
Scuola Normale Superiore di Pisa &
Université d’Évry Val d’Essonne

Ecole doctorale: Sciences et Ingénierie

Ph.D. Thesis
in Mathematics Applied to Finance

Presented by

Giorgia CALLEGARO

Credit risk models under partial information

Defense Committee
Prof. Monique JEANBLANC Université d’Évry Thesis director
Prof. Wolfgang J. RUNGGALDIER Università degli Studi di Padova Thesis director





A mia mamma





Résumé

Cette thèse se compose de cinq parties (Introduction comprise) indépendantes dédiées à la
modélisation et à l’étude des problèmes liés au risque du défaut, en information partielle.

La première partie constitue l’Introduction.

La deuxième partie est dédiée au calcul de la probabilité de survie d’une firme, condi-
tionnellement à l’information à disposition de l’investisseur, dans un modèle structurel et
en information partielle. On utilise une technique numérique hybride basée sur une appli-
cation de la méthode Monte Carlo et de la quantification optimale. Comme application, la
courbe des spreads du crédit pour zero coupon bonds pour différentes maturités est tracée,
en montrant que (comme en réalité sur le marché) les spreads au voisinage de la maturité
ne sont pas nuls, i.e., en information partielle il y a du risque résiduel sur le marché, même
si on est proche de la maturité. La calibration aux données réelles conclut cette deuxième
partie.

Dans la troisième partie on traite, avec l’approche Programmation Dynamique, un prob-
lème en temps discret de maximisation de l’utilité de la richesse terminale, dans un marché
où des titres soumis au risque du défaut sont négociés. Le risque de contagion entre les
défauts est modélisé, ainsi que la possible incertitude du modèle, en travaillant en informa-
tion partielle. Dans la partie numérique la robustesse de la solution trouvée en information
partielle est étudiée.

Dans la quatrième partie on s’intéresse au problème de l’incertitude liée à l’horizon
temporel d’investissement. En particulier, dans un marché complet soumis au risque du
défaut, on résout, soit avec une approche directe du type martingale, soit avec la Program-
mation Dynamique, trois différents problèmes de maximisation de la consommation. Plus
spécifiquement, en notant τ l’instant de défaut, où τ est une variable aléatoire positive
et exogène, on considère trois problèmes de maximisation de l’utilité de la consommation:
quand l’horizon temporel est fixe et égal à T , quand il est fini, mais possiblement incertain,
égal à T ∧ t, et quand l’horizon est infini. Dans un premier temps on considère le cas général
avec coefficients stochastiques, puis, afin d’obtenir une solution explicite pour les cas utilité
logarithmique et puissance, on passe au cas coefficients constants.

Enfin, dans la cinquième partie on traite un problème totalement différent, dans le sens
où le sujet considéré est purement théorique. Dans le contexte du grossissement de filtra-
tions, notre but est de redémontrer, dans un cadre spécifique, les résultats déjà connus sur la
caractérisation des martingales, la décomposition des martingales par rapport à la filtration
de référence comme semi-martingales dans les deux filtrations progressivement et initiale-
ment grossies et le Théorème de Représentation Prévisible. Certain de ces résultats ont été
utilisés dans la quatrième partie de cette thèse. L’intérêt de cette étude est pédagogique:
dans notre contexte spécifique la plupart des résultats sont retrouvés d’une façon plus sim-
ple, avec des outils de “base”, comme le Théorème de Girsanov et le calcul d’espérances
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conditionnelles.

MOTS-CLÉS: risque du défaut, information partielle, maximisation d’utilité, contrôle
stochastique, méthode Monte Carlo, quantification optimale, méthode martingale, Program-
mation Dynamique, grossissement de filtrations.
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Abstract
This Ph.D. thesis consists of five independent parts (Introduction included) devoted to the
modeling and to studying problems related to default risk, under partial information.

The first part constitutes the Introduction.
The second part is devoted to the computation of survival probabilities of a firm, con-

ditionally to the information available to the investor, in a structural model, under partial
information. We exploit a numerical hybrid technique based on the application of the Monte
Carlo method and of optimal quantization. As an application, we trace the credit spreads
curve for zero coupon bonds for different maturities, showing that (as in practice on the
market) the spreads in the neighborhood of the maturity are not null, i.e., under partial
information there is some residual risk on the market, even if we are close to maturity.
Calibration to real data completes this second part.

In the third part we deal, by means of the Dynamic Programming, with a discrete time
maximization of the expected utility from terminal wealth problem, in a market where
defaultable assets are traded. Contagion risk between the default times is modeled, as well
as model uncertainty, by working under partial information. In the part devoted to numerics
we study the robustness of the solution found under partial information.

In the fourth part we are interested in studying the problem linked to the uncertainty of
the investment horizon. In particular, in a complete market model subject to default risk,
we solve, both with a direct martingale approach and with the Dynamic Programming,
three different consumption maximization problems. More specifically, denoting by τ the
default time, where τ is an exogenous positive random variable, we consider three problems
of maximization of expected utility from consumption: when the investment horizon is fixed
and equal to T , when it is finite, but possibly uncertain, equal to T ∧ τ , and when it is
infinite. First we consider the general stochastic coefficients case, then, in order to obtain
explicit results in the logarithmic and power utility cases, we pass to the constant coefficients
case.

Finally, in the fifth part we deal with a totally different problem, given that it is purely
theoretical. In the context of enlargement of filtrations our aim is to retrieve, in a specific
setting, the already known results on martingales’ characterization, on the decomposition of
martingales with respect to the reference filtration as semi-martingales in the progressively
and in the initially enlarged filtrations and the Predictable Representation Theorem. Some
of these results were used in the fourth part of this thesis. The interest in this study is
pedagogical: in our specific context most of the results are found more easily, by exploiting
"basic" tools, such as Girsanov’s Theorem and by computing conditional expectations.

KEYWORDS: default risk, partial information, utility maximization, stochastic control,
Monte Carlo method, optimal quantization, martingale method, Dynamic Programming,
enlargement of filtrations.
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Introduction

After the seminal contribution of Bachelier in 1900, with his thesis “Théorie de la spécu-
lation”, after the new developments, more than half a century later, by Samuelson and the
papers from Black, Scholes and Merton in the early seventies, mathematical finance and
financial engineering have been rapidly expanding domains of science.

Nevertheless, most of the literature of the eighties and nineties dealt with market models
in which the assets’ prices evolution was driven by a continuous stochastic process, that,
in most of the cases, was Gaussian. It was impossible, then, to take into account the un-
predictable jumps that are, indeed, a major characteristic of market fluctuations. For this
reason, during the last fifteen years, discontinuous stochastic processes (i.e., stochastic pro-
cesses whose trajectories can jump, see, e.g., Cont and Tankov [7]) have become increasingly
popular in financial modeling, both for risk management and for option pricing purposes.

Focusing on risk management, we were interested in understanding, modeling and deal-
ing with one of the fundamental sources of financial risk: credit risk (for an exhaustive intro-
duction to credit risk we refer, e.g., to Bielecki and Rutkowski [3]). Credit risk embedded in a
financial transaction is the possibility of loss associated with any kind of credit-linked event,
such as: changes in the credit quality (e.g., credit rating), credit spreads’ variations and,
finally, default. Default risk is the possibility that a counter-party in a financial contract
will not fulfill his/her financial obligation stated in the contract. Because of this definition,
the main (challenging) tool in credit risk modeling is the definition and the analysis of the
properties of the random time of default, that we denote τ .

This thesis is divided into five parts. This introduction is the first part. The second part
focuses on these modeling aspects and on some related practical problems. In the third part,
we solve a discrete time portfolio optimization problem, in a partially observable market
model, where defaultable assets are traded. The fourth part aims to study the impact of
an uncertainty about the investment time horizon, due to the presence of an exogenously
given random time, on the optimal investment-consumption strategy of an investor acting
on a defaultable market. In the fifth part, we study some theoretical aspects concerning the
enlargement of a reference filtration by means of a random time.

The leitmotif of this thesis is, then, the presence of an inaccessible random time and
our aim is to investigate its role and, most of all, the implications of the knowledge we have
about it and in particular, its unpredictability. The pivotal point in this work is, then, the
analysis of the role played by the information; in particular, we focus on partial information
settings.

� Overview of part II
Credit risk models come in two main varieties: the structural and the reduced form. The
structural approach, introduced by Merton in 1974, consists in modeling bankruptcy as the
first hitting time of a barrier by the firm value process, while in reduced form (or “intensity
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based”) models, originally developed by Jarrow and Turnbull in 1992, the default intensity
is directly modeled and it is given by a function of latent state variables or predictors of
default.

The first approach, in which we are interested, is realistic from the economic point of
view, but it presents some drawbacks: the firm’s value process is not observable in reality, at
least in continuous time and, in the case of a continuous firm’s value process, default becomes
predictable, leading to null credit spreads for short maturities (for surviving firms), a fact
that is not observed in practice on the market. On the contrary, in reduced form models
the default time is inaccessible.

Despite the apparent difference between the two models (see, e.g., Jarrow and Protter
[11]), some recent results, starting from the seminal paper by Duffie and Lando [9], have
unified the two approaches, by means of information reduction. Indeed, structural models
can be “transformed” into reduced form models, by restricting the information set, from
that observable by the firm’s management to that observed by market participants.

We consider, then, a structural model under partial information, in which investors can
not observe the firm value process, but they have access to another process whose value is
related to the firm value process, such as, for example, the price of an asset issued by the
firm.

We are interested in computing the conditional survival probability of the firm with
respect to the restricted information set, in order to obtain yield spreads for zero coupon
bonds (for surviving firms) that are strictly positive at zero maturity. This has to be the
case, since investors, in practice, are uncertain about the nearness of the current firm value
to the trigger level at which the firm would declare default, and this represents a source of
risk.

We show that the computation of these conditional survival probabilities under partial
information leads to a nonlinear filtering problem (for an overview on stochastic filtering
we refer to Bain and Crişan [1]) involving the conditional survival probabilities under full
information. These latter quantities are approximated (when no closed formula is available)
by a Monte Carlo procedure, while the filter distribution at discrete time is approximated
by exploiting optimal quantization techniques.

In the studied model, then, the shape of the term structure of credit spreads may be
useful, in practice, to estimate the degree of transparency and of riskiness of a firm, from
the investors’ point of view.

� Overview of part III
We consider the classical portfolio optimization problem of maximization of expected utility
from terminal wealth when the assets, in which one invests, are subject to default-risk. We
focus on a context where the assets’ dynamics are affected by exogenous factor processes,
some of which may have an economic interpretation, some may not but, most importantly,
NOT all of them may be directly observable.
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In credit risk models, factors are often used to describe contagion: “physical” and “infor-
mation induced”. Information induced contagion arises due to the fact that the successive
updating of the distribution of the latent (not observable) factors, in reaction to incoming
default observations, leads to jumps in the default intensity of the surviving firms (this is
sometimes referred to as “frailty approach”, see, e.g., Schönbucher [17]). It was shown in
Duffie et al. [8] that unobservable factor processes are needed in order to explain clustering
of defaults in historical credit risk data.

Notice that, in general, the formulation of a model under incomplete information on the
factors allows for greater model flexibility, avoids a possible inadequate specification of the
model itself, and the successive updating of the distribution of the unobserved factors (for
constant factors one considers them from the Bayesian point of view as random variables)
allows the model to “track the market” thus avoiding classical model calibration.

We consider only one non-observable factor process, modeled as a finite state Markov
chain and we explicitly take into account the possibility of default for the individual assets, as
well as contagion (direct and information induced) among them. Considering a multinomial
model at discrete time (with respect to continuous time models, this can be justified since
trading actually takes place in discrete time), we provide an explicit numerical solution
to the optimization problem. We discuss the solution within our defaultable and partial
information setup and, in particular we study its robustness. Numerical results are derived
in the case of a log-utility function and they can be analogously obtained for a power utility
function.

� Overview of part IV
The starting point of this work is the acknowledgement of the fact that, in most of cases, an
investment horizon is hardly known with certainty at the date when the initial investment
decisions are taken. It is, then, both of practical and theoretical interest to study the
influence of this uncertainty on the investor’s decisions.

We consider an exogenously given nonnegative random variable τ , that is a totally inac-
cessible stopping time with respect to the investor’s filtration, and we study three different
scenarios: the first one when the investment horizon is fixed and equal to T (problem A),
the second one when it is finite, but possibly uncertain, given by T ∧ τ (problem B), and
the third one when it is infinite (problem C). Our aim is to investigate the role of the source
of randomness τ in the investor’s decisions, when his objective is to maximize the expected
utility from consumption, in a complete market model in which τ affects the assets’s dy-
namics (for example, a defaultable zero-coupon bond, in the case when τ is a the default
time, or a mortality linked security, when τ is the death time of a pensioner).

The present work can, then, be seen within the theory of optimal stochastic control prob-
lems with uncertain time horizon. Some recent works on this topic are, e.g., Karatzas and
Wang [13], who solve an optimal dynamic investment problem in a complete market case,
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when the uncertain time horizon is a stopping time in the asset price’s filtration; Blanchet-
Scaillet et al. [4] consider a maximization of expected utility from consumption problem, in
a continuous market model, in the case when the time horizon is uncertain and the source
of randomness is not a stopping time in the investor’s filtration and Bouchard and Pham
[5] study, as opposite to the classical fixed time horizon setting, a wealth path-dependent
utility maximization problem in an incomplete semimartingale model. In a more general
setting, Zitković [20] formulates and solves a class of utility-maximization problems of the
“stochastic clock” type (see the more precise Definition 2.3 in [20]) in general incomplete
semimartingale markets. Finally, Menoncin [15] studies an optimal consumption-investment
problem where the investment horizon is the death time of the investor and longevity bonds
are traded in the market.

We solve the three problems of maximization of expected utility from consumption in the
case when on the market there is a risk-free asset, a defaultable risky asset and a “standard
risky” asset. The investor’s filtration, denoted G (here “G” stands for “global”), is such that
τ is G-stopping time. We provide, in a very general stochastic coefficients case, comparison
results between the optimal consumption rates of these three problems, showing that (as
it should be) when the horizon is finite, but possibly uncertain (problem B), the investor
consumes at a higher rate with respect to the case when the horizon is fixed (problem A).
On the other hand, his consumption rate is higher in the case of problem A (finite horizon)
than in the case of problem C (infinite horizon).

Furthermore, we show that, depending on whether the model coefficients are stochas-
tic processes or deterministic functions of time, the investor’s optimal investment strategy
changes substantially. In the deterministic coefficients case, indeed, for an investor facing
problems A and C, the optimal investment strategy consists in not investing in the de-
faultable risky asset. On the other hand, in the case of problem B (finite uncertain horizon
T ∧τ), when the investment horizon depends on τ , he has to deal with this additional source
of risk and it is, then, optimal to invest in the defaultable asset.

On the contrary, in the stochastic coefficients case, the market model coefficients are
adapted with respect to the investor’s filtration G, so that, on the set {t > τ}, they depend
on τ . The investor has, then, inevitably always to deal with τ (and not, as before in the
deterministic coefficients’ case, only in the case when it appears in the investment horizon
in problem B) and, as a consequence, the optimal proportion of wealth he invests in the
defaultable risky asset is never equal to zero.

Part IV is divided into five chapters: in the first one we consider a stochastic coefficients
market model and we solve the three problems by means of the martingale approach. We
provide explicit optimal investment-consumption strategies in the log-utility case.

The second chapter is the analog to the first one in the case when model coefficients are
deterministic. Explicit optimal investment-consumption strategies are found in both the
logarithmic and in the exponential utility cases.
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In the third chapter, still focusing on the deterministic coefficients case, we solve the
problems by using the Dynamic Programming approach, as an alternative technique and,
at the end, we consider the case of an investor with a reduced set of information who does
not observe τ .

In the fourth chapter we study, as a separate example, the exponential utility case in a
market model with deterministic coefficients.

In the final chapter, we focus on an even more general market model and, by means of
the tools developed in the Part V of this thesis, relative to enlargement of filtrations, we
provide explicit solutions to the three problems in the log-utility case.

� An overview of part V
Let us consider a pair of filtrations F = (Ft)t≥0 and F̃ = (F̃t)t≥0 on the same probability
space, such that Ft ⊂ F̃t, for any t ≥ 0. In filtering theory, this structure is suitable to
describe the evolution of a stochastic system that is partially observable (as in the previous
Parts II and III of this thesis). In enlargement of filtration theory, the point of view is
the opposite one (see, e.g., the summary in Jeulin [12]): F is considered to be a reference
filtration, to which we add some information, thus leading us to the larger filtration F̃.

Here we only consider the case where the enlargement of filtration F is done by means of
a random variable τ . Nevertheless, there are, of course, many other ways to do that, such
as, for example, setting F̃t = Ft∨F̄ , t ≥ 0, where F̄ is a σ-algebra, or defining F̃t = Ft∨F̄t,
t ≥ 0, where F̄ = (F̄t)t≥0 is another filtration. There are two ways to add information to F
by means of a random variable τ : either all of a sudden at time 0 (initial enlargement), or
progressively, by considering the smallest σ-algebra containing F that makes τ a stopping
time (progressive enlargement).

The “pioneers” who started exploring this research field were Barlow (in [2]), Jacod,
Jeulin and Yor (see the references that follow in the text), at the end of the seventies. The
main question that raised was the following: “Does an F-martingale X remain an F̃ semi-
martingale?”. And, in this case: "What is the semi-martingale decomposition in F̃ of the
F-martingale X?”

Notice that a general (but not so practice) necessary and sufficient condition in order
for an F-local martingale to remain a F̃ semi-martingale is given in Jeulin [12]. Moreover,
very technical existence and regularity results, which are fundamental in enlargement of
filtration theory, were proved at the very beginning, in the late seventies.

A recent detailed introduction to this subject can be found, e.g., in Chesney, Jeanblanc
and Yor [6], in Mansuy and Yor [14] and in Protter [16].

The main contribution of this part is to show how, in a very specific setting, all the well-
known fundamental results can be proved in an alternative (and, in some cases, simpler)
way. Nevertheless, it is important to make precise that our goal is neither to present the
results in the most general case, nor to study carefully regularity or existence properties.
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We consider three nested filtrations

F ⊂ G ⊂ Gτ ,

where G and Gτ stand, respectively, for the progressive and the initial enlargement of F
with a finite positive random time τ and we address the following problems:

• Characterization of G-martingales and Gτ -martingales in terms of F-martingales;

• Canonical decomposition of an F-martingale, as a semimartingale, in G and Gτ ;

• Predictable Representation Theorem in G and Gτ .

The main idea is the following: assuming that the F-conditional law of τ is equivalent
to the law of τ , after an ad hoc change of probability measure, the problem is reduced to
the case where τ and F are independent. It is, then, “easier” to work under this newly
introduced probability measure, in the initially enlarged filtration. Then, under the original
probability measure, for the initially enlarged filtration, the results are achieved by means of
Girsanov’s theorem. Finally, by projection, the desired results in the progressively enlarged
filtration are obtained.

The “change of probability measure viewpoint” for treating the problems on enlargement
of filtrations was remarked in the early 80’s and developed by Song [18] (see also Jacod [10],
Section 5). For what concerns the idea of recovering the results in the progressively enlarged
filtration starting from the ones in the initially enlarged, we have to cite Yor [19].
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Chapter 1

An application to credit risk of a
hybrid Monte Carlo-optimal
quantization method

This is a joint work with Abass Sagna.

Abstract: in this part we use a hybrid Monte Carlo-Optimal quantization method to
approximate the conditional survival probabilities of a firm, given a structural model for its
credit default, under partial information.

We consider the case when the firm’s value is a non-observable stochastic process (Vt)t≥0

and investors in the market have access to a process (St)t≥0, whose value at each time t is
related to (Vs, 0 ≤ s ≤ t). We are interested in the computation of the conditional survival
probabilities of the firm given the “investor’s information”.

As an application, we analyze the shape of the credit spread curve for zero coupon
bonds in two examples in which yield spreads for surviving firms are strictly positive at zero
maturity (as it is the case in practice). Calibration to available market data is also part of
our study.

Keywords: credit risk, structural approach, survival probability, partial information, fil-
tering, optimal quantization, Monte Carlo method.
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1.1 Introduction

In this first chapter we compute the conditional survival probabilities of a firm, in a
market that is not transparent to bond investors, by using both Monte Carlo and optimal
quantization methods. This allows us to analyze the credit spread curve under partial in-
formation in some examples, in order to investigate the degree of transparency and riskiness
of a firm, as viewed by bond-market participants.

To introduce the problem, recall that most of the bonds traded in the market are cor-
porate bonds and treasury bonds, that are consequently subject to many kinds of risks,
such as market risk (due for example to changes in the interest rate), counterparty risk and
liquidity risk. One of the main challenges in credit risk modeling is, then, to quantify the
risk associated to these financial instruments.

The methodology for modeling a credit event can be split into two main approaches:
the structural approach, introduced by Merton in 1974 and the reduced form approach (or
“intensity based”), originally developed by Jarrow and Turnbull in 1992.

The structural approach consists in modeling the credit event as the first hitting time
of a barrier by the firm value process.

In reduced form models the default intensity is directly modeled and it is given by a
function of latent state variables, or predictors of default.

The first approach, in which we are interested, is intuitive by the economic point of
view, but it presents some drawbacks: the firm’s value process can not be easily observed in
practice, since it is not a tradeable security, and a continuous firm’s value process implies a
predictable credit event, leading to unnatural and undesirable features, such as null spreads
for surviving firms for short maturities.

Despite the apparent difference between the two models (see, e.g., Jarrow and Protter
[18]), some recent results, starting from the seminal paper Duffie and Lando [9], have unified
the two approaches by means of information reduction. We also cite Cetin, Jarrow, Protter
and Yildirim [5], where they consider an alternative method with respect to Duffie and
Lando [9], namely, a reduction of the manager’s information set, to pass from structural to
reduced form models; Giesecke [12], where the role of the investor’s information in a first
passage model is investigated and Giesecke and Goldberg [13], where a structural model
with unobservable barrier is studied. An interesting survey on different ways of restricting
the information in a credit risk setting, with applications to the pricing of zero-coupon
bonds, can be found in Cudennec [8].

Here we consider a structural model under partial information, in which investors can
not observe the firm value process, but they have access to another process whose value is
related to the firm value process. We show, in two examples, that yield spreads for surviving
firms are strictly positive at zero maturity, since investors are uncertain about the nearness
of the current firm’s value to the trigger level at which the firm would declare default. The
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shape of the term structure of credit spreads may be useful, then, in practice to estimate
the degree of transparency and of riskiness of a firm, from the investors’ point of view.

We show that the computation of the conditional survival probabilities under partial
information leads to a nonlinear filtering problem involving the conditional survival proba-
bilities under full information. These former quantities are approximated (when no closed
formula is available) by a Monte Carlo procedure. As concerns the (non)linear filtering
problem, in continuous and discrete time, several computational techniques are known. An
overview of some existing methods can be found in Bain and Crişan [1]. These techniques
include, e.g., particle filtering, the extended Kalman filter, etc. Optimal quantization is an
alternative method in discrete time. One of the advantages of this method, with respect
to the others existing, is that once an optimal quantization of the signal process has been
obtained, it can be kept off-line and used instantaneously to estimate the filter. This is the
main reason why we use optimal quantization to estimate the discrete time filter distribu-
tion. For a comparison between particle filtering and optimal quantization see, e.g., Sellami
[32].

This chapter is organized as follows. In the Section 1.2, we present the market model
and we decompose our problem into two problems (P1) and (P2), that are, respectively,
the computation of conditional survival probability in a full information setting and the
approximation of the filter distribution. Section 1.3 and Section 1.4 are devoted to the
solution of the previous two problems. We provide error estimates in Section 1.5 and,
finally, in Section 1.6 we present two numerical examples concerning the application to
credit risk and we calibrate the given model to real data available in the market.

1.2 Market model and problem definition

Let us consider a probability space (Ω,F ,P), representing all the randomness of our
economic context. For the moment we concentrate our attention on the “real world” prob-
ability measure P and on a single firm model, in which the company is subject to default
risk and we use a structural approach to characterize the default time.
The process representing the value of the firm, given for example by its value of financial
statement, is denoted by (Vt)t≥0 and we suppose that it can be modeled as the solution to
the following stochastic differential equation{

dVt = b(t, Vt)dt+ σ(t, Vt)dWt,
V0 = v0,

(1.2.1)

where the functions b : [0,+∞) × R → R and σ : [0,+∞) × R → R are Lipschitz in x

uniformly in t and W is a standard one-dimensional Brownian motion. We suppose that
σ(t, x) > 0 for every (t, x) ∈ [0,+∞)× R.
In our setting the process V is non observable (it is also known as state or signal), but
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investors have access to the values of another stochastic process S, providing noisy informa-
tion about the value of the firm, that can be thought, for example, as the price of an asset
issued by the firm.
This observation process follows a diffusion of the type{

dSt = St
[
ψ(Vt)dt+ ν(t)dWt + δ(t)dW̄t

]
,

S0 = s0,
(1.2.2)

where ψ is locally bounded and Lipschitz, ν and δ are bounded deterministic continuous
functions and W̄ is a one-dimensional Brownian motion independent of W . Note that
in this model the return on S is a (nonlinear) function of V affected by a noise. A key
observation here concerns the volatility of S, that cannot be a function of V : otherwise we
would be able, under suitable regularity properties of this function, to obtain estimations
of the firm’s value from the market observations of the quadratic variation of S. Finally,
following a structural approach, we define the default of the company as

τ := inf {t ≥ 0 : Vt ≤ a} , (1.2.3)

where as usual inf ∅ = +∞ and for a given constant parameter a ∈ R, 0 < a < v0.
In numerical examples we will consider models where Vt ∈ (0,+∞) (eventually by stop-

ping the process V at the default time τ by considering the process (Vt∧τ )t≥0).
We will deal with two different filtrations, representing different levels of information

available to agents in the market and we suppose that they satisfy the usual hypotheses: a
filtered probability space (Ω,F , (Ft)t≥0,P) satisfies the usual hypotheses if F0 contains all
the P-null sets and if the filtration is right-continuous.

The first and basic information set is the “default-free” filtration, the one generated by
the observation process S, that we will denote, for each t ≥ 0,

FSt := σ(Ss, 0 ≤ s ≤ t)

and the second one is the full information filtration (Gt)t≥0, i.e., the information available
for example to a small number of stock holders of the company, who have access to S and
V at each time t. In our case, the full information filtration is the one generated by the
stochastic pair process (W, W̄ ). In conclusion we have

FSt ( Gt, ∀ t ≥ 0,

and we observe that the following immersion property holds (see Coculescu, Geman and
Jeanblanc [7], Proposition 3.1, for an analogous analysis):

Lemma 1.2.1. Any (FSt )t-local martingale is a (Gt)t-local martingale. We will say that
filtration (FSt )t is immersed in the full filtration (Gt)t.
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Suppose now that a finite time horizon T is fixed. For a given s, 0 ≤ s < T , we observe
the process S from 0 to s. At time s, if the firm has already defaulted we do nothing.
Otherwise (i.e., on the set {τ > s}), we invest in derivatives issued by the firm and we are,
then, interested in computing the following quantity, for a given t, s < t < T ,

11{τ>s}P
(

inf
s≤u≤t

Vu > a
∣∣∣FSs ) . (1.2.4)

This is the conditional survival probability of the firm up to time t, given the collected
information on S up to time s, on the even {τ > s}. We will see in Section 1.6 how this
quantity plays a fundamental role (if computed under a pricing measure) in the computation
of credit spreads for zero coupon bonds.

1.2.1 Reduction to a nonlinear filtering problem

Using the law of iterated conditional expectations, the Markov property of V and the
independence between W and W̄ , we find, for each (s, t) ∈ R+ × R+, s ≤ t,

P
(

inf
s≤u≤t

Vu > a
∣∣∣FSs ) = E

[
P
(

inf
s≤u≤t

Vu > a
∣∣∣Gs) ∣∣∣FSs ]

= E
[
P
(

inf
s≤u≤t

Vu > a
∣∣∣Vs) ∣∣∣FSs ]

= E
[
F (s, t, Vs)|FSs

]
, P−a.s. (1.2.5)

where, for every x ∈ R,

F (s, t, x) := P
(

inf
s≤u≤t

Vu > a
∣∣∣Vs = x

)
. (1.2.6)

Finally,

(P1) if we compute F (s, t, x) for every x ∈ R, which is now a conditional survival proba-
bility given the full information filtration, and

(P2) if we obtain the filter distribution at time s, ΠVs|FSs , i.e., the conditional distribution
of Vs given FSs ,

then we are done, since it suffices to compute the integral

E
[
F (s, t, Vs)|FSs

]
=

∫ ∞
−∞

F (s, t, x)ΠVs|FSs (dx)

=

∫ ∞
a

F (s, t, x)ΠVs|FSs (dx).

It remains to solve the two “intermediate problems” (P1) and (P2). Let us consider first
problem (P2).
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1.3 Approximation of the filter by optimal quantization

We recall in what follows some facts about optimal vector quantization.

1.3.1 A brief overview on optimal quantization

Consider an Rd-valued random variable X defined on a probability space (Ω,A,P) with
finite r-th moment and probability distribution PX . Quantizing X on a given grid Γ =

{x1, · · · , xN} consists in projecting X on the grid Γ following the closest neighbor rule. The
induced mean Lr-error (r > 0)

‖X − ProjΓ(X)‖r = ‖ min
1≤i≤N

|X − xi|‖r,

where ||X||r := [E(|X|r)]1/r is called the Lr-mean quantization error and the projection of
X on Γ, ProjΓ(X), is called the quantization of X. As a function of the grid Γ the Lr-mean
quantization error is continuous and reaches a minimum over all the grids with size at most
N . A grid Γ? minimizing the Lr-mean quantization error over all the grids with size at
most N is called an Lr-optimal quantizer (of size N).

Moreover, the Lr-mean quantization error goes to 0 as the grid size N → +∞ and the
convergence rate is ruled by the Zador theorem:

min
Γ, |Γ|=N

‖X − ProjΓ(X)‖r = Qr(PX)N−1/d + o
(
N−1/d

)
,

where Qr(PX) is a nonnegative constant. We shall say no more about the basic results on
optimal vector quantization. For a complete background on this field we refer to Graf and
Luschgy [17].

The first application of optimal quantization methods to numerical probability appears
in Pagès [24]. It consists in estimating Ef(X) (it may also be a conditional expectation) by

Ef
(
ProjΓ?(X)

)
=

N∑
i=1

f(x?,i) pi (1.3.1)

where Γ? = {x?,1, · · · , x?,N} is an Lr-optimal grid for X and pi = P
(
ProjΓ?(X) = x?,i

)
.

The induced quantization error estimate depends on the regularity of the function f .

• If f : Rd 7→ R is Lipschitz continuous and r ≥ 2, introducing [f ]Lip := supx 6=y
|f(x)−f(y)|
|x−y| ,

then

|Ef(X)− Ef
(
ProjΓ?(X)

)
| ≤ E|f(X)− f

(
ProjΓ?(X)

)
|

≤ [f ]Lip‖X − ProjΓ?(X)‖1
≤ [f ]Lip‖X − ProjΓ?(X)‖2.

