avoid overload of Web servers, the frequency
of the crawler requests on them have to be limited. Such limitation forbids
to perform a real breadth-first search and makes it hard to retrieve huge
websites (with millions pages) in less than a month.

As mentioned above, recent crawlers have become more scalable using
distributed architectures (Heydon and Najork 1999, Shkapenyuk and Suel
2002) and by dissociating the crawl and the indexing tasks (Najork and
Heydon 2001, Brin and Page 1998). The independence of this two tasks is
obtained using a repository. Its aim is to store downloaded pages by the
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crawler. Whereas the first generation of search engines directly processes
the pages in memory, the second generation prefers copying them on disk
before performing indexation.

Finally, search engines care to offer the freshest content i.e. the picture
of Web stored in the repository have to be as current as possible. Cho and
Garcia-Molina (2000) aim at estimating the frequency of pages updates in
order to refresh more regularly the pages that frequently change.

Indexing the Web. After storing the pages in a repository, search en-
gines have to parse and store data in indexes to facilitate fast and accurate
information retrieval. Indeed, without indexes, search engines should se-
quentially scan every document of the corpus, which would require con-
siderable time and computing power. As in Brin and Page (1998), we
briefly remind the indexing task that unfolds into three steps:

1. Parsing: a process designed to interpret the documents on the entire
Web. Speed and robustness are its key features to handle billions of
documents and the huge array of possible errors.

2. Converting Documents: A process designed to convert, using a lexicon,
each document into a set wordID. Converted documents are then
stored into temporary files.

3. Sorting: A process designed to take all the temporary files and sort
them by wordID to produce inverted indexes for title, full text, an-
chor, etc. The sorting phase can be parallelized using a distributed
computing framework such one defined in Section 4.3.4.

4.3.3 Ranking the Web

PageRank Application. Google search engine has developed a link anal-
ysis algorithm named PageRank (Page et al. 1998) that assigns a numerical
weighting (also called the PageRank) to each element of a hyperlinked
set of documents with the purpose of "measuring" its relative importance
within this set. Actually, any collection of entities with references can
enter into this algorithm framework.

Using a Markov chain model (see Section 1.3.2) in which the states
are pages and the transitions depend on links between pages, the sta-
tionary distribution then represents the chance (PageRank value) that the
random surfer will visit these pages. In such a random walk on G the
transition matrix describing the transition from i to j is given by P with
Pij = 1/deg(i). Figure 4.3 illustrates a step of a random walk.

However, minor changes of P must be applied in order to be a valid
transition probability matrix. Firstly, every vertex (or page) must have at
least 1 outgoing transition. Since a huge amount of pages has outdegree 0,
this property does not hold for the Web graph. Thus, to transform P into a
valid transition matrix P

′
, we shall add outgoing transitions to pages with

outdegree 0 in the following way:
Let n be the number of nodes in G and v = [ 1n ] be the n-dimensional

column vector representing a uniform probability distribution over all
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Figure 4.3 – Graphical representation of PageRank

nodes. The identification of the nodes with outdegree 0 is performed
with a n-dimensional column vector satisfying the relation

di =

{
1 if deg(i) = 0,

0 otherwise.

Then, the new transition matrix P
′
can be expressed by the relation

P
′
= P + D where the matrix D = d.vT. In terms of random walk, the

effect of D is as follows: if the random surfer reaches a sink page, it picks
another URL at random and continues surfing again.

If matrix P
′
is aperiodic and irreducible then it has a unique station-

ary probability. A standard way to ensure this property is to add, to all
nodes, a new set of complete outgoing transitions, with small transition
probabilities, creating a complete (and thus strongly connected) transition
graph. In matrix notation, the irreducible Markov matrix P

′′
is defined by

the relation:

E = [1]n×1 × vT

P
′′

= cP
′
+ (1− c)E

The effect of E on the random walk is related to a surfer teleporta-
tion. Indeed, at each time step, a surfer visiting any page will jump with
probability (1 − c) to random Web page rather than follow an outlink.
The destination of the teleportation is chosen according to the probability
distribution given in v.

Using notation matrix A = (P
′′
)T, the column i of A gives the transi-

tion probability for a surfer at node i and the principal eigenvector of A is
exactly the PageRank vector (equivalent to the unique stationary distribu-
tion of the Markov chain). At time 0 , we assume that the probability dis-
tribution over the surfer’s location is given by x(0). Thereby, at time k, the
probability distribution will be x(k) = Akx(0). In the standard PageRank
algorithm, the principal eigenvector is computed by starting with the uni-
form distribution x(0) = v and iterating x(k) = Ax(k−1) until convergence.
This is known as the Power Method and is summarized in the following
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algorithm 4. In practice, this iterative method quickly converges (k = 15)
to the final eigenvector.

Algorithm 4: Power Method for PageRank computation

Input: A = P
′′
, the transition matrix associated the transformed

Web graph matrix.

/* Initialization of the pagerank vector */

x(0) = v

k = 1
while δ < ǫ do

x(k) = Ax(k−1)

/* Compute the L1 norm */

δ = ‖x(k) − x(k−1)‖1
k = k + 1

Result: x, the pagerank vector

Variants of this algorithm have been proposed in order to combate
web spam pages. We can quote Gyöngyi et al. (2004) that have biased the
initial PageRank vector by boosting its elements identified by experts as
reputable pages.

We may mention that Power Method is also performed in Hyperlink-
Induced Topic Search (HITS), another link analysis algorithm developed by
Kleinberg (1999), to achieve the Hub and Authority scores computation.
Authority and Hub values are defined according to one another in a mu-
tual recursion. An authority value is computed as the sum of the scaled
hub values that point to that page. A hub value is the sum of the scaled
authority values of the pages it points to.

4.3.4 Reverse Web graph using a MapReduce-like framework

In order to study the structure induced by the hyperlinks, we have to
transform all the previous stored pages in a more convenient way. Partic-
ularly adapted to ranking algorithms, we propose to represent this struc-
ture in a reverse Web graph fashion.

Definition 4.1 A forward Web graph is a graph that has an edge from node URL1 to node
URL2 if the web page found at URL1 has a hyperlink to URL2. A reverse Web
graph is the same graph with the edges reversed.

Nevertheless, reversing a huge graph requires many computational
resources. Distributed computing across multiple machines is the only
reasonable strategy to compute such a graph. The following describes how
to build a reverse Web graph with a distributed computing framework.

Introduction to MapReduce-like frameworks. The MapReduce frame-
work introduced by Google (Dean and Ghemawat 2008) is designed for
computing distributable problems over many machines. Recently, a wide
adoption of this framework has been observed in both industry (Yahoo!,
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FaceBook, Exalead, etc.) and academia2 becoming de facto the standard for
large scale data mining. Capable of processing more than 10 petabytes of
data per day at Google data centers, it can be employed in a wide range
of its applications, including: inverted index construction, statistical ma-
chine translation(Dyer et al. 2008), machine learning, reversal graph, usage
mining, etc.

The name of this framework is inspired by Map and Reduce functions
that interleave parallel and sequential computation. They behave as fol-
lows:

• "Map" step: The input data is hashed by the master machine which
then distributes these sub-datasets to the worker machines. Each
worker machine proceeds its sub-dataset, and passes the answer
back to its master machine.

• "Reduce" step: The master machine then considers the answers of
all the sub-datasets and combines them in order to solve the initial
problem.

Since all the mapping operations are independent, the Map-step can
be performed in parallel. Therefore, in practice, it is only limited by the
data source reader and/or the number of CPUs available to process the
data.

Another advantage of the MapReduce-like frameworks is that they of-
fer the ability to recover from partial failure of servers or storage during
the job. Indeed, since each machine is expected to report back periodically
its completed work and status updates, the master machine can reschedule
a work to other machines if one falls silent for longer than that expected
(assuming the input data is still available).

Mapping and Reducing (key, value) pairs. The input to any Map and
Reduce function is exclusively a set of (key, value) pairs. Map function
transforms one pair of input data with a certain type of domain into a list
of pairs with a different domain:

Map(k1, v1)− > list(k2, v2) (4.1)

Applying, in parallel, the Map function to each single (k1, v1) pair of
the input data set, produces as output a list of new (k2, v2) pairs related
to them. Then, all building pairs (k2, v2) are analysed and pairs with
the same key are grouped together. Each group is then represented by
a generated key k2. The Reduce function is then applied to each group,
which in turn produces a collection of values in the same domain:

Reduce(k2, list(v2))− > list(v3) (4.2)

This behavior highlights one of the sequential aspects of the computation:
all the maps need to be completed before the reduce stage can begin. In
the reduce step, the parallelism is exploited by observing that reducers
operating on the different keys can be executed simultaneously.