• If the derivative Df of f is Lipschitz and r ≥ 2, then, for any optimal grid Γ?, we have

|Ef(X)− Ef
(
ProjΓ?(X)

)
| ≤ [Df ]Lip‖X − ProjΓ?(X)‖22.
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How to numerically compute the quadratic optimal quantizers or Lr-optimal (or sta-
tionary) quantizers in general, the associated weights and Lr-mean quantization errors is an
important issue from the numerical point of view. Several algorithms are used in practice.
In the one dimensional framework, the Lr-optimal quantizers are unique up to the grid size
as soon as the density of X is strictly log-concave. In this case the Newton algorithm is a
commonly used algorithm to carry out the Lr-optimal quantizers when closed or semi-closed
formulas are available for the gradient (and the hessian matrix).

When the dimension d is greater than 2 the Lr-optimal grids are not uniquely deter-
mined and all Lr-optimal quantizers search algorithms are based on zero search recursive
procedures like Lloyd’s I algorithms (or generalized Lloyd’s I algorithms which are the natu-
ral extension of the quadratic case), the Competitive Learning Vector Quantization (CLVQ)
algorithm (see Gersho and Gray [11]), stochastic algorithms (see Pagès [25] and Pagès and
Printems [27]), etc. From now on we consider quadratic optimal quantizers.

1.3.2 General results on discrete time nonlinear filtering

For an overview on nonlinear filtering problems in interest rate and credit risk models we
refer to Frey and Runggaldier [10] and references therein and, focusing on filtering theory
in credit risk, we also have to mention the seminal papers Kusuoka [20] and Nakagawa [23].

We consider a general discrete time setting, in which we recall the relevant formulas
and the desired approximation of the filter (see, e.g., Pagès and Pham [26] and Pham,
Runggaldier and Sellami [29] for a detailed background). We introduce a probability space
(Ω,A,P) (notice that P is not the same measure we considered in Section 1.2, but for
simplicity we will use the same notation) and we suppose that:

• the signal process (Xk)k∈N is a finite-state Markov chain with state space E, with
known probability transition, from time k − 1 to time k, Pk(xk−1, dxk), k ≥ 1, and
given initial law µ;

• the observation process is an Rq-valued process (Yk)k∈N such that Y0 = y0 and the
pair (Xk, Yk)k∈N is a Markov chain.

Furthermore, we suppose that for all k ≥ 1

(H) the law of Yk conditional on (Xk−1, Yk−1, Xk) admits a density

yk 7→ gk(Xk−1, Yk−1, Xk, yk),

so that the probability transition of the Markov chain (Xk, Yk)k∈N is given by
Pk(xk−1, dxk)gk(xk−1, yk−1, xk, yk)dyk, with initial law µ(dx0)δ0(dy0).
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In this discrete time setting we are interested in computing conditional expectations of
the form

ΠY,nf := E [f(Xn)|Y1, . . . , Yn] ,

for suitable functions f defined on E, i.e., we are interested in computing at some time n the
law ΠY,n of Xn given the past observation Y = (Y1, . . . , Yn). Having fixed the observation
Y = (Y1, . . . , Yn) = (y1, . . . , yn) =: y we will write Πy,n instead of ΠY,n.

It is evident that, in the case when the state space of the signal consists of a finite
number of points, the filter is characterized by a finite-dimensional vector: if for example
each Xk takes values in a set {x1

k, . . . , x
Nk
k } (as in the case where we quantize a process

X at discrete times tk, k = 0, · · · , n with grids of size Nk), then the discrete time filter
distribution at time tk will be fully determined by the Nk-vector with components

Πi
Y,k = P

(
Xk = xik|Y1, . . . , Yk

)
, i = 1, . . . , Nk.

It is for this reason that, following Pagès and Pham [26], we apply optimal quantization
results in order to obtain a spatial discretization, on a grid Γk = {x1

k, . . . , x
Nk
k }, of the state

Xk, k = 0, . . . , n, and we characterize the filter distribution by means of the finite number
of points {x0, x

1
1, . . . , x

N1
1 , x1

2, . . . , x
N2
2 , . . . , x1

n, . . . , x
Nn
n } making up the grids (Γk)k.

In what follows we recall the basic recursive filtering equation, that we will use in our
numerics to approximate the filter. By applying the Markov property of X and (X,Y ) and
Bayes’ formula, we find:

Πy,nf =
πy,nf

πy,n11
, (1.3.2)

where πy,n is the un-normalized filter, defined by

πy,nf =

∫
· · ·
∫
f(xn)µ(dx0)

n∏
k=1

gk(xk−1, yk−1, xk, yk)Pk(xk−1, dxk). (1.3.3)

Equivalently, we recall the following recursive formula, that can be directly obtained as well
by applying Bayes’ formula and the Markov property:

Πy,k(dxk) ∝
∫
gk(xk−1, yk−1, xk, yk)Pk(xk−1, dxk)Πy,k−1(dxk−1),

where now y in Πy,k−1 represents the realization of the vector (Y1, . . . , Yk−1) and we do not
have equality because we need to re-normalize.
Now for any k ∈ {1, · · · , n} note that

πy,kf = E
(
f(Xk)

k∏
i=1

gi(Xi−1, yi−1, Xi, yi)
)
.
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Therefore, introducing the natural filtration of X, (FXk )k∈N, we have

πy,kf = E

(
E
(
f(Xk)

k∏
i=1

gi(Xi−1, yi−1, Xi, yi)|FXk−1

))

= E

(
E
(
f(Xk)gk(Xk−1, yk−1, Xk, yk)|FXk−1

) k−1∏
i=1

gi(Xi−1, yi−1, Xi, yi)

)

= E

(
Hy,k(f(Xk−1))

k−1∏
i=1

gi(Xi−1, yi−1, Xi, yi)

)
, (1.3.4)

where Hy,k, k = 1, . . . , n, is a family of bounded transition kernels defined on bounded
measurable functions f : E → R by:

Hy,kf(xk−1) := E [f(Xk)gk(xk−1, yk−1, Xk, yk)|Xk−1 = xk−1]

=

∫
f(xk)gk(xk−1, yk−1, xk, yk)Pk(xk−1, dxk), (1.3.5)

with xk−1 ∈ E. Furthermore, for every x ∈ E, we have

Hy,0f(x) := πy,0f = E [f(X0)] =

∫
f(x0)µ(dx0).

It follows, then, from (1.3.4) that

πy,kf = πy,k−1Hy,kf, k = 1, . . . , n, (1.3.6)

so that we finally obtain the recursive expression

πy,n = Hy,0 ◦Hy,1 ◦ · · · ◦Hy,n.

1.3.3 Estimation of the filter and related error

The estimation of the filter by optimal quantization is already studied in Pagès and
Pham [26] and in Sellami [31]. It consists first in quantizing for every time step k the
random variable Xk by considering

X̂k = ProjΓk(Xk), k = 0, · · · , n, (1.3.7)

where Γk is a grid of Nk points xik, i = 1, · · · , Nk to be optimally chosen and where ProjΓk
denotes the closest neighbor projection on the grid Γk.
Owing to Equation (1.3.6) our aim is to estimate the filter using an approximation of the
probability transition Pk(xk−1, dxk) of Xk given Xk−1. These transition probabilities are
approximated by the probability transition matrix p̂k := (p̂ijk ) of X̂k given X̂k−1:

p̂ijk = P(X̂k = xjk|X̂k−1 = xik−1), i = 1, · · · , Nk−1, j = 1, · · · , Nk. (1.3.8)
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Then, following Equation (1.3.5), being the observation y := (y0, · · · , yk) fixed, the transi-
tion kernel matrix Hy,k is estimated by the quantized transition kernel Ĥy,k

Ĥy,k =

Nk∑
j=1

Ĥ ij
y,kδxik−1

, i = 1, · · · , Nk−1, k = 1, · · · , n,

where
Ĥ ij
y,k = gk(x

i
k−1, yk−1, x

j
k, yk)p̂

ij
k , i = 1, · · · , Nk−1, j = 1, · · · , Nk

and where the xjk’s, j = 1, · · · , Nk are the (quadratic) optimal quantizers of Xk. The initial
kernel matrix Hy,0 is estimated by

Ĥy,0 =

N0∑
i=1

P(X̂0 = xi0) δxi0
.

This leads to the following forward induction to approximate πy,n:

π̂y,0 = Ĥy,0, π̂y,k = π̂y,k−1Ĥy,k, k = 1, · · · , n, (1.3.9)

or, equivalently,  π̂y,0 = Ĥy,0

π̂y,k =
(∑Nk−1

i=1 Ĥ ij
y,kπ̂

i
y,k−1

)
j=1,··· ,Nk

, k = 1, · · · , n.

Finally, the filter approximation at time tn is

Π̂y,nf =
π̂y,nf

π̂y,n11
. (1.3.10)

In order to have some upper bound of the quantization error estimate of Πy,nf by Π̂y,nf

let us make the following assumptions.

(A1) The transition operators Pk(x, dy) of Xk given Xk−1, k = 1, · · · , n are Lipschitz.

Recall that a probability transition P on E is C-Lipschitz (with C > 0) if for any
Lipschitz function f on E with ratio [f ]Lip, Pf is Lipschitz with ratio [Pf ]Lip ≤ C[f ]Lip.
Then, one may define the Lipschitz ratio [P ]Lip by

[P ]Lip = sup
{ [Pf ]Lip

[f ]Lip
, f a nonzero Lipschitz function

}
< +∞.

If the transition operators Pk(x, dy), k = 1, · · · , n are Lipschitz, it follows that

[P ]Lip := max
k=1,··· ,n

[Pk]Lip < +∞.
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(A2) (i) For every k = 1, · · · , n, the functions gk (recall hypothesis (H)) are bounded on
E × Rq × E × Rq and we set

Kn
g := max

k=1,··· ,n
‖gk‖∞.

(ii) For every k = 1, · · · , n, there exist two positive functions [g1
k]Lip and [g2

k]Lip

defined on Rq × Rq so that for every x, x′, x̂, x̂′ ∈ E and y, y′ ∈ Rq,

|gk(x, y, x′, y′)− gk(x̂, y, x̂′, y′)| ≤ [g1
k]Lip(y, y

′) |x− x̂|+ [g2
k]Lip(y, y

′) |x′ − x̂′|.

The following result gives the error bound of the estimation of the filter (see Pagès and
Pham [26] Theorem 3.1, for details of the proof).

Theorem 1.3.1. Suppose that Assumptions (A1) and (A2) hold true. For every bounded
Lipschitz function f on E and for every n-tuple of observations y = (y1, · · · , yn), we have
for every p ≥ 1,

|Πy,nf − Π̂y,nf | ≤
Kn
g

φn(y) ∨ φ̂n(y)

n∑
k=0

Bn
k(f, y, p) ‖Xk − X̂k‖p (1.3.11)

with
φn(y) := πy,n1, φ̂n(y) := π̂y,n1

and

Bn
k(f, y, p) := (2− δ2,p)[P ]n−kLip [f ]Lip + 2

(
‖f‖∞
Kg

(
[g1
k+1]Lip(yk, yk+1) + [g2

k]Lip(yk−1, yk)
)

+ (2− δ2,p)
‖f‖∞
Kg

n∑
j=k+1

[P ]j−k−1
Lip

(
[g1
j ]Lip(yj−1, yj) + [P ]Lip[g

2
j ]Lip(yj−1, yj)

))
.

(Convention: g0 = gn+1 ≡ 0 and δn,p is the usual Kronecker symbol).

Remark 1.3.1. Concerning the above Lp-error bounds, notice that in the quadratic case
(p = 2) the coefficients Bn

k are smaller than in the L1 case, even if the L1 quantization error
is smaller than the quadratic quantization error.

1.3.4 Application to the estimation of ΠVs|FSs

We focus now on solving problem (P2) and, in order to obtain the discrete time
approximation of the desired filter ΠVs|FSs at time s, we fix a time discretization grid
t0 = 0 < · · · < tn = s in the interval [0, s] and we apply the results in the previous
subsections by working with the corresponding quantized process V̂ (we identify X with V
and Y with S). From now on (Vk)k=0,··· ,n, will denote either the continuous time process V
taken at discrete times tk, k = 0, · · · , n, or the discrete time Euler scheme relative to V .

First of all, let us make the following remark concerning the conditional law of St given
((Vu)u∈[s,t], Ss). This will ensure that in our case Hypothesis (H) is verified.
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Remark 1.3.2. Let s ≤ t. Using the form of the solution to the SDE (1.2.2)

St = Ss exp

(∫ t

s

(
ψ(Vu)− 1

2
(ν2(u) + δ2(u))

)
du+

∫ t

s
ν(u)dWu +

∫ t

s
δ(u)dW̄u

)
,

we notice that
L
(
St|(Vu)s≤u≤t, Ss

)
= LN(ms,t;σ

2
s,t), (1.3.12)

where

ms,t = log(Ss) +

∫ t

s

(
ψ(Vu)− 1

2
(ν2(u) + δ2(u))− ν(u)

b(u, Vu)

σ(u, Vu)

)
du+

∫ t

s

ν(u)

σ(u, Vu)
dVu

and

σ2
s,t =

∫ t

s
δ2(u)du.

LN(m;σ2) stands for the lognormal distribution with mean m and variance σ2.

Now, suppose that we temporarily have a time discretization grid from 0 to t: u0 =

0 < u1 < · · · < um = t. For m large enough we can estimate the mean and the variance
appearing in Equation (1.3.12) by using an Euler scheme. When the estimations of the
mean ms,t and variance σ2

s,t between two discretization steps are respectively denoted by
mk and σ2

k and we have:

L
(
Sk|Vk−1, Sk−1, Vk

)
= LN(mk;σ

2
k) (1.3.13)

with

mk = logSk−1 +

(
ψ(Vk−1)− 1

2

(
ν2(uk−1) + δ2(uk−1)

)
− ν(uk−1)

b(uk−1, Vk−1)

σ(uk−1, Vk−1)

)
∆k

+
ν(uk−1)

σ(uk−1, Vk−1)
∆Vk

and
σ2
k = δ2(uk−1)∆k,

where Sk := Suk , Vk := Vuk , ∆Vk = Vk − Vk−1, ∆k = uk − uk−1. So, the law of Sk
conditional on (Vk−1, Sk−1, Vk) admits the density (i.e., Hypothesis (H) is fulfilled)

gk(Vk−1, Sk−1, Vk, x) =
1

σkx
√

2π
exp

(
− 1

2σ2
k

(log x−mk)
2

)
, x ∈ (0,+∞). (1.3.14)

Remark 1.3.3. (a) In the case where{
dVt = µVtdt+ σVtdWt, V0 = v0,
dSt = rStdt+ σStdWt + δStdW̄t, S0 = s0,

we directly deduce from Remark 1.3.2 that, for every s ≤ t,

L
(
St|(Vu)s≤u≤t, Ss

)
= LN

(
log
(SsVt
Vs

)
+
(
r − µ− 1

2
(σ2 + δ2)

)
(t− s); δ2(t− s)

)
.
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(b) (About the transition probabilities in Equation (1.3.8)) In a general setting the transition
probabilities

p̂ijk = P(V̂k = vjk|V̂k−1 = vik−1), i = 1, · · · , Nk−1, j = 1, · · · , Nk,

where {vqp, p = 0, · · · , n; q = 1, · · · , Np} are the quadratic optimal quantizers of the process
V , can be estimated by Monte Carlo. However, in some specific cases the continuous time
transition densities p(s, t, x, dy) := P(Vt ∈ dy|Vs = x), 0 ≤ s < t, are explicitly obtained as
solutions to the Kolmogorov equations. For example in the case of item (a) of the remark,

p(s, t, x, dy) =
1

σy
√

2π(t− s)
e
− 1

2σ2(t−s)

[
log
(
y
x

)
−
(
µ−σ

2

2

)
(t−s)

]2
dy. (1.3.15)

This density can also be derived from the explicit form of V . In such situations, the p̂ijk ’s
are estimated from the p(tk−1, tk, v

i
k−1, dy).

Once problem (P2) solved, owing to Equation (1.2.5) we use optimal quantization to
estimate the P

(
infs≤u≤t Vu > a|FSs

)
on the set {τ > s} by

Nn∑
i=1

F (s, t, vin) Π̂i
y,n, (1.3.16)

where vin, i = 1, · · · , Nn is the quadratic optimal grid of the process V at time tn = s, Π̂i
y,n

is the i-th coordinate of the optimal filter Π̂y,n given in (1.3.10) and, for every i, F (s, t, vin)

is defined as in (1.2.6). Note that this last function has in general no explicit expression. In
such case, we will estimate it by Monte Carlo as specified in the next section.

1.4 Approximation by Monte Carlo of survival probabilities
under full information

The aim of this section is to solve problem (P1), i.e., to compute, for each pair of positive
values (s, t), s ≤ t ≤ T ,

P
(

inf
s≤u≤t

Vu > a
∣∣∣Vs) = E

(
11{infs≤u≤t Vu>a}|Vs

)
, (1.4.1)

where in our general setting the firm value V follows a priori a diffusion of the type (1.2.1).
Notice that in the specific case where V is a geometric Brownian motion there exists a
closed-formula, that we recall below.
If

dVt = µVtdt+ σVtdWt, V0 = v0,
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then

P
(

inf
s≤u≤t

Vu > a|Vs
)

= Φ(h1(Vs, t− s))−
(
a

Vs

)σ−2(µ−σ2/2)

Φ(h2(Vs, t− s)) (1.4.2)

where

h1(x, u) =
1

σ
√
u

(
log
(x
a

)
+

(
µ− 1

2
σ2

)
u

)
,

h2(x, u) =
1

σ
√
u

(
log
(a
x

)
+

(
µ− 1

2
σ2

)
u

)

and where Φ(x) =
1√
2π

∫ x

−∞
e−u

2/2du is the cumulative distribution function of the stan-

dard Gaussian law. For an overview on the computation of boundary crossing probabilities
see, e.g., Chesney, Jeanblanc and Yor, [6], Borodin and Salminen [4] or Revuz and Yor [30].

Since in general we cannot use directly the result in Equation (1.4.2), we have to resort
to an approximation method. Several techniques can be used to estimate these probabilities,
such as in Kahalé [19], where the crossing probabilities are calculated via Schwartz distribu-
tions in the specific case of drifted Brownian motion and in Linetsky [22] and Linetsky [21],
where the survival probabilities and hitting densities relative to the CIR (Cox-Ingersoll-
Ross), the CEV(Constant Elasticity of Variance) and to the OU (Ornstein-Uhlenbeck) dif-
fusions are expressed as infinite series of exponential densities:

Pv0(τ > t) =

∞∑
n=1

cne
−λnt, t > 0, (1.4.3)

where 0 < λ1 < λ2 < · · · < λn →∞ as n→∞ and (cn)n are explicitly given in terms of the
solution of the Sturm-Liouville equation and the eigenvalues of the Sturm-Liouville problem.
When the basic solutions to the Sturm-Liouville equation are known, this approach provides
efficient estimates of the survival probabilities.

Here, we will adopt the “regular Brownian bridge method”, originally introduced in Baldi
[2]. From the numerical viewpoint, if the exact cn and λn in Equation (1.4.3) can be exactly
computed, Linetsky’s procedure may be more efficient than the “regular Brownian bridge
method” (except in the Black-Scholes setting, see Section 1.6.1). Nevertheless, it will be
more time consuming than the last one since obtaining, e.g., the first one hundred exact
cn’s and λn’s takes “several minutes” (see Linetsky [21]).

In order to find an approximated solution to problem (P1) by means of the regular
Brownian bridge method, we consider the interval [s, t] and we discretize it by means of
u0 = s < u1 < · · · < t = uN . We denote by V̄ the continuous Euler scheme relative to V .
This process is defined by

V̄u = V̄u + b(u, V̄u)(u− u) + σ(u, V̄u)(Wu −Wu), V̄s = vs,
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with u = uk if u ∈ [uk, uk+1), for the given time discretization grid uk := s + k(t−s)
N , k =

0, · · · , N , on the set [s, t].
The regular Brownian bridge method is connected to the knowledge of the distribution of

the minimum (or the maximum) of the continuous Euler scheme V̄ relative to the process V
over the time interval [s, t], given its values at the discrete time observation points s = u0 <

u1 < · · · < uN = t. This distribution is given in the Lemma below (see, e.g., Glasserman
[14]).

Lemma 1.4.1.

L
(

min
u∈[s,t]

V̄u|V̄uk = vk, k = 0, · · · , N
)

= L
(

min
k=0,··· ,N−1

G−1
vk,vk+1

(Uk)
)

(1.4.4)

where (Uk)k=0,··· ,N−1 are i.i.d random variables uniformly distributed over the unit interval
and G−1

x,y is the inverse function of the conditional survival function Gx,y, defined by

Gx,y(u) = exp
(
− 2N

(t− s)σ2(x)
(u− x)(u− y)

)
11{min(x,y)≥u}.

Notice that we have omitted the dependence on time in σ.

We deduce from the previous lemma the following result.

Proposition 1.4.1.

P
(

min
s≤u≤t

V̄u > a
∣∣V̄s) = E

(
N−1∏
k=0

GV̄uk ,V̄uk+1
(a)
∣∣V̄s) .

Proof. We have (recall that V̄s = V̄u0)

P
(

min
s≤u≤t

V̄u > a
∣∣V̄s) = E

(
P
(

min
s≤u≤t

V̄u > a
∣∣V̄uk , k = 0, . . . , N

) ∣∣V̄s)
= E

(
P
(

min
k=0,··· ,N−1

G−1
V̄uk ,V̄uk+1

(Uk) > a

) ∣∣V̄s) .
Since the Uk’s are i.i.d uniformly distributed random variables, we have

P
(

min
s≤u≤t

V̄u > a
∣∣V̄s) = E

(
N−1∏
k=0

P
(
Uk > GV̄uk ,V̄uk+1

(a)
) ∣∣V̄s)

= E

(
N−1∏
k=0

GV̄uk ,V̄uk+1
(a)
∣∣V̄s) ,

which gives the announced result.

By using Proposition 1.4.1, we estimate the survival probability under full information, i.e.,

P
(

inf
s≤u≤t

V̄u > a
∣∣V̄s = v

)
,

by the following Monte Carlo procedure:
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• Time grid specification. Fix u0 = s < u1 < · · · < t = uN , the set of N + 1 points for
the (discrete time) Euler scheme in the interval [s, t];

• Trajectories simulation. Starting from v and having fixed M (number of Monte Carlo
simulations), for j = 1, . . . ,M , simulate the discrete path (V̄ j

uk)k=0,...,N ;

• Computation of the survival probability. For j = 1, . . . ,M , compute (recall that, for
every j, V̄ j

u0 = v)

pjs,t(v; a) :=
N−1∏
k=0

G
V̄ juk ,V̄

j
uk+1

(a). (1.4.5)

• Monte Carlo procedure. Finally, apply the Monte Carlo paradigm and obtain the
following approximating value

P
(

inf
s≤u≤t

V̄u > a
∣∣∣V̄s = v

)
≈
∑M

j=1 p
j
s,t(v; a)

M
. (1.4.6)

As a consequence, combining formulas (1.3.16) and (1.4.6) leads to the following hybrid
Monte Carlo - Optimal quantization formula on the set {τ > s}

P
(

inf
s≤u≤t

Vu > a
∣∣∣FSs ) ≈ 1

M

M∑
j=1

Nn∑
i=1

pjs,t(v
i
n; a) Π̂i

y,n (1.4.7)

where pjs,t(· ; a) was introduced in (1.4.5).

1.5 The error analysis

We now focus on the analysis of the error induced by approximating P
(

inf
s≤u≤t

Vu > a
∣∣∣FSs )

by
1

M

M∑
j=1

Nn∑
i=0

pjs,t(v
i
n; a) Π̂i

y,n.

We distinguish three types of error. The first error is induced by the approximation of
the filter Πy,n, appearing in Equation (1.3.2), by Π̂y,n, defined in (1.3.10). This error was
already discussed in Section 1.3.3 in a general setting. The second one is the error deriving
from the approximation of

P
(

inf
s≤u≤t

Vu > a
∣∣Vs = v

)
by P

(
inf

s≤u≤t
V̄u > a

∣∣V̄s = v

)
,

where V̄ is the (continuous) Euler scheme relative to the process V (in the Black-Scholes
model, there is no need to use an Euler scheme, since Equation (1.2.1) admits an explicit
solution). The last one is the error arising from the approximation of the survival probability
under full information by means of Monte Carlo simulations.
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We now discuss the second and third kinds of error.

� Error induced by the Euler scheme. We here refer to Gobet [15], in which the
author starts by investigating the case of a one-dimensional diffusion and to the successive
related article Gobet [16] for the multidimensional case. In the two papers the considered
diffusion has homogeneous coefficients b and σ. We start by recalling here some important
convergence results we find therein, we will then adapt these results to our case.

Suppose that X is a diffusion taking values in R, with X0 = x, and define τ ′ as the first
exit time from an open set D ⊂ R:

τ ′ := inf {u ≥ 0 : Xu 6∈ D} .

Let τ ′c denotes the exit time from the domain D of the continuous Euler process X̄. In order
to give the error bound in the approximation of Ex

(
11{τ ′>t}f(Xt)

)
by Ex

(
11{τ ′c>t}f(X̄t)

)
the

following hypotheses are needed:

(H1) b is a C∞b (R,R) function and σ is in C∞b (R,R),

(H2) there exists σ0 > 0 such that ∀x ∈ R, σ(x)2 ≥ σ2
0 (uniform ellipticity),

(H3) Px
(
inft∈[0,T ]Xt = a

)
= 0.

The following proposition states that, under Hypothesis (H3), the approximation error goes
to zero as the number of time discretization steps goes to infinity.

Proposition 1.5.1 (Convergence). Suppose that b and σ are Lipschitz, D = (a,+∞) and
that (H3) holds. If f ∈ C0

b (D̄,R) then,

lim
N→+∞

∣∣∣Ex[11{τ ′c>T}f(X̄T )]− Ex[11{τ ′>T}f(XT )]
∣∣∣ = 0.

Note that in the homogeneous case, when D = (a,+∞), a sufficient condition in order for
(H3) to hold is (see Gobet [15], Prop. 2.3.2)

σ(X0) 6= 0. (1.5.1)

On the other hand, the rate of convergence is given by the following

Proposition 1.5.2 (Rate of convergence). Under Hypotheses (H1) and (H2), if f ∈
C1
b (D̄,R), then there exists an increasing function K(T ) such that∣∣∣Ex[11{τ ′c>T}f(X̄T )]− Ex[11{τ ′>T}f(XT )]

∣∣∣ ≤ 1√
N
K(T )||f ||(1)

D ,

where ||f ||(1)
D =

∑1
j=0 supx∈D |f (j)(x)|.
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Remark 1.5.1. It can be noticed, by generalizing the proof of Propositions 2.3.1, 2.4.3 and
2.3.2 in Gobet [15], that the two previous propositions and condition (1.5.1) still hold when
the diffusion coefficients are in-homogeneous, as in our setting, by replacing Hypotheses
(H1), (H2), (H3) by (I) and (J) :

(I) b and σ are C∞b functions with respect to both arguments t and v, with uniformly
bounded partial derivatives with respect to v,

(J) σ is uniformly elliptic, i.e., ∃α > 0 such that σ2(t, v) ≥ α,∀(t, v) ∈ [0, T ] × R and
σ(0, v0) 6= 0.

� Error induced by Monte Carlo approximation. This error comes from the esti-
mation of P

(
mins≤u≤t V̄u > a

∣∣V̄s = vis
)

= E
(∏N−1

k=0 GV̄uk ,V̄uk+1
(a)
∣∣V̄s = vis

)
, for every i =

1, · · · , Ns, by ∑M
j=1 p

j
s,t(v

i
s; a)

M
,

where pjs,t(· ; a) was defined in (1.4.5). We have, for every i = 1, · · · , Ns,

∥∥∥E(N−1∏
k=0

GV̄uk ,V̄uk+1
(a)
∣∣V̄s = vis

)
−
∑M

j=1 p
j
s,t(v

i
s; a)

M

∥∥∥
2

= O
( 1√

M

)
. (1.5.2)

By adapting the previous results to our case, namely by identifying V with X and S

with Y , one deduces an error bound for the estimation of Πy,nF (s, t, ·) by Π̂y,nFMN(s, t, x),
where n is the dimension of the observation vector y (or, equivalently, n+ 1 is the number
of points in the time discretization grid of the interval [0, s]) and where FMN(s, t, x) is a
Monte Carlo estimation of F (s, t, ·) of size M , based on a time discretization grid, between
s and t, of size N + 1. We state, then, the main result of this section.

Theorem 1.5.1. Suppose that the transition operators of Vk given Vk−1, k = 1, . . . , n,
satisfy Assumption (A1) and that the conditional law of Sk given (Vk−1, Sk−1, Vk) admits
a density satisfying (A2). Suppose, furthermore, that the coefficients b and σ of V fulfill
Hypotheses (H1)-(H2). Then

|Πy,nF (s, t, ·)− Π̂y,nFMN(s, t, ·)| ≤
Kn
g

φn(y) ∨ φ̂n(y)

n∑
k=0

Bn
k(F (s, t, ·), y, p) ‖Vk − V̂k‖p

+ O
(

1√
N

)
+O

(
1√
M

)
,

where n is the dimension of the observation vector y, N stands for the size of the time
discretization grid for the Euler scheme from s to t and M is the number of Monte Carlo
trials. Furthermore, Kn

g , φn(y), φ̂n(y) and Bn
k , k = 0, . . . , n, are introduced in Theorem

1.3.1.
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Remark 1.5.2. (About the hypotheses of Theorem 1.5.1) We consider the case when V is
a time homogeneous diffusion.
� Concerning Assumption (A2) (i), the conditional density functions gk given in Equation
(1.3.14) are bounded on R×(0,+∞)×R×(ε,+∞) for every ε > 0. The Lipschitz condition
(A2) (ii) holds.
� If we suppose that the coefficients b and σ of the diffusion V are Lipschitz, we show, by
using the Euler scheme relative to V , that the transition operators Pk defined by Pkf(x) :=

E(f(Vk)|Vk−1 = x), satisfy

|Pkf(x)− Pkf(x′)| ≤ C[f ]Lip|x− x′|

for every Lipschitz function f with Lipschitz constant [f ]Lip. Then Hypothesis (A1) holds
true.
� As concerns the Lipschitz property of the function F (s, t, ·), it follows from Proposition
2.2.1 in Gobet [15], in the case when the coefficients of the diffusion satisfy Hypotheses
(H1) - (H2) and for t > s.

Proof (of Theorem 1.5.1). We have

|Πy,nF (s, t, ·)− Π̂y,nFMN(s, t, ·)| ≤ |Πy,nF (s, t, ·)− Π̂y,nF (s, t, ·)|

+ |Π̂y,nF (s, t, ·)− Π̂y,nFMN(s, t, ·)|.

The error bound of the first term on the right-hand side of the above inequality is given by
Theorem 1.3.1. As concerns the second term, we have

|Π̂y,nF (s, t, ·)− Π̂y,nFMN(s, t, ·)| =
∣∣∣ Ns∑
i=1

Π̂i
y,n(F (s, t, vis)− FMN(s, t, vis))

∣∣∣
≤ sup

v∈R
|F (s, t, v)− FMN(s, t, v)|

Ns∑
i=1

Π̂i
y,n

= sup
v∈R
|F (s, t, v)− FMN(s, t, v)|.