Finally, note that one can design an algorithm where many rounds of
Map and Reduce functions are performed one after the other.

2see http://research.yahoo.com/node/2743
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Application to reversal Web graph. As mentioned above, this compu-
tational model can be used to build a reverse web graph. According to
the model paradigm, the job can be summarized by the two following
functions:

• Map: outputs < Target, Source > pairs for each link to a target Url
found in a document named Source.

• Reduce: concatenates the list of all source Urls associated with a given
target URL and emits the pair < Target, ListO f SourceUrls >.

To have a deeper understanding, the hot spots of the reversal Web graph
application can be defined by the followings functions:

• Input reader: Reads data from the repository of the stored Web
pages, divides them into splits of 128MB (approximately 10000

(Url,Webpages) pairs) and assigns each split to a Map function.

• Map function: Takes a set of (Url,Webpages) pairs, proceeds each,
and generates zero or more output < Target, Source > pairs for each
link to a target URL found in a Web page source.

• Partition function: Allocates the output < Target, Source > of
all the maps to a particular reducer by the application’s partition
function. By default, the index of the reducer is obtained hashing
the target URL domain modulo the number of reducers.

• Compare function: Sorts using the application’s comparison func-
tion where the primary key is the target URL and secondary key the
source URL.

• Reduce function: Concatenates the list of all source URLs
associated with a given target URL and emits the pair <

Target, ListO f SourceUrls >.

• Output writer: Writes the output of the reducers in specific graph
storage framework named BigGraph(see Section 4.3.5).

In practise, using 16 machines each with 4 CPU and 2 gigabytes of
ram, this job (∼ 110 To of input data) requires approximately 10 days and
5 terabytes of data storage (including the anchor text of the hyperlinks).
Note that this period can be reduced taking advantage of more machines.

Considering that Web pages have been transformed into a reverse
Web graph by a MapReduce-like job, we now have to store the <

Target, ListO f SourceUrls > data ouptut in a efficient way to facilitate fast
access to the graph structure.

4.3.5 BigGraph

Exploiting both the empirical observations and the compression tech-
niques of WebGraph (Boldi and Vigna 2004), we have developed a graph
framework called BigGraph which allows us to manage very large graphs
such as the Web graph. Usually quoted, the key features of the Web graph
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links are the locality and the similarity. Such features were originally ex-
ploited by the Connectivity Server (Bharat et al. 1998) and by the LINK
database (Randall et al. 2002). They can be explained by:

• Locality: Usually, most of the hyperlinks (80%) are navigational, i.e.
they point to other pages within the same host. By comparing the
source and target Urls, one can observe that they share a long com-
mon prefix. This can be exploited if URLs are sorted lexicographi-
cally: the index of source and target will be close to each other.

• Similarity: Consecutive pages in lexicographical order tend to share
many common successors. Actually, many navigational links are
the same within the same local cluster of pages, and even non-
navigational links are often copied from one page to another within
the same host.

Then, as for full-text indexing, graph storage can involve similar com-
pression techniques to handle increasing sequences of integers with small
gap (Adler and Mitzenmacher 2001, Randall et al. 2002). Moreover, tak-
ing advantage of the similarity features, a successor list of a node can be
specified by copying part of a previous list, and adding whatever remains.
Such copy can be performed using a list of bits, one for each successor in
the referenced list, which tells if the successor should be copied or not, or
using other techniques such as explicit deletion lists (Randall et al. 2002).

In practice, BigGraph can compress a graph with 4 billions nodes and
40 billions links in 180Go that approximately corresponds to 5 bits per
link.

Lazy Iteration. Similarly to Boldi and Vigna (2004), BigGraph enumerates
successors using lazy iterators: successors lists of nodes are decompressed
on the fly, which allows to iterate over very long lists without expanding
them into memory. Since graph algorithms could require both sequential
and random accesses, one has to consider both ways. Whereas sequential-
access is straightforward, random access requires keeping an auxiliary
vector of offsets with N entries (one for each node). This vector indicates
where the successor list of node starts. However, using 64-bits for each
offset suffers from an inherent lack of scalability because it would make
the offset array larger than the graph itself. This finding suggested the au-
thors to propose a complex scheme for the offset representation. Thereby,
BigGraph proposes an interesting trade off between speed and memory
consumption.

Actually, our solution allows to perform random accesses with a lim-
ited amount of central memory by a partial loading the offsets array. Let
G be a fixed natural integer (called gap), only offsets of nodes 1,G, 2G, · · ·
are loaded in the smaller array of offsets O of size N/G. The offsets
between nodes 1 and G described by (s1, · · · , sG) can be stored in a com-
pressed way as a list of integers with small gaps, as

(s1, · · · , sG) = (s2 − s1 − 1, · · · , sG − sG−1 − 1)

Memory consumption of the offset list can be drastically reduced using
encoding for natural integers such as alpha coding or zeta coding. Then,
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accessing given node x is performed in two steps. We first use the offset
relative to node O[x/G], and then we decompress on the fly the remaining
offset until we reach the node. Thus, choosing a small value for G allows to
access a node more rapidly than with a larger value. However, it increases
the memory consumption.

The BigGraph framework provides simple methods to manage very
large graphs inspired by the LINK database and the WebGraph framework.
The library is written in C++ and exposes many other graph representa-
tions such as arc-labelling and BigMap. The latter provides an efficient
method to store Urls of a web graph and allows the mapping between
ids and Urls. The whole package is used for accessing, compressing and
manage very large graph and is used as a back-end for applications such
as the pages ranking or the Constellations application.

4.3.6 Graph simplification

A Large part of the hyperlinks are navigational and lead the user to other
pages within the same host (example of anchor text: "home", "next", "pre-
vious", "up" etc.). Although theses links are essential for the user expe-
rience, they are not relevant to detect territories or communities. A first
strategy to circumvent this useless information is to only consider extra-
host hyperlinks. However, since the Web graph is already a sparse graph,
such an operation amplifies this property and will reduce the ability of
using elaborate algorithms. Thus, one can consider a concept of meta-node
within which a set of nodes is aggregated (Raghavan and Garcia-Molina
2003). Besides, edges are absorbed by the meta-node, keeping those which
connect two different meta-node and dropping the others. Multiple links
between two different meta-nodes are collapsed into a single valued link.
Figure 4.4 illustrates the concept of meta-nodes, aggregating nodes of the
same color in the same meta-node. Note that the only considered edges
connect pairs of nodes with different colors.

3

8

1

Figure 4.4 – A schematic example of the graph simplification. Nodes with same color
will be associated to the same meta-node.

At first glance, associating to each URL (node) its hostname (meta-
node) is an acceptable strategy and this grouping often produces what
is commonly called a website. Nevertheless, it is important to notice that
there is no strict definition of this concept. Abstractly, a website is defined
as a grouping of pages with the same editorial authority. Thus, we can
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highlight two phenomenons where our previous hostname grouping is
not functioning properly:

• hosting-server: For instance, www.myspace.com/chupachuva and
www.myspace.com/thebeatles which belong to the same host-
name, have to be considered as two different websites because they
do not refer to the same music band (editorial board).

• multi-host-spammers: if www.domain.fr, domain.fr, www2.

domain.fr, etc. have a replicated or very similar content, they
might be considered as the same website. Note that this problem,
often named mirror detection, can also be considered with different
domains (Bharat and Broder 1999).

According to these observations, it is possible to design learning algo-
rithms to transform the graph of pages into a graph of websites, detecting
the editorial boundaries (hosting-server and multi-host-spammer). Typi-
cal features used by these algorithms are the domain IPs and their connec-
tivities, the distribution of links among the intra-extra domain, the content
similarities and finally the lexicographical resemblances of the URLs. In
the following, we will name site-inference the data structure able to map
an Url to its website. The number of websites taken into account in the
Constellations service is approximately n = 140, 000, 000 with a mean of 66
pages per website. Nodes represent websites (a set of pages) and edges
represent hyperlinks between them. Each website is characterized by both
an identifier sid (for "site id") and its neighbourhood identifier (a list of sid
predecessors). With approximately m = 1, 500, 000, 000 edges, the density
of this website graph is equal to δ(Gwebsite) = 2.m

n.(n−1)
= 1.5 ∗ 10−7. Since

the initial density of the page graph was δ(Gwebpage) = 5 ∗ 10−9, this trans-
formation significantly increases the density of the considered graph. In
the following, we will assume that a website graph, stored in BigGraph
fashion (see Section 4.3.5) has been built. It approximately requires 3Go
of storage and its weights 7Go.

4.4 Constellations Back-end

This section highlights the key steps of the Constellations back-end. Usu-
ally a back-end service interacts and serves the front-end services (user
interfaces), by being closer to the required resource or having the capa-
bility to communicate with the required resource. Therefore, we will de-
scribe the internal process of the service from the initial users query to
the front-end input. First of all, we present the variety of queries that the
system can handle using the Exalead Web Search API v1.0. Then, we explain
how the graph which will be returned to the user interface is constructed.
This construction consists in retrieving the involved websites/links, com-
puting the relevant position of these nodes by anticipating the drawing of
the user interface, computing connectivity groups (like MixNet), and fi-
nally returning an understandable answer to the front-end. Obviously, all
these operations must be conducted in a very short time which combined
should not exceed 10 seconds after the user query.
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4.4.1 Handled Queries

Storing a large completeness of the Web has interest if we are unable to
perform complex queries on it. Thus, we propose to take advantage of
Exalead query language which is known for its great expressiveness. This
language, understood, by the Exalead Web Search API service, allows to
create a powerful search service.

Based on the REST approach (for Representational State Transfer) (Field-
ing 2000) which uses a client-server architectural style, the search ser-
vice output of a search query is an RSS extended OpenSearch/1.1 protocol
(http://www.opensearch.org). Such an output is a standard XML-
based syndication format for search results. It embeds specific extensions
to Exalead search engine as the number of search results, pagination in-
formation, suggested terms, and thumbnail content. In this section, we
briefly describes the Exalead Web Search API search protocol including :

• the HTTP request and the available parameters

• the RSS response and complete element descriptions

• some options for the API’s search services.

We can note that Exalead Web Search API also supports other search
services than the Web, such as image, video, wikipedia or news. This
variety of services will allow us to adapt our methodology to various kind
of content. The adaptation of the Constellations service to wikipedia and
news data sets will be presented at the end of this chapter.

HTTP request. A request to the Exalead Web Search API consists of a
standard HTTP GET request including the appropriate parameters. Table
4.1 describes the HTTP parameters that are used in our application.

HTTP Parameters Possible Values Description

q Any URL encoded
string.

the query terms (de-
tailed in Table 4.2 )

nhits Any positive integer.
Default value is ’100’.

the number of search
results to display

language All two letter
ISO language
codes:’en’,’fr’,’es’,
etc. Default value is
’en’.

Boosts documents
that match the given
language

origcountry All two letter ISO
country codes: ’GB’,
’FR’, ’DE’,etc. Default
value is ’US’

Boosts documents
that are identified
as geolocated in the
given country

Table 4.1 – HTTP parameters of the Exalead Web Search API used for the Constellations
services.

Note that the language and country boosts are a first step towards a
more personalized service which focuses on the user preferences.
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Query Language. As seen in the HTTP parameters, the value of the "q"
parameter refers to the query the user wants to execute. The language
of this query allows the user to perform Boolean logic with, for example,
AND OR operators. The service supports the following common search
features (see Table 4.2).

Search feature Description

Basic search Only documents that contain all words from the search re-
quest are shown. For example, movie star.

Exact phrase Use double quotes to search for an exact phrase. For exam-
ple, "to be or not to be".

Exact word Use the exact operator +(plus) to search for the exact
word in a document (disable word stemming). For exam-
ple, +stars searches for documents containing "stars" exactly
(and not "star").

Exclude terms Use - to exclude Words from the results. For example, cow
-brown searches for documents containing "cow" and not
"brown".

Logic Searches can be formulated using Boolean operators such
as conjunction (AND operator), disjunction (OR operator),
and negation (NOT operator). For example, ((fast OR speed)
AND NOT light)

Optional terms It is possible to specify optional query terms (OPT operator)
with specific ranking specifications.

Prefix search Use * to search for words starting with certain letters. For
example, water* gives results including any word beginning
with the letters "water", such as "waterfall" and "waterway".

Proximity search The NEXT operator finds documents where the query terms
are next to each other. For example, movie NEXT star, would
search for documents where "movie" and "star" appear next
to each other in that order. The NEAR operator finds doc-
uments where the query terms are within, by default, 16
words of each other. NEAR/x allows to specify the maxi-
mum distance of the words.

Table 4.2 – The Constellations search features.

Finally, in addition to these common operators, the Constellations
service supports advanced Exalead search like "approximate spelling
search", "site search", "title search", "URL search", "link search", "search
after or before a date" or "search language". These optional search
syntaxes are described at http://www.exalead.com/search/web/
search-syntax/.

Refinements. A unique feature of Exalead is to provide navigation re-
finements associated to the user’s query (Bourdoncle 1997). These sugges-
tions allow the user to "navigate" on a semantic graph, focusing, excluding
or refining with a particular category or keyword. A refinement always
has the same syntax: refine:type:"value". For example: refine:filetype:"pdf".

• refine: The keyword to trigger a refinements
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• type: The type of refinement (language, country, filetype, date, etc...).
Refinements types differs depending on the requested service.

• value: The effective refining value.

This opportunity to use refinements allows us to retrieve Web pages
responding to very complex queries. For instance, one might search doc-
uments matching the exact phrase "graph clustering", hosted in blogs,
written in french after July 2008. Last but not last, that each service
(news,image, etc.) provides specific operators (detailed in advanced
search pages of the Exalead search engine).

RSS Response. The response from the Exalead Web Search API is a RSS
2.0 Feed which mainly contains a list of items of hits that have matched the
user’s search query. An item has the elements described in Table 4.3.

Element Description

link The link is the URL of the search result.

title The title of the search result.

description A summary of the document with <b> HTML bold
tags highlighting the words of the user’s query.

pubDate The date of the document (if available).

thumbnail A small image representation of the document.

Table 4.3 – Item contained in the RSS response which have matched the user’s search
query.

From this point, we consider that the 100 most relevant documents (or
hits) according to a user query are returned via the Exalead Web Search API
in an average time of 1 second. Then, we have to construct the underlying
website graph formed by theirs hyperlink connectivity.

4.4.2 Graph Search

As argued in Section 4.3.6, a website graph have been previously built
where nodes represent websites (a set of pages) and edges represent hy-
perlinks between them. Although this graph is still huge with more than
140 millions of nodes and 1.5 billions of edges, it is a simplified graph of
the Web and it offers an interesting overview of the global connectivity.
Then, our task consists in building the underlying website subgraph of
the returned hits from a search request. This operation can summarized
by the following algorithm:

1. Mapping: For each hit (matching the user search request), we map
the Url to its sid (related website using the previous site-inference data
structure). Then, each sid is stored in a white list.

2. Neighbourhood: For each element of the white list, we use the
BigGraph website structure to get all its predecessors (all website sid
that have a link to it).

3. Filtering: All predecessors have to belong to the white list. There-
fore the final considered hyperlinks only connect sid belonging to
the white list.
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Thus, these three steps allow us to build the hyperlink subgraph be-
tween website of the returned hit list. Nevertheless, some modifications
can be taken into account. For instance, orphan nodes i.e. nodes without
neighbourhood can be treated separately. In order to reinforce the topol-
ogy structure, we can also eliminate the edges that have a low valuation
(number of links between each pair of websites), or that are not reciprocals.
Last but not least, if one wants to increase the size of the subgraph adding
websites that do not match the user query, the white list can be extended
using a breadth-first search at step 2 of the previous algorithm. The exten-
sion begins at the root nodes of step 1 and explores all the neighbouring
nodes. Then for each of those nearest nodes, it explores their unexplored
neighbour nodes, and so on, until it finds the goal (number of iteration,
number of nodes or distance from the roots). All visited nodes are added
to the white list which allows us to apply the same filter as in step 3. Once
this graph is constructed, we can now draw it using an adapted layout al-
gorithm and detect connectivity group using a clustering algorithm such
as MixNet.

4.4.3 Layout Algorithm

Force-based or force-directed algorithms are used for drawing graphs in
an aesthetically pleasing way. Their purpose is to layout the nodes of
a graph in a two or three dimensional space minimizing the crossing of
edges. This is achieved by assigning forces across the sets of nodes and
edges. For instance, in the Fruchterman and Reingold (1991) algorithm
which is commonly used for graph visualization, the nodes are repre-
sented by steel rings and the edges are springs between them. The re-
pulsive force is analogous to the electrical force and the attractive force is
analogous to the spring force. The sum of the force vectors determines in
which direction a node should move. The step width is a constant which
determines how far a node moves in a single step. When the energy of
the system is minimized, the system reaches its equilibrium state, i.e. the
nodes stop moving. Since there is no guarantee that the system will reach
equilibrium with a constant step width, the authors have introduced a
"global temperature" that controls the step width of node movements and
the termination of the algorithm. The step width is proportional to the
temperature, so if the temperature is high, the nodes move faster (i.e., a
larger distance in each single step). This temperature is the same for all
nodes, and cools down at each iteration. For completeness, we summarize
in the following the Fruchterman-Reingold algorithm 5.