On the other hand, we have for every v ∈ R

|F (s, t, v)− FMN(s, t, v)| ≤
∣∣∣Pv(τ > t)− Ev

(N−1∏
k=0

GV̄uk ,V̄uk+1
(a)
)∣∣∣

+
∥∥∥Ev(N−1∏

k=0

GV̄uk ,V̄uk+1
(a)
)
−
∑M

j=1 p
j
s,t(v; a)

M

∥∥∥
2
.

We then deduce from Proposition 1.5.2 and from Equation (1.5.2) that

|F (s, t, v)− FMN(s, t, v)| ≤ O
(

1√
N

)
+O

(
1√
M

)
,

which completes the proof since the error bounds do not depend on v.
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1.6 Numerical results

In the numerical experiments we deal with the estimation of the credit spread for zero
coupon bonds. For simplicity we suppose that investors are risk neutral, so that here we
directly work under a risk neutral probability Q. We also suppose that the market is
complete (remark that V is not a traded asset, then it will be necessary to complete the
market), i.e., that Q is unique.

In this section S represents the stock price of an asset issued by the firm. We fix s and,
given the observations of S from 0 to s, we estimate the spread curve for different maturities
t (t > s). The credit spread for zero coupon bonds is the difference in yield between a
corporate bond and a risk-less bond (Treasury bond) with the same characteristics. It can
be seen as a measure of the riskiness relative to a corporate bond, with respect to a risk-free
bond. If we suppose for simplicity that the face value is equal to 1 and the recovery rate is
zero, the credit spread under partial information from time s to maturity t, S(s, t), equals
(see, e.g., Bielecki and Rutkowski [3] and Coculescu, Geman and Jeanblanc [7])

S(s, t) = −
log
(
Q(infs<u≤t Vu > a|FSs )

)
t− s

.

This section is divided into two parts. We first focus on simulations: having arbitrarily
fixed the model parameters, we simulate different trajectories of S and we compute, in
two examples, the credit spreads for zero coupon bonds. The second part is devoted to
calibration.

1.6.1 Simulation

We consider two models for the dynamics of the firm value V : the Black-Scholes one
and the CEV (Constant Elasticity of Variance) model. In both cases we fix s = 1 and,
given the simulated trajectory of S from 0 to 1, we estimate the spreads S(1, t) for different
maturities t varying 0.1 by 0.1 from 1.1 to 11 (the time unit is expressed in years).

� The Black-Scholes model. We consider the following model for the firm’s value and the
observed process’ dynamics:{

dVt = Vt(µdt+ σdWt), V0 = v0,
dSt = St(rdt+ σdWt + δdW̄t), S0 = v0,

(1.6.1)

so that
dSt
St

=
dVt
Vt

+ (r − µ)dt+ δdW̄t. (1.6.2)

For simplicity, we set r = µ = 0.03, meaning that the return on S is the return on V affected
by a noise (it is important to note that since V is not traded in the market, the return on
V is not necessarily equal to the interest rate r). The other parameters values are σ = 0.05,
δ = 0.1 and v0 = 86.3. The barrier a is fixed to 76.
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Notice that when V evolves following a Black-Scholes dynamics, the quantization grids
of the firm value process can be derived instantaneously from optimal quadratic functional
quantization grids of the Brownian motion, that can be downloaded from the website
www.quantize.math-fi.com (for more information about functional quantization for nu-
merics see, e.g., Pagès and Printems [28]). This drastically cuts down the computational
cost and allows working with grids of higher size. Furthermore, the transition probabilities
are estimated using Equation (1.3.15) and the survival probabilities F (s, t, vin), i = 1, · · · , Nn

(under Q) in Equation (1.3.16) are computed via Equation (1.4.2). We then obtain a single
spread estimate in one second.

We set the number n of discretization points over [0, s] equal to 50 and for every k =

1, · · · , n, the quantization grid size Nk is set to 966, with N0 = 1. Numerical results are
presented in Figures 1.1 and 1.2. Figure 1.1 is relative to the partial information case,
where three simulated trajectories of the observable process S and the corresponding credit
spreads are depicted. Figure 1.2 treats the full information case, where we suppose that
we directly observe V . In three examples, corresponding to three different trajectories of
V (left hand side of Figure 1.2), we compute the corresponding credit spreads (right hand
side of Figure 1.2).

As a theoretical result, we deduce from (1.6.1) (with µ = r) that

St = Vte
− 1

2
δ2t+δW̄t .

The correlation coefficient is, then, given for every t ≥ 0 by

ρ(t) :=

√
eσ2t − 1

e(σ2+δ2)t − 1
,

meaning that the firm value V is positively correlated to the observation process S. Notice
that when σ < δ, ρ(t) is a strictly decreasing function that goes to 0 as t goes to infinity.
This tells us that the a posteriori information on V given S decreases as the maturity t
increases. This is what we observe in the spreads’ curves from Figure 1.1 and Figure 1.2,
since for large maturities the spreads values almost coincide for analogous trajectories (e.g.,
for trajectories SU and VU).

Looking at the figures, first of all, we notice that the short term spreads under partial
information (Figure 1.1), being the default time totally inaccessible, do not vanish, as it is
the case in the full information model. Moreover, since Vt and St are positively correlated,
it is expected that the more the trajectory of S behaves “badly”, the higher the short term
spreads are, as shown in Figure 1.1.

In the full information setting (Figure 1.2), on the other hand, the short term spreads
are always equal to zero, but in “bad” situations (for example in the case of trajectory VD on
the left-hand side of Figure 1.2) the medium term spreads can be higher than in the partial
information model.
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Figure 1.1: Three trajectories of the observed process S (on the left) and the corresponding spreads
(on the right).
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Figure 1.2: Three trajectories of the value process in the full information case (on the left) and the
corresponding spreads (on the right).
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� The CEV model. We suppose now that the firm’s value and the observed process’ dy-
namics are given by {

dVt = Vt(µdt+ γV β
t dWt), V0 = v0,

dSt = St(rdt+ σdWt + δdW̄t), S0 = v0,
(1.6.3)

where µ = r = 0.03, γ = 744.7 (it is chosen so that the initial volatility equals 0.10),
β = −2 (notice that in this case one of the characteristics of the model is the leverage
effect: a firm’s value process increase implies a decrease in the variance of the price process’
return), σ = 0.05, δ = 0.1, v0 = 86.3. The barrier a is set here to be equal to 79.

For numerics, the number n of discretization points over [0, s] equals 50 and, for every
k = 1, · · · , n, the quantization grid size Nk is set to 60, with N0 = 1. Here, since we cannot
obtain the quantization grids from the ones of the Brownian motion, we obtain the optimal
grids by carrying out 80 Lloyd’s I procedures. The number of Euler time discretization steps
N equals 50 for t varying 0.1 by 0.1 from 1.1 to 3.0 and N is set to N = 100 for t varying
0.1 by 0.1 from 3.1 to 11.0. The number of Monte Carlo trials M is set to 100000.

Numerical results are presented in Figure 1.3, where three simulated trajectories of the
observable process S and the corresponding spreads are depicted. We first notice that the
spreads in this example are higher than the ones in the previous example. This is due to
the fact that in this case the observed process S is more volatile, as it can be seen from
Figure 1.3, compared to Figure 1.1.

Secondly, we remark, as in the previous example, that the more the trajectory of S
behaves “badly”, the higher the short term spreads are, as shown in Figure 1.3 on the right.

Moreover, notice that the spread curves corresponding to the two worst S trajectories
seem to cross, however a zoom in the graph shows that it is not the case and that the spreads
curve for SD CEV is always above the one for SM CEV. This can be explained by noticing that
the model we use keeps the memory of all the observed path and that the trajectory SD CEV

is globally worse than the trajectory SM CEV.

Remark 1.6.1. (a) The most important fact from the numerical point of view is that, as
soon as the process V is quantized over [0, s], the survival probability Q(infs≤u≤t Vu > a|FSs )

is estimated for every maturity t > s without modifying the optimal quantization grid of
V .
(b) As expected, in both the Black-Scholes and the CEV models, numerical tests confirm
that the spread increases as the barrier a (a < v0) tends to v0.

1.6.2 Calibration issues

For calibration to real data, we consider the Black-Scholes model{
dVt = Vt(µdt+ σdWt), V0 = v0,
dSt = St(rdt+ σdWt + δdW̄t), S0 = s0,

(1.6.4)
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Figure 1.3: Three trajectories of the observed process S in the CEV model (on the left) and the
corresponding spreads (on the right).

even if the methodology presented below may be applied to other models. The calibra-
tion has been done in two steps. The first step, related to the “learning phase”, consists
in calibrating the parameters of the stock price S in the observation interval [0, s]. The
remaining parameters are, then, calibrated from the market data for credit spreads. Re-
call that the quantization grids of the firm value process can be derived from the optimal
quadratic functional quantization grids of the Brownian motion.

� Calibration of S’s parameters. We work on JP Morgan weekly stock prices data (avail-
able on the website www.finance.yahoo.com/) for the period 03/22/2009 - 03/22/2010,
corresponding in our setting to the observation time interval [0, s] with s = 1. The data set
is of size 53 (see Figure 1.5 on the left) and each considered stock price Si, i = 0, · · · , 52,
is computed as the average between the bid and ask prices. The considered interest rate
r = 0.51% is obtained as the average of the three-months U.S. Libor rates in the period
March 2009 - March 2010. Given the above model for S, one can estimate the parameter
θ :=

√
σ2 + δ2 using elementary statistical theory. The obtained estimation θ̂ from real data

is θ̂ = 0.2496.

Before dealing with the second step of the calibration we study the impact of the noise
parameter δ ∈ (0, θ̂) on the credit spread

(
once δ is fixed, σ =

√
θ̂2 − δ2

)
. For this purpose,

we set µ = r to have
dSt
St

=
dVt
Vt

+ δdW̄t. (1.6.5)

We plot in Figure 1.4 the term structure of credit spread S(1, t) for t varying 0.1 by 0.1

from 1.1 to 6 and for δ = {0.05, 0.10, 0.15, 0.20}. The considered values for v0 and a are
v0 = 2, 079, 188, 000$ and a = 1, 908, 994, 000$. They represent, respectively, the total assets
value and the total liabilities balance sheet value of the firm at the end of March 2009 (both
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available on www.finance.yahoo.com/). In this numerical implementations we have set the
number of discretization points over [0, 1] to 53 and the quantization grid size Nk = 966,
for k = 1, · · · , 53 and N0 = 1. Numerical results show that the spreads increase as the noise
parameter δ increases. This intuitively comes from Equation (1.6.5), since the more δ is
large, the more the information on S is noisy and so the higher is the risk perception of the
investor. Moreover, for small values of δ (as, for example, for δ = 0.05), the term structure
of credit spread has a form similar to the one we found in the complete information case
(see Figure 1.2). Then, varying δ may allow us to obtain a rich set of different forms of the
credit spread term structure.

We now focus on the calibration to real data.
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Figure 1.4: Spreads computed with different values of δ.

� Calibration. As previously remarked, the parameters values v0 and a are known and
they correspond to the total assets value and to the total liabilities value of the firm at the
end of March 2009, namely v0 = 2, 079, 188, 000$ and a = 1, 908, 994, 000$. Furthermore,
we set the initial stock price value and the interest rate to, respectively, s0 = 27, 365 and
r = 0.51%.

We calibrate µ and δ on the credit spreads (for zero coupon bonds) market data, that
is, given a set of credit spreads data {sti , i = 1, · · · , 4}, at time s = 1 and for different
maturities t1 = 7/12; t2 = 11/12; t3 = 1; t4 = 13/12, we find (µ?, δ?) that minimize the
quadratic error

4∑
i=1

(
S(1, ti)− sti

)2
.

The market data {sti , i = 1, · · · , 4} are obtained as the difference between riskless Treasury
bond yields and JP Morgan zero coupon bonds (Medium Term Note zero coupon SER E
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principal protected bond) yields. Since there is a mismatch between the maturities of corpo-
rate and Treasury bonds in the sample, we interpolate the riskless yields in order to have a
continuum of maturities and we compute the spreads for all the ti’s. For the calibration we
restricted our attention to the domain [−0.1, 0.1]× [0.01, 0.1]. The optimal values obtained
are (µ?, δ?) = (0.03, 0.075) and the corresponding credit spread term structure over three
years is depicted in Figure 1.5, right-hand side. The quadratic error equals 3.5 × 10−3.
Notice that the most challenging task in the calibration phase is the collection of real data,
because zero coupon corporate bond prices at a fixed time s, issued by the same firm and
with identical features, are only given for a small number of different maturities t > s. This
is why the used set of data is of small size.
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Figure 1.5: JP Morgan weekly stock prices over the period 03/22/2009 - 03/22/2010 (on the
left) and corresponding credit spreads curve over three years obtained for (µ?, δ?) = (0.03, 0.075)
calibrated to market data (black square dots).

38



Bibliography

[1] A. Bain and D. Crişan. Fundamentals of stochastic filtering. Springer, 2009.

[2] P. Baldi. Exact asymptotics for the probability of exit from a domain and applications
to simulations. The Annals of Applied Probability, 23(4):1644–1670, 1995.

[3] T.R. Bielecki and M. Rutkowski. Credit Risk: Modeling, Valuation and Hedging.
Springer Finance. Springer, 2004.

[4] A.N. Borodin and P. Salminen. Handbook of Brownian motion - Facts and Formulae,
2nd edition. Birkhauser-Verlag, 2002.

[5] U. Cetin, R. Jarrow, P. Protter, and Y. Yildirim. Modeling credit risk with partial
information. The Annals of Applied Probability, 14(3):1167–1178, 2004.

[6] M. Chesney, M. Jeanblanc, and M Yor. Mathematical Methods for Financial Markets.
Springer, 2009.

[7] D. Coculescu, E. Geman, and M. Jeanblanc. Valuation of Default Sensitive Claims
under Imperfect Information. Finance and Stochastics, 12(2):195–218, 2008.

[8] C. Cudennec. Evaluation de Dette Risquée en information imparfaite. PhD thesis,
ENSAE, 1999.

[9] D. Duffie and D. Lando. Term Structures of Credit Spreads with Incomplete Accounting
Information. Econometrica, 69(3):633–664, 2001.

[10] R. Frey and W.J. Runggaldier. Nonlinear filtering in models for interest rate and credit
risk. Oxford University Press, 2009.

[11] A. Gersho and R. Gray. Vector Quantization and Signal Compression. Boston: Kluwer
Academic Press., 1992.

[12] K. Giesecke. Default and information. Journal of Economic Dynamics and Control,
30(11):2281–2303, 2006.

[13] K. Giesecke and L. Goldberg. Forecasting default in the face of uncertainty. Journal
of Derivatives, 12(1):14–25, 2004.

39



[14] P. Glasserman. Monte Carlo Methods in Financial Engineering. Springer-Verlag: New
York, 2003.

[15] E. Gobet. Schémas d’Euler pour diffusion tuée. Application aux options barrière. PhD
thesis, Université Paris VII, 1998.

[16] E. Gobet. Weak approximation of killed diffusion using Euler schemes. Stochastic
Processes and their Applications, 87:167–197, 2000.

[17] S. Graf and H. Luschgy. Foundations of Quantization for Probability Distributions,
volume 1730 of Lecture Notes in Mathematics. Springer, 2000.

[18] R.A. Jarrow and P. Protter. Structural versus reduced form models: a new information
based perspective. Journal of investment management, 2(2):1–10, 2004.

[19] N. Kahalé. Analytic crossing probabilities for certain barriers by Brownian motion.
Preprint, 2007.

[20] S. Kusuoka. A remark on default risk models. Advances in Mathematical Economics,
1:69–82, 1999.

[21] V. Linestky. Computing hitting time densities for CIR and OU diffusions: applications
to mean-reverting models. 2004.

[22] V. Linestky. The spectral decomposition of the option value. International Journal of
Theoretical and Applied Finance, 7(3):337–384, 2004.

[23] H. Nakagawa. A Filtering Model on Default Risk. J. Math. Sci. Univ. Tokyo, 8(1):107–
142, 2001.

[24] G. Pagès. A space vector quantization method for numerical integration. Journal of
Computational and Applied Mathematics, 89:1–38, 1998.

[25] G. Pagès. Introduction to numerical probability for finance. 2008.

[26] G. Pagès and H. Pham. Optimal quantization methods for nonlinear filtering with
discrete time observations. Bernoulli, 11(5):893–932, 2005.

[27] G. Pagès and J. Printems. Optimal quadratic quantization for numerics: the Gaussian
case. Monte Carlo Methods and Appl., 9(2):135–166, 2003.

[28] G. Pagès and J. Printems. Functional quantization for numerics with an application
to option pricing. Monte Carlo Methods and Appl., 11(4):407–446, 2005.

[29] H. Pham, W.J. Runggaldier, and A. Sellami. Approximation by quantization of the
filter process and applications to optimal stopping problems under partial observation.
Monte Carlo Methods and Applications, 11:57–82, 2005.

40



[30] D. Revuz and M. Yor. Continuous martingales and Brownian motion, 3rd edition, vol-
ume 293 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles
of Mathematical Sciences]. Springer-Verlag, Berlin, 1999.

[31] A. Sellami. Méthodes de quantification optimale pour le filtrage et applications à la
finance. PhD thesis, Paris: Université Paris Dauphine, 2005.

[32] A. Sellami. Comparative survey on nonlinear filtering methods: the quantization and
the particle filtering approaches. Journal of Statistical Computation and Simulation,
78(2):93–113, 2008.

41



42



Part III

Portfolio optimization in defaultable
markets under incomplete

information

43





Chapter 2

Portfolio optimization in defaultable
markets under incomplete
information

This is a joint work with Prof. M. Jeanblanc and Prof. W.J. Runggaldier.

Abstract: we consider the problem of maximization of expected utility from terminal
wealth in a market model that may be driven by a not fully observable factor process and
that takes explicitly into account the possibility of default for the individual assets as well
as contagion (direct and information induced) among them. It is a multinomial model
in discrete time that allows for an explicit numerical solution. We discuss the solution
within our defaultable and partial information setup, in particular we study its robustness.
Numerical results are derived in the case of a log-utility function and they can be analogously
obtained for a power utility function.

Keywords: Portfolio optimization, partial information, credit risk, dynamic programming
(DP), robust solutions.
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2.1 Introduction

Our study concerns the classical portfolio optimization problem of maximization of ex-
pected utility from terminal wealth when the assets, in which one invests, may default. We
put ourselves in a context where the dynamics of the asset prices are affected by exogenous
factor processes, some of which may have an economic interpretation, some may not but,
most importantly, NOT all of them may be directly observable. In credit risk models factors
are often used to describe contagion: “physical” and “information induced”. Information in-
duced contagion arises due to the fact that the successive updating of the distribution of
the latent (not observable) factors in reaction to incoming default observations leads to
jumps in the default intensity of the surviving firms (this is sometimes referred to as “frailty
approach”, see, e.g., Schönbucher [9]). As shown in Duffie et al. [5], unobservable factor
processes are needed on top of observable covariates in order to explain clustering of de-
faults in historical credit risk data. In general, the formulation of a model under incomplete
information on the factors allows for greater model flexibility, avoids a possible inadequate
specification of the model itself, and the successive updating of the distribution of the un-
observed factors (for constant factors one considers them from the Bayesian point of view
as random variables) allows the model to “track the market” thus avoiding classical model
calibration.

To keep the presentation at a possibly simple level, we shall consider only a single factor
process that is supposed to be non directly observable and the observation history is given,
in addition to the defaults, by the observed asset prices. Furthermore, we shall consider
discrete time dynamics. With respect to continuous time models, this can be justified since
trading actually takes place in discrete time. Moreover, a solution is easier to compute in
discrete time and, while it is more difficult to obtain qualitative results than in continuous
time, once an explicit numerical solution is obtained, one can evaluate its performance also
with respect to alternative criteria via simulation.

The outline of the chapter is as follows. In Section 2.2 we describe our model and
objective. The filter process, which allows for the transition from the partial information
problem to a corresponding one under complete information, is studied in Section 2.3.
Section 2.4 contains the main result on using Dynamic Programming to obtain the optimal
investment strategy; we consider explicitly the log-utility case, but analogous results can
be obtained for other utility functions, in particular power utility. The last Section 2.5
discusses numerical results from simulations that were performed in order to investigate the
effect of shorting as well as the robustness of the optimal strategy obtained for the partial
information problem.
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2.2 The model

Here we describe the model dynamics and the objective for our portfolio optimization.
With a slight abuse of notation, in what follows we will use the subscript n to indicate the
instant tn. All vectors will be row vectors and ′ will indicate transposition.

2.2.1 Model dynamics

Given a discrete time set t0 = 0 < t1 < · · · < tN = T , let us introduce a filtered
probability space (Ω,G,G,P) (G stands for “global filtration” ), where G = (Gn)n and, in
addition to a nonrisky asset with price S0

n, S0
0 = 1 (S0

n is the price at time tn), a set of
M risky assets with prices Smn , m = 1, · · · ,M , that are subject to default, except for the
first one, S1. Both for the applications (generally one invests in a pool of assets containing
at least one non defaultable asset), as well as for formal reasons (see Remark 2.3.2) it
is convenient to consider investment in at least one default-free risky asset. Let τm be
the exogenously given (i.e., independent of any other source of randomness in the market)
default time of the m−th asset and consider the default indicator process

Hn := (H1
n, · · · , HM

n ) , n = 0, · · · , N, (2.2.1)

where
Hm
n := 11{tn≥τm}

is the default indicator for the m−th firm. The possible values of Hn are the M−tuples
hp = (hp,1, · · · , hp,M ) for p = 1, · · · , 2M−1 with hp,m ∈ {0, 1}. Since S1 is assumed to be
default free, we have

H1 ≡ 0.

Furthermore, we arrange the values hp according to a listing

h1, h2, · · · , h2M−1

whereby, typically, h1 = (0, 0, · · · , 0) and h2M−1
= (0, 1, · · · , 1).

We now let the dynamics of the asset prices be given by
S0
n+1 = S0

n(1 + rn) (typically rn ≡ r)

Smn+1 = Smn γm(ξn+1) (1−Hm
n+1), Sm0 = sm0 , m = 1, · · · ,M,

(2.2.2)

where ξn is a sequence of i.i.d. multinomial random variables with values in {ξ1, · · · , ξL}
and γm are positive measurable functions. Typically, γm(ξn+1) ∈ (0, 1) when there is a
downward movement in the dynamics of asset Sm during the period n, while γm(ξn+1) > 1

if the movement is an upward one. We want to point out that, while in our model the
amplitude of the up- and downward movements may vary from asset to asset, in accordance
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with a common practice, in trinomial and multinomial price evolution models it is intended
that, if γm(ξn+1) > 1 for one asset m, the same holds for all the other assets (analogously
when γm(ξn+1) < 1.) In vector form, we may then write

Sn+1 = diag (Snγ(ξn+1)) (1−Hn+1)′ =: I(Sn, ξn+1, Hn+1), (2.2.3)

where diag (Snγ(ξn+1)) is an M ×M diagonal matrix, with elements Smn γm(ξn+1), m =

1, . . . ,M . The price evolution is thus driven by (ξn, Hn), defined on (Ω,G,G,P) as follows.
Given a G−adapted finite state Markov chain (Zn)n with values Zn ∈ {z1, · · · , zJ}, with
initial law µ and transition probability matrix

P ij := P(Zn = zj |Zn−1 = zi) , ∀ i, j ∈ {1, · · · , J}, ∀n (time homogeneous), (2.2.4)

the driving processes (ξ,H) are supposed to be independent, conditionally on Z, and their
distribution is characterized by assigning

p`(z) := P(ξn = ξ`|Zn−1 = z) , ` = 1, · · · , L ,

ρp,q(z) := P(Hn = hq|Hn−1 = hp, Zn−1 = z)
∀p, q ∈ {1, · · · , 2M−1} ,

(2.2.5)

where n = 1, · · · , N . Notice that the dependence of ρp,q on {Zn−1} allows to model conta-
gion: only “physical” if Zn−1 is observed, and “information-induced” if Zn−1 is unobservable
and its distribution is updated on the basis of the observed default state and of the default-
able asset prices.

2.2.2 Portfolios

To perform portfolio optimization, we evidently need to invest in the market and, for
this purpose, we consider an investment strategy that may be defined either by specifying
the number of units invested in the individual assets, namely an = (a0

n, a
1
n, · · · , aMn ) (amn

is the number of units of asset m held in the portfolio in period tn), or, restricting the
attention to positive portfolio values, by equivalently specifying the ratios invested in the
individual assets. More precisely, we shall consider the following relationships, that differ
slightly from the standard ones, for reasons that we shall explain below (see Remark 2.2.1)
i.e.,

φ0
n =

a0
n+1S

0
n

V φ
n

, φmn (1−Hm
n ) =

amn+1S
m
n

V φ
n

, m = 1, · · · ,M, (2.2.6)

where

V φ
n = V a

n :=

M∑
m=0

amn S
m
n =

M∑
m=0

amn+1S
m
n

is the (self-financing) portfolio value in period tn. Notice that

φ0
n = 1−

M∑
m=1

φmn (1−Hm
n )
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so that, to define a self financing investment strategy φ̄n := (φ0
n, φ

1
n, · · · , φMn ), it suffices to

define φn := (φ1
n, · · · , φMn ).

It will be convenient to write the portfolio value at time tn+1 in terms of its value at
time tn and of the gain during the period n, namely

V φ
n+1 = V a

n+1 = V a
n + a0

n+1(S0
n+1 − S0

n) +

M∑
m=1

amn+1(Smn+1 − Smn )

= V a
n + a0

n+1S
0
nrn +

M∑
m=1

amn+1S
m
n

[
γm(ξn+1)(1−Hm

n+1)− 1
]

= V φ
n + φ0

nV
φ
n rn +

M∑
m=1

φmn V
φ
n (1−Hm

n )
[
γm(ξn+1)(1−Hm

n+1)− 1
]

= V φ
n

{
(1 + rn) +

M∑
m=1

φmn (1−Hm
n )
[
γm(ξn+1)(1−Hm

n+1)− (1 + rn)
]}

.

(2.2.7)

Remark 2.2.1. With the given definitions (in particular, the presence of the factor (1−Hm
n )

in the definition of φmn in Equation (2.2.6)) one has that investment in an asset automa-
tically ceases as soon as it defaults. This implies the equivalence of the expressions for V a

n

and V φ
n (namely, the next-to-last equality in Equation (2.2.7) indeed holds true).

Assuming first that the factor process Z is observed by the investor, the definitions
above also imply that we consider (an)n≥0 to be a predictable process (a0 is G0-measurable
and an is Gn−1−measurable, n ≥ 1, meaning that investment decisions at time tn are taken
on the basis of the information available at time tn−1 and kept until time tn, when new
quotations are available), while (φn)n≥0 is adapted.

2.2.3 The partial information problem

In view of formulating our partial information problem, let the default history be given
by the filtration Hn := σ{Hν , ν ≤ n}. With this filtration, we can reexpress the global
filtration as

Gn = Fξn ∨Hn ∨ FZn , n = 0, · · · , N,

where (FZn )n and (Fξn)n denote, respectively, the natural filtration associated with Z and
ξ, while, with (FSn )n denoting the filtration given by the price observation history, the
observation filtration (representing the information of an investor) is given by

Fn = FSn ∨Hn ⊂ Gn, n = 0, · · · , N.

Having specified a utility function u : R+ → R, of class C1, increasing and strictly
concave, that satisfies the usual Inada’s conditions:

lim
x→0+

u′(x) = +∞ and lim
x→+∞

u′(x) = 0,
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we can now give the following

Definition 2.2.1. A self financing investment strategy φn = (φ1
n, · · · , φMn ), n = 0, · · · , N,

is called admissible in our partial information problem, and we write φ ∈ A, if, besides
implicit technical conditions, it is Fn−adapted and such that V φ

n belongs to the domain of
u(·).

Notice that, in general, the set of admissible strategies is non empty (e.g., in the log
and power utility cases it contains the strategy of not investing in the risky assets) and it
is a convex set that may be unbounded; by possibly bounding it (e.g., imposing that, at
any time tn, φmn ≥ −C,m = 1, · · · ,M) it can transformed into a set with compact closure
(for details, in the log-utility case, see the proof of Theorem 2.4.1 below). We come now to
define our

Problem: Given an initial wealth v0, determine an admissible strategy φ∗ such that

E
[
u
(
V φ∗

N

)]
≥ E

[
u
(
V φ
N

)]
, ∀ φ ∈ A.

Our problem is a partial information problem in that the factor process Z cannot be ob-
served; on the other hand, the investment strategy can depend only on observable quantities.
The usual approach in this situation (see, e.g., Bensoussan [1], Bertsekas [2] and Van Hee
[10], see also Corsi, Pham and Runggaldier [3] for a problem related to the one of the
present paper) consists in transforming the partial observation problem into one under full
information, by replacing the unobservable quantities Zn by their conditional distributions,
given the current observation history. These conditional distributions are the so-called filter
distributions or just filters and they can be computed recursively, as we are going to show
in the next section.

We conclude this section by recalling a fundamental result on the absence of arbitrage
opportunities (AOA, see, e.g., Prop. 2.7.1 in Dana and Jeanblanc [4]).

Lemma 2.2.1. If the above Problem has a solution, then there are no arbitrage opportu-
nities. The converse also holds true, i.e., there is equivalence between the existence of an
optimal solution and the AOA, in the case when the utility function u is strictly concave,
strictly increasing and of class C1.

2.3 The filter

Since the investment strategy φ is by definition F−adapted, the information coming
from observing (S, V,H) (namely the asset prices, the portfolio value, and the default state)
is equivalent to that of observing just (S,H).
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Defining (Sn, Hn) := ((S1, H1), · · · , (Sn, Hn)), the filter distribution for Z at time tn is
the random vector Πn = (Π1

n, · · · ,ΠJ
n) with components

Πj
n := P

(
Zn = zj |Fn

)
= P

(
Zn = zj |(Sn, Hn)

)
, j = 1, · · · , J ,

taking values in the J-simplex KJ ⊂ RJ (here | · |1 denotes the l1-norm)

KJ =

x = (xj) ∈ RJ : xj ≥ 0, j = 1, . . . , J and |x|1 =
J∑
j=1

xj = 1

 .

By applying the recursive Bayes’ formula, one obtains, for j = 1, · · · , J ,

Πj
n = P

(
Zn = zj |Sn = sn, Hn = hn, (S

n−1, Hn−1)
)
∝

∝
∑J

i=1 P
(
Zn = zj , Zn−1 = zi, Sn = sn, Hn = hn, (S

n−1, Hn−1)
)
∝

∝
∑J

i=1 P
ij P

(
Sn = sn, Hn = hn|Zn−1 = zi, Sn−1, Hn−1

)
Πi
n−1,

(2.3.1)

with the observation distribution (likelihood function) given by (recall that the processes ξ
and H are conditionally independent given Z)

P
(
Sn = sn, Hn = hq|Zn−1 = zi, Sn−1 = sn−1, Hn−1 = hp

)
=

ρp,q(zi)
∑L

`=1 p
`(zi)11{sn=I(sn−1,ξ`,hq)} =: F (zi; sn, sn−1, h

q, hp)

(2.3.2)

where I(s, ξ, h) was defined in (2.2.3).