Although this algorithm have an significant running time (O(n2)) is
very useful for visualizing large networks. It provides that topologically
close nodes are positioned in the same vicinity, and far nodes are placed
far from each other. In the Constellations application, we apply 50 iterations
of the algorithm with 5 terminal repulsive iterations. The last repulsion
steps provides a better node spacing that implies a better readability.
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Algorithm 5: Fruchterman-Reingold placement Algorithm

Input: area = W ∗ L, W and L are the width and length of the frame
Data: G = (V, E), the vertices are assigned to random initial

positions
k =

√
area/|V|

for i = 1 to iterations do
/* Calculate repulsive force */

for v in V do
/* Each vertex has 2 vectors: pos and disp
which respectively represent the position and

the displacement of the vertex. */

vdisp = 0

for u ∈ V do

if u 6=v then
∆ = vpos − upos

vdisp = vdisp + (∆/‖∆‖) ∗ (k2/‖∆‖)

/* Calculate attractive force */

for e ∈ E do
/* Each edge is and ordered pair of vertices

.v and .u.*/
∆ = e.vpos − e.upos

e.vdisp = e.vdisp − (∆/‖∆‖) ∗ (‖∆‖2/k)

e.udisp = e.udisp + (∆/‖∆‖) ∗ (‖∆‖2/k)

/* Limit the maximum displacement to the

temperature t and then prevent from being

displaced oustside frame */

for v ∈ V do
vpos = vpos + (vdisp/|vdisp|) ∗min(vdisp, t)
vpos.x = min(W/2,max(−W/2, vpos.x))
vpos.y = min(L/2,max(−L/2, vpos.x))

/* Reduce the temperature as the layout

approaches a better configuration */

t = cool(t)

Result: Fruchterman-Reingold placement of G in a two dimensional
space.
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4.4.4 Nodes attributes

Once the graph has been spatialized, it is important to explore the nodes
features as well as the topology. Thus, we choose to add several attributes
to each displayed node. First, we begin with those which are not related
to the graph topology.

Content attributes Each node is described by the following content at-
tributes:

• Page/Site URLs: the URLs of the page and its underlying website.

• Title: the title of page hit.

• Description: the description of the hit.

• Thumbnails: the small image representing the hit.

We can notice that these features are directly derived from the Exalead
Web Search API response. Now, we focus our attention on attributes related
to the graph structure.

topological attributes Each node is described by the following topolog-
ical attributes:

• Ranking: the ranking of the hit.

• Group: the connectivity group the hit belong to.

Briefly, the computation of the ranking scores to all the crawled pages
is performed using an adaptation of the link analysis algorithm described
in Section 4.3.3. Then, the final ranking is provided in the range [0, · · · , 12]
using a mapping function. Schematically, the level scores of such a func-
tion are built in order to ensure that each level contains three times more
elements than its predecessor. Moreover, we assume that the last level
must contain the half crawled web pages.

Concerning the group attribute, interestingly, energy models of pair-
wise attraction such as the Fruchterman-Reingold method are closely re-
lated to maximizing modularity (Noack 2009). Thus, to provide an com-
plementary information to the graph layout, it appears more in interest-
ing to propose clustering based on the connectivity profiles rather than on
community. MixNet is then the chosen model to cluster the nodes.

The Constellations application uses a C++ implementation of the online
CEM algorithm which is the fastest algorithm for the estimation of the pa-
rameters. They are estimated as well as a statistical criterion ICL to select
the number of classes. In practice, orphan nodes are not considered (they
form a connectivity class in itself) and we choose the optimal number of
classes running our online CEM algorithm concurrently for models by de-
fault f from Qmin = 2 to Qmax = 12 classes by selecting the solution which
maximizes the ICL criterion. However,Qmin and Qmax can be parametrized
keeping Qmax < n with n the number of nodes. To avoid initialization is-
sues, the CEM algorithm is started with 5 initialization points and the best
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result is selected based on its likelihood. Thus, for each query, we run the
algorithm (12− 2) ∗ 5 = 50 times.

Once the graph, its layout and its attributes have been computed, we
can propose a user interface capable of rendering them. However, before
describing the front-end part, an exchange format between the back-end
and front-end has to be defined.

4.4.5 XML response of the back-end

The aim of this section is to describe the final XML response of the back-
end. Using a DTD (Document Type Definition) which allows to define
the legal building blocks of an XML document, we propose the following
structure with a list of legal elements and attributes. First we describe, in
Table 4.4, the elements related to the node and edge elements:

<!ELEMENT node>

<!ATTLIST node

id CDATA #REQUIRED

title CDATA #REQUIRED

description CDATA #REQUIRED

pageurl CDATA #REQUIRED

siteurl CDATA #REQUIRED

rank CDATA #REQUIRED

thumbnail CDATA #REQUIRED

x CDATA #REQUIRED

y CDATA #REQUIRED

group CDATA #REQUIRED >

<!ELEMENT edge EMPTY>

<!ATTLIST edge

from CDATA #REQUIRED

to CDATA #REQUIRED>.

Table 4.4 – DTD for the node and edge elements.

We can observe that from the previous attributes of Section 4.4.4, an
identifier and the displayed (x, y) positions are added for each node. The
edge element just makes the relationship between two nodes id.

Then, in order to provide the MixNet connectivity results, Table 4.5
proposes the following description, where the element connectivity repre-
sents the connectivity parameter πg1,g2. Its Boolean attribute link is true
if the probability to connect a node belonging to the g1 group to a node
belonging to the g2 group is high enough in comparison with its distribu-
tion. A group is described by an identifier and a ratio (similar to αq). The
tag element allow to provide the most discriminating words in the differ-
ent classes. In the future, we may consider more relevant approaches to
describe the clusters, such as Assali and Zanghi (2006) which automati-
cally builds a metadata hierarchy for a group of websites without the use
of any predefined external hierarchies. Then, the element community con-
tains these previous elements and provides the optimal number of groups
with the attribute nbGroup.

Finally, Table 4.6 illustrates the aggregation in the Graph element of all



4.5. Constellations Front-end 127

< !ELEMENT connectivity EMPTY>

< !ATTLIST connectivity

g1 CDATA #REQUIRED

g2 CDATA #REQUIRED

value CDATA #REQUIRED

link CDATA #REQUIRED>

< !ELEMENT tag EMPTY>

< !ATTLIST tag

word CDATA #REQUIRED

value CDATA #REQUIRED>

< !ELEMENT group (tag+) >

< !ATTLIST group

id CDATA #REQUIRED

ratio CDATA #REQUIRED>

< !ELEMENT community (group+,connectivity+)>

< !ATTLIST community

nbGroup CDATA #REQUIRED>

Table 4.5 – DTD for the MixNet elements.

the previous elements. Last but not least, the ConstellationAnswer element
contains Graph and Answer which is the response from the Exalead Web
Search API (see Section 4.4.1).

< !ELEMENT Graph(community,node+,edge+)>

< !ELEMENT ConstellationAnswer(Graph,Answer)>

Table 4.6 – DTD for the final response

4.5 Constellations Front-end

This section describes a visual solution that allows to explore the data pre-
viously built by the remotely-located back-end program. A lot of efforts
were put in the graphical representations in order to explore the data and
offer the end user a smooth experience.

Layout solution. Due to the underlying nature of the data, we propose
to explore them with a graph based approach where the placement of both
pages and hyperlinks are given by the Fruchterman-Reingold algorithm.
As illustrated in Figure 4.5, the node size depends on the ranking of its
Url according to Section 4.3.3 and the color node depends on the MixNet
group.

To show that Constellations works similar to a conventional search en-
gine, we decide to highlight the query box (and its refines such the lan-
guage or the type of site, or etc.) at top center of the frame.

Recognizing that this type of interface may destabilize the user accus-
tomed to a search results as a list, we also propose such an openable list
on the right side of the frame. A mouseover on a hit of this list or directly
on a node, opens an information box of the associated Url. This behavior
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can be observed on Figure 4.6. Here, title, thumbnail and snippet of the
hit are shown to the user.

To allow a richer user experience, we allow to move and zoom in/out
in the graph using both the keyboard and the navigation box at top left of
the frame.

Figure 4.5 – View of the Constellations application after a query.