Remark 2.3.1. Since the model may not correspond exactly to reality, there may be no
ξ` ∈ {ξ1, · · · , ξL} so that, for the actually observed values of sn−1 and sn, one has sn =

I(sn−1, ξ
`, hq). Following standard usage we shall then consider the value of ` for which

I(sn−1, ξ
`, hq) comes closest to the actually observed value of sn (“nearest neighbor”).

Given the current observations (sn, hn) and the previous ones (sn−1, hn−1), setting

F (sn, sn−1, hn, hn−1) := diag (F (z; sn, sn−1, hn, hn−1)) , (2.3.3)

which is a J × J diagonal matrix with elements F (zi; sn, sn−1, hn, hn−1), i = 1, · · · , J , the
recursions (2.3.1) can be expressed in vector form as

Π′0 = µ and, for n ≥ 1,

Π′n =
P ′ F (sn, sn−1, hn, hn−1) Π′n−1∣∣P ′ F (sn, sn−1, hn, hn−1) Π′n−1

∣∣
1

=: F̄ (Πn−1, sn, sn−1, hn, hn−1) .
(2.3.4)

Remark 2.3.2. By having assumed that at least one asset in the market is default free, the
filter is well defined at every time step. Indeed, if we had considered only defaultable assets,
in the case of default of all assets by time tn we would have found Sn = (0, · · · , 0) and we
would have lost all the information on ξn necessary to update the filter.
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2.4 Dynamic Programming for the “equivalent full informa-
tion problem”

Under full information corresponding to G the tuple (S, V,H,Z) is Markov. In the full
information setting equivalent to the partial information problem, the process Z has to be
replaced by the filter process Π. From (2.3.1) it is easily seen (for details we refer, e.g., to
Pham, Runggaldier and Sellami [8]) that, in the partial information filtration F , it is the
tuple (S, V,H,Π) that is Markov.

Denoting by Un(s, v, h, π) the optimal value in period tn for Sn = s, V φ
n = v,Hn =

h,Πn = π, i.e.,

Un(s, v, h, π) = sup
φ ∈A

E
{
u(V φ

N )
∣∣Sn = s, V φ

n = v,Hn = h,Πn = π
}

(recall that A denotes the set of admissible strategies over the entire investment interval),
an application of the Dynamic Programming Principle (see, e.g., Bertsekas [2]) leads to the
backward recursions

UN (s, v, h, π) = u(v) and, for n ∈ {1, · · · , N − 1},

Un−1(s, v, h, π) =

maxφn−1 E
{
Un(Sn, V

φ
n , Hn,Πn)

∣∣(S, V φ, H,Π)n−1 = (s, v, h, π)
}
.

(2.4.1)

2.4.1 Explicit solution in the log-utility case

In the log-utility case (and analogously in the power utility case), assuming for simplicity
that rn ≡ r, we have the following result.

Theorem 2.4.1. For n = 0, · · · , N and supposing that Hn = hp for some p ∈ {1, · · · , 2M−1}
we have

Un(s, v, hp, π) = log v +Kn(s, hp, π), (2.4.2)

with 

KN (s, hp, π) = 0 for every s ∈ RM+ , p ∈ {1, · · · , 2M−1}, π ∈ KJ ,

Kn(s, hp, π) = k(hp, π) +
∑J

i=1 π
i
∑L

`=1 p
`(zi)

∑2M−1

q=1 ρp,q(zi)·

·Kn+1

(
I(s, ξ`, hq), hq, F̄

(
π, I(s, ξ`, hq), s, hq, hp

))
,

where F̄ (·) was defined in (2.3.4) and where

k(hp, π) = maxφ=(φ1,··· ,φM )

{∑J
i=1 π

i
∑L

`=1 p
`(zi)

∑2M−1

q=1 ρp,q(zi)·

· log
[
(1 + r) +

∑M
m=1 φ

m(1− hp,m)
[
γm(ξ`)(1− hq,m)− (1 + r)

]]}
.

(2.4.3)
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Notice that, in each period tn, the additive term Kn(·) results from the sum of a current
additive term k(hp, π) and the conditional expectation of the previously obtained Kn+1(·).
The proof can rather straightforwardly be obtained by backward induction on n, as we
immediately see.

Proof. We first notice that the result holds true for n = N . We now suppose that Equation
(2.4.2) is verified at time tn+1 and we show that it remains valid at time tn. We have, given
Equation (2.4.1) and recalling Equation (2.2.7), where the portfolio value at time tn+1 is
written as a function of its value at time tn (we omit the subscript n in the investment
strategy φn = (φ1

n, · · · , φMn ))

Un(s, v, hp, π) = max
φ

E
{
Un+1(Sn+1, V

φ
n+1, Hn+1,Πn+1)

∣∣(S, V φ, H,Π)n = (s, v, hp, π)
}

= max
φ

E
{

log V φ
n+1 +Kn+1(Sn+1, Hn+1,Πn+1)

∣∣(S, V φ, H,Π)n = (s, v, hp, π)
}

= log v + max
φ

E
{

log
[

(1+r)+
∑M
m=1 φ

m(1−hp,m)(γm(ξn+1)(1−Hm
n+1)−(1+r))

]
+Kn+1

(
I(Sn,ξn+1,Hn+1), Hn+1, F̄

(
Πn,I(Sn,ξn+1,Hn+1),Sn,Hn+1,Hn

))
∣∣(S,H,Π)n = (s, hp, π)

}
,

where I and F̄ were introduced, respectively, in Equations (2.2.3) and (2.3.4).

We now use iterated conditional expectations and we introduce a conditional expecta-
tion with respect to a larger filtration containing Zn. This is crucial since now, due to
the conditional independence of ξn+1 and Hn+1 given Zn, we can explicitly compute this
conditional expectation, that will be a function of Zn, and we find

Un(s, v, hp, π) = log v + max
φ

E
{ L∑
`=1

p`(Zn)

2M−1∑
q=1

ρp,q(Zn)
[

log
(

(1 + r)

+

M∑
m=1

φm(1− hp,m)
(
γm(ξ`)(1− hq,m)− (1 + r)

))
+Kn+1

(
I(s, ξ`, hq), hq, F̄

(
π, I(s, ξ`, hq), s, hq, hp

)) ]
∣∣(S,H,Π)n = (s, hp, π)

}

It suffices now to recall that the conditional distribution of Zn given the investor’s informa-
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tion at time tn is, by definition, the filter at time tn, so that we finally have

Un(s, v, hp, π) = log v + max
φ

{ J∑
i=1

πi
L∑
`=1

p`(zi)
2M−1∑
q=1

ρp,q(zi) log
[
(1 + r)

+
M∑
m=1

φm(1− hp,m)
(
γm(ξ`)(1− hq,m)− (1 + r)

) ]}

+
J∑
i=1

πi
L∑
`=1

p`(zi)
2M−1∑
q=1

ρp,q(zi)Kn+1

(
I(s,ξ`,hq),hq ,F̄

(
π,I(s,ξ`,hq),s,hq ,hp

))
= log v +Kn(s, hp, π).

The theorem is proved once we show that k(hp, π) exists.
Existence of k(hp, π).
At every time step, the maximization problem is defined for φ = (φ1, · · · , φM ) ∈ D, where
D is such that the above logarithms are well defined. In particular, D is non empty (it
contains at least the point (0, . . . , 0)) and it is delimited by the intersection of a maximum
of 2M−1 × L× 2M−1 half-planes of the form

1 + r +

M∑
m=1

φm(1− hp,m)
(
γm(ξ`)(1− hq,m)− 1− r

)
> 0, (2.4.4)

where p and q vary in {1, · · · , 2M−1} and ` is in {1, · · · , L}. By possibly truncating D from
below, e.g., by imposing the condition

φm > −C, m = 1, · · · ,M,

for a “suitable” C > 0, we can restrict our attention to a domain DC that is a subset of D,
DC ⊆ D. The above condition appears to be reasonable from an economic point of view, in
that an investor should not take short positions in the risky assets for more than a proportion
C of its current wealth. It is possible to show that the closure of DC , D̄C , is compact. That
is, denoting by ` and ¯̀ ∈ {1, . . . , L}, ¯̀ 6= `, the indexes such that γm(ξ`) ∈ (0, 1) and
γm(ξ

¯̀
) > 1, for every m ∈ {1, . . . ,M} (notice that in general, the assets’s dynamics are

downward as well as upward), we have to show that DC is bounded from above.
For this purpose, let us set, without loss of generality, r = 0 and let us consider the

half-plane in Equation 2.4.4 identified by p = 1 and q = 2M−1 (i.e., for hp = (0, 0, . . . , 0)

and hq = (0, 1, . . . , 1); the other cases, namely when hp,m = 1, for some m ∈ {2, . . . ,M},
are even simpler to treat)

1 + φ1
(
γ1(ξ`)− 1

)
− φ2 − · · · − φM > 0. (2.4.5)

By recalling that, by definition of DC , −φm < C, for any m, focusing on φ1 we find that a
necessary condition for φ1 ∈ DC is that

φ1
(
1− γ1(ξ`)

)
< 1− φ2 − · · · − φM < 1 + C(M − 1), ∀` ∈ {1, . . . , L}.
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By taking ` = `, so that 1 − γ1(ξ`) > 0, we find that the boundedness from below of
DC ensures its boundedness from above, with respect to φ1. For what concerns φ2 (the
reasoning is the same for φ3, . . . , φM ), taking ` = ` in Equation (2.4.5), we find that a
necessary condition for φ2 ∈ DC is that

φ2 < 1− φ1
(
1− γ1(ξ`)

)
− φ3 − · · · − φM < 1 + C

(
1− γ1(ξ`)

)
+ C(M − 2)

and we then conclude that, given the boundedness from below, the domain DC is also
bounded from above in each variable and its closure is compact (see also the details in the
simpler binomial example that follows in Appendix 2.6.2).

Notice, furthermore, that the boundary of DC partly coincides with the boundary of
D. The common boundary will be called “natural boundary” of DC , while the boundary
resulting from the truncation of D will be the “artificial boundary” of DC .

Once we have restricted our attention to a domain with a compact closure, the maxi-
mizing φ∗ exists and it is unique. Indeed

• ifD is bounded, we have to maximize over D a strictly concave and continuous function
(namely the sum over p, q and ` of logarithms of the left hand side of (2.4.4)) that
goes to −∞ on ∂D;

• otherwise, if the domain has been artificially bounded, then we have to maximize
over DC a strictly concave and continuous function that goes to −∞ on the “natural
boundary” of DC and that it is well defined on the “artificial boundary” of DC .

The maximum point, then, exists (it is automatically admissible) and it is unique. Notice
that it can be on the “artificial boundary”. We only state here that φ∗ can be numerically
obtained (this will be clarified in Section 2.5, which is devoted to numerical examples).

We now consider three particular cases, namely the full information case, the case when
Zn ≡ Z with Z unobservable and when it is observable. As previously done, we suppose,
for simplicity, that rn ≡ r.

2.4.2 Particular case: full information about Zn

In this case the Markovian tuple is (S, V,H,Z), so that we replace Π by Z and the
optimal wealth at time tn is

Un(s, v, h, z) = sup
φ ∈A

E
{
u(V φ

N )
∣∣Sn = s, V φ

n = v,Hn = h, Zn = z
}
.

In the log-utility case we find the following corollary of Theorem 2.4.1. Having fixed Zn = zi,
we just substitute π by zi in K(·) and in k(·) and we drop the

∑J
i=1 π

i everywhere.
Moreover, since Kn(s, hp, zi) is the conditional expectation of Kn+1(Sn+1, Hn+1, Zn+1)

given the investor’s information, in the definition of Kn(s, hp, zi) we will find the sum∑J
j=1 P

ijKn+1(·, ·, zj). We obtain
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Corollary 2.4.1. For n = 0, · · · , N , supposing that Hn = hp for some p ∈ {1, · · · , 2M−1}
and that Zn = zi, for some i ∈ {1, . . . , J}, we have

Un(s, v, hp, zi) = log v +Kn(s, hp, zi), (2.4.6)

with KN (s, hp, zi) = 0 for every s ∈ R+M , p ∈ {1, · · · , 2M−1}, i ∈ {1, . . . , J} and

Kn(s, hp, zi) = k(hp, zi) +
L∑
`=1

p`(zi)
2M−1∑
q=1

ρp,q(zi)
J∑
j=1

P ijKn+1

(
I(s, ξ`, hq), hq, zj

)
,

where

k(hp, zi) = max
φ

L∑
`=1

p`(zi)
2M−1∑
q=1

ρp,q(zi) log
[
1+r+

∑M
m=1 φ

m(1−hp,m)[γm(ξ`)(1−hq,m)−1−r]
]
.

2.4.3 Particular case: Zn ≡ Z unobserved

In the case when Zn ≡ Z, the factor process reduces to an unobserved parameter that,
in accordance with the Bayesian point of view, is considered as a random variable Z, with
given a priori law µ. Even if Z is modeled as not time varying, the successive updating of
its conditional distribution, i.e.,

Πj
n := P(Z = zj | (Sn, Hn)) , j = 1, · · · , J , n ≤ N

makes the context dynamic. The solution is obtained as in the general case and here it
simplifies considerably. In fact, the recursive Bayes’ formula (2.3.1) reduces to the ordinary
one, that here becomes

Πj
n = P

(
Z = zj |Sn = sn, Hn = hn, (S

n−1, Hn−1)
)

∝ P
(
Sn = sn, Hn = hn|Z = zj , Sn−1, Hn−1

)
·Πj

n−1.

Having fixed the previous observations (sn−1, hn−1) and recalling the definition (2.3.3) of
the diagonal matrix F , Equation (2.3.4) then becomes


Π′0 = µ and, for n ≥ 1,

Π′n =
F (sn, sn−1, hn, hn−1) Π′n−1∣∣F (sn, sn−1, hn, hn−1) Π′n−1

∣∣
1

:= F̄ (Πn−1, sn, sn−1, hn, hn−1) .
(2.4.7)

With these changes the statement of Theorem 2.4.1 remains valid in the same form also for
the present case.
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2.4.4 Particular case: Zn ≡ Z fully observed

In this case the factor Z has no relevance anymore, the model is fully defined. Defining,
in perfect analogy with Equation (2.2.5),

p` := P(ξn = ξ`) and ρp,q := P(Hn = hq|Hn−1 = hp),

for ` = 1, · · · , L and for p, q ∈ {1, · · · , 2M−1}, one immediately finds

Corollary 2.4.2. For n = 0, · · · , N , supposing that Hn = hp for some p ∈ {1, · · · , 2M−1},
we have

Un(s, v, hp) = log v +Kn(s, hp), (2.4.8)

with KN (s, hp) = 0 for every s ∈ R+M , p ∈ {1, · · · , 2M−1} and

Kn(s, hp) = k(hp) +

L∑
`=1

p`
2M−1∑
q=1

ρp,q Kn+1

(
I(s, ξ`, hq), hq

)
,

where

k(hp) = max
φ

L∑
`=1

p`
2M−1∑
q=1

ρp,q log

[
1 + r +

M∑
m=1

φm(1− hp,m)
[
γm(ξ`)(1− hq,m)− 1− r

]]
.

(2.4.9)

Remark 2.4.1. Due to the (assumed) time homogeneity of p and ρ, i.e., of the processes ξ
and H, the maximizing investment strategy φ∗ does not depend on time. It does not depend
on the current values s and v of the prices and the wealth either, it depends however on the
current default state h.

2.5 Numerical results and the issue of robustness

Numerical results from simulations are presented in the case when

• M = 3, i.e., there are one non-defaultable and two defaultable risky assets on the
market (it is the smallest value of M allowing for contagion);

• L = 2, i.e., ξn ∈ {ξ1, ξ2} (binomial model). Here ξ1 corresponds to an “up” movement
in asset prices and ξ2 to a “down” movement;

• J = 2, i.e., Zn ∈ {0, 1}, ∀ n, with the following economic interpretation{
Zn = 0 : good state (bull market),
Zn = 1 : bad state (bear market);

• rn ≡ r = 0;
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• u(x) = log(x), x > 0.

The initial law µ of the Markov chain Z is fixed by assigning

P(Z0 = 0) = 0.5, P(Z0 = 1) = 0.5

and its transition probability matrix is supposed to be

P =

(
P 11 P 12

P 21 P 22

)
=

(
0.6 0.4
0.4 0.6

)
.

The conditional distribution of ξ given Z is also assigned as

p(0) := p1(0) = P(ξn = ξ1|Zn−1 = 0) = 0.6, p(1) := p1(1) = 0.4,

meaning that, when the economy is in good state, the probability of having an “up” move-
ment in asset prices is equal to 0.6, while when the economic situation is bad, this probability
decreases to 0.4. It is also useful to introduce the following notation

γm(ξ1) = um and γm(ξ2) = dm, m = 1, 2, 3,

where u· stands for “up” and d· for “down” and, typically, 0 < dm < 1 < um,m = 1, 2, 3.
We fix the following listing of the possible default states hp, p = 1, . . . , 4:

h1 = (0, 0, 0), h2 = (0, 1, 0), h3 = (0, 0, 1), h4 = (0, 1, 1)

and assign, in the next two matrices, the values for ρp,q(z), p, q ∈ {1, · · · , 4}, according to
the value of z,

{z = 0} :


0.91 0.03 0.03 0.03

0 0.80 0 0.20
0 0 0.80 0.20
0 0 0 1

 {z = 1} :


0.25 0.25 0.25 0.25

0 0.50 0 0.50
0 0 0.50 0.50
0 0 0 1

 .

In the simulations we consider three cases:

• “GOOD”: full information, where the true model is known and corresponds to the case
{Zn ≡ Z = 0} (see Section 2.4.4);

• “BAD”: full information, where the true model is known and corresponds to the case
{Zn ≡ Z = 1};

• “PARTIAL”: partial information, where there is uncertainty about the true model (Zn
is unobserved and evolves according to the Markov chain specified by the initial law
µ and the transition probability matrix P ).
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We have two goals in mind:

i) investigating, for each one of the three cases, the effect of allowing for shorting in the
risky assets;

ii) investigating the “robustness” of the optimal solution obtained in the partial informa-
tion case (case “PARTIAL”).

2.5.1 Shorting vs. no shorting

We analyzed and compared two possible situations: the first one corresponds to the case
when no shorting is possible and the investment strategy is constrained from above, namely
(recall that φmn is the proportion of wealth invested in Sm at time n)

φmn ∈ [0, 2], m = 1, 2, 3, ∀ n,

while in the second one shorting is allowed and the strategy is constrained from above and
below, i.e.,

φmn ∈ [−2, 2], m = 1, 2, 3, ∀ n.

It can furthermore be easily seen that, in order for V φ
n to be in the domain of u(x) = log(x),

in the case when no-shorting is allowed, we even have

φ2
n, φ

3
n < 1, ∀ n

(it suffices to look at the function to be maximized in Equation (2.4.3) and to consider the
case when r = 0, Hn 6= h4, Hn+1 = h4, as done in the proof of Theorem 2.4.1, to show that
the domain DC is bounded).

Remark 2.5.1. In the context just described we thus consider investment strategies in a
truncated domain, φ ∈ DC (this notation was introduced in the proof of Theorem 2.4.1),
with C = 0 in the case of no shorting and C = 2 when shorting is possible.

For the case when shorting is not allowed, in the following Table 2.1 we show, for a certain
set of parameters um, dm,m = 1, 2, 3, the optimal investment solutions φ1,∗, φ2,∗, φ3,∗, in the
“GOOD” and “BAD” states, varying with the default state. As pointed out in Remark 2.4.1,
under full information φ∗ does not depend on time, so that there is no need, in this table, to
specify the time tn. In the successive Table 2.2, relative to the “PARTIAL” case, we choose
N = 3 and we have to specify the time interval in which we are working. In this case, the
optimal investment solution is a function of both the default state and of the asset prices’
evolution, that are the necessary information in order to update the filter.

It is a key point here to specify how the optimal strategy φ∗ was obtained, since in the
proof of Theorem 2.4.1 we only stated that it exists and is unique. Here the optimizing
investment strategy is obtained by means of a “search procedure”, performed by means of a
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SHORTING not possible

Parameters  Z = {0}    GOOD  Z = {1}    BAD
u1 1,01 1,01
d1 0,99 0,99
u2 1,3 1,3
d2 

0,9 0,9

u3 1,35 1,35
d3 0,8 0,8

p(Z) = p1 (Z) 0,6 0,4
ρ

11(Z) 0,91 0,25
ρ

12 (Z) 0,03 0,25

ρ
13 (Z) 0,03 0,25
ρ

14 (Z) 0,03 0,25
ρ

22 (Z) 0,8 0,5
ρ

33 (Z) 0,8 0,5

H = h1 (no asset defaulted) Precision search: 0.01 Precision search: 0.01
Dtest: [0;2]x[0;2]x[0;1]

Ф
1* 2 0

Ф
2* 0,37 0

Ф
3* 0,11 0

H = h2 (asset #2 defaulted)
Dtest: [0;2]x[0;1]

Ф
1* 2 0

Ф
3* 0 0

H = h3 (asset #3 defaulted)
Dtest: [0;2]x[0;1]

Ф
1* 2 0

Ф
2* 0 0

H = h4 (defaulted #2 e #3)
Dtest: [0;1]

Ф
1* 2 0

Computational time 1 s 1 s

Table 2.1: Optimal investment solutions under full information, “GOOD” and “BAD”, short-
ing not possible.
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SHORTING not possible

PARTIAL INFORMATION,    N = 3

In the table: (Ф1*,Ф2*,Ф3*)

t0 - t1 t1 - t2 t2 - t3

u ; h1 u u ; h1 h1 u u; h1 h2 u u; h1 h3 u u; h1 h4
(2, 0, 0) (2, 0, 0) (0, -, 0) (0, 0, -) (0, -, -)
u ; h2 u d ; h1 h1 u d; h1 h2 u d; h1 h3 u d; h1 h4
(0, -, 0) (2, 0, 0) (0, -, 0) (0, 0, -) (0, -, -)
u ; h3 d u ; h1 h1 d u; h1 h2 d u; h1 h3 d u; h1 h4

(0 , 0, 0) (0, 0, -) (2, 0, 0) (0, -, 0) (0, 0, -) (0, -, -)
u ; h4 d d ; h1 h1 d d; h1 h2 d d; h1 h3 d d; h1 h4
(0, -, -) (1,93, 0, 0) (0, -, 0) (0, 0, -) (0, -, -)
d ; h1 u u ; h2 h2 u u; h2 h4

(1,67, 0, 0) (1,16 , -, 0) (0, - , -)
d ; h2 u d ; h2 h2 u d; h2 h4
(0, -, 0) (0, - , 0) (0, - , -)
d ; h3 d u ; h2 h2 d u; h2 h4
(0, 0, -) (1,04, - , 0) (0, - , -)
d ; h4 d d ; h2 h2 d d; h2 h4
(0, -, -) (0, - , 0) (0, - , -)

u u ; h3 h3 u u; h3 h4
(1,16 , 0, -) (0 , -, -)
u d ; h3 h3 u d; h3 h4

(0 , 0, -) (0 , -, -)
d u ; h3 h3 d u; h3 h4
(1,04, 0 , -) (0 , - , -)
d d ; h3 h3 d d; h3 h4

(0 , 0 , -) (0 , - , -)
u u ; h4 h4

(0 , - , -)
u d ; h4 h4

(0 , - , -)
d u ; h4 h4

(0 , - , -)
d d ; h4 h4

(0 , - , -)

Table 2.2: Optimal investment solutions under partial information, shorting not possible.61



numerical code written in C on a grid of points constructed on the admissibility domain (an
example of grid is given in Figure 2.6 in the appendix). The precision of the grid is fixed to
0.01.

When no shorting is possible, in the “BAD” state it is clear, from Table 2.1, that the
optimal solution consists in not investing at all in risky assets and in placing all the money
in the bank account. On the contrary, in the “GOOD” state, it is optimal to invest as much
as one can in the default-free risky asset, regardless of the default state.
In the “PARTIAL” case it is never optimal to invest in the defaultable assets and φ1,∗

n varies
with respect to n (indeed, this case can be considered as a mixture of the two previous full
information cases).

Four more tables concerning the case of possible shorting follow. The difference between
them is in the defaultable assets’ returns, depending on the parameters um, dm,m = 2, 3

(in particular, in the case of Table 2.5, where u2 = u3 = 2, represents a very extreme case).
Notice that in the case when shorting is allowed and asset returns are “reasonable” (Table
2.3), both in the “GOOD” and “BAD” states it is optimal to invest all the wealth in S1, but
if the defaultable assets have a very high yield (Table 2.5), then it becomes interesting to
invest also in them. In the partial information case, too, the main difference between Tables
2.4 and 2.6 is that in the second case, when the defaultable assets have a very interesting
yield, φ1,∗ is no more equal to 2 and, in some cases, φ2,∗ and φ3,∗ are positive.

To conclude this analysis we show in three graphics in Figure 2.1 (corresponding to
the no-shorting case, to shorting with reasonable assets’ returns and to shorting with high
defaultable assets’ returns) the optimal expected terminal wealth, in the log-utility case,
when

v0 = 1, H0 = h1 and N = 1, 2, . . . , 5.

Due to the fact that in the case of no shorting the optimal strategy in the “BAD” state
consists in not investing in the risky assets, the corresponding optimal portfolio value (in red
in Figure 2.1 (a)) remains constant over time and it is always lower than in the analogous
“GOOD” state. For what concerns the optimal wealth in the partial information case of
Figure 2.1 (a), it is indeed greater than the one in the “BAD” state, despite the fact that
this is not clear from the figure.

When shorting is allowed, up to a certain level of “return” on the risky assets (Figure 2.1
(b)), the optimal value in the “BAD” state is superior to that in the “GOOD” state, which
is due to the fact that the returns on the defaultable assets as well as the fact that they are
subject to default risk make it convenient to go short in them. Beyond that level, when it
becomes convenient to invest in S2 and S3 (Figure 2.1 (c)), the optimal value in the good
state is superior than in the bad state, as one would expect.
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SHORTING possible

Parameters  Z = {0}    GOOD  Z = {1}    BAD

u1 1,01 1,01
d1 0,99 0,99
u2 1,3 1,3
d2 0,9 0,9
u3 

1,35 1,35

d3 0,8 0,8
p(Z) = p1 (Z) 0,6 0,4
ρ

11(Z) 0,91 0,25
ρ

12 (Z) 0,03 0,25
ρ

13 (Z) 0,03 0,25
ρ

14 (Z) 0,03 0,25
ρ

22 (Z) 0,8 0,5
ρ

33 (Z) 0,8 0,5

H = h1 (no asset defaulted) Precision search: 0.01 Precision search: 0.01
Dtest: [-2;2]x[-2;2]x[-2;2]

Ф
1* 2 2

Ф
2* 0,37 -1,43

Ф
3* 0,11 -1,2

H = h2 (asset #2 defaulted)
Dtest: [-2;2]x[-2;2]

Ф
1* 2 2

Ф
3* -0,46 -1,97

H = h3 (asset #3 defaulted)
Dtest: [-2;2]x[-2;2]

Ф
1* 2 2

Ф
2* -0,49 -2

H = h4 (defaulted #2 e #3)
Dtest: [-2;2]

Ф
1* 2 2

Computational time 42 s 42 s

Table 2.3: Optimal investment solutions under full information, “GOOD” and “BAD”, short-
ing possible.
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SHORTING possible

PARTIAL INFORMATION,    N = 3

In the table: (Ф1*,Ф2*,Ф3*)

t0 - t1 t1 - t2 t2 - t3

u ; h1 uu ; h1 h1 u u; h1 h2 u u; h1 h3 u u; h1 h4
(2, -0,54, -0,55) (2, -0,53, -0,54) (2, - , -1,35) (2, -1,53, -) (-2 , - ,- )

u ; h2 ud ; h1 h1 u d; h1 h2 u d; h1 h3 u d; h1 h4
(2 ,  -  , -1,36) (2, -0,57, -0,57) (2, - , -1,38) (2, -1,57, -) (-2 , - , -)

u ; h3 du ; h1 h1 d u; h1 h2 d u; h1 h3 d u; h1 h4
(2, -0,67, -0,63) (2, -1,55 , -) (2, -0,54, -0,54) (2, - , -1,36) (2, -1,54, -) (-2 , - , -)

u ; h4 d d ; h1 h1 d d; h1 h2 d d; h1 h3 d d; h1 h4
(-2 , - , -) (2, -0,58 , -0,57) (2,  - , -1,38) (2, -1,57, -) (-2 , - ,- )

d ; h1 u u ; h2 h2 u u; h2 h4
(2, -0,59 , -0,58) (2 , - , -1,22) (-1,5 , - , -)

d ; h2 u d ; h2 h2 u d; h2 h4
(2 ,  -  , -1,38) (2 , - , -1,27) (-2 , - , -)

d ; h3 d u ; h2 h2 d u; h2 h4
(2, -1,57, -) (2 , - , -1,22) (-1,61, - , -)

d ; h4 d d ; h2 h2 d d; h2 h4
(-2 , - , -) (2 , - , -1,28) (-2 , - , -)

u u ; h3 h3 u u; h3 h4
(2, -1,37, -) (-1,5, - , -)
u d ; h3 h3 u d; h3 h4
(2, -1,44, -) (-2 , - , -)
d u ; h3 h3 d u; h3 h4
(2, -1,38, -) (-1,61, - , -)
d d ; h3 h3 d d; h3 h4
(2, -1,45, -) (-2 , - , -)
u u ; h4 h4
(0,25 , - , -)
u d ; h4 h4
(-1,32 , - , -)
d u ; h4 h4
(0,12 , - , -)
d d ; h4 h4
(-1,43 , - , -)

Table 2.4: Optimal investment solutions under partial information, shorting possible.
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SHORTING possible

Parameters CASE Z = {0} GOOD CASE Z = {1} BAD
u1 

1,01 1,01

d1 0,98 0,98
u2 2 2
d2 0,95 0,95
u3 2 2
d3 

0,99 0,99

p(Z) = p1 (Z) 0,8 0,1
ρ

11(Z) 0,91 0,25
ρ

12 (Z) 0,03 0,25
ρ

13 (Z) 0,03 0,25
ρ

14 (Z) 0,03 0,25
ρ

22 (Z) 0,5 0,5
ρ

33 (Z) 0,5 0,5

H = h1 (no asset defaulted) Precision search: 0.01 Precision search: 0.01
Dtest: [-2;2]x[-2;2]x[-2;2]

Ф
1* 1,51 -2

Ф
2* 0,43 -0,49

Ф
3* 0,49 -0,4

H = h2 (asset #2 defaulted)
Dtest: [-2;2]x[-2;2]

Ф
1* 2 -2

Ф
3* -0,12 -0,8

H = h3 (asset #3 defaulted)
Dtest: [-2;2]x[-2;2]

Ф
1* 2 -2

Ф
2* -0,12 -0,81

H = h4 (defaulted #2 e #3)
Dtest: [-2;2]

Ф
1* 2 -2

Computational time 13 s 13 s

Table 2.5: Optimal investment solutions under full information, “GOOD” and “BAD”, short-
ing possible, high returns.
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SHORTING possible

PARTIAL INFORMATION,    N = 3

In the table: (Ф1*,Ф2*,Ф3*)

t0 - t1 t1 - t2 t2 - t3

u ; h1 uu ; h1 h1 uu; h1 h2 uu; h1 h3 uu; h1 h4
(-2, 0,18, 0,23) (-2, 0,18, 0,23) (-2, - , -0,35) (-2,  -0,37, -) (-2 , - ,- )

u ; h2 ud ; h1 h1 ud; h1 h2 ud; h1 h3 ud; h1 h4
(-2, - , -0,37) (-2, 0,1, 0,15) (-2, - , -0,43) (-2,  -0,44, -) (-2 , - ,- )

u ; h3 du ; h1 h1 du; h1 h2 du; h1 h3 du; h1 h4
(-2, 0,09, 014) (-2,  -0,38, -) (-2, 0,18, 0,23) (-2, - , -0,37) (-2,  -0,38, -) (-2 , - ,- )

u ; h4 dd ; h1 h1 dd; h1 h2 dd; h1 h3 dd; h1 h4

(-2 , - ,- ) (-2, 0,08, 0,13) (-2, - , -0,43) (-2,  -0,44, -) (-2 , - ,- )
d ; h1 uu ; h2 h2 uu; h2 h4

(-2, 0,08, 0,13) (-2, - , -0,32) (-2 , - , -)
d ; h2 ud ; h2 h2 ud; h2 h4

(-2, - , -0,43) (-2, - , -0,41) (-2 , - , -)
d ; h3 du ; h2 h2 du; h2 h4

(-2,  -0,44 , -) (-2, - , -0,32) (-2 , - , -)
d ; h4 dd ; h2 h2 dd; h2 h4

(-2 , - ,- ) (-2, - , -0,41) (-2 , - , -)
uu ; h3 h3 uu; h3 h4

(-2,  -0,33, -) (-2 , - , -)
ud ; h3 h3 ud; h3 h4

(-2,  -0,42, -) (-2 , - , -)
du ; h3 h3 du; h3 h4

(-2,  -0,33 , -) (-2 , - , -)
dd ; h3 h3 dd; h3 h4

(-2,  -0,43 , -) (-2 , - , -)
uu ; h4 h4
(-2 , - ,- )

ud ; h4 h4
(-2 , - ,- )

du ; h4 h4
(-2 , - ,- )

dd ; h4 h4
(-2 , - ,- )

Table 2.6: Optimal investment solutions under partial information, shorting possible, high
returns.
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Optimal expected terminal utility: no shorting
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(a) Shorting not allowed.