Figure 4.6 – View of the hits list and an information box for a hit.

Technological solution. For accessibility reason Adobe Flash was avoided
in favor of semantically correct HTML (the markup is a simple list of ele-
ments). Unfortunately, since HTML has not been created with rendering
colorful graphs as "star constellations" this required a bit of CSS trickery
and Javascript behaviors.

Results are displayed as discs composed of the four rounded corners of
the collapsed element, allowing them to be gracefully opened from there
and positioned in a absolute way. Edges of the graphs are drawn using



4.6. Services derived from Constellations 129

the HTML canvas element, as well as the glow behind each results. In or-
der to be able to zoom and avoid aliasing of the canvas element and avoid
obvious performance problems when scaling tenfold a one megapixel im-
age, the canvas element only draws the visible part of the graph. It has to
be redrawn on every user action such as panning and zooming, but after a
lot of different experiments it was the best trade-off. Figure 4.7 illustrates
this rendering solution.

Figure 4.7 – Technological solution of the Constellations rendering.

A much simpler version of the rendering has also been developed us-
ing SVG which allows a quick and painless development but for which the
performance is a real problem in some browsers. In fact, the Webkit based
browsers smoothly render the SVG graph while the Gecko based browsers
are slow and laggy. To circumvent this problem, we use the SVGWeb Li-
brary which can automatically replace SVG content with a flash element.
Such a render perfectly works for every browsers (including IE).

4.6 Services derived from Constellations

Actually, any collection of entities with references can be adapted to the
Constellations service. We briefly describe approaches and datasets that
have been tested and could be further studied in short terms.

Named Entity. Recognition of such entities allows to assign elements in
text into predefined categories such as the names of persons, organiza-
tions, locations, etc. Considering that one can extract these information
from a set of Web pages, one can define a threshold of co-occurring enti-
ties in order to detect those which are more related to each other. There
by, we consider an edge between two entities if and only if they co-occur
in the set of documents more than the threshold. To illustrate this ap-
proach, we develop a demo based on the Wikipedia dataset, available on
the "People tab of the online Constellations service.

Scholar. Another dataset studied consists in a corpus of 15 million bib-
liographic records of documents held in the INIST/CNRS collections
and covering all fields of worldwide research in Science, Technology,
Medicine, Humanities and Social Sciences. Here, we propose to draw
a co-authorships graph with a similar approach to the previous one. An
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edge between two authors is added if and only if they have written a min-
imal number of common papers in the returned set of papers after a given
request.

Chapter Conclusion

This chapter has described an online application, called Constellations,
which offers a new way to browse the web search results. Using the con-
nectivity information to detect ambiguity or different points of views af-
ter a search request, one can easily test it at http://constellations.
labs.exalead.com/. A large part of this chapter is dedicated to the
Web and some of its properties. Since, its size is one of the most difficult
problematics to build an application, the key points of the used technol-
ogy are provided. In the short term we plan to investigate how to take
advantage of the CoshMix models in such an application where the node
features could be the text. Besides, we will soon propose, to the researcher
community, an API to retrieve the Constellations data in a more accessible
way.



Conclusion

Analyzing networks has become an essential part of a number of sci-
entific fields. Real networks share some well-studied properties such as
small-world phenomenon, power law distribution of the degrees, etc. Real
networks have also been shown to form groups of vertices and much may
be learned from studying their structure or topology. Such study is the
main topic of this thesis. Many strategies have been developed for this
purpose and the first chapter provides a general description of the ap-
proaches commonly applied. However, a distinction can be made between
model-free (Newman 2006a, Ng et al. 2002) and model-based methods.

The latter has provided an efficient way to summarize complex net-
works structures. The basic idea of these strategies is to model the
distribution of connections in the network, considering that nodes are
spread among an unknown number of connectivity classes which are
themselves unknown. Although the proposed modeling strategies are
diverse (Frank and Harary 1982, Nowicki and Snijders 2001, Handcock
et al. 2006, Airoldi et al. 2008, Daudin et al. 2008), EM like algorithms
constitute a common core of the estimation strategy (Snijders and Nowicki
1997), and this algorithm is known to be slow to convergence and to be
very sensitive to the size of the dataset. The second chapter of this thesis
proposes original solutions, from a computational point of view, to the
statistical analysis of complex and very large networks. The proposed
online strategies are the following

• Classification EM algorithm,

• Stochastic Approximation EM algorithm,

• Variational EM algorithm.

The online based EM algorithms, allow the estimation of model parame-
ters within a reasonable computation time for datasets which can be made
up of thousands of nodes. These methods constitute a trade-off between
the potential amount of data to process and the quality of the estima-
tions: even if online methods are not as precise as batch methods for
estimation, they may represent a solution when the size of the network
is too large for any existing estimation strategy. Furthermore, our sim-
ulation study shows that the quality of the remaining partition is good
when using online methods. The structure uncovered by our algorithms
is complementary to modules or "communities" which can be detected on
large networks with model-free algorithms . This highlights the need for
efficient computational strategies to perform model-based clustering on
similar networks. The online framework is very flexible, and could be ap-
plied to other models such as the block model and the mixed membership

131



132 Conclusion

model, as the online framework can be adapted to Bayesian algorithms
(Opper 1999).

Sometimes datasets can be modeled with a graph structure embedding
vertex features (or additional information on edges). Characterizing each
vertex both by its connectivity and by a vector of features (or a matrix
information), the CohsMix algorithms proposed in the third chapter, use
both these elements to cluster the data and estimate the model parameters.
Based on a variational approach of EM, simulation and comparison results
show our algorithms to be attractive and competitive for various kind of
models.

Throughout this thesis, experiments on real datasets are systematically
related to the Web graph. Thanks to the collaboration with the Exalead
search engine, we have succeeded in bypassing technological difficulties
and achieving an original corpus studies such as the analysis of the French
or US political websites network and query studies with controversial or
ambiguous examples. Since the relevance of these experiments were am-
ply demonstrated, we studied the ability to create an online application
which could automatically extract, visually explore and reveal the connec-
tivity information induced by the hyperlinks. Thereby, the fourth chapter
describes Constellations, a search engine based service, which allows to
browse, in a new way, the results of a given user request. A large part of
this chapter is also dedicated to the Web and some of its properties. Since,
its size is one of the most difficult problematic to build an application, the
key points of the used technology are provided.

Perspectives

Special efforts will be put on models in which data can be modeled with a
graph structure embedding vertex features such as CoshMix. Continuing
to successfully exploit whatever information is found both in the connec-
tivity pattern and in the features, we plan to investigate various areas:

• Online Approach: Adapting online estimation strategies to our algo-
rithms

• Information focusing: Exploiting one type of information, graph or
features, when it becomes predominant.

• Feature selection: Identifying a subset of features that are most rele-
vant to cluster the data.

• Other models: Providing alternative models to datasets with a graph
structure embedding vertex features.

If these developments seems relevant enough, we will integrate them in
the new release of Constellations. Concerning this service, speed improve-
ments and additional features such as interactivity, captions or map ex-
ports are planned in short terms.
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A.1 Some properties of the MixNet Model in the

Bernoulli Erdös-Rényi mixture

In this section, we recall the interesting properties of the MixNet model (in
the Bernoulli Erdös-Rényi mixture). More details can be found in Daudin
et al. (2008).

A.1.1 Distribution of the degrees

Proposition A.1 Given the label of a vertex, the conditional distribution of the degree of this vertex
is Binomial (approximately Poisson);

Ki|{i ∈ q} ∼ B(n− 1, π̄q) ≈ P(λq)

where π̄q = ∑ αlπql and λq = (n− 1)π̄q

Proof. Conditionally to the belonging of vertices to groups, edges con-
necting vertex i belonging to group q are independent. The conditional
connection probability is:

Pr{Xi,j = 1|i ∈ q} = ∑
l

Pr{Xi,j = 1|i ∈ q, j ∈ l}Pr{j ∈ l} = ∑ αlπql = π̄q

Besides, Poisson distribution can be used as an approximation of the bi-
nomial distribution if n is sufficiently large and p is sufficiently small. The
result follows.

A.1.2 Between-group connectivity

Definition A.1 The connectivity between group q and l is the number of edges connecting a
vertex from group q to a group l.

Aql = ∑
i

∑
j>i

ZiqZjlXij

Aqq is actually the within-connectivity of group q.