Optimal expected terminal utility: shorting
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(b) Shorting allowed, reasonable assets’ returns.

Optimal expected terminal utility: shorting
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(c) Shorting allowed, high defaultable assets’ returns.

Figure 2.1: Optimal expected utility from terminal wealth, when V0 = v0, h0 = h1.
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2.5.2 Robustness

For what concerns point ii), robustness is here in the sense of obtaining a solution that
works well for a variety of possible models. This is an important issue because the “exact
model” is practically never known and, on the other hand, the solution may be rather
sensitive to the model.

From the numerical calculations it turns out rather clearly, as we shall immediately
see, that the solution obtained for the model under incomplete information possesses this
property of robustnes, in the sense that

• while it underperforms the solution under a hypothetical full information about the
model (as can be seen from Figure 2.1),

• it performs much better with respect to using the wrong solution for the wrong model.

In this subsection we focus on the second issue.

Remark 2.5.2. From Equations (2.4.3) and (2.4.9) it follows that both under partial and
full information the optimal investment strategy depends only on the default state hp and on
the raising/falling of the assets’ prices due to ξ`. It does not depend on Z, since in one case
Z is unobservable, in the other case it is a priori fixed. For example, if M = 3 and L = 2,
then in each time period there are 8 possible states and 8 corresponding optimal solutions
φ∗. Consequently, it is possible to use the refined optimal investment strategy obtained in
the partial information case as an optimal solution to the rougher full information problem.
Nevertheless, one has to take into account the fact that the optimal φ∗ obtained under partial
information is not time independent (as it is the case for φ∗ for the full information case).

In the two diagrams in Figure 2.2 we show the “robustness” of the partial information
optimal strategy with respect to using the wrong optimal strategy in the wrong state and in
the case where no shorting in the risky assets is allowed. In the 1st diagram the true state
is the “GOOD” one, in the 3rd the “BAD” one (the second and third ones are, respectively,
the zooms of the first and the third diagrams) and we plot the optimal expected utility from
terminal wealth as a function of tn, when

v0 = 1, H0 = h1 and N = 1, 2, 3.

In particular, in Figure 2.2 (a) (and, analogously in Figure Figure 2.2 (b)) we plot the
optimal wealth in 4 cases:

• using the optimal solution for the case “GOOD” when it is indeed the true state, dark
blue line (upper benchmark case);

• using the optimal solution for case “PARTIAL” in the “PARTIAL” case, fuchsia line;

• using the optimal solution for case “PARTIAL” in the case “GOOD”, orange line;
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• using the optimal solution for case “BAD” in the case “GOOD”(lower benchmark case),
light blue line;

Form the figures it is evident that the optimal investment solution obtained in the partial
information case is robust, in the sense that both the fuchsia and the orange lines are above
the light blue one, meaning that applying the partial information optimal strategy both
when we have full knowledge about the model and when the model is uncertain is better
than applying the wrong solution to the wrong model.

The last two diagrams in Figure 2.3 correspond to the case presented in Table 2.5, i.e.,
when shorting is allowed and the defaultable assets have a considerably high return. In
this case the conclusion is once more, as claimed, the robustness of the optimal partial
information strategy.

2.6 Appendix

2.6.1 Some “final” remarks: are there alternatives to DP?

In this section we focus, for simplicity, on the case when Zn ≡ Z is fully observable,
M = 2 (S1 is default-free, H1 ≡ 0, and S2 is defaultable) and L = 2 (binomial model). We
list the two possible default states by setting

h1 = (0, 0) and h2 = (0, 1)

and we investigate the possibility of solving the problem without using DP, more precisely
by means of the “martingale method” or of the “convex duality method”. Notice that an appli-
cation of these methods requires, respectively, the characterization of all possible equivalent
martingale measures (EMMs) and of all the Radon-Nikodým density processes. This is not
straightforward when working in discrete time.

Indeed, it suffices to notice that, in general, under a measure Q, equivalent to P, there
is no reason for the random variables ξn to be i.i.d. and for ξn to be independent of Hn,
given Gn.

Nevertheless, since the characterization of all Radon-Nikodým derivatives seems easier
than finding the conditions on each time interval to have a martingale measure, we make
an attempt to solve the problem by means of a suitably modified version of the duality
procedure:

• Given the set M of all EMMs Q relative to P, consider the subset MI ⊆ M such
that, under Q, the random variables ξn are i.i.d. and ξn is conditionally independent
of Hn given Gn, for every n;

• Characterize the set of Radon-Nikodým derivatives corresponding to the EMMs Q in
MI (this is smaller than the analogous set relative toM and easier to describe) and
formulate the dual problem;
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Robustness: GOOD economy, no shorting
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(a) Robustness: shorting not allowed, GOOD state. Below: zoom.

Robustness: GOOD economy, no shorting
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Figure 2.2: Robustness.
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Robustness: GOOD economy, shorting
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Figure 2.3: Robustness.
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• Solve the dual problem. IF the optimal EMM we find is optimal also for the dual
problem corresponding to the whole set of EMMsM (for this, verify that the “duality
gap” between primal and dual optimal solutions for the original problem is equal to
zero), then we are done.

Let us now apply the above algorithm, until we find an obstacle.
Introduce q := Q(ξn = ξ1) and δp,qn = Q(Hn+1 = hq|Hn = hp), p, q ∈ {1, 2} and suppose

that the default time τ2 (recall that only S2 is defaultable here) is an exponential random
variable with parameter λP (resp., λQ) under P (resp., under Q), i.e.,

P
(
τ2 > tN |Gn

)
= 11{τ2>tn}e

−λP(tN−tn), Q
(
τ2 > tN |Gn

)
= 11{τ2>tn}e

−λQ(tN−tn),

so that, setting ∆t := tn+1− tn,∀ n, we have (notice that we loose the dependence of δ from
n)

ρ1,2 = P(Hn+1 = h2|Hn = h1) = 1− P(τ2 > tn+1|Gn) = 1− e−λP∆t

δ1,2 = 1− e−λQ∆t. (2.6.1)

Any measure Q is, then, characterized by q ∈ (0, 1) and λQ > 0 and it will be denoted
Qq,λQ . We parameterize the events ω in Ω by means of two indexes:

ω = ωi,k

where i ∈ {0, . . . , N} is the number of “up” movements in the whole interval [0, tN ] and k
is the instant just before the default, i.e., k = n ∈ {0, . . . , N − 1} if Hn+1 − Hn = (0, 1)

and k = N if default does not occur at all in [0, tN ]. Notice that, under Q (and analogously
under P)

Q
(
τ2 ∈ (tn, tn+1]

)
= Q

(
τ2 ∈ (tn, tn+1]

∣∣τ2 > tn
)
Q
(
τ2 > tn|G0

)
,

so that, if we fix i and we consider k ∈ {0, . . . , N − 1}, we have

Q
(
{ωi,k}

)
= qi(1− q)N−i e−λQk∆t(1− e−λQ∆t).

On the other hand, if k = N , we find

Q
(
{ωi,N}

)
= qi(1− q)N−i e−λQN∆t.

We finally obtain, in our specific setting, the following representation of all the Radon-
Nikodým derivatives: for k ∈ {0, . . . , N − 1}

Zq,λ
Q

N (ωi,k) =
dQq,λQ

dP
(ωi,k) =

qi(1− q)N−ie−λQk∆t(1− e−λQ∆t)

pi(1− p)N−ie−λPk∆t(1− e−λP∆t)
, (2.6.2)

and, in the case when k = N ,

Zq,λ
Q

N (ωi,N ) =
dQq,λQ

dP
(ωi,N ) =

qi(1− q)N−ie−λQN∆t

pi(1− p)N−ie−λPN∆t
. (2.6.3)
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Remark 2.6.1. It can be proved, by using the conditional independence of ξ and H, that
we have indeed defined a Radon-Nikodým derivative.

We then introduce the dual functional L (see, e.g., Luenberger [7] for details), that in
the case when rn ≡ 0, u(y) = log(y) and the initial wealth is x = v0 is given by

L(q, λQ, ν) := νx+ E
[
ũ
(
νZq,λ

Q

N

)]
= νx+ E

[
log

(
1

νZq,λ
Q

N

)
− 1

]

= νx− 1 +
∑
ω∈Ω

log

(
1

νZq,λ
Q

N (ω)

)
P(ω), (2.6.4)

where ν > 0 is the Lagrange multiplier and

ũ(b) := sup
y≥0
{u(y)− yb}, b > 0,

is the Legendre transform of u. Looking at the dual functional and at Equation (2.6.2), one
sees that, in practice, the computations to minimize the dual functional involve the sum
over ω (i.e., the sum over all possible i and k) and so they are not easy to treat.

In the complete information setting, then, it seems convenient to solve the portfolio opti-
mization problem by applying the DP principle. Furthermore, we have to observe here that,
to our knowledge, the DP procedure is also the best method to solve the problem under
partial information, since under incomplete information the definition and identification of
all the EMMs and all the Radon-Nikodým derivatives is not easy. Once again, neverthe-
less, also in a partial information setting, the characterization of all the Radon-Nikodým
derivatives is presumably easier than the identification of all the EMMs for a time horizon
tN .

We end this section by recalling the following interesting fact (see Section 3.2 in [6], see
also the proof of Proposition 2.7.2 in Dana and Jeanblanc [4]): the initial problem{

maxa∈A E [u(V a
N )]

V a
0 = V0 = v0 > 0

can be reformulated as an optimization problem without constraints in the following way
(using an as strategy, we adapt equation (2.2.7) to the case r ≡ 0):

maxa∈A E
[
u
(
v0 +

∑N−1
n=0

∑M
m=1 a

m
n+1S

m
n (γm(ξn+1 − 1)

)]
.

The convenience therein is that we do not consider any change of measure, but it is evident
that this formulation is useful when N and M are sufficiently small.

For example, in the log-binomial model with M = 2 and N = 1, we have four possible
states of the world, starting from H0 = (0, 0), namely

ω1 = {ξ1 = ξ1, H1 = h1} with probability p1 := p1(1− ρ1,2),
ω2 = {ξ1 = ξ1, H1 = h2} with probability p2 := p1ρ1,2,
ω3 = {ξ1 = ξ2, H1 = h1} with probability p3 := (1− p1)(1− ρ1,2),
ω4 = {ξ1 = ξ2, H1 = h2} with probability p4 := (1− p1)ρ1,2,

(2.6.5)
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and the optimal investment strategy is the solution to the following problem

maxa1=a=(a1,a2)

∑4
j=1 pj log(vj),

v1 = v0 + a1S1
0(γ1(ξ1)− 1) + a2S2

0(γ2(ξ1)− 1)
v2 = v0 + a1S1

0(γ1(ξ1)− 1)− a2S2
0

v3 = v0 + a1S1
0(γ1(ξ2)− 1) + a2S2

0(γ2(ξ2)− 1)
v4 = v0 + a1S1

0(γ1(ξ2)− 1)− a2S2
0 .

The introduction of the Lagrangian function and of the first order necessary and suffi-
cient conditions leads to a system of 10 equations in 10 unknown parameters, which is not
straightforward to solve.

2.6.2 One clarifying (simple) example

The aim of this section is to provide a simple example in which the way we obtain the
optimal investment strategy can be clarified and it is possible to show (see the following
Lemma 2.6.1), as announced in the proof of Theorem 2.4.1, that we can consider sets of
admissible strategies that have compact closure.

We consider here the following full information setting (in the context of Section 2.4.4)

• M = 2;

• L = 2 (binomial model) and, as in Section 2.5, we define p = P(ξn = ξ1), γm(ξ1) = um

and γm(ξ2) = dm, 0 < dm < 1 < um,m = 1, 2;

• rn ≡ r = 0;

• u(x) = log(x), x > 0.

Since in this case there are only two possible default states, that we list as follows

h1 = (0, 0), h2 = (0, 1),

we denote by ρ := P(Hn+1 = h2|Hn = h1), so that P(Hn+1 = h1|Hn = h1) = 1− ρ.
We are interested in computing, as explicitly as possible, φ1,∗ and φ2,∗ (recall that under
full information, this optimal strategy does not depend on time). Considering first the case
when H = h2, default τ2 has already occurred and investment in S2 has already ceased.
The optimal φ1,∗ is then the (unique) solution to

max
φ1

{
p log

[
1 + φ1(u1 − 1)

]
+ (1− p) log

[
1 + φ1(d1 − 1)

]}
,

namely

φ1,∗ = p
1

1− d1
+ (1− p) −1

u1 − 1
,
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which is in the admissibility domain
(
− 1
u1−1

, 1
1−d1

)
.

If H = h1 (default τ2 has not yet occurred), then we have to solve

max
φ1,φ2

{
pρ log

[
1 + φ1(u1 − 1)− φ2

]
+ p(1− ρ) log

[
1 + φ1(u1 − 1) + φ2(u2 − 1)

]
+(1− p)ρ log

[
1 + φ1(d1 − 1)− φ2

]
+ (1− p)(1− ρ) log

[
1 + φ1(d1 − 1) + φ2(d2 − 1)

]}
,

where φ1 and φ2, in order to be admissible, have to satisfy the following conditions (we set
x := φ1 and y := φ2) 

y < 1 + x(u1 − 1),

y >
−1

u2 − 1
− xu

1 − 1

u2 − 1
,

y < 1− x(1− d1),

y <
1

1− d2
− x1− d1

1− d2
.

We denote by D0 ⊂ R2 the area delimited by the intersection of the four semi-planes above,
that is the set of admissible strategies.

As we said in the proof of Theorem 2.4.1, it is possible to show that we can always
restrict our attention to a domain D0 whose closure, D̄0, is compact, eventually by artificially
bounding the domain (as we did in Section 2.5 in the numerical examples).

Lemma 2.6.1. If
(1− d1)(u2 − 1) > (u1 − 1)(1− d2),

then the closure of the admissibility domain, D̄0, i.e., the subset of R2 defined by

y ≤ 1 + x(u1 − 1),

y ≥ −1

u2 − 1
− xu

1 − 1

u2 − 1
,

y ≤ 1− x(1− d1),

y ≤ 1

1− d2
− x1− d1

1− d2
,

(2.6.6)

is bounded and thus compact. In all the other cases, D̄0 is closed, but unbounded.

Proof. We start by representing on a plane the four lines

r1 : y = 1 + x(u1 − 1);

r2 : y =
−1

u2 − 1
− xu

1 − 1

u2 − 1
;

r3 : y = 1− x(1− d1);

r4 : y =
1

1− d2
− x1− d1

1− d2
;

and by computing their intersection points, recalling that 0 < dm < 1 < um,m = 1, 2,
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r2 r3 r4

r1

(
− 1
u1−1

,0
)

(0, 1)
(

d2

(u1−1)(1−d2)+1−d1
, u1−d1
(u1−1)(1−d2)+1−d1

)

r2

(
u2

(1−d1)(u2−1)+1−u1
, d1−u1
(1−d1)(u2−1)+1−u1

) (
u2−d2

(1−d1)(u2−1)−(1−d2)(u1−1)
, d1−u1
(1−d1)(u2−1)−(1−d2)(u1−1)

)

r3

(
1

1−d1 , 0
)

Looking at the intersection points we immediately notice that since the (negative) slope of
r3 is always greater than the (negative) slope of r4, namely:

−(1− d1) > −1− d1

1− d2
,

(so that the intersection point between r1 and r4 always lies in the first quadrant, while the
one between r1 and r3 is on the vertical axis), our domain will have three of its vertexes in
“r1 ∩ r2”, “r1 ∩ r3” and “r3 ∩ r4”.
On the contrary, we are not able, in general, to state whether the intersection points “r2∩r3”
and “r2 ∩ r4” are in the second or fourth quadrant and it is, then, the localization of these
points in the plane that determines the compactness or not of our domain. The conclusion
follows from the following observations:

• if the (negative) slope of r2 is greater than the (negative) slope of r4, then “r2 ∩ r4” is
in the fourth quadrant and the domain is compact;

• if the (negative) slope of r2 is smaller than the (negative) slope of r4, then “r2 ∩ r4” is
in the second quadrant and the domain is unbounded.

As examples, we consider the two situations below:

Figure 2.4: u1 = 1.2, u2 = 1.6, d1 = 0.9, d2 = 0.2 (unbounded domain);

Figure 2.5: u1 = 1.2, u2 = 1.3, d1 = 0.5, d2 = 0.4 (compact domain).

The numerical approximation of the optimal maximizing values can be performed by means
of a “search procedure”, as we said in Section 2.5, over a finite number of points on a grid
constructed on D̄0. We show in Figure 2.6 one possible grid constructed on the domain of
Figure 2.5.
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Figure 2.4: An example of unbounded domain.

Figure 2.5: An example of domain with compact closure.
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Figure 2.6: Example of grid constructed on a compact domain.
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Part IV

Optimal consumption problems in
discontinuous markets
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This is a joint work with Prof. M. Jeanblanc and Prof. W.J. Runggaldier.

Abstract: we study an extension of Merton’s classical portfolio optimization problem (1969-
1970) to a particular case of discontinuous market, with a single jump. The market consists
of a non-risky asset, a "standard risky" asset and a risky asset with discontinuous price dy-
namics (e.g., a defaultable bond or a mortality linked security). We consider three different
problems of maximization of the expected utility from consumption, in the cases when the
investment horizon is fixed, when it is finite, but possibly uncertain, and when it is infinite.

We solve the problems by means of a the martingale approach in a general stochastic
coefficients model, in which, in the logarithmic utility case, we characterize the optimal
investment-consumption strategy. Furthermore, we compare the optimal consumption rates
for the three different problems, finding quite intuitive results.

In the constant and deterministic coefficients’ cases explicit solutions are also obtained in
the power utility case by applying, as an alternative technique, the Dynamic Programming
approach (solving the related Hamilton-Jacobi-Bellman equation).

Explicit investment-consumption strategies are also provided in the exponential utility
case, when market model coefficients are deterministic functions of time.

Keywords: Single-jump process, optimal consumption, discontinuous martingale, Dynamic
Programming Principle, enlargement of filtrations.
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Introduction

The starting point of this work is the acknowledgement of the fact that most investors,
once entered the market, never know with certainty when they are going to exit it. Factors
that influence the decision of leaving the market are, for example, the market behavior
itself, changes in the investor’s endowment and exogenous shocks affecting the investor’s
consumption process (such as, the investor’s death or the default of a firm whose assets are
in his portfolio).

It is, then, both of practical and theoretical interest to study the influence of this un-
certainty on the investor’s decisions.

In particular, we consider an exogenously given nonnegative random variable τ , that is a
totally inaccessible stopping time with respect to the investor’s filtration, and we study three
different scenarios: the one when the investment horizon is fixed and equal to T (problem
A), the one when it is finite, but possibly uncertain, given by T ∧ τ (problem B), and when
it is infinite (problem C). Our aim is to investigate the role of the source of randomness
τ in the investor’s decisions, when his objective is to maximize the expected utility from
consumption, in a complete market model in which τ affects the assets’s dynamics (think,
for example, of a defaultable zero-coupon bond, in the case when τ is a the default time, or
of a mortality linked security, when τ is the death time of a pensioner).

The present work can, then, be seen within the theory of optimal stochastic control
problems with uncertain time horizon. Some recent works in this direction are, e.g., Karatzas
and Wang [15], who solve an optimal dynamic investment problem in a complete market
case, when the uncertain time horizon is a stopping time in the asset price’s filtration;
Blanchet-Scaillet et al. [2], where they consider a maximization of expected utility from
consumption problem, in a continuous market model, in the case when the time horizon is
uncertain and the source of randomness is not a stopping-time in the investor’s filtration and
Bouchard and Pham [4], who consider, as opposite to the classical fixed time horizon setting,
a wealth path-dependent utility maximization problem in an incomplete semimartingale
model. In a more general setting, Zitković [25] formulates and solves a class of utility-
maximization problems of the “stochastic clock” type (a stochastic clock is a mathematical
tool to model the agent’s notion of passage of time, see the more precise Definition 2.3 in
[25]) in general incomplete semimartingale markets. Finally, in Menoncin [20], the author
studies an optimal consumption-investment problem where the investment horizon is the
death time of the investor and longevity bonds are traded in the market.

Here we solve three problems of maximization of expected utility from consumption in
the case when on the market there is a risk-free asset (whose price process is denoted) S0,
a defaultable risky asset S1, whose dynamics is driven by a Brownian motion W and a
purely discontinuous martingale M and a “standard risky” asset S2, whose dynamics only
depends on W . The investor’s filtration G (here “G” stands for “global”) is the smallest
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filtration which contains the natural filtration of W , F, and that makes τ a stopping time.
We provide, in a very general stochastic coefficients case, comparison results between the
optimal consumption rates of these three problems, showing that (as it should be) when
the horizon is finite, but possibly uncertain (problem B), the investor consumes at a higher
rate with respect to the case when the horizon is fixed (problem A). On the other hand,
his consumption rate is higher in the case of problem A (finite horizon) than in the case of
problem C (infinite horizon).

Furthermore, we show that, depending on whether the model coefficients are stochas-
tic processes or deterministic functions of time, the investor’s optimal investment strategy
changes substantially. Namely, in the deterministic coefficients case, for an investor facing
problems A and C the optimal investment strategy consists in not investing in the default-
able risky asset S1: he acts in the market as if only the asset S2 was traded. On the other
hand, in the case of problem B (finite uncertain horizon T ∧τ), when the investment horizon
depends on τ , he has to deal with this additional source of risk and it is, then, optimal to
invest in the defaultable asset S1 in order to have an optimal wealth that instantaneously
jumps to zero at T ∧ τ .

On the contrary, in the stochastic coefficients case, the market model coefficients are
adapted with respect to the investor’s filtration G, so that, on the set {t > τ}, they depend
on τ . In this case, then, the investor has inevitably always to deal with τ (and not, as before
in the deterministic coefficients case, only in the case when it appears in the investment
horizon in problem B) and, as a consequence, the optimal proportion of wealth he invests
in S1 is never equal to zero.

This part is divided in five chapters and it is organized as follows. In the first chapter
we consider a stochastic coefficients market model in which we suppose that immersion
property holds between F and G (i.e, the Brownian motion W remains a martingale in the
enlarged filtration G), we study the market completeness and we solve the three problems
by means of the martingale approach. We provide explicit optimal investment-consumption
strategies in the log-utility case.

The second chapter is the analog to the first one in the case when model coefficients are
deterministic. In this case, explicit optimal investment-consumption strategies are found in
both the logarithmic and in the exponential utility cases.

In Chapter 5, still focusing on the deterministic coefficients case, we solve the problems
by using the Dynamic Programming approach, as an alternative technique. At the end of
this chapter we study, with a mixed “martingale method - Dynamic Programming” solving
method, a problem (denoted B1) in which the investor’s strategy is F-predictable (and no
more G-predictable). It is the case of an investor with a reduced set of information, who
does not observe τ . We show that, in this case, the investor acts on the market with a
modified utility function, that incorporates the conditional law (with respect to filtration
F) of the non-observable random variable τ .
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In Chapter 6 we study, as a separate case, the exponential utility case, in the case
of deterministic coefficients. We provide optimal solution to the three problems that are
explicit, but not so “talkative”.

In the final chapter, we focus on an even more general market model, in which we do not
suppose that immersion property holds between F and G. By means of the tools developed
in the fifth part of this thesis, relative to enlargement of filtrations, we provide explicit
solutions to every considered problem in the log-utility case.
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Chapter 3

A stochastic model

3.1 Market model and problem definition

On a probability space (Ω,G,P), equipped with a Brownian motion (Wt)t≥0, we consider
an (exogenously given) non-negative random variable τ , satisfying P(τ = 0) = 0 and P(τ >

t) > 0, for any t ∈ R+. The law of τ is denoted by υ, υ(dθ) = P(τ ∈ dθ). We assume
that υ is absolutely continuous with respect to Lebesgue measure and that (with a slight
abuse of notation) υ(dθ) = υ(θ)dθ. We can think, for example, of τ as the time of default
of a firm issuing assets in the market, as the death time of a pensioner, or as a generic
time occurrence of a shock in the market. As common, all the considered filtrations will
be assumed to satisfy the “usual hypotheses” of right-continuity and completeness. We
denote by F := FW = (FWt )t≥0 the filtration generated by W , representing the information
at disposal to investors before τ . When the shock τ occurs, this information becomes
immediately accessible to investors, that add this knowledge to the reference filtration F.
Introducing the single-jump process (Ht)t≥0,

Ht := 11{t≥τ}, ∀ t ≥ 0,

and denoting by H = (Ht)t≥0 the natural filtration of H, this increase of information is
modeled by saying that the investors’ filtration G is, indeed, the (so-called) progressively
enlarged filtration of F with τ (under P). Namely, we define G = (Gt)t≥0 by

Gt :=
⋂
ε>0

{
FWt+ε ∨Ht+ε

}
,

and we have FWt ( Gt for every t ≥ 0. Being H the smallest filtration that makes τ a
stopping time, τ is a G-stopping time, too.

The financial market consists of a non-risky asset S0, whose strictly positive price process
has the dynamics

dS0
t = rtS

0
t dt, S0

0 = 1, (3.1.1)

where the interest rate r is assumed to be a nonnegative uniformly bounded G-adapted
process, and of two risky assets (think for example of a defaultable zero-coupon bond, or
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a mortality-linked security, and of a “standard risky” asset, respectively), whose prices S1

and S2 evolve following the linear stochastic differential equations{
dS1

t = S1
t−
(
µ1
tdt+ σ1

t dWt + φ1
tdMt

)
, S1

0 = s1
0,

dS2
t = S2

t

(
µ2
tdt+ σ2

t dWt

)
, S2

0 = s2
0.

(3.1.2)

The coefficients µ1, σ1 and φ1 are by hypothesis G-predictable and uniformly bounded
processes, with σ1

t > 0, t ≥ 0, a.s., φ1
t > −1, t ≥ 0, a.s. (to guarantee that the price process

S1 always remains strictly positive) and φ1
t 6= 0, t ≥ 0, a.s. (if φ1 = 0 the market is a Black-

Scholes market, that can present arbitrage opportunities). In the case when φ1 = −1 the
asset’s price S1 jumps to and it remains at zero after the shock τ and results are different.

On the other hand, the processes µ2 and σ2, σ2 6= σ1, are taken to be F-predictable (in
particular, they are also G-predictable) and uniformly bounded, with σ2

t > 0, t ≥ 0, a.s.
In the assets’ dynamics (3.1.2) M represents the compensated (purely discontinuous)

martingale associated with H, that we suppose being equal to

Mt := Ht −
∫ t∧τ

0
λsds = Ht −

∫ t

0
11{s<τ}λsds = Ht −

∫ t

0
λ̄sds, t ≥ 0. (3.1.3)

The process λ in the above Equation (3.1.3) denotes the non-negative and F−adapted
intensity rate of τ and we have introduced the G-adapted process λ̄, λ̄t := 11{t<τ}λt, t ≥ 0.
Notice that, by introducing the above representation of M , we have assumed that the
compensator of H is absolutely continuous with respect to the Lebesgue measure, so that,
in particular, τ is a G−totally inaccessible stopping time (see Dellacherie and Meyer [8, Ch.
IV, 107]).

Before defining the investment strategies, let us recall that any G-predictable process Y
(all the details concerning the characterization of G-predictable processes can be found in
the following Part V of this thesis) can be written in the form

Yt(ω) = ỹt(ω)11{t≤τ(ω)} + yt(ω, τ(ω))11{t>τ(ω)}, t ≥ 0,

where ỹ is F-predictable and where the function (t, ω, u) → yt(ω, u) is P(F) ⊗ B(R+)-
measurable. Here P(F) denotes the predictable σ-algebra corresponding to F on R+ × Ω.

The economic interpretation of our assumptions on the coefficients is that when the shock
perturbs the market, the interest rate r and the coefficients µ1 and σ1 of the stock price S1

(and not the ones of S2) switch from given processes r̃, µ̃1, σ̃1 to processes r(τ), µ1(τ), σ1(τ).
Their values after the perturbation on the market can obviously depend on τ . Since the
martingale M is constant after τ , φ1

t plays no more role in the assets’ dynamics when t > τ

and we will simply use the notation φ1
t instead of φ̃1

t , for t ≤ τ . For clarity we represent the
notation used for the coefficients of the model in the following table:

r µ1 σ1 φ1 µ2 σ2

{t ≤ τ} r̃t µ̃1
t σ̃1

t φ1
t µ2

t σ2
t

{t > τ} rt(τ) µ1
t (τ) σ1

t (τ) 5 µ2
t σ2

t
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Furthermore, we make the following assumption, that will be necessary, when working with
deterministic coefficients, to have a well-defined model, to obtain explicit results and in
order to avoid arbitrage opportunities, as we will see later on in Section 3.1.1.

Assumption 3.1.1. a) (Immersion property) The Brownian motion W , that is an F-
martingale, is also a G-martingale, i.e., the filtration F is immersed in G. This will
be also referred to as the (H) hypothesis;

b) The model coefficients satisfy
σ2
t (r̃t − µ̃1

t )− σ̃1
t (r̃t − µ2

t )

φ1
tσ

2
t λt

> −1 a.s., t ≤ τ ;

rt(τ)− µ1
t (τ)

σ1
t (τ)

=
rt(τ)− µ2

t

σ2
t

a.s., t > τ.

(3.1.4)

The above Assumption 3.1.1 b) implies that after the shock τ the market is “redundant”.
We would expect, then, to have the possibility to arbitrarily invest in S1 (resp., S2), since
our portfolio can be re-balanced also by means of S2 (resp., S1), that, on the set {t > τ},
has the same dynamics of S1 (resp., S2).

In order to state our optimization problems, we now consider an investor, having an
initial wealth x0 ≥ 0, who trades continuously in the financial market according to the self-
financing investment strategy αt = (α0

t , α
1
t , α

2
t ), where αit denotes the number of assets of

Si in his portfolio at time t. If, in addition, we suppose that he consumes at a consumption
rate ct ≥ 0, then his wealth process X is driven by the stochastic differential equation

dXt = rtXtdt+ α1
t (dS

1
t − rtS1

t dt) + α2
t (dS

2
t − rtS2

t dt)− ctdt, X0 = x0. (3.1.5)

Equivalently, denoting by πt = (π0
t , π

1
t , π

2
t ) the proportion of wealth invested in the three

assets (it is necessary here to suppose that, before the maturity, the wealth remains almost
surely positive at any time), the investor’s wealth dynamics is

dXt =
[
rtXt + π1

tXt(µ
1
t − rt − φ1

t λ̄t) + π2
tXt(µ

2
t − rt)− ct

]
dt+

π1
t φ

1
tXt−dHt +

[
π1
t σ

1
tXt + π2

t σ
2
tXt

]
dWt, X0 = x0. (3.1.6)

We now introduce the notion of admissible pair (π, c) that is general enough to be suitable
for the three different problems we want to solve, namely in the case of a finite horizon
optimization problem, in the case of a (possibly) uncertain finite horizon and for an infinite
horizon problem.

Definition 3.1.1. A pair (π, c) of portfolio and consumption processes satisfying

• (πt)t≥0 G-predictable and, for every t ≥ 0 and for i = 1, 2,∫ t

0
|πis|

2ds < +∞ a.s. and π1
τφ

1
τ ≥ −1 a.s.,
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• (ct)t≥0 G-adapted, non negative and such that, for every t ≥ 0,
∫ t

0 csds < +∞, a.s.,

is said to be admissible for the initial endowment x0 ≥ 0, and we write (π, c) ∈ Adm(x0), if
the corresponding wealth process X satisfies

Xt ≥ 0 for every 0 < t <∞, a.s.

Remark 3.1.1. No sign restriction is made for what concerns the investment strategy,
meaning that the agent may borrow or sell assets short.
The condition π1

τφ
1
τ ≥ −1 a.s. ensures that the wealth X remains nonnegative after the

shock τ and it also tells that, before τ ,

• If φ1 > 0 a.s., then it is not possible to take “too short”positions in S1;

• If φ1 ∈ (−1, 0) a.s., then it is not possible to take “too long”positions in S1.

For a given fixed time horizon T ∈ (0,+∞), we are interested in solving the following
three types of maximization of the expected utility from consumption problems under the
historical measure P (notice that the path-wise constraint of positivity of the wealth process
X is “hidden” in the admissibility set Adm(x0)):

sup
(π,c)∈A(x0)

E
∫ T

0
u(cs)ds︸ ︷︷ ︸

A

, sup
(π,c)∈Aτ (x0)

E
∫ T∧τ

0
u(cs)ds︸ ︷︷ ︸

B

, sup
(π,c)∈A∞(x0)

E
∫ +∞

0
e−ρsu(cs)ds︸ ︷︷ ︸

C

(3.1.7)

where

A(x0) :=

{
(π, c) ∈ Adm(x0) : E

∫ T

0
min{0, u(cs)}ds > −∞

}
, (3.1.8)

Aτ (x0) :=

{
(π, c) ∈ Adm(x0) : E

∫ T∧τ

0
min{0, u(cs)}ds > −∞

}
, (3.1.9)

A∞(x0) :=

{
(π, c) ∈ Adm(x0) : E

∫ +∞

0
e−ρs min{0, u(cs)}ds > −∞

}
(3.1.10)

(so that the three problems are well-defined) and where ρ > 0 is a discounting factor.
Furthermore, for what concerns u(c), the utility of consuming at a rate c, we assume that
(the exponential utility case will be treated as a separate example in Chapter 6) u : (0,∞)→
R is strictly increasing, strictly concave, continuously differentiable and satisfies

u′(0+) = lim
c↓0

u′(c) = +∞ and u′(∞) = lim
c→+∞

u′(c) = 0. (3.1.11)

We allow u(0) = limc↓0 u(c) to be equal to −∞. Notice that under the above assumptions
the marginal utility function u′ is invertible.
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Definition 3.1.2. We denote by I the continuous and strictly decreasing inverse of u′,
defined on ]u′(∞), u′(0+)[, namely I : (0,∞) → (0,∞), that satisfies I(0+) = ∞ and
I(∞) = 0.

3.1.1 The unique EMM Q∗

From the predictable representation property in the case of filtration G, under the (H)

hypothesis (see, e.g., Chesney, Jeanblanc and Yor [5, Th. 7.5.5.1]), if P and Q are equivalent
probability measures, we know that there exist two G−predictable processes ψ and γ, with
γ > −1 a.s., such that the Radon-Nikodým density of Q with respect to P can be written
as

Zt :=
dQ
dP |Gt

= 1 +

∫
]0,t]

Zu− (ψudWu + γudMu) , t ≥ 0.

Notice that the above result does not require the independence of W and M , but we will
need their orthogonality (that is, indeed, obvious).

In our case we show that, under Assumption 3.1.1 b), the market is complete, i.e.,
there exists a unique equivalent martingale measure Q∗. In fact, by imposing the (local)
martingale property to the discounted value processes of S1 and S2, under the measure Q∗,
we find that the processes ψ∗ and γ∗ in the Radon-Nikodým density Z∗ (provided that this
process is a true martingale, as in our case, given that the model coefficients are uniformly
bounded) have to satisfy the following two conditions, in order to have the existence of at
least one EMM 

µ1
t − rt + σ1

tψ
∗
t + φ1

tγ
∗
t λ̄t = 0

µ2
t − rt + σ2

tψ
∗
t = 0.

(3.1.12)

By distinguishing between values before and after the shock, we find that there exists at
least one EMM Q∗ if ψ̃∗, ψ(τ) and γ∗ satisfy

ψ∗t =


ψ̃∗t =

r̃t − µ2
t

σ2
t

a.s., if t ≤ τ ;

ψ∗t (τ) =
rt(τ)− µ1

t (τ)

σ1
t (τ)

=
rt(τ)− µ2

t

σ2
t

a.s., if t > τ ;

γ∗t =


σ2
t (r̃t − µ̃1

t )− σ̃1
t (r̃t − µ2)

σ2
t φ

1
tλt

> −1 a.s., if t ≤ τ ;

any predictable γ∗t > −1 a.s., if t > τ.

(3.1.13)

Given Assumption 3.1.1 b), such an EMM exists (notice that ψ∗ and γ∗ are, indeed, G-
predictable) and the market is arbitrage free. Furthermore, the processes ψ∗ and γ∗ are
uniquely determined, so that (from the Second Fundamental Theorem of Asset Pricing) the
market is complete.
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Even if γ∗ is not uniquely defined after τ , the process Z∗ is uniquely assigned, since γ∗

does not affect the dynamics of Z∗ after the shock. The Radon-Nikodým density is then
given, for every t ≥ 0, by

Z∗t = e
∫ t
0 ψ
∗
sdWs− 1

2

∫ t
0 (ψ∗s )2ds e−

∫ t
0 γ
∗
s λ̄sds (1 + γ∗τ )Ht a.s.

or, more precisely, by

Z∗t =


e
∫ t
0 ψ̃
∗
sdWs− 1

2

∫ t
0 (ψ̃∗s )

2
dse−

∫ t
0 γ
∗
sλsds if t < τ ;

Z∗τ−(1 + γ∗τ ) if t = τ ;

e
∫ τ
0 ψ̃∗sdWs+

∫ t
τ ψ
∗
s (τ)dWs− 1

2

∫ τ
0 (ψ̃∗s )

2
ds− 1

2

∫ t
τ (ψ∗s (τ))2dse−

∫ τ
0 γ∗sλsds (1 + γ∗τ ) if t > τ ;

(3.1.14)

We can summarize the results of this section in the following Lemma.

Lemma 3.1.1. The conditions

σ2
t (r̃t − µ̃1

t )− σ̃1
t (r̃t − µ2

t )

φ1
tσ

2
t λt

> −1 a.s., t ≤ τ ;

rt(τ)− µ1
t (τ)

σ1
t (τ)

=
rt(τ)− µ2

t

σ2
t

a.s., t > τ.

are necessary and sufficient to ensure the absence of arbitrage in our market.

3.1.2 From the admissibility conditions to the budget constraints

In this subsection, we show how the infinite dimensional constraint Xt ≥ 0 for every
t ≥ 0, a.s., that is required in the Definition 3.1.1 of admissible investment-consumption
strategies, can be rewritten in a form that is more practical to use.

For the moment we concentrate on the case when the investment horizon is bounded,
i.e., t ∈ [0, T ], namely we focus on problems A and B. For the infinite horizon case, we refer
to Section 3.2.5.

First of all notice that the condition Xt ≥ 0, t ∈ [0, T ], P−a.s., remains valid under
Q, if P and Q are equivalent probability measures. In our setting, furthermore, looking at
Equation (3.1.5), it is clear that if the consumption-investment strategy is admissible, the
process (

e−
∫ t
0 rsdsXt +

∫ t

0
e−
∫ s
0 rudu csds

)
t≥0

(3.1.15)

is a positive G-local martingale (hence a super-martingale, by Fatou’s Lemma) under the
unique equivalent martingale measure Q∗.
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Given the definition of an admissible investment-consumption strategy, it is then clear that
the following (so-called) budget constraint is a necessary condition for admissibility

EQ∗
(
e−
∫ T
0 rsdsXT +

∫ T

0
e−
∫ s
0 rudu csds

)
≤ x0 (3.1.16)

and that the following inequality holds true

EQ∗
(∫ T

0
e−
∫ s
0 rudu csds

)
≤ x0. (3.1.17)

Our aim being to maximize the expected utility from consumption, it is clear that, at the
optimum, we would like to saturate the above inequality in order to solve our problems, so
that in the case of problems A and B, the necessary conditions for the optimality of the
consumption strategy c∗, that are, respectively, X∗T = 0 and X∗T∧τ = 0, are equivalent to

EQ∗
(∫ T

0
e−
∫ s
0 rudu c∗sds

)
= x0 and EQ∗

(∫ T∧τ

0
e−
∫ s
0 rudu c∗sds

)
= x0. (3.1.18)

By considering their analog at time t, we find expressions for the optimal wealth at time
t ≤ T , in the case of problems A and B:

X∗t = e
∫ t
0 rsds EQ∗

(∫ T

t
e−
∫ s
0 rudu c∗sds|Gt

)
a.s., for t ≤ T,

X∗t = e
∫ t
0 rsds EQ∗

(∫ T∧τ

t
e−
∫ s
0 rudu c∗sds|Gt

)
a.s., for t ≤ (T ∧ τ).

From the previous equations, the optimal wealth is clearly positive (indeed, any wealth
associated with an admissible nonnegative consumption, having nonnegative final value, is
positive).

Furthermore, inspired by Proposition 2.1 in Jeanblanc and Pontier [13], we can show
that the budget constraint (3.1.16) (resp., its analog where T ∧ τ replaces T ) is also a
sufficient condition for the admissibility in problem A (resp., B), as stated in the following
Proposition.

Proposition 3.1.1. Let x0 ≥ 0 be given, let c be a consumption process, satisfying a suitable
integrability condition as in Definition 3.1.1, and let ξ be a nonnegative and square integrable
GT -measurable random variable, such that

EQ∗
(
e−rT ξ +

∫ T

0
e−rscsds

)
= x0.

Then, there exists a portfolio process α, such that the pair (α, c) is admissible for the initial
endowment x0 and the associated terminal wealth XT is equal to ξ.
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Proof. The proof is based on the predictable representation property and it can be straight-
forwardly obtained from the one in Proposition 2.1 in Jeanblanc and Pontier [13], by recalling
that in the case when F is the Brownian filtration and the (H) hypothesis holds between F
and G, a G-martingale representation theorem was proved by Kusuoka in [19, Th. 2.3] (see
also Section 7.5.5 in Chesney, Jeanblanc and Yor [5]).

The sufficiency of the admissibility condition in the case of problem B is shown in the
same way, using the key fact that τ is a G-stopping time.

It is interesting to notice that, as observed in Karatzas and Shreve [14, Remark 3.4], from
the (Q∗,G)-martingale property of the process defined in Equation (3.1.15): “Bankruptcy
is an absorbing state for the wealth process X when (π, c) is an admissible control”.

3.2 The solution: martingale approach

3.2.1 Problem A: optimal consumption

In this case, being the investment horizon fixed, in order to maximize his consumption,
the investor’s aim is necessarily to end up at time T with an optimal wealth satisfying
X∗T = 0. In the following proposition, we provide a general result concerning the optimal
consumption process. Notice that it can be found, as clarified in Remark 3.2.1 b), by
adapting a martingale approach (recall that here the equivalent martingale measure Q∗ is
unique).

Proposition 3.2.1. Given the market structure (3.1.2), the optimal consumption rate solv-
ing problem A in (3.1.7) is given by

c∗,As = I
(
νe−

∫ s
0 ruduZ∗s

)
a.s., (3.2.1)

where I denotes the inverse function of u′, ν > 0 is a real parameter satisfying

EQ∗
(∫ T

0
e−
∫ s
0 ruduI

(
νe−

∫ s
0 ruduZ∗s

)
ds
)

= E
(∫ T

0
e−
∫ s
0 ruduZ∗s I

(
νe−

∫ s
0 ruduZ∗s

)
ds
)

= x0

and we recall that Z∗ is the Radon-Nikodým density process introduced in Equation (3.1.14).

Proof. Given the concavity property of u and the definition of c∗,A in (3.2.1), we have:

E
(∫ T

0
[u(cs)− u(c∗,As )]ds

)
≤ E

(∫ T

0
(cs − c∗,As )u′(c∗,As )ds

)
= E

(∫ T

0
(cs − c∗,As )νe−

∫ s
0 ruduZ∗sds

)
≤ ν(x0 − x0) = 0,

where in the last inequality we have used the fact that (see Section 3.1.2), under the mea-
sure P, any admissible consumption strategy c and so the optimal one c∗,A as well satisfy,
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respectively,

E
(∫ T

0
e−
∫ s
0 ruducsZ

∗
sds
)
≤ x0, E

(∫ T

0
e−
∫ s
0 ruduc∗,As Z∗sds

)
= x0.

The optimality of c∗,A is proved.

What about its existence? Problem A admits a solution under the following assumption
(it corresponds to Assumption 7.1 in Karatzas and Shreve [14], see also a similar analysis
in Korn and Korn [17] and in Dana and Jeanblanc [6]).

Assumption 3.2.1. The function

ΨA(ν) := E
(∫ T

0
e−
∫ s
0 ruduZ∗s I

(
νe−

∫ s
0 ruduZ∗s

)
ds
)

is finite for every 0 < ν <∞.

Indeed, in this case it can be proved, as already done in the literature (see, e.g., Lemma
4.5.2 in Dana and Jeanblanc [6]), that ΨA is non-increasing and continuous on (0,∞), with
ΨA(0+) = ∞. Furthermore, it is strictly decreasing on (0, ν̄), where ν̄ := inf{ν|Ψ(ν) = 0}
and, when restricted to this interval, it admits then a continuous strictly decreasing inverse.
This implies that ν satisfying the budget constraint, i.e., ν = (ΨA)

−1
(x0) exists and so

does c∗,A (notice that, given the above Assumption 3.2.1, such a c∗,A is admissible: the
optimal consumption strategy is continuous, except at time t = τ). A detailed analysis on
the regularity conditions to be required on the model coefficients for Assumption 3.2.1 to
hold true can be found, e.g., in Remark 3.6.8 and Remark 3.6.9 in Karatzas and Shreve [14].
Let us only remark here that in the deterministic coefficients case, for the logarithmic and
power utility cases, explicit solutions are available, as we will see later on.

Remark 3.2.1. a) As expected, the optimal consumption strategy is made of two parts: one
before the shock and the other one after the shock.
b) Equation (3.2.1) can be “directly” obtained by considering the Lagrangian function asso-
ciated with problem A, with the admissibility constraint
EQ∗

(∫ T
0 e−

∫ s
0 rudu csds

)
≤ x0, namely

L(c, ν;x0) := E
(∫ T

0
u(cs)ds− νZ∗T

∫ T

0
e−
∫ s
0 ruducsds

)
+ νx0

= E
(∫ T

0
u(cs)ds− ν

∫ T

0
e−
∫ s
0 rudu Z∗s csds

)
+ νx0

and by formally maximizing the expectation by looking for the supremum in the integrand
function “ω per ω” (see also some comments about this method in Korn and Korn [17], page
208).
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� The log-utility case.
In the case when u is the logarithmic function, the inverse of its derivative is I(y) = 1/y,
so that for every 0 ≤ s ≤ T we find

c∗,As =
1

νe−
∫ s
0 ruduZ∗s

=
x0

Te−
∫ s
0 ruduZ∗s

a.s., (3.2.2)

since it is straightforward to prove that ν in this case is equal to T/x0.
� The power-utility case.
As a second example, we consider the power utility case, i.e., we choose u(x) = xγ

γ , x ≥

0, γ < 1, γ 6= 0, so that I(y) = (y)
1

γ−1 . In this case, then, we have

c∗,As =
(
νe−

∫ s
0 ruduZ∗s

) 1
γ−1

= x0

(
e−
∫ s
0 ruduZ∗s

) 1
γ−1

E
∫ T

0 (e−
∫ u
0 rvdvZ∗u)

γ
γ−1du

a.s., (3.2.3)

since it can be checked that ν is given by

ν =

E ∫ T0 (e−
∫ u
0 rvdvZ∗u)

γ
γ−1du

x0

1−γ

.

We will provide a more explicit result in the case of deterministic coefficients.

3.2.2 Problem A: optimal investment strategy

In order to completely solve our problem, we need to obtain the optimal investment
strategy π∗. This can be done, knowing c∗, through the knowledge of X∗, as we presently
explain. We first obtain the optimal wealth by computing the following conditional expec-
tation

X∗t = e
∫ t
0 rsds EQ∗

(∫ T

t
e−
∫ s
0 ruduc∗s ds | Gt

)
a.s.

Then, we compute the stochastic differential of X∗ and we finally identify, term by term,
the dynamics dX∗t and the theoretical dynamics dXt (under Q∗), thus leading us to π1,∗

t

and π2,∗
t (and, as a consequence, to π0,∗

t ).
We now explicitly characterize the optimal investment strategies in the case of a loga-

rithmic utility function. In the power utility case the computations do not lead to an explicit
solution, so that we refer the reader to the deterministic coefficient case that follows.
� The log-utility case.
From Equation (3.2.2), we know that (under P)

c∗s =
x0 e

∫ s
0 rudu

TZ∗s
a.s., s ≤ T.

Notice that this expression, as any other expression depending on Z∗, is not a real investment
rule, since Z∗ is not observable in the market. We refer to Equation (3.2.7) below for a
more useful form of c∗.
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A direct computation, applying the conditional version of Fubini-Tonelli’s theorem and
recalling that (Z∗)−1 is a (Q∗,G)−martingale, gives us

EQ∗
(∫ T

t
e−
∫ s
0 ruduc∗s ds | Gt

)
=

x0

T

∫ T

t
EQ∗

[
(Z∗s )−1|Gt

]
ds =

x0(T − t)
T Z∗t

a.s.,

so that the optimal wealth is (under Q∗)

X∗t = e
∫ t
0 rsds

x0(T − t)
T Z∗t

, a.s., t ≤ T.

Notice that X∗T = 0. In order to obtain the stochastic differential of X∗, we introduce the
(Q∗,G)-martingales

W ∗t := Wt −
∫ t

0
ψ∗sds and M∗t := Mt −

∫ t

0
γ∗s λ̄sds, t ≥ 0,

and we first compute (recall that ψ∗ and γ∗ are G-predictable)

d

(
1

Z∗t

)
=

1

Z∗t−

[
−ψ∗t dW ∗t −

γ∗t
1 + γ∗t

dM∗t

]
. (3.2.4)

We then easily find

dX∗t = X∗t−

[(
rt −

1

T − t

)
dt− ψ∗t dW ∗t −

γ∗t
1 + γ∗t

dM∗t

]
, X∗0 = x0. (3.2.5)

To determine π1,∗ and π2,∗ it suffices, as it is standard in continuous time, to identify
term by term the above equation and Equation (3.1.6) written under the measure Q∗ (notice
that in order to obtain the dynamics in the equations that follow we need the explicit
characterization of ψ∗ and γ∗ in Equation (3.1.13) and, a priori, we have to distinguish
between the cases when t ≤ τ and when t > τ), namely

dXt = (rtXt − ct) dt+ π1
t φ

1
tXt−dM∗t +Xt

(
π1
t σ

1
t + π2

t σ
2
t

)
dW ∗t , X0 = x0. (3.2.6)

We finally find that

c∗t =
X∗t
T − t

, 0 ≤ t ≤ T (3.2.7)

and 
π1,∗
t = − γ∗t

φ1
t (1 + γ∗t )

, π2,∗
t = − ψ̃

∗
t

σ2
t

+
γ∗t σ̃

1
t

φ1
t (1 + γ∗t )

a.s., t ≤ τ ;

π1,∗
t σ1

t (τ) + π2,∗
t σ2

t = −ψ∗t (τ) a.s., t > τ.

(3.2.8)

In our complete market, after τ , the investment strategy is not unique, as expressed in the
previous equation. This is due to the fact that, being the market arbitrage free, we have
rt(τ)−µ1t (τ)

σ1
t (τ)

=
rt(τ)−µ2t

σ2
t

a.s., t > τ , and so after the shock the two assets S1 and S2 have
proportional dynamics, i.e., the market is redundant.
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3.2.3 Problem B: optimal consumption

As previously remarked, in order to maximize his consumption, the investor’s aim in
this case is to end up with an optimal wealth satisfying

X∗T∧τ = 0 a.s. (3.2.9)

(this condition immediately implies that c∗ is equal to zero after τ). It is important to
underline that the constraint X∗T∧τ = 0 makes sense since the investor’s filtration is G (τ
is a G-stopping time), while it would not be the case if working with the filtration F. We
will go more into details on this aspect later on, in Section 5.4. We have already observed
(recall Equation (3.1.18)) that the condition X∗T∧τ = 0 can be equivalently written as

EQ∗
(∫ T∧τ

0
e−
∫ s
0 ruduc∗,Bs ds

)
= EQ∗

(∫ T

0
(1−Hs)e

−
∫ s
0 ruduc∗,Bs ds

)
= x0,

so that problem B consists in maximizing, over all the admissible investment-consumption
strategies, the expected utility from consumption

E
∫ T∧τ

0
u(cs)ds = E

∫ T

0
(1−Hs)u(cs)ds,

with the above constraint. An application of the martingale approach in this case provides
(with no additional technical difficulties linked to the presence of the factor (1−Hs) in the
integrand) the optimal consumption rate process before the shock and we state the analog
to Proposition 3.2.1 (for this reason, we omit its proof).

Proposition 3.2.2. Given the market structure (3.1.2), the optimal consumption rate solv-
ing problem B, with the terminal condition X∗T∧τ = 0, is given by

c∗,Bs = I
(
νe−

∫ s
0 ruduZ∗s

)
a.s., s ≤ (T ∧ τ), (3.2.10)

where I denotes the inverse function of u′ and ν > 0 is a real parameter satisfying

EQ∗
(∫ T∧τ

0 e−
∫ s
0 ruduI

(
e−

∫ s
0 ruduνZ∗s

)
ds
)

=E
(∫ T∧τ

0 e−
∫ s
0 ruduZ∗s I

(
e−

∫ s
0 ruduνZ∗s

)
ds
)

=x0.

As previously remarked in the case of problem A here, too, the existence of the optimal
c∗,B is not immediate and it derives (the reasoning is the same as in Section 3.2.1) from the
following

Assumption 3.2.2. The function

ΨB(ν) := E
(∫ T

0
e−
∫ s
0 rudu(1−Hs)Z

∗
s I
(
νe−

∫ s
0 ruduZ∗s

)
ds
)

is finite for every 0 < ν <∞.
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Concerning a comparison between the two optimal investment strategies c∗,A and c∗,B,
we now show that, before the shock τ , an investor facing problem B consumes at a higher
rate than an investor facing problem A, as one might expect.

Proposition 3.2.3. Before the shock τ , i.e., for s ≤ (T ∧ τ), under Assumption 3.2.1 and
Assumption 3.2.2,

c∗,Bs ≥ c∗,As a.s.

Proof. We have to compare, for s ≤ τ ,

c∗,Bs = I
(
νBe−

∫ s
0 ruduZ∗s

)
and c∗,As = I

(
νAe−

∫ s
0 ruduZ∗s

)
,

where νB and νA are positive (their existence is ensured by Assumption 3.2.1 and Assump-
tion 3.2.2) and they satisfy, respectively,

E
(∫ T

0
e−
∫ s
0 ruduZ∗s (1−Hs)I

(
e−
∫ s
0 ruduνBZ∗s

)
ds
)

= x0

and

E
(∫ T

0
e−
∫ s
0 ruduZ∗s I

(
e−
∫ s
0 ruduνAZ∗s

)
ds
)

= x0.

Recall that I denotes the strictly decreasing inverse function of u′. Equivalently, νA =

(ΨA)
−1

(x0) and νB = (ΨB)
−1

(x0). Furthermore, since (1−Hu) ≤ 1,∀u ∈ [0, T ], ΨB ≤ ΨA

and so (ΨB)
−1 ≤ (ΨA)

−1. We then have νB ≤ νA and we are done, since I is decreasing.

The explicit solution to problem B and an explicit comparison with the optimal strategy
in case A are given below in the two usual examples.
� The log-utility case.
Here ν is found to be the solution of the following equation

E
∫ T∧τ

0

1

ν
ds =

1

ν
E(T ∧ τ) = x0,

namely ν = E(T ∧ τ)/x0. We then find

c∗,Bs =
x0

E(T ∧ τ)Z∗s e
−
∫ s
0 rudu

a.s., s ≤ (T ∧ τ). (3.2.11)

Being T ∧τ always smaller than T , it is evident that the investor facing problem B consumes
(before the shock τ) at a higher rate than the investor facing problem A (recall Equation
(3.2.2)), as we expected from Proposition 3.2.3.
� The power-utility case.
Here we have

c∗,Bs = x0

(
e−
∫ s
0 ruduZ∗s

) 1
γ−1

E
∫ T

0 (1−Hu)
(
e−
∫ u
0 rvdvZ∗u

) γ
γ−1du

a.s., s ≤ (T ∧ τ), (3.2.12)

99



since ν is given by

ν =

E ∫ T0 (1−Hu)(e−
∫ u
0 rvdvZ∗u)

γ
γ−1du

x0

1−γ

.

In this power utility case, too, as expected, being 1−Hu ≤ 1 a.s. for every u, the optimal
consumption rate is greater (before τ) than the one we found for problem A, that is the
one in Equation (3.2.3). An explicit result will be provided in the case of deterministic
coefficients.

3.2.4 Problem B: optimal investment strategy

As previously done for problem A, we now focus on the computation of the optimal
investment strategy. The optimal wealth here is given by (recall Section 3.1.2)

X∗t = e
∫ t
0 rsds EQ∗

(∫ T

t
11{s<τ}e

−
∫ s
0 ruduc∗s ds | Gt

)
a.s.

Before focusing on the logarithmic utility case, that is the only one in which the computation
can be performed up to the end, in the following lemma we state an interesting and quite
general result.

Lemma 3.2.1. Let Y be an F−predictable process. If Yτ ≥ 0 then

Yt ≥ 0 a.s. for every t ≤ τ.

Proof. Given h > 0, we have Yτ11t<τ≤t+h ≥ 0 a.s and E
(
Yτ11t<τ≤t+h|FWt

)
≥ 0 a.s. From

the definition of predictable compensator (see, e.g., Definition 5.2.1.5 in Chesney, Jeanblanc
and Yor [5]) associated with τ , we also have

E
(
Yτ11t<τ≤t+h |FWt

)
= E

(∫ t+h

t
YudA

τ
u

∣∣FWt ) ≥ 0 a.s.,

where Aτ is the F-dual predictable projection of the process H. Writing the (general) Doob-
Meyer decomposition of the super-martingale G as Gt = µτt − Aτt (see, e.g., Proposition
5.9.4.3 in Chesney, Jeanblanc and Yor [5]), we then find

E
(
Yτ11t<τ≤t+h |FWt

)
= −E

(∫ t+h

t
YudGu |FWt

)
= E

(∫ t+h

t
YuGuλudu |FWt

)
≥ 0,

where we used the fact that, under the immersion property, we have Gt = e−Λt , t ≥ 0,
where the process Λ here corresponds to Λ =

∫ ·
0 λsds and λ is the intensity rate introduced

in Equation (3.1.3). Finally, dividing by h and passing to the limit for h → 0, we have
E
(
YtGtλt|FWt

)
≥ 0 a.s., that immediately gives

YtGtλt ≥ 0 a.s.,

which concludes the proof.
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As a consequence, we find the following interesting result concerning the optimal invest-
ment strategy π1,∗

t , for t ≤ τ .

Remark 3.2.2. The terminal condition X∗T∧τ = 0 becomes, on the set {τ < T}, X∗τ = 0.
Since Xτ = Xτ− + (Xτ −Xτ−) = Xτ− + ∆Xτ and since, recalling Equation (3.1.6),

∆Xt := Xt−π
1
t φ

1
t∆Ht a.s.,

we have
Xτ = Xτ−(1 + π1

τφ
1
τ ) a.s.

and so we are obliged to set (recall that φ1 6= 0)

π1,∗
τ = − 1

φ1
τ

a.s.,

so that at time t = τ the optimal wealth jumps to zero. We then conclude, by means of
Lemma 3.2.1, that, more generally,

π1,∗
t = − 1

φ1
t

a.s., 0 ≤ t ≤ τ. (3.2.13)

For an economic interpretation of the above optimal π1,∗ in the constant coefficients case,
we refer to the following Remark 4.2.3.
� The log-utility case.
From Equation (3.2.11), we know that (under the measure P)

c∗s =
x0

E(T ∧ τ)Z∗s e
−
∫ s
0 rudu

a.s., s ≤ (T ∧ τ).

By passing under the measure P by means of Z∗t = dQ∗
dP |Gt and by applying Fubini-Tonelli’s

theorem we find

X∗t = e
∫ t
0 rsds

x0

E(T ∧ τ)

1

Z∗t
E
(
Z∗t

∫ T

t
11{s<τ}

1

Z∗s
ds | Gt

)
= e

∫ t
0 rsds

x0

E(T ∧ τ)

1

Z∗t

∫ T

t
E
(
11{s<τ}|Gt

)
ds a.s.