Proposition A.2 The expected connectivity between group q and l is:

E(Aql) =
n(n− 1)αqαlπql

2

Proof. According to Definition A.1 Aql is the sum over n(n− 1)/2 terms.
Conditionally to {ZiqZjl = 1}, Xij is a Bernoulli variable with parameter
πql . Thus E(ZiqZjlXij) = E(ZiqZjl)πql . The Ziq are independent, so we
have E(ZiqZjl) = αqαl . The result follows.
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A.2 Complete log-likelihood of MixNet model

The complete log-likelihood of MixNet takes the form:

log Pr(X,Z; η) = ∑
i,q

Ziqαq

︸ ︷︷ ︸
log P(Z)

+ ∑
ij,ql

ZiqZjlη
t
qlh(Xij)− ∑

ij,ql

ZiqZjla(ηql) + ∑
ij

b(Xij)

︸ ︷︷ ︸
log P(X|Z)

,

where αq =
expwq

∑l expwl
with α1 + · · · αQ = 1. The notations of Equation 2.19

appear expressing the previous likelihood formula as,

log Pr(X,Z; η) = ∑
iq

Ziq(wq − log∑
l

expwl) +

∑
ql

ηt
ql ∑

ij

ZiqZjlh(Xij)

︸ ︷︷ ︸
Hql(X,Z)

−∑
ql

a(ηql) ∑
ij

ZiqZjl

︸ ︷︷ ︸
Gql(Z)

+ ∑
ij

b(Xij)

︸ ︷︷ ︸
b(X)

.

Let Nq = ∑i Ziq be the number of nodes in the class q and let A(β) =
n log∑l expwl be a term which does not depend on the q parameter. Then,
Equation can be defined by:

log Pr(X,Z; η) =
(
{Nq}, {Hql(X,Z)}, {Gql(Z)}

)
︸ ︷︷ ︸

T(X,Z))




{wq}
{ηql}

{−a(ηql)}





︸ ︷︷ ︸
β

t

+b(X)− A(β).

which matches the factorization logPr(X,Z; β) = βtT(X,Z)− A(β) +
B(X). Thereby, this proves that the joint distribution Pr(X,Z; η) also be-
longs to the exponential family.

A.3 Complete log-likelihood of the Erdős-Rényi Mix-
ture

The complete log-likelihood of the Bernoulli Erdős-Rényi Mixture takes
the form:

Lc(X,Z) = ∑
i

∑
q

Ziq log αq

︸ ︷︷ ︸
log P(Z)

+

∑
ij

∑
ql

ZiqZjlXij log
πql

1− πql
+ ∑

ij
∑
ql

ZiqZjl log (1− πql)

︸ ︷︷ ︸
log P(X|Z)

.

If the considered graph is directed, undirected, has or has not self-loops,
the complete log-likelihood can be expressed in a relative simple form in
function of the Nq = ∑i Ziq, Hql = ∑ij ZiqZjlXij and Gql = NqNl
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A.3.1 Directed with self-loops

If the considered graph has self-loops and is directed, we have:

Lc(X,Z) = ∑
q

Nq log αq + ∑
ql

Hql log
πql

1− πql
+ ∑

ql

Gql log (1− πql).

To simplify the notation let us use g(πql) = log
πql

1−πql
and h(πql) =

log(1− πql):

Lc(X,Z) = ∑
q

Nq log αq + ∑
ql

Hqlg(πql) + ∑
ql

Gqlh(πql)).

Deriving according to πql results in the following estimates:

π̂ql =
Hql

Gql
.

A.3.2 Directed without self-loops

In order to express, the classification log-likelihood in function of the basic
statistics, we express the likelihood as a sum of sums over all indexes ijql :

Lc(X,Z) = log P(Z) + log P(X|Z)

= ∑
q

Nq log αq + ∑
i 6=j,ql

ZiqZjl(Xijg(πql) + h(πql))

+ ∑
iql

ZiqZil(Xiig(πql) + h(πql))−∑
iql

ZiqZil(Xiig(πql) + h(πql))

= ∑
q

Nq log αq + ∑
ij,ql

ZiqZjl(Xijg(πql) + h(πql))

−∑
iql

ZiqZil(Xiig(πql) + h(πql))

= ∑
q

Nq log αq + ∑
ql

Hqlg(πql) + ∑
ql

Gqlh(πql)−∑
q

Nqh(πqq)).

Deriving according to πql results in the following estimates:

π̂ql =






Hql

Gql
, if q 6= l,
Hqq

Nq(Nq−1)
, otherwise.

A.3.3 Undirected without self-loops

We consider the same kind of computation and try to express the likeli-
hood as a sum of sums over all indexes ijql. First decompose the sum of
two term (one over q > l and one over q = q) and then take into account
the fact that πql = πlq. This leads to:

Lc(X,Z) = log P(Z) + log P(X|Z)

= ∑
q

Nq log αq + ∑
i>j,ql

ZiqZjl(Xijg(πql) + h(πql))

= ∑
q

Nq log αq + ∑
q>l

Hqlg(πql) + ∑
q>l

Gqlh(πql)

+ ∑
q

Hqqg(πqq) +
1

2

(

∑
q

N2
q h(πqq)−∑

q

Nqh(πqq)

)
.
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Deriving according to πql results in the following estimates:

π̂ql =






Hql

Gql
, if q 6= l,
2Hqq

Nq(Nq−1) , otherwise.

A.3.4 Parameters update in the Bernoulli and Poisson cases for the on-
line SAEM

The estimator becomes:

π
[n+1]
ql = γ

[n+1]
ql π

[n]
ql + (1− γ

[n+1]
ql )

ξ
[n+1]
ql

ζ
[n+1]
ql

,

where

γ
[n+1]
ql =

N
[n]
q N

[n]
l

N
[n]
q N

[n]
l + Zn+1,qN

[n]
l + Zn+1,lN

[n]
q

,

ξ
[n+1]
ql = Zn+1,q

n

∑
j=1

Z
[n]
jl Xn+1,j + Zn+1,l

n

∑
i=1

Z
[n]
iq Xi,n+1,

ζ
[n+1]
ql = Zn+1,qN

[n]
l + Zn+1,lN

[n]
q .

A.3.5 Parameters update in the Bernoulli and the Poisson cases for the
online variational algorithm

We get the following update equation:

π
[n+1]
ql = γ

[n+1]
ql π

[n]
ql + (1− γ

[n+1]
ql )

ER[n]

(
ξ

[n+1]
ql

)

ER[n]

(
ζ

[n+1]
ql

) ,

where

γ
[n+1]
ql =

ER[n]

(
N

[n]
q

)
ER[n]

(
N

[n]
l

)

ER[n]

(
N

[n]
q

)
ER[n]

(
N

[n]
l

)
+ τn+1,qER[n]

(
N

[n]
l

)
+ τn+1,lER[n]

(
N

[n]
q

) ,

ER[n]

(
ξ

[n+1]
ql

)
= τn+1,q

n

∑
j=1

τ
[n]
jl Xn+1,j + τn+1,l

n

∑
i=1

τ
[n]
iq Xi,n+1,

ER[n]

(
ζ

[n+1]
ql

)
= τn+1,qER[n]

(
N

[n]
l

)
+ τn+1,lER[n]

(
N

[n]
q

)
,

with

ER[n]

(
N

[n]
q

)
=

n

∑
i=1

τ
[n]
iq .
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A.4 More experiments using simulation

In the experiments of Zanghi et al. (2008), we assume that edges are
Bernoulli distributed. Four affiliation models have been considered (see
Table A.1). The difference among the four models is related to their mod-
ular structure, which varies from no structure (almost the Erdős-Renyi
model) to strong modular structure (low inter-module connectivity and
strong intra-module connectivity).

Model λ ǫ Q

1 0.8 0.02 3

2 0.5 0.05 8

3 0.6 0.25 5

4 0.55 0.35 5

Table A.1 – Parameters of the four affililation models of the experiment. The Q modules
are mixed in the same proportion. Each model consider n = 1000 nodes.

Given the number of nodes n and the class proportions (αq), the color
of each node is simulated via a multinomial distribution M(1, α1, ..., αQ).
Conditionally to the node colors, edges between two nodes of the same
class are drawn according to a probability λ and edges between nodes of
different colors are drawn according to a probability ǫ.

We have simulated 30 networks for each model and run the online
CEM MixNet algorithm to estimate the model parameters. Figure A.1
shows two boxplots for each experiment: one boxplot for ǫ and one for λ.
Notice that for the first model, the highly structured one, the estimation is
very close to the true parameters and exhibits no variance. The estimation
of the second and third models shows a small downward bias and a small
variance.

Model 1 Model 2 Model 3 Model 4

0
.0

0
.2

0
.4

0
.6

0
.8

εε λλ εε λλ εε λλ εε λλ

Figure A.1 – Boxplot of the parameter estimates for 30 estimations of the 4 models. Each
model is described by two boxplots, one for the estimations of ǫ and the other for the
estimations of λ. The circles show the true value of the parameters.