In order to obtain a more explicit result, we now exploit the following “key-lemma” (see,
e.g., Lemma 7.3.4.1 in Chesney, Jeanblanc and Yor [5]), originally stated (in a completely
different context) by Dellacherie (see [7], page 65). In what follows (Gt)t≥0 denotes the F
super-martingale defined as Gt := P(τ > t|FWt ), t ≥ 0 (notice that, under the immersion
property, G is decreasing).

Lemma 3.2.2. Let Y ∈ FT be an integrable random variable. Then

E(Y 11{τ>T}|Gt) = 11{τ>t}
1

Gt
E
(
Y GT |FWt

)
.
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The computations that follow are done in a “general” setting, without using the fact that
in this chapter the immersion property hold between F and G, under P.

Applying the above Lemma, we then have, under P,

X∗t = e
∫ t
0 rsds

x0

E(T ∧ τ)Z∗t

∫ T

t
11{τ>t}

E
(
Gs|FWt

)
Gt

ds

= e
∫ t
0 rsds

x0

E(T ∧ τ)

(1−Ht)

Z∗t Gt

∫ T

t
P
(
τ > s|FWt

)
ds a.s.

In particular, X∗T∧τ = 0 a.s. At this point in order to go ahead we need to make an
assumption concerning the conditional law of τ with respect to F (it is exactly the same
assumption as in Part V, for all the details we refer to that part).

Assumption 3.2.3. (E)-Hypothesis. The F-(regular) conditional law of τ is equivalent
to the law of τ , i.e.,

P
(
τ ∈ dθ |FWt

)
∼ υ(θ)dθ, for every t ≥ 0, P− a.s. (3.2.14)

One of the consequences of the above assumption (for all the details we refer to the fol-
lowing Part V) is the following: there exists a “regular” family of strictly positive martingales
(pt(θ))t≥0, θ ≥ 0, such that for s ≥ 0

P
(
τ > s|FWt

)
=

∫ ∞
s

pt(θ)υ(θ)dθ for every t ≥ 0, P− a.s. (3.2.15)

By means of Equation (3.2.15), we can then write the optimal wealth as follows

X∗t = e
∫ t
0 rsds

x0

E(T ∧ τ)

(1−Ht)

Z∗t Gt

∫ T

t
ds
∫ ∞
s

pt(θ)υ(θ)dθ a.s.

and this stochastic expression has to be differentiated in order to obtain the optimal invest-
ment strategy π∗. Because of the presence of t as a subscript in the random variable pt(θ),
we need the following differentiating rule, also known as the Itô-Kunita-Ventzell formula
(see, e.g., Kunita [18]).

Theorem 3.2.1. Let Ft(x), t ≥ 0, x ∈ Rd, be a family of stochastic processes, continuous
in (t, x) a.s., satisfying

(i) For each t > 0, Ft(·) is a C2-map from Rd into R;

(ii) For each x, (Ft(x))t≥0 is a continuous semi-martingale, represented as

Ft(x) = F0(x) +

m∑
j=1

∫ t

0
f js (x)dN j

s ,

where N1, . . . , Nm are continuous semi-martingales and f j(x), x ∈ Rd, are stochastic
processes continuous in (t, x), such that
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(a) For each s > 0, f js (·) are C1-maps from Rd into R;

(b) For each x, f j(x) are adapted processes.

Let X = (X1, . . . , Xd) be a continuous semi-martingale. Then

Ft(Xt) = F0(X0) +
m∑
j=1

∫ t

0
f js (Xs)dN

j
s +

d∑
i=1

∫ t

0

∂Fs
∂xi

(Xs)dX
i
s

+
d∑
i=1

m∑
j=1

∫ t

0

∂f js
∂xi

(Xs) d< N j , Xi >s +
1

2

d∑
i,k=1

∫ t

0

∂2Fs
∂xi∂xk

(Xs) d< Xi, Xk >s.

(3.2.16)

In order to obtain the stochastic differential of X∗, we first use the Itô-Kunita-Ventzell
formula to differentiate

∫ T
t ds

∫∞
s pt(θ)υ(θ)dθ, by setting

Ft(x) :=

∫ T

x
ds
∫ ∞
s

pt(θ)υ(θ)dθ.

Notice that in this case d = m = 1, N1
t = Wt, t ≥ 0 and X1

t = t, t ≥ 0. Now we use the
predictable representation theorem in (P,F) to write the strictly positive martingale p(θ) as

pt(θ) = 1 +

∫ t

0
pu(θ)qu(θ)dWu, p0(θ) = 1, t ≥ 0,

for some family of F-predictable integrable processes q(θ), θ ≥ 0. In particular, we find

fu(x) =

∫ T

x
ds

∫ ∞
s

pu(θ)qu(θ)υ(θ)dθ,

so that the hypotheses of the above Theorem 3.2.1 are satisfied and we have

dFt(t) = d

(∫ T

t
ds
∫ ∞
s

pt(θ)υ(θ)dθ

)
=

(∫ T

t
ds
∫ ∞
s

pt(θ)qt(θ)υ(θ)dθ

)
dWt −

(∫ ∞
t

pt(θ)υ(θ)dθ

)
dt

=

(∫ T

t
ds
∫ ∞
s

pt(θ)qt(θ)υ(θ)dθ

)
dWt −Gtdt.

Analogously, we find

dGt =

(∫ ∞
t

pt(θ)qt(θ)υ(θ)dθ

)
dWt − pt(t)υ(t)dt, G0 = 1.

We can finally compute the differential of X∗, that we re-write below for the reader’s ease
(recall Equation (3.1.14) and notice that we emphasize the jump factor),

X∗t =
x0

E(T ∧ τ)
e
∫ t
0 (rs+γ∗s λ̄s+

1
2

(ψ∗s )2)ds−
∫ t
0 ψ
∗
sdWs

(1−Ht)

(1 + γ∗τ )Ht
1

Gt

∫ T

t
ds
∫ ∞
s

pt(θ)υ(θ)dθ a.s.
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namely (notice that the jump factor (1 + γ∗τ )Ht equals one on the set {t < τ}, where Ht = 0,
so that in practice it does not affect the optimal wealth value)

dX∗t = X∗t−

[
(rt + γ∗t λ̄t + (ψ∗t )

2)dt− ψ∗t dWt − dHt

]
+

X∗t
Gt

[
−
∫ ∞
t

pt(θ)qt(θ)υ(θ)dθ · dWt + pt(t)υ(t)dt+
1

Gt

(∫ ∞
t

pt(θ)qt(θ)υ(θ)dθ

)2

dt

]

+
X∗t
Ft(t)

[∫ T

t
ds
∫ ∞
s

pt(θ)qt(θ)υ(θ)dθ · dWt −Gtdt
]
, (3.2.17)

where Ft(t) =
∫ T
t ds

∫∞
s pt(θ)υ(θ)dθ. By identification with Equation (3.1.6)

dXt = [. . . ]dt+ π1
t φ

1
tXt−dHt +

[
π1
t σ

1
tXt + π2

t σ
2
tXt

]
dWt, X0 = x0,

we find the optimal investment strategies π1,∗
t and π2,∗

t as the solution to the following
system of equations (notice that the first one is valid over {t ≤ τ}, while the second is valid
everywhere)

π1,∗
t = − 1

φ1t
a.s., t ≤ τ ;

π1,∗
t σ1

t + π2,∗
t σ2

t = −ψ∗t −
1

Gt

∫ ∞
t

pt(θ)qt(θ)υ(θ)dθ

+
1

Ft(t)

∫ T

t
ds
∫ ∞
s

pt(θ)qt(θ)υ(θ)dθ a.s., 0 ≤ t ≤ T.

(3.2.18)

� Immersion property.
In this chapter, the immersion property holds between F and G, under P (recall Assumption
3.1.1 a)). It is well known (see, e.g., Lemma 5.9.4.2 in Chesney, Jeanblanc and Yor [5]) that
F is immersed in G if and only if, for every s ≤ t,

P(τ ≤ s|F∞) = P(τ ≤ s|Ft),

or, equivalently, if and only if, for every t ≥ 0,

P(τ ≤ t|F∞) = P(τ ≤ t|Ft).

Taking s ≤ t, we then have P(τ ≤ s|Ft) = P(τ ≤ s|Fs), so that, under the (E)-Hypothesis,
from Equation (3.2.15),

pt(θ) = pθ(θ), a.s., for t ≥ θ.

In particular, qt(θ) = 0 a.s., for t ≥ θ.
Furthermore, under the immersion property, we have Gt = e−Λt , t ≥ 0, where the process Λ

here corresponds to Λ =
∫ ·

0 λsds and λ is the intensity rate introduced in Equation (3.1.3),
so that in the stochastic differential of G the diffusion coefficient is equal to zero.
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Remark 3.2.3. When working with a deterministic intensity λ, as we will see in the
following Lemma 4.1.1, the process G becomes a deterministic function of time, so that
P(τ > t|FWt ) = P(τ > t) =

∫∞
t υ(θ)dθ and p(θ) ≡ 1 for any θ ≥ 0. As a consequence, in

the integral representation of pt(θ) we have q(θ) = 0, for any θ, and the above computations
considerably simplify, as we will see in Section 4.2.4.

3.2.5 Problem C: optimal consumption

In order to obtain the optimal c∗ by means of the martingale approach, we first need
the analog in this case to the budget constraint given in Equation (3.1.17), namely

EQ∗
(∫ T

0
e−
∫ s
0 ruducsds

)
≤ x0.

Since ct ≥ 0 by definition, by means of Fatou’s lemma we can pass to the limit as T tends
to infinity and we obtain a generalized version of the budget constraint in the case of an
infinite horizon, i.e.,

EQ∗
(∫ +∞

0
e−
∫ s
0 ruducsds

)
≤ x0. (3.2.19)

As previously, it is evident that, in order to solve problem C, we would like to saturate the
above inequality. We, then, obtain the analog to Propositions 3.2.1 and 3.2.2 (whose proof
is directly obtained from the one relative to Proposition 3.2.1 and it is omitted).

Proposition 3.2.4. Given the market structure (3.1.2), the optimal consumption rate solv-
ing problem C is given by

c∗,Cs = I
(
νeρse−

∫ s
0 ruduZ∗s

)
a.s., (3.2.20)

where I denotes the inverse function of u′ and ν > 0 is a real parameter satisfying

EQ∗
(∫+∞

0 e−
∫ s
0 ruduI

(
νeρse−

∫ s
0 ruduZ∗s

)
ds
)

=E
(∫+∞

0 e−
∫ s
0 ruduZ∗s I

(
νeρse−

∫ s
0 ruduZ∗s

)
ds
)

=x0.

As previously, the existence of c∗,B is not immediate and it is a consequence of the
following assumption (the equivalent of Assumption 3.9.9 in Karatzas and Shreve [14] and
the analog to Assumptions 3.2.1 and 3.2.2).

Assumption 3.2.4. The function

ΨC(ν) := E
(∫ +∞

0
e−
∫ s
0 ruduZ∗s I

(
νeρse−

∫ s
0 ruduZ∗s

)
ds
)

is finite for every 0 < ν <∞.

A sufficient condition, in the case of constant coefficients, for this to hold is given in
Theorem 3.9.14 in Karatzas and Shreve [14]. Notice that here, in the stochastic coefficients
case, the above assumption is automatically verified in the logarithmic utility case (as we
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are going to see), while in the power utility case no explicit solution is available. In the
latter case, we will then pass to the deterministic coefficient case in order to provide an
explicit solution to problem C and, in this case, in Section 4.2.5, we will give a sufficient
condition in order for c∗,C to exist.

Before passing to the explicit computation of c∗,C in the case of logarithmic utility, let
us compare c∗,A and c∗,C , as we did for c∗,A and c∗,B in Proposition 3.2.3. To do that, as
it is intuitive, we need to consider a slightly different version of problem A, namely (for
simplicity we omit the admissibility set, that should be re-defined)

sup
(π,c)

E
∫ T

0
e−ρsu(cs)ds︸ ︷︷ ︸

A1

.

Its solution is immediately found to be

c∗,A1
s = I

(
νA1eρse−

∫ s
0 ruduZ∗s

)
a.s., s ≤ T, (3.2.21)

where νA1 satisfies

E
(∫ T

0
e−
∫ s
0 ruduZ∗s I

(
νA1eρse−

∫ s
0 ruduZ∗s

)
ds

)
= x0,

under the assumption, that is the analog to Assumption 3.2.1,

Assumption 3.2.5. The function

ΨA1(ν) := E
(∫ T

0
e−
∫ s
0 ruduZ∗s I

(
νeρse−

∫ s
0 ruduZ∗s

)
ds
)

is finite for every 0 < ν <∞.

We now prove that an investor facing problem A1 consumes at a higher rate than an
investor facing problem C, as one might expect.

Proposition 3.2.5. Under Assumption 3.2.5 and Assumption 3.2.4,

c∗,A1
s ≥ c∗,Cs a.s., s ≤ T.

Proof. We have to compare, for s ≤ T ,

c∗,A1
s = I

(
νA1eρse−

∫ s
0 ruduZ∗s

)
and c∗,Cs = I

(
νeρse−

∫ s
0 ruduZ∗s

)
,

where νA1 > 0 and νC > 0 are given by νA1 = (ΨA1)
−1

(x0) and νC = (ΨC)
−1

(x0). It is
clear that ΨA1 ≤ ΨC and so (ΨA1)

−1 ≤ (ΨC)
−1. We then have νA1 ≤ νC and we are done,

since I is decreasing.
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� The log-utility case.
Here

c∗,Cs =
1

νZ∗s e
ρse−

∫ s
0 rudu

a.s.

and ν satisfies

E
(∫ +∞

0

e−ρs

ν
ds
)

= x0.

So, in this case, as we said, Assumption 3.2.4 is verified, given that ρ is, by definition,
positive. We obtain ν = 1

ρx0
and finally

c∗,Cs =
ρx0

Z∗s e
ρse−

∫ s
0 rudu

a.s. (3.2.22)

� The power-utility case.
In this case we find,

c∗,Cs =
(
νeρsZ∗s e

−
∫ s
0 rudu

)− 1
1−γ

= x0

(
eρsZ∗s e

−
∫ s
0 rudu

)− 1
1−γ

E
∫ +∞

0 (e−
∫ s
0 ruduZ∗s )

γ
γ−1 (e−ρs)

1
1−γ ds

, a.s., (3.2.23)

since ν is given (if it exists) by

ν =

E ∫ +∞
0 (e−

∫ s
0 ruduZ∗s )

γ
γ−1 (e−ρs)

1
1−γ ds

x0

1−γ

.

A sufficient condition for the existence of ν and an explicit optimal consumption strategy
are given in the deterministic coefficients case, in Section 4.2.5.

3.2.6 Problem C: optimal investment strategy

As previously done for problem A, we now derive the optimal investment strategy, in
the logarithmic utility case, by means of direct computations, based on the fact that the
optimal wealth can be now expressed as

X∗t = e
∫ t
0 rsds EQ∗

(∫ +∞

t
e−
∫ s
0 ruduc∗s ds | Gt

)
, a.s., t < +∞.

� The log-utility case.
From Equation (3.2.22), we know that

c∗s =
ρx0

Z∗s e
ρse−

∫ s
0 rudu

a.s., s < +∞.
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A direct computation, applying the conditional version of Fubini-Tonelli’s theorem and
recalling that (Z∗)−1 is a (G,Q∗)−martingale, gives us

X∗t = e
∫ t
0 rsds EQ∗

(∫ +∞

t
e−
∫ s
0 ruduc∗s ds | Gt

)
= e

∫ t
0 rsdsρx0

∫ +∞

t
e−ρs EQ∗

(
1

Z∗s
|Gt
)
ds

= x0 e
∫ t
0 rsds

e−ρt

Z∗t
a.s.

Equivalently, in differential form (under Q∗), recalling Equation (3.2.4),

dX∗t = X∗t−

[
(rt − ρ) dt− ψ∗t dW ∗t −

γ∗t
1 + γ∗t

dM∗t

]
, X∗0 = x0. (3.2.24)

To determine π1,∗ and π2,∗ it suffices to identify, term by term, the above equation and
Equation (3.2.6), namely

dXt = (rtXt − ct) dt+ π1
t φ

1
tXt−dM∗t +Xt

(
π1
t σ

1
t + π2

t σ
2
t

)
dW ∗t , X0 = x0.

We finally find that c∗t = ρX∗t and
π1,∗
t = − γ∗t

φ1
t (1 + γ∗t )

, π2,∗
t = − ψ̃

∗
t

σ2
t

+
γ∗t σ̃

1
t

φ1
t (1 + γ∗t )

a.s., t ≤ τ ;

π1,∗
t σ1

t (τ) + π2,∗
t σ2

t = −ψ∗t (τ) a.s., t > τ.

(3.2.25)

Once more, after τ the investment strategy is not unique, due to the redundancy of the
market.
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Chapter 4

The deterministic coefficients case

4.1 Introduction: peculiarities of the setting

In this chapter we focus on the case when market model coefficients are constant
(or deterministic functions of time), in order to obtain the explicit optimal investment-
consumption strategies for the three problems. As we will see, in this specific setting the
obtained results are quite surprising. We start by giving the assets’s dynamics and studying
the consequences of our model assumptions.

In the constant coefficients case the assets’ dynamics given in Equations (3.1.1) and
(3.1.2) become, respectively,

dS0
t = rS0

t dt, S0
0 = 1,

dS1
t = S1

t−
(
µ1dt+ σ1dWt + φ1dMt

)
, S1

0 = s1
0,

dS2
t = S2

t

(
µ2dt+ σ2dWt

)
, S2

0 = s2
0.

(4.1.1)

Notice that here the total information filtration G is the filtration generated by the price
processes S1 and S2, namely, for t ≥ 0,

Gt :=
⋂
ε>0

{
F1
t+ε ∨ F2

t+ε

}
,

with F it := σ(Sis, s ≤ t), i = 1, 2. Furthermore, Assumption 3.1.1 b) (that is equivalent
to the absence of arbitrage opportunities, as we will verify in the next Section 4.1.1) here
becomes:

Assumption 4.1.1. The following proportionality relation holds true

r − µ1

σ1
=
r − µ2

σ2
. (4.1.2)

In this chapter, furthermore, we make the standing assumption:

Assumption 4.1.2. The F-intensity rate of τ is a deterministic function of time λ(t).

The lemma below provides an interesting necessary and sufficient condition in order for λ
to be a deterministic function of time.
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Lemma 4.1.1. Under the immersion property, a necessary and sufficient condition for the
intensity rate of τ to be a deterministic function of time is to have τ independent of F.

Proof. (⇒) Given that λ is deterministic, by using the definition of independence between
a random variable and a σ-algebra, we have to prove that, for any measurable and bounded
function f and for any t ≥ 0, we have

E
(
f(τ)|FWt

)
= E (f(τ)) , a.s.

We will show that this is true for t = +∞.
Because of the immersion property between F and G (that is the progressive enlarge-

ment of F with τ) we have E(11{τ≤t}|FW∞ ) = E(11{τ≤t}|FWt ), so that the process F∞,t :=

P
(
τ ≤ t|FW∞

)
= P

(
τ ≤ t|FWt

)
, t ≥ 0, is here a deterministic function of time, namely

F∞,t = F∞(t) = 1 − e−
∫ t
0 λ(s)ds, where the last equality follows from the fact that if F is

continuous, then working under the (H) hypothesis is equivalent to a Cox modeling (see,
e.g., Lemma 2 in Blanchet-Scalliet et al. [3]). We, then, have

E
(
f(τ)|FW∞

)
= E

∫ ∞
0

f(t)dF∞(t) = E
∫ ∞

0
f(t)λ(t)e−

∫ t
0 λ(s)dsdt

=

∫ ∞
0

f(t)λ(t)e−
∫ t
0 λ(s)dsdt

and, being λ deterministic, the conclusion follows.
(⇐) Let us now suppose that τ is independent of F. The independence of τ from FW∞

implies that, for any t ≥ 0,

E
(
11{τ≤t}|FW∞

)
= P(τ ≤ t) (4.1.3)

(and hence the immersion property holds true). To conclude, it suffices to remark that,
from (4.1.3), the F−hazard process of τ , Γ, defined for every t as

Γt = − lnP(τ > t),

is deterministic and this implies that the jump intensity (i.e., the derivative of Γ) is deter-
ministic, too.

For what concerns the admissibility condition (recall Definition 3.1.1) π1
τφ

1 ≥ −1 a.s.,
by applying Lemma 3.2.1 to Yt := π1

t φ
1 − 1, t ≤ τ , we find that the above condition is

equivalent to

π1
t φ

1 ≥ −1 a.s. for every t ≤ τ. (4.1.4)

We now characterize the unique Radon-Nikodým density process Z∗ in this specific
setting.
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4.1.1 The unique EMM Q∗

Equation (3.1.12), that established a relation between the coefficients ψ∗, γ∗ and the
model parameters here reads{

µ1 − r + σ1ψ∗t + φ1γ∗t λ̄t = 0 a.s.
µ2 − r + σ2ψ∗t = 0 a.s., (4.1.5)

so that we find {
ψ∗t ≡ ψ∗ = r−µ2

σ2 a.s.
µ1 − r + σ1ψ∗t + φ1γ∗t λ̄t = 0 a.s.

(4.1.6)

Notice, furthermore, that, on the set {t ≥ τ}, ψ∗ has to satisfy

ψ∗ =
r − µ2

σ2
=
r − µ1

σ1
a.s., (4.1.7)

that corresponds to our Assumption 4.1.1 (it represents the usual non-arbitrage condition
in a Black-Scholes non defaultable market) and γ can be arbitrarily chosen, since it does
not affect the dynamics of Z∗ after the shock τ . Moreover, being the model parameters
constant, it is clear that (4.1.7) has to be valid everywhere, so that, before the shock, on
the set {t < τ}, we find

γ∗t =
1

φ1λ(t)

[
r − µ1 − σ1 r − µ2

σ2

]
= 0 a.s.

In conclusion, recalling that γ∗ isG−predictable, so that there exists a unique γ̃, F−predictable,
such that γ∗t 11{t≤τ} = γ̃t11{t≤τ}, we find that at the jump time, too, γ∗τ = 0 and finally

ψ∗t = ψ∗ = r−µ2
σ2 = r−µ1

σ1 a.s.;

γ∗t =

{
0 a.s. if t ≤ τ ;
any predictable γ∗t > −1 if t > τ.

(4.1.8)

The processes ψ∗ and γ∗ define a unique martingale measure Q∗ (the process Z∗ is, indeed,
a true martingale). The Radon-Nikodým density process Z∗ is given, for every t, by

Z∗t = eψ
∗Wt− 1

2
(ψ∗)2t e−

∫ t
0 γ
∗
uλ̄udu (1 + γ∗τ )Ht = eψ

∗Wt− 1
2

(ψ∗)2t a.s. (4.1.9)

Remark 4.1.1. a) The unique change of probability does not affect the martingale M (on
the set {t < τ}, γ∗t = 0), so that, in particular, the historical jump intensity is equal to the
risk-neutral one.
b) Being ψ∗ = r−µ2

σ2 a.s. and γ∗ = 0 a.s., the Radon-Nikodým density process is F-adapted
and the immersion property is preserved when passing under the measure Q∗ (for a detailed
analysis on the stability of the (H) hypothesis we refer, e.g., to Section 3 in Blanchet-Scalliet
and Jeanblanc [3], for the links between the (H) hypothesis and market completeness, and
to Propositions 5.9.1.2 and 5.9.1.3 in Chesney, Jeanblanc and Yor [5] and Theorem 5.11 in
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El Karoui, Jeanblanc and Jiao [9]).
c) Another consequence of the F-adaptability of Z∗ is the following

Q∗(τ > t|FWt ) =
1

Z∗t
E(Z∗t 11{τ>t}|FWt ) = P(τ > t|FWt ).

The above Remark will be crucial to understand the forthcoming results. We end this
section checking that if Assumption 4.1.1 is not verified, then the market is no more arbitrage
free. More precisely, we provide an example of arbitrage opportunity.

Lemma 4.1.2. If Equation (4.1.7) does not hold true, there are arbitrage opportunities.

Proof. We consider the set {t ≥ τ} and we suppose, for simplicity, that r = 0, so that the
prices’ dynamics are given by

dS1
t = S1

t

(
µ1dt+ σ1dWt

)
, t ≥ τ,

dS2
t = S2

t

(
µ2dt+ σ2dWt

)
, t ≥ τ.

We show that if Equation (4.1.7) is not satisfied, namely if

µ1σ2 6= µ2σ1, (4.1.10)

we find a self-financing strategy that produces an arbitrage, i.e., such that, starting with
an initial wealth equal to zero, the corresponding terminal wealth is a.s. nonnegative and
strictly positive with strictly positive probability.

It suffices to choose

α1
t =

σ2

S1
t

, α2
t = −σ

1

S2
t

, for t ≥ τ

and α1
t = α2

t = 0, for t < τ and, by means of α0
t , to re-balance the portfolio to make it

self-financing. We then have

dVt = α1
tdS

1
t + α2

tdS
2
t = (µ1σ2 − µ2σ1)11{t≥τ}dt

and it is clear that if Equation (4.1.10) holds true then we have an arbitrage opportunity,
since, in particular, if µ1σ2 > µ2σ1 we can obtain a strictly positive terminal wealth with an
initial investment equal to zero. Indeed, it suffices, starting with x0 = 0, to borrow one euro
from the bank and to invest it in V at time t = τ . Notice that P(t ≥ τ) = 1−e−

∫ t
0 λ(s)ds > 0,

since, for every t > 0,
∫ t

0 λ(s)ds > 0 (otherwise the jump intensity is identically equal
to zero), meaning that our terminal wealth will be strictly positive with strictly positive
probability.

We can summarize the results in this section in the following Lemma.

Lemma 4.1.3. The condition
r − µ1

σ1
=
r − µ2

σ2

is necessary and sufficient to ensure the absence of arbitrage in our market.
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To conclude, notice that if the market is arbitrage free, then it is also complete, since
in this case there exists a unique EMM. On the other hand, if r−µ2

σ2 6= r−µ1
σ1 the market is

complete, with arbitrage opportunities.

4.2 The solution: martingale approach

4.2.1 Problem A: optimal consumption

We adapt the result obtained in Section 3.2.1 in the general stochastic coefficients case
to our particular setting. In the log-utility case c∗ is exactly the same we found in Section
3.2.1, in Equation (3.2.2) (where the stochastic interest rate (rt)t≥0 has to be replaced by
the constant r), but in the power utility case we obtain an explicit expression for c∗, in
contrast with what we had in the previous chapter.
� The power-utility case.
In this case we have (recall Equation (3.2.3))

c∗,As = x0
(e−rsZ∗s )

1
γ−1

E
∫ T

0 (e−ruZ∗u)
γ
γ−1du

a.s. (4.2.1)

Given that 0 ≤ u ≤ T , Z∗u = eψ
∗Wu− 1

2
(ψ∗)2u, we can explicitly compute

E
[
(Z∗u)

γ
γ−1

]
= e

1
2

(ψ∗)2 γ2

(γ−1)2
u− 1

2
(ψ∗)2 γ

γ−1
u

= e
1
2

(ψ∗)2 γ

(γ−1)2
u

and Fubini-Tonelli’s theorem gives us the denominator in (4.2.1), namely

E
∫ T

0
(e−ruZ∗u)

γ
γ−1du =

1− γ
1
2(ψ∗)2 γ

1−γ + rγ

(
e

T
1−γ

(
1
2

(ψ∗)2 γ
1−γ+rγ

)
− 1

)
.

In conclusion

c∗,As =
x0

(e−rsZ∗s )
1

1−γ

1
2(ψ∗)2 γ

1−γ + rγ

(1− γ)

(
e

T
1−γ

(
1
2

(ψ∗)2 γ
1−γ+rγ

)
− 1

) a.s. (4.2.2)

We end this subsection with a curious remark.

Remark 4.2.1. In the logarithmic utility case, the discounted optimal consumption rate
process, given by

c̃∗t := e−rtc∗t =
x0

TZ∗t
, t ≤ T,

is a (G,Q∗)−martingale.
Inspired, then, by the ideas developed in the well known benchmark approach of Platen,
more precisely by the notion of “growth optimal portfolio”, that coincides with the one of
“numeraire portfolio” when maximizing E[ln(XT )] (see, e.g., Section 2.3 in Korn [16]), we
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then ask ourselves the following question, supposing for simplicity that r = 0: “If we are
given a (G,Q∗)−martingale c̄, defined as c̄t = I(νZ∗t ), for some positive constant ν and
where I is the inverse of some marginal utility u′, is necessarily u a logarithmic utility
function?”
The answer is: “Yes!”. In fact, c̄Z∗ is a (G,P)−martingale and, since (under P) dZ∗t =

Z∗t ψ
∗dWt (recall Equation (4.1.9)), we have

dc̄t = I ′(νZ∗t )νZ∗t ψ
∗dWt +

1

2
I ′′(νZ∗t )ν2d〈Z∗〉t

and

d(c̄tZ
∗
t ) = Z∗t dc̄t + c̄tdZ∗t + d〈c̄, Z∗〉t = Z∗t I

′(νZ∗t )νZ∗t ψ
∗dWt +

1

2
Z∗t I

′′(νZ∗t )ν2Z∗t
2ψ∗2dt

+c̄tZ
∗
t ψ
∗dWt + I ′(νZ∗t )νZ∗t

2ψ∗2dt.

The martingale representation theorem tells us that, in order to have a (G,P)−martingale,
the following relation has to be satisfied

1

2
Z∗t I

′′(νZ∗t )ν2Z∗t
2ψ∗2 + I ′(νZ∗t )νZ∗t

2ψ∗2 = 0,

or, equivalently, by defining y := νZ∗t , y ∈ R+
∗ ,

1

2
yI ′′(y) + I ′(y) = 0. (4.2.3)

c̄Z∗ is, then, a (G,P)−martingale if and only if the function I solves the above second order
ordinary differential equation (4.2.3), namely if

I(y) =
c1

y
+ c2,

with c1, c2 strictly positive constants, so that I : (0,∞) → (0,∞) is strictly decreasing. In
order to have I(0+) =∞ and I(∞) = 0 (recall Definition 3.1.2) we find c2 = 0, so that the
inverse of u′ is

I(y) =
c1

y
(4.2.4)

and this implies that u is a logarithmic utility function.

4.2.2 Problem A: optimal investment strategy

First of all we notice the following interesting fact, that arises from the peculiarity of
our model.

Proposition 4.2.1. In our setting, the optimal proportion of wealth to be invested in S1 to
solve problem A is, before the shock τ ,

π1,∗
t = 0 a.s. (4.2.5)
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In other words, the optimal investment strategy is the one of an investor that acts in the
market as if only the asset S2 was traded.

Proof. The key remark is that the optimal consumption strategy c∗, given in Equation
(3.2.1), is HERE F-adapted (this derives from the F−adaptability of Z∗). This implies that

X∗t = ertEQ∗
(∫ T

t
e−rsc∗s ds | Gt

)
a.s.

= ertEQ∗
(∫ T

t
e−rsc∗s ds | FWt

)
a.s.

since the immersion property holds underQ∗ (recall Remark 4.1.1), so thatX∗ is F−adapted,
for any admissible π. In particular, X∗ cannot have a jump at time τ , meaning that any
investment strategy π is such that π1

τ = 0 a.s. Because of the predictability of π, from
Lemma 3.2.1 this has to be true everywhere before τ and it remains valid for the optimal
π1,∗, namely π1,∗

t = 0, t ≤ τ, a.s.