But the fourth model is more difficult to deal with : the algorithm
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underestimates λ the probability of within-cluster connection and overes-
timates ǫ the probablity of between-cluster connection. In summary, the
less obvious the structure of the network is, the highest bias we observe
in the resulting estimation. Let us also note that in well structured mod-
els (except for model 1), the algorithm has a slight tendency to produce
biased estimates. This is a phenomenon generally oberved with Classifi-
cation versions of the EM algorithm. When using Table A.2 to compare
the estimates between our online CEM MixNet and MixNet Daudin et al.
(2008). we can observe that both estimations are very close. But the online
version runs much faster : Although the computationnal complexity of
both algorithms is O(n2) (n being the number of nodes of the network),
an important gain of speed can be observed (see Table 2.5).

MixNet online MixNet

Model λ̂ σλ ǫ̂ σǫ λ̂ σλ ǫ̂ σǫ

1 0.800 0.007 0.020 0.002 0.800 0.007 0.020 0.002
2 0.494 0.024 0.051 0.003 0.493 0.025 0.051 0.003
3 0.593 0.018 0.251 0.005 0.594 0.018 0.251 0.005
4 0.385 0.034 0.390 0.011 0.350 0.046 0.402 0.017

Table A.2 – Means and standard deviation of the parameter estimates of the four models
computed over 30 different runs.

When considering Table A.3, we can observe that the poor estimation
of λ, the probability of within-cluster connection also reveals a small Rand
index. This means that the poor estimation of λ makes it impossible to
retrieve the modular structure of the network.

PAM SC MixNet online MixNet

Model rand σrand rand σrand rand σrand rand σrand

1 1.000 0.000 0.998 0.008 1.000 0.000 1.000 0.000
2 0.745 0.067 0.988 0.018 0.990 0.027 0.988 0.030
3 0.523 0.111 0.798 0.144 0.967 0.048 0.963 0.055
4 0.083 0.031 0.056 0.043 0.027 0.055 0.045 0.055

Table A.3 – Means and standard deviation of the Rand index of the four models computed
over 30 different runs for graph clustering competitors and MixNet algorithms.

We also compared the results of the online CEM MixNet algorithm
with alternative clustering methods additionnal to the variationnal batch
version. We consider as competitors, a basic spectral clustering algorithm
Ng et al. (2002), and a k-means like algorithm considering a dissimilarity
matrix as input, called PAM (Partitioning Around Medoids).

The spectral clustering algorithm searches for a partition in the space
spanned by the eigenvectors of the normalized Laplacian. For the PAM
algorithm, we consider a computationally heavy method which builds a
dissimilarity matrix based on the shortest paths between all pairs of nodes.
Floyd’s algorithm is specifically designed to solve this problem. Note that
these shortest paths are computed inO(n3) runtime, thus it does not allow
us to use it with huge and dynamic networks.

On the previous generated networks, we have run these algorithms
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and have computed the Rand index on each of them. When considering
Table A.3, we can observe that both MixNet algorithms always produce the
best nodes classification. It is also noticable that PAM and spectral cluster-
ing algorithms seem to be rather efficient on obvious models (model 1 &
2), but deteriorate when the network structure becomes weak. The spec-
tral clustering algorithm remains more accurate than the PAM algorithm.

To conclude this section, if the results of MixNet and online CEM
MixNet are similar, the latter appears to be the more efficient competi-
tor as far as computational cost is concerned.

A.5 The 2008 U.S. Presidential WebSphere

A.5.1 Connectivity matrix

The connectivity matrix of the rhe 2008 U.S. Presidential WebSphere is
given in Table A.8 page 142.

A.5.2 Alexa Traffic

Alexa1 is a powerful tool used to rank web site traffic. This information
comes from the community of Alexa Toolbar users. Each member of the
community, in addition to getting a useful tool, is giving back. Simply by
using the toolbar each member contributes valuable information about the
web, how it is used, what is important and what is not. This information
is returned to the community with improved Traffic Rankings and more.
Alexa provides API to access the traffic ranking of web sites.

A.6 Lower bounds J for the CohsMix1,2,3 models

The variational approach consists in maximizing a lower bound J of the
log-likelihood logPr(X,Y;Θ),

A.6.1 Lower bound J for CohsMix1

The detailed expression of the lower bound J for the CohsMix1 model
can be expressed as

Jτ = ER(Z) {J (Θ)} =
n

∑
i=1

Q

∑
q=1

τiq log(αq) + ∑
i,j
i 6=j

∑
q,l

τiqτjl(Xij log(πql) + (1− Xij) log(1− πql))

−∑
i,j
i 6=j

∑
q,l

τiqτjl

[
1

2
(Yij − µql)

Tσ−1(Yij − µql)

]

+∑
i,j
i 6=j

∑
q,l

τiqτjl log(
1√
2πσ2

)−∑
Z

R(Z) log(R(Z)).

1http://www.alexa.com/
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Figure A.2 – Boxplot of MixNet classes traffic (in log). The lower the Alexa ranking
number the more heavily visited the site.
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A.6.2 Lower bound J for CohsMix2

The detailled expression of the lower bound J for the CohsMix2 model
can be expressed as

Jτ = ER(Z) {J (Θ)} =
n

∑
i=1

Q

∑
q=1

τiq log(αq) + ∑
i,j
i 6=j

∑
q,l

τiqτjl(Xij log(πql) + (1− Xij) log(1− πql))

+∑
i,j
i 6=j

∑
q,l

τiqτjl

[
Xij

(
− (Yij − µql)

2

2σ2
+

(Yij − µ̃ql)
2

2σ2

)
− (Yij − µ̃ql)

2

2σ2

]

+∑
i,j
i 6=j

∑
q,l

τiqτjl log(
1√
2πσ2

)−∑
Z

R(Z) log(R(Z)).

A.6.3 Lower bound J for CohsMix3

The detailed expression of the lower bound J for the CohsMix3 model
can be expressed as

Jτ = ER(Z) {J (Θ)} =
n

∑
i=1

Q

∑
q=1

τiq log(αq) + ∑
i,j
i 6=j

∑
q,l

τiqτjl(Xij log(πql) + (1− Xij) log(1− πql))

+∑
i

∑
q

τiq

[(
log

1

2π
n
2 det(Σ)

1
2

)
− 1

2
(Yi − µq)

Tσ−1(Yi − µq)

]

−∑
Z

R(Z) log(R(Z)).

A.7 Optimal parameters for all CohsMix1,2,3 models

A.7.1 Commun optimal parameters for CohsMix1,2,3 models

Proof. Proof of Proposition 3.1 Maximizing the lower bound J according
to parameters αq and πql , allows to find the optimal parameters α̂q and
π̂ql .

Estimation of πql . Deriving according to πql leads to

∂Jτ

∂πql
= ∑

i,j
i 6=j

τiqτjl(
Xij

πql
+
−(1− Xij)

1− πql
)

The optimal value of πql is obtained when we have a derivative at zero

∂Jτ

∂πql
= 0 ⇔ ∑

i,j
i 6=j

τiqτjlπql = ∑
i,j
i 6=j

τiqτjlXij

Therefore, the optimal parameter of πql satisfies the following relation:
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π̂ql =

∑
i,j
i 6=j

τiqτjlXij

∑
i,j
i 6=j

τiqτjl

Estimation of αq. In this case, deriving according to αq is not sufficient
because an additional constraint have to be considered. Indeed, ∑

q

αq must

be equal to 1. Thus, considering the Lagrangian λ, we can write

∂

(
Jτ − λ(∑

q

αq − 1)

)

∂αq
=

n

∑
i=1

τiq

αq
− λ

The optimal value of αq is obtained when this derivative is equal to
zero.

∂(Jτ − λ(∑
q

αq − 1))

∂αq
= 0 ⇔ αq =

n

∑
i=1

τiq

λ

We know that the constraint leads to ∑
q

αq = 1, thus
Q

∑
q=1

n

∑
i=1

τiq

λ
= 1

Finally we obtain, λ =
Q

∑
q=1

n

∑
i=1

τiq = n

The optimal parameter of αq satisfies the following relation:

α̂q =

n

∑
i=1

τiq

n

A.7.2 Optimal parameters for CohsMix1 model

Proof. Proof of Proposition 3.2

Estimation of µql . In this case, we have to derive Jτ according to µql

which only takes place in the normal distribution term. Then, we can
write:

∂Jτ

∂µql
= ∑

i,j
i 6=j

τiqτjl

(Yij − µql)

2σ2

The following relation leads to a derivative at zero:

∂Jτ

∂µql
= 0 ⇔ ∑

i,j
i 6=j

τiqτjlµql = ∑
i,j
i 6=j

τiqτjlYij
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Thus, the optimal estimator of µql is defined by:

µ̂ql =

∑
i,j
i 6=j

τiqτjlYij

∑
i,j
i 6=j

τiqτjl

Estimation of σ2 Once again, parameter σ2 only takes place in the nor-
mal distribution. Derivating Jτ according to this parameter leads to:

∂Jτ

∂σ2
= ∑

i,j
i 6=j

τiqτjl

[
−(Yij − µ̂ql)

2

σ4
+

1

2σ2

]

The optimal value ofσ2 is obtained when this derivative is equal to
zero.

∂Jτ

∂σ2
= 0 ⇔

∑
i,j
i 6=j

τiqτjl

(Yij − µ̂ql)
2

σ4
= ∑

i,j
i 6=j

τiqτjl
1

σ2

Finally, the optimal estimator of σ2 can be expressed as:

σ̂2 =

∑
i,j
i 6=j

∑
q,l

τiqτjl

[
(Yij − µ̂ql)

2
]

∑
i,j
i 6=j

∑
q,l

τiqτjl

A.7.3 Optimal parameters for CohsMix2 model

Proof. Proof of Proposition 3.4

Estimation of µql . In this case, we have to derive Jτ according to µql

which only takes place in the normal distribution term. Then, we can
write:

∂Jτ

∂µql
= ∑

i,j
i 6=j

τiqτjlXij

(−Yij + µql)

2σ2

The following relation leads to a derivative at zero :

∂Jτ

∂µql
= 0 ⇔ ∑

i,j
i 6=j

τiqτjlXijµql = ∑
i,j
i 6=j

τiqτjlYijXij

Thus, the optimal estimator of µql is defined by:
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µ̂ql =

∑
i,j
i 6=j

τiqτjlXijYij

∑
i,j
i 6=j

τiqτjlXij

Estimation of µ̃ql The optimal estimator of µ̃ql is obtained with a similar
approach to µql and verify:

ˆ̃µql =

∑
i,j
i 6=j

τiqτjl(1− Xij)Yij

∑
i,j
i 6=j

τiqτjl(1− Xij)

Estimation of σ2 Once again, parameter σ2 only takes place in the nor-
mal distribution. Derivating Jτ according to this parameter leads to:

∂Jτ

∂σ2
= ∑

i,j
i 6=j

τiqτjl

[
Xij

(
−(Yij − µ̂ql)

2 + (Yij − ˆ̃µql)
2
)
− (Yij − ˆ̃µql)

2

σ4
+

1

2σ2

]

The optimal value ofσ2 is obtained when this derivative is equal to
zero.

∂Jτ

∂σ2
= 0 ⇔

∑
i,j
i 6=j

τiqτjl

Xij

(
(Yij − µ̂ql)

2 + (Yij + ˆ̃µql)
2
)
− (yij + ˆ̃µql)

2

σ4
= ∑

i,j
i 6=j

τiqτjl
1

σ2

Finally, the optimal estimator of σ2 can be expressed as:

σ̂2 =

∑
i,j
i 6=j

∑
q,l

τiqτjl

[
Xij

(
(Yij − µ̂ql)

2 − (Yij − ˆ̃µql)
2
)
+ (Yij − ˆ̃µql)

2
]

∑
i,j
i 6=j

∑
q,l

τiqτjl

Proof. Proof of Proposition 3.5

Estimation of τiq We obtain the variational parameter derivating Jτ ac-
cording to τiq. Nevertheless, we have to consider an additional constraint

which imposes for each node i, the relation ∑
Q
q=1 τiq equal to 1.

Then, we have to solve the following equation:
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∀i, q
∂

(
Jτ −∑

i=1

λi(∑
q

τiq − 1)))

)

∂τiq
= 0

with a constraint: ∀i,∑
q

τiq = 1

Thus, we obtain:

∂
(
Jτ −∑i=1 λi(∑q τiq − 1)))

)

∂τiq
= log(αq) + ∑

j 6=i
∑
l

log

(
(π

Xij

ql (1− πql)
1−Xij)

τ
(m)
jl

)

−log(τiq)− 1+ λi

−1

2 ∑
j 6=i

∑
l

τjl

(
(Yij − µql)

2

σ2
+ log(2πσ2)

)

This equation is equal to 0 and ∀i,∑
q

τiq = 1 if, and only if, τ̂iq satisfies:

τ̂
(m+1)
iq ∝ αq∏

j 6=i
∏
l




π̂

Xij

ql (1− π̂ql)
1−Xij

√
2πσ2

exp(
1

2σ2

[
Xij

(
−(Yij − µql)

2 + (Yij − µ̃ql)
2
)
− (Yij − µ̃ql)

2
]



τ

(m)
jl

exp(λi − 1) stands for normalization constraint.

A.8 Software

A.8.1 MixNet and MixeR

MixeR is a R wrapper for the ANSI C + + software package MixNet which
also includes Fortran 77 subroutines from the ARPACK library. Erdös-
Rényi Mixture Model for Graph (MixNet), which has been proposed by
Daudin et al. (2008) with an associated EM estimation algorithm, is not to
be confused with Exponential Random Graph Models for Network Data
(ERGM) which consider distributions ensuing from the exponential fam-
ily to model the edge distribution. The MixNet model allows to capture
the structure of a network and in particular to detect communities. There
exists a strong connection between MixNet and block clustering. Block
clustering searches for homogeneous blocks in a data matrix by simulta-
neous clustering of rows and columns. The proposed estimation strategies
deals with undirected graphs. They are of three type:

• variational: which refers to the paper of Daudin et al. (2008). It is
the default method.

• classification: which implements the method described in Zanghi
et al. (2008). This method is faster than the variational approach
and is able to deal with bigger networks but can produce biased
estimates.
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• bayesian which implements the method described in Latouche et al.
(2008). It improves over variational and classification strategies when
dealing with small networks (less than 50 nodes). It should not be
used with networks having more than 100 nodes.

The two softwares can be downloaded from the Web quiet easily:

• MixNet: http://stat.genopole.cnrs.fr/software/

mixnet/

• MixeR: http://cran.r-project.org/web/packages/

mixer/

Compilation and installation are compliant with the GNU standard
procedure. Online documentation and man pages are also available.
MixNet is licensed under the GNU General Public License.

A.8.2 CohsMix

An R package called CohsMix for Covariates in Hidden Structure Using
Mixture models provides variational EM algorithms for the three pro-
posed CohsMix1, 2, 3 models. Theses algorithms allow to detect hidden
structure and estimate the model parameters. Generally we can distin-
guish three features:

• Simulation: Simulates data according to the desired model parame-
ters: number of nodes, class proportions, connectivity and covariates
values.

• Estimation: Estimates the parameters and the hidden structure. If
the number of classes of the network is unknown, the ICL algorithm
can also be solicited by the estimation function. If the latter is used,
the parameter estimates would be provided for all classes. Therefore,
the choice of number of classes is recommended but not required.

• Representation: Plots the network with the estimated structure.
Given the number of group strategy, a representation of the ICL
evolution is available.

Yet, CohsMix and MixNet are not merged, moreover it may change in
the future. CohsMix R package is available upon request.
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Notation

Mathematic

Argmaxt f (t) argument that maximizes the function f
Argmint f (t) argument that minimizes the function f
I identity matrix
f (t) ∝ g(t) functions f and g are proportional

Probability

f (X; β) density function of X indexed by the parameter β

Eβ[g(X)] expectation of g(X), a function of X, indexed by the parameter β

X ∼ f (X; β) X follows a distribution with density function f (X; β)

Statistic and classification

(X1, . . . ,XN) sample of N observations
L(β;X) log-likelihood of parameter β

Z classification matrix
αq proportion of class q
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Title Model Based approaches for uncovering Web structures

Abstract The statistical analysis of complex networks is a challenging
task, given that appropriate statistical models and efficient computational
procedures are required in order for structures to be learned. The principle
of these models is to assume that the distribution of the edge values fol-
lows a parametric distribution, conditionally on a latent structure which is
used to detect connectivity patterns. However, these methods suffer from
relatively slow estimation procedures, since dependencies are complex. In
this thesis we adapt online estimation strategies, originally developed for
the EM algorithm, to the case of graph models. In addition to the network
data used in the methods mentioned above, vertex content will sometimes
be available. We then propose algorithms for clustering data sets that can
be modeled with a graph structure embedding vertex features. Finally,
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