By means of direct computations, we now explicitly characterize the optimal investment
strategies in the examples.
� The log-utility case.
Exactly as in Section 3.2.2 (with the only difference that here the interest rate is constant),
we find, recalling that W ∗t := Wt − ψ∗t, t ≥ 0, is a (G,Q∗)-Brownian motion,

X∗t = ert
x0(T − t)

T
e−ψ

∗W ∗t e−
1
2

(ψ∗)2t, t ≤ T, a.s.

or, equivalently,

dX∗t = X∗t

[(
r − 1

T − t

)
dt− ψ∗dW ∗t

]
, X∗0 = x0. (4.2.6)

As usual, an identification term by term with

dXt = (rXt − ct) dt+ π1
t φ

1Xt−dMt +Xt

(
π1
t σ

1 + π2
t σ

2
)
dW ∗t , X0 = x0,

gives us π1,∗ and π2,∗, that are different from the ones we found in Equation (3.2.8) (see, in
particular, the case before the shock), π1,∗

t = 0, π2,∗
t = −ψ

∗

σ2
a.s., t ≤ τ ;

π1,∗
t σ1 + π2,∗

t σ2 = −ψ∗ a.s., t > τ.
(4.2.7)

The investment strategy after τ remains not unique, due to the redundancy of the market.
� The power-utility case.
The reasoning is the same as in the previous example. From Equation (4.2.2), passing under
the measure Q∗, we have, for s ≤ T ,

c∗s =
x0(

e−rseψ
∗W ∗s + 1

2
(ψ∗)2s

) 1
1−γ

K

(1− γ)
(
e

T
1−γK − 1

) a.s.,
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where K = 1
2(ψ∗)2 γ

1−γ + rγ, and so we explicitly compute

EQ∗
(∫ T

t
e−rsc∗s ds | Gt

)
=

x0K

(1− γ)
(
e

T
1−γK − 1

) ∫ T

t
e
rγ
1−γ se

− 1
2

(ψ∗)2
1−γ s EQ∗

[
e
− ψ∗

1−γW
∗
s |Gt

]
ds

= · · · = x0(
e

T
1−γK − 1

)e− ψ∗
1−γW

∗
t e
− 1

2
(ψ∗)2

(1−γ)2
t
(
e
TK
1−γ − e

tK
1−γ
)

a.s.

This gives us the optimal wealth for t ≤ T (notice that, indeed, X∗T = 0 a.s.)

X∗t = ert
x0(

e
T

1−γK − 1
)e− ψ∗

1−γW
∗
t e
− 1

2
(ψ∗)2

(1−γ)2
t
(
e
TK
1−γ − e

tK
1−γ
)
, a.s.,

or, in differential form,

dX∗t = X∗t

r − K

1− γ
1(

e
K

1−γ (T−t) − 1
)
 dt−X∗t

ψ∗

1− γ
dW ∗t , X∗0 = x0

and by identification with the coefficients in the dynamics of X under Q∗ as before, we find
π1,∗
t = 0, π2,∗

t = − ψ∗

σ2(1− γ)
a.s., t ≤ τ ;

π1,∗
t σ1 + π2,∗

t σ2 = − ψ∗

1− γ
a.s., t > τ.

(4.2.8)

4.2.3 Problem B: optimal consumption

� The log-utility case.
As in Section 3.2.3, we find

c∗,Bs =
x0

E(T ∧ τ)Z∗s e
−rs a.s., s ≤ T ∧ τ. (4.2.9)

Given Assumption 4.1.2, and supposing, furthermore, that the intensity of τ is constant,
namely λ(t) ≡ λ > 0, the conditional survival probability G(t) := P(τ > t) (that here
coincides with Gt := P(τ > t|FWt ), t ≥ 0) is equal to G(t) = e−λt and so, by Fubini-Tonelli’s
theorem,

E(T ∧ τ) = E
∫ T

0
11{s<τ}ds =

∫ T

0
P(τ > s)ds =

∫ T

0
e−λsds =

1− e−λT

λ
.

The optimal consumption rate is, then, in the specific constant intensity case,

c∗,Bs =
x0λ

(1− e−λT )Z∗s e
−rs a.s., s ≤ (T ∧ τ).

� The power-utility case.
Here we have

c∗,Bs = x0
(e−rsZ∗s )

1
γ−1

E
∫ T

0 (1−Hu)(e−ruZ∗u)
γ
γ−1du

a.s., s ≤ (T ∧ τ), (4.2.10)
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since ν is given by

ν =

[
E
∫ T

0 (1−Hu)(e−ruZ∗u)
γ
γ−1du

x0

]1−γ

.

If λ(t) ≡ λ, given the independence of τ of F and recalling that

E
[
(Z∗u)

γ
γ−1

]
= e

1
2

(ψ∗)2 γ

(γ−1)2
u
,

we explicitly obtain ν, by computing (with an application of Fubini-Tonelli’s theorem)

E
∫ T

0
(1−Hu)(e−ruZ∗u)

γ
γ−1du =

∫ T

0
e−λue

rγ
1−γ ue

1
2

(ψ∗)2 γ

(γ−1)2
u
du

=
e
T
(
rγ
1−γ+ 1

2
(ψ∗)2 γ

(γ−1)2
−λ
)
− 1

rγ
1−γ + 1

2(ψ∗)2 γ

(γ−1)2
− λ

.

The optimal consumption rate is, then,

c∗,Bs =
x0

(e−rsZ∗s )
1

1−γ

rγ
1−γ + 1

2(ψ∗)2 γ

(γ−1)2
− λ

e
T
(
rγ
1−γ+ 1

2
(ψ∗)2 γ

(γ−1)2
−λ
)
− 1

a.s., s ≤ (T ∧ τ).

4.2.4 Problem B: optimal investment strategy

� The log-utility case.
From Equation (4.2.9) we know that (under the measure P)

c∗s =
x0

E(T ∧ τ)Z∗s e
−rs a.s., s ≤ (T ∧ τ).

By applying the conditional version of Fubini-Tonelli’s theorem and passing under the mea-
sure P by means of Z∗, we find, for t ≤ (T ∧ τ),

X∗t = ert EQ∗
(∫ T

t
11{s≤τ}e

−rsc∗s ds | Gt
)

=
x0

E(T ∧ τ)

∫ T

t
EQ∗

(
11{s≤τ}

1

Z∗s
|Gt
)
ds

=
x0

E(T ∧ τ)

∫ T

t

E
(
11{s≤τ}|Gt

)
Z∗t

ds a.s.,

while, if t ≥ (T ∧ τ), then X∗t = 0. In order to explicitly obtain X∗, we can exploit the
independence of τ of F, using the “key-Lemma” 3.2.2 to have a conditional expectation with
respect to the smaller filtration F. Then, under P, recalling that Gt = P(τ > t|FWt ) =

G(t) = P(τ > t), we obtain

X∗t = ert
x0(Z∗t )−1

E(T ∧ τ)

∫ T

t

E
(
11{s≤τ}|FWt

)
E
(
11{t<τ}|FWt

)ds =
x0(Z∗t )−1

E(T ∧ τ)G(t)

∫ T

t
G(s)ds a.s.

namely

X∗t =
x0e

rt

E(T ∧ τ)

e−ψ
∗Wt+

1
2

(ψ∗)2t

G(t)

∫ T

t
G(s)ds a.s.
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Equivalently, in differential form, being G(t) = e−
∫ t
0 λ(s)ds and noticing that at time t = τ

the optimal wealth jumps to zero (the absorbing state) we have, for t < T ,

dX∗t = X∗t−

[(
r + (ψ∗)2 + λ(t)− G(t)∫ T

t G(s)ds

)
dt− dHt − ψ∗dWt

]
, X∗0 = x0. (4.2.11)

To determine π1,∗ and π2,∗ it suffices to identify, term by term, the above equation and
Equation (3.1.6) (we are now under P) and we finally find

π1,∗
t = − 1

φ1
, π2,∗

t = −ψ
∗

σ2
+

σ1

σ2φ1
a.s., t ≤ (T ∧ τ). (4.2.12)

Remark 4.2.2. The above stochastic differential Equation (4.2.11) is, indeed, the ana-
log to Equation (3.2.17) in the case of deterministic model coefficients and deterministic
intensity λ, as explained in Remark 3.2.3. It suffices to understand the link between the
super-martingale G and the deterministic function G(·), that here coincide. We have (recall
that the law of τ is by definition υ and it is assumed to be absolutely continuous with respect
to the Lebesgue measure) Gt = P(τ > t|FWt ) = P(τ > t) =

∫∞
t υ(θ)dθ = G(t) = e−

∫ t
0 λ(θ)dθ.

� The power-utility case.
The reasoning is the same as in the previous example, but now we work under the measure
Q∗, instead of P, in order to show an alternative way to obtain the result. From Equation
(4.2.10), denoting for simplicity by A(T ) the denominator in c∗s (it does not depend on s)
we have

c∗s = x0
(e−rsZ∗s )

1
γ−1

E
∫ T

0 (1−Hu)(e−ruZ∗u)
γ
γ−1du

=:
x0

A(T )

(
e−rsZ∗s

) 1
γ−1 a.s., s ≤ (T ∧ τ),

and so the computation that has to be done is

EQ∗
(∫ T

t
11{s≤τ}e

−rsc∗s ds | Gt
)

=
x0

A(T )

∫ T

t
e
rγ
1−γ s EQ∗

(
11{s≤τ}(Z

∗
s )

1
γ−1 |Gt

)
ds a.s..

If we remark that the “key-Lemma” 3.2.2 is also valid under the measure Q∗, that here
(FWt )t≥0 = (FW ∗t )t≥0 and that (from Remark 4.1.1 c)) G(t) = P(τ > t|FWt ) = Q∗(τ >
t|FW ∗t ), recalling that Z∗s = eψ

∗W ∗s + 1
2

(ψ∗)2s (under Q∗), we find, a.s.,

EQ∗
(∫ T

t
11{s≤τ}e

−rsc∗s ds | Gt
)

=
x0

A(T )

∫ T

t
e
rγ
1−γ s

EQ∗
(

11{s≤τ}(Z
∗
s )

1
γ−1 |FW ∗t

)
EQ∗

(
11{t<τ}|FW

∗
t

) ds

=
x0

A(T )

1

G(t)

∫ T

t
e
rγ
1−γ sG(s)EQ∗

(
e
ψ∗
γ−1

W ∗s + 1
2

(ψ∗)2
γ−1

s|FW ∗t

)
ds

= · · · = x0

A(T )

1

G(t)
e
ψ∗
γ−1

W ∗t e
− 1

2
(ψ∗)2

(γ−1)2
t
∫ T

t
G(s)e

K
1−γ sds,

118



where we recall that K = 1
2

γ
1−γ (ψ∗)2 + rγ (it was introduced in Section 4.2.2 in the power

utility case). This gives us the optimal wealth for t < (T ∧ τ)

X∗t = ert
x0

A(T )

1

G(t)
e
− ψ∗

1−γW
∗
t e
− 1

2
(ψ∗)2

(γ−1)2
t
∫ T

t
G(s)e

K
1−γ sds a.s.

while for t ≥ (T ∧ τ) we have X∗t = 0 (in particular, the optimal wealth jumps to zero at
time t = τ , as it is also clear from the following stochastic differential equation, given that
the coefficient of the jump part is equal to −1). In differential form, for t < T ,

dX∗t = X∗t−

[(
r + λ(t)− G(t)e

tK
1−γ∫ T

t G(s)e
K

1−γ sds

)
dt− dHt −

ψ∗

1− γ
dW ∗t

]
, X∗0 = x0

and by identifying term by term the above equation with the dynamics of the optimal wealth
X∗ written under the measure Q∗ (Equation (3.2.6)), we find

π1,∗
t = − 1

φ1
, π2,∗

t = − ψ∗

σ2(1− γ)
+

σ1

σ2φ1
a.s., t ≤ (T ∧ τ). (4.2.13)

Remark 4.2.3. What is the economic/financial interpretation of the optimal solution we
find in both the logarithmic and power utility cases, namely π1,∗

t = − 1
φ1
, t ≤ (T ∧ τ)?

• If φ1 > 0, the asset’s price S1 has an upward jump at time τ and the optimal invest-
ment consists in selling S1;

• If φ1 ∈ (−1, 0), the asset’s price S1 has an downward jump at time τ and the optimal
investment consists in buying S1.

This has to be understood in the following sense: the investor’s final aim is to end up at
time T ∧ τ with an optimal wealth satisfying X∗T∧τ = 0 (recall also Remark 3.2.2), i.e., he
wants his optimal wealth to instantaneously jump to zero at the maturity. For this reason,
if he knows a priori that S1 will upwardly jump at τ , he will sell this asset, since, being by
definition his wealth nonnegative almost surely at any time, having this asset in his portfolio
will not help him to reach his optimal final condition. The reasoning is the opposite for the
case φ1 ∈ (−1, 0).

4.2.5 Problem C: optimal consumption

In the log-utility case, c∗ is exactly the same as that we found in Section 3.2.5, Equation
(3.2.22) (where the stochastic interest rate has to be replaced by the constant one). In the
power utility case, we obtain an explicit expression for c∗, in contrast with what we had in
the previous chapter.
� The power-utility case.
In this case, we find

c∗,Cs =
(
νZ∗s e

(ρ−r)s
) 1
γ−1

= x0

(
e(ρ−r)sZ∗s

) 1
γ−1

E
∫ +∞

0 (e−rsZ∗s )
γ
γ−1 (eρs)

1
γ−1ds

a.s., (4.2.14)
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since ν is given by

ν =

[
E
∫ +∞

0 (e−rsZ∗s )
γ
γ−1 (eρs)

1
γ−1ds

x0

]1−γ

.

By applying Fubini-Tonelli’s theorem, we have

E
∫ +∞

0
(e−rsZ∗s )

γ
γ−1 (eρs)

1
γ−1ds =

∫ +∞

0
e
−s γ

1−γ

[
ρ
γ
− 1

2
(ψ∗)2
1−γ −r

]
ds

and it is clear that Assumption 3.2.4 is satisfied (and so problem C admits an optimal
solution c∗,C) if

k :=
γ

1− γ

[
ρ

γ
− (ψ∗)2

2(1− γ)
− r

]
> 0. (4.2.15)

In this case

c∗,Cs = x0k
(
e(ρ−r)sZ∗s

) 1
γ−1 a.s. (4.2.16)

We conclude this example by noticing that the above condition (4.2.15) exactly corresponds
to [21, Equation (40), page 62] found by Merton in his Ph.D. thesis.

4.2.6 Problem C: optimal investment strategy

As expected, given that here the optimal consumption rate c∗ is F-adapted, a result
analogous to Proposition 4.2.1 holds here.

Proposition 4.2.2. The optimal proportion of wealth that has to be invested in S1 in order
to optimally solve problem C is, before the shock τ ,

π1,∗
t = 0 a.s. (4.2.17)

Proof. It is exactly the same as the one in Proposition 4.2.1 (based on the F−adaptability
of c∗) and we omit it.

� The log-utility case.
Exactly as in Section 3.2.6 we find, under Q∗,

X∗t = x0e
(r−ρ)t 1

Z∗t
= x0e

(r−ρ)te−ψ
∗W ∗t e−

1
2

(ψ∗)2t, t ≤ T a.s.

or, equivalently,

dX∗t = X∗t [(r − ρ) dt− ψ∗dW ∗t ] , X∗0 = x0. (4.2.18)

To determine π1,∗ and π2,∗ it suffices to identify, term by term, the above equation and
Equation (3.1.6) written under the measure Q∗, finding π1,∗

t = 0, π2,∗
t = −ψ

∗

σ2
a.s., t ≤ τ ;

π1,∗
t σ1 + π2,∗

t σ2 = −ψ∗ a.s., t > τ.
(4.2.19)
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� The power-utility case.
From Equation (4.2.16) we know that if k = γ

1−γ

[
ρ
γ −

(ψ∗)2

2(1−γ) − r
]
> 0 the optimal con-

sumption rate exists and it is given by

c∗s = x0k
(
e(ρ−r)sZ∗s

) 1
γ−1 a.s., s < +∞

and in this case we can compute (recall that, under Q∗, Z∗t = eψ
∗W ∗t + 1

2
(ψ∗)2t)

EQ∗
(∫ +∞

t
e−rsc∗s ds | Gt

)
= x0k

∫ +∞

t
e

ρ
γ−1

s
e
− rγ
γ−1

s EQ∗
[
e
ψ∗
γ−1

W ∗s + 1
2

(ψ∗)2
γ−1

s|Gt
]
ds

= x0ke
ψ∗
γ−1

W ∗t e
− 1

2
(ψ∗)2

(γ−1)2
t
∫ +∞

t
e

ρ
γ−1

s
e
− rγ
γ−1

s
e

1
2

(ψ∗)2
γ−1

s
e

1
2

(ψ∗)2

(γ−1)2
s
ds

= x0ke
− ψ∗

1−γW
∗
t e
− 1

2
(ψ∗)2

(γ−1)2
t
∫ +∞

t
e−ksds

= x0e
− ψ∗

1−γW
∗
t e
− 1

2
(ψ∗)2

(γ−1)2
t
e−kt a.s.

This gives the optimal wealth for t < +∞

X∗t = x0e
(r−k)te

− ψ∗
1−γW

∗
t e
− 1

2
(ψ∗)2

(γ−1)2
t
,

or, in differential form (under Q∗),

dX∗t = X∗t

[
(r − k) dt− ψ∗

1− γ
dW ∗t

]
, X∗0 = x0.

By identification, as before, we find
π1,∗
t = 0, π2,∗

t = − ψ∗

σ2(1− γ)
a.s., t ≤ τ ;

π1,∗
t σ1 + π2,∗

t σ2 = − ψ∗

1− γ
a.s., t > τ.

(4.2.20)
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Chapter 5

Solution via the Dynamic
Programming approach

For simplicity, in this chapter we consider the same deterministic coefficients setting as
in Chapter 4 (in particular, we will see that in the case of problem C, in order to obtain
explicit solutions, we will have to consider a constant intensity rate λ). We briefly recall here
the model and the working assumptions. The assets’ dynamics are given by the following
stochastic differential equations

dS0
t = rS0

t dt, S0
0 = 1,

dS1
t = S1

t−
(
µ1dt+ σ1dWt + φ1dMt

)
, S1

0 = s1
0,

dS2
t = S2

t

(
µ2dt+ σ2dWt

)
, S2

0 = s2
0.

(5.0.1)

The total information filtration G is here the filtration generated by the price processes S1

and S2, while F is the filtration generated by W . Furthermore, we work under the following
hypothesis.

Assumption 5.0.1. The proportionality relation

r − µ1

σ1
=
r − µ2

σ2
(5.0.2)

holds true.

In this chapter, as in the previous one, the following will be our standing assumption.

Assumption 5.0.2. The F-intensity rate of τ is a deterministic function of time λ(t).

5.1 Problem A

In this section, we determine the optimal investment strategy π∗t = (π1,∗
t , π2,∗

t ) for every
0 ≤ t ≤ T (so that the optimal π0,∗ automatically follows) by applying the Dynamic Pro-
gramming Principle (DPP) and by solving the Hamilton-Jacobi-Bellman (HJB) equation.
The main difference with respect to the results obtained in the previous chapters (that were
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obtained using the martingale approach) is that here we directly find an optimal consump-
tion strategy c∗t , 0 ≤ t ≤ T (and, at the same time, the optimal π1,∗

t , π2,∗
t , 0 ≤ t ≤ T ) that

depends on time (except in the case of problem C), on the optimal wealth X∗t and on the
jump indicator process Ht, that are accessible to the investor, while previously the optimal
investment-consumption strategy was a function of the initial wealth x0, of time (except in
the case of problem C) and of the Radon-Nikodým derivative Z∗t , that is non observable on
the market.

Remark 5.1.1. In order to apply the DPP and to obtain the HJB equation relative to our
problem, we need the Markovianity of the state process (Xt, Ht)t≥0. In the case of problems
A and B, this is guaranteed by the fact that the intensity of τ is deterministic (Assumption
5.0.2), in the case of problem C by the fact that we will consider a constant intensity λ.

Being the investor’s information set at time t given by Gt, the agent at time t has
immediately access to his wealth Xt and to the value of the jump indicator process, i.e., Ht.
This enables us to introduce the objective function

J(t, x, h;π, c) := E
[∫ T

t
u(cs)ds|Xt = x,Ht = h

]
, (5.1.1)

where h ∈ {0, 1} and the value function

V (t, x, h) := sup
(π,c)∈A(t,x)

J(t, x, h;π, c), (5.1.2)

where now A(t, x) is the analog to A(x0) defined in Equation (3.1.8), when the wealth Xt

at time t is equal to x. A pair (π∗, c∗) is optimal for problem A if it is admissible and if
J(t, x, h;π∗, c∗) = V (t, x, h) for every t, x, h.

Remark 5.1.2. In order for our problem to be meaningful, we need the finiteness of
V (0, x, h) for all (x, h) ∈ R+ × {0, 1}. A sufficient condition for this to hold is that u
is continuous and satisfies the polynomial growth condition

u(c) ≤ K(1 + cp) ∀ c ∈ (0,+∞),

for some 0 < K < ∞ and p ∈ (0, 1) (it suffices to adapt to our case the hypothesis in
Remark 3.6.8 in Karatzas and Shreve [14]).

It is fairly straightforward that the function x 7→ V (t, x, h) is increasing on (0,∞) and,
furthermore, it is strictly concave (provided that an optimal control, indeed, exists), as the
following lemma shows.

Lemma 5.1.1. For any (t, h) ∈ [0, T ] × {0, 1}, the function x 7→ V (t, x, h) is strictly
concave.
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Proof. For a given λ ∈ (0, 1) and x, y ∈ R+ our aim is to prove that for every t ∈ [0, T ] and
h ∈ {0, 1}

V (t, λx+ (1− λ)y, h) > λV (t, x, h) + (1− λ)V (t, y, h).

By definition of V , we have

V (t, λx+ (1− λ)y, h) = Et,z,h
[∫ T

t
u(c∗,zs )ds

]
,

where c∗,z is the optimal consumption strategy over the horizon [t, T ], corresponding to the
initial wealth Xt = z := λx+ (1− λ)y and where Et,z,h denotes the expectation given that
the state at time t is (Xt, Ht) = (z, h). By recalling the admissibility condition (3.1.17),
that now, being the starting investment date t, reads

Xt ≥ ert EQ∗
(∫ T

t
e−rscs ds | Gt

)
a.s.,

it is evident that the admissible consumption rate czs = c
λx+(1−λ)y
s satisfies (we divide on

both sides by ert)

EQ∗
(∫ T

t
e−rsc∗,zs ds | Gt

)
= z = λx+ (1− λ)y

≥ λEQ∗
(∫ T

t
e−rscxs ds | Gt

)
+ (1− λ)EQ∗

(∫ T

t
e−rscys ds | Gt

)
= EQ∗

(∫ T

t
e−rs[λcxs + (1− λ)cys ] ds | Gt

)
.

We then have
c∗,zs ≥ λcxs + (1− λ)cys ,

for every admissible consumption process cxs and cys , corresponding, respectively, to the
initial wealth x and y. Recalling the u is strictly increasing and strictly concave, we find

V (t, λx+ (1− λ)y, h) = Et,z,h
[∫ T

t
u(c∗,zs )ds

]
≥ Et,z,h

[∫ T

t
u (λcxs + (1− λ)cys) ds

]
> Et,z,h

[∫ T

t
[λu(cxs ) + (1− λ)u(cys)] ds

]
≥ λEt,x,h

[∫ T

t
u (cxs ) ds

]
+ (1− λ)Et,y,h

[∫ T

t
u (cys) ds

]
,

where in the last inequality we have automatically transformed Et,z,h into Et,x,h and Et,y,h,
since by splitting the problem into two parts we work with cxs and cys , that are consumption
processes corresponding to a fixed initial wealth equal to, respectively, x ad y. It suffices,
to conclude, to consider the supremum over all the admissible consumption rates cxs and
cys .
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Furthermore, we need the following Assumption (see the following Remark 5.1.3 for some
related comments):

Assumption 5.1.1. For h = 0 and h = 1, V (t, x, h) is C1 with respect to t and C2 with
respect to x.

Given the above Lemma 5.1.1 and given Assumption 5.1.1, the function x 7→ V ′x(t, x, h)

admits an inverse, defined on R+, that we denote by χ(t, ·, h).

5.1.1 The Hamilton-Jacobi-Bellman equation

By adapting to our (constant coefficients) setting the results in Øksendal and Sulem
[22, Section 3.1], that are presented in the context of Lévy processes, and, in particular, by
distinguishing between the two possible cases h = 0 and h = 1, it is easily seen that the
value function satisfies the following Hamilton-Jacobi-Bellman equation.

Lemma 5.1.2. The value function V : [0, T )×R+×{0, 1} → R, defined in (5.1.2), satisfies
the following fully nonlinear partial differential equation

V ′t (t, x, h) + max
(π,c)∈A(t,x)

[A(t, π, c, x, h) + u(c)] = 0, (5.1.3)

where

A(t, π, c, x, 0) = V ′x(t, x, 0)
[
rx+ π1x(µ1 − r − φ1λ(t)) + π2x(µ2 − r)− c

]
+

1

2
V ′′xx(t, x, 0)

(
π1xσ1 + π2xσ2

)2
+λ(t)

[
V (t, x+ xπ1φ1, 1)− V (t, x, 0)

]
and

A(t, π, c, x, 1) = V ′x(t, x, 1)
[
rx+ π1x(µ1 − r) + π2x(µ2 − r)− c

]
+

1

2
V ′′xx(t, x, 1)(π1xσ1 + π2xσ2)

2
,

with the boundary condition

V (T, x, h) = 0, ∀ (x, h) ∈ R+ × {0, 1}. (5.1.4)

Remark 5.1.3. Important!
Note that, in practice, the problem naturally splits into two sub-problems, that are solved
recursively. In a first step, we solve the partial differential equation (PDE) satisfied by the
post-default value function V (t, x, 1), then, we substitute this function into the analogous
PDE for V (t, x, 0), and we solve it. As a consequence, there are no jumps in the above
PDEs and we do not deal with integro-partial differential equations, but with classical ones.
Assumption 5.1.1 is, then, a “standard” one. A similar analysis can be found in Bielecki,
Jeanblanc and Rutkowski [1], in the context of hedging of defaultable derivatives.
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Results on the existence and uniqueness of a solution to equations of the above form
(that in our case is the value function V ) in the more general case of stochastic Markovian
coefficients are known in the case of a bounded domain (see for example the overview in
Fleming and Soner [10, IV.4] in the case when the PDE is uniformly parabolic, and Gilbarg
and Trudinger [11, Ch. 17] in the case of a uniformly elliptic equation, arising in the infinite
horizon optimization setting). For the unbounded domain case, when the coefficients are
deterministic, we refer to the existence and uniqueness result in Jeanblanc and Pontier [13,
Proposition 4.1].

We now characterize, in the following proposition, the optimal consumption and invest-
ment strategies in terms of the value function. We will then provide explicit solutions in
two classic examples, namely in the logarithmic and power utility cases.

Proposition 5.1.1. Suppose that there exists an optimal pair process (π∗, c∗) and that
the value function satisfies the HJB equation. Then, the optimal consumption-investment
strategies, corresponding to a wealth x at time t, in the two possible cases {h = 1} and
{h = 0} are characterized as follows:

• after the shock τ

c∗(t, x, 1) = I
[
V ′x(t, x, 1)

]
and the optimal investment strategy (π1,∗(t, x, 1), π2,∗(t, x, 1)) solves

π1,∗(t, x, 1) xσ1 + π2,∗(t, x, 1) xσ2 = ψ∗
V ′x(t, x, 1)

V ′′xx(t, x, 1)
. (5.1.5)

• Before the shock τ

c∗(t, x, 0) = I
[
V ′x(t, x, 0)

]
,

π1,∗(t, x, 0) =
1

xφ1

{
χ(t, V ′x(t, x, 0), 1)− x

}
,

π2,∗(t, x, 0) =
ψ∗

xσ2

V ′x(t, x, 0)

V ′′xx(t, x, 0)
− σ1

xσ2φ1

{
χ(t, V ′x(t, x, 0), 1)− x

}
,

where I is the inverse function of u′, ψ∗ was introduced in Equation (4.1.7) and we recall
that χ is the inverse function of V ′x(t, ·, h).

As suggested in the literature, we say that such pairs are given in feedback form, since,
in both cases h = 0 and h = 1, they are determined, at time t, as functions of the optimal
wealth x = X∗t .

Proof. Being V solution to the HJB Equation (5.1.3), together with the boundary condition
(5.1.4), the optimal consumption-investment strategies in the two cases h = 1 and h = 0,
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maximize, for all t, respectively,

V ′x(t,X∗t , 1)
[
rX∗t + π1X∗t (µ1 − r) + π2X∗t (µ2 − r)− c

]
+1

2V
′′
xx(t,X∗t , 1)

(
π1X∗t σ

1 + π2X∗t σ
2
)2

+ u(c)

and

V ′x(t,X∗t , 0)
[
rX∗t + π1X∗t (µ1 − r − φ1λ(t)) + π2X∗t (µ2 − r)− c

]
+1

2V
′′
xx(t,X∗t , 0)

(
π1X∗t σ

1 + π2X∗t σ
2
)2

+λ(t)
[
V (t,X∗t +X∗t π

1φ1, 1)− V (t,X∗t , 0)
]

+ u(c).

The optimal consumption rate is immediately given in feedback form, in both cases and so
we focus on the optimal investment strategy.

For what concerns the case h = 1, the conclusion follows by considering the first order
conditions, by recalling that ψ∗ = r−µ2

σ2 = r−µ1
σ1 and by setting X∗t = x. In the case h = 0

first order conditions can be considered, but a deeper analysis is required to be sure that the
value π1,∗ found by setting the first derivative equal to zero is optimal. We have, indeed, to
solve a maximization problem under the constraint (4.1.4)

π1φ1 ≥ −1,

namely, to obtain the optimal pair (π1,∗, π2,∗), before the shock, we have to solve the fol-
lowing problem (in a simplified notation):{

max
π1,π2

f(π1, π2)

π1φ1 ≥ −1, π2 ∈ R,
(5.1.6)

where (notice that we set X∗t = x)

f(π1, π2) := V ′x(t, x, 0)
[
π1x(µ1 − r − φ1λ(t)) + π2x(µ2 − r)

]
+
x2

2
V ′′xx(t, x, 0)

·
(
π1σ1 + π2σ2

)2
+ λ(t)

[
V (t, x+ xπ1φ1, 1)− V (t, x, 0)

]
.

Here we have, then, to pay attention to the fact that we can have π1,∗ on the boundary of

its domain, namely π1,∗ = − 1
φ1
, without having

∂f

∂π1
(π1,∗, π2) = 0. More specifically, by

considering first order conditions for a regular interior maximum{ ∂f
∂π1 (π1, π2) = 0
∂f
∂π2 (π1, π2) = 0

we find the optimal desired π2,∗ and a local (candidate global) maximum π1,∗
loc , in the interior

of the domain. In order to be sure that π1,∗
loc = π1,∗, we have to verify that (recall that

φ1 > −1, φ1 6= 0) 
∂f

∂π1

(
− 1

φ1
, π2,∗

)
< 0, if φ1 ∈ (−1, 0),

∂f

∂π1

(
− 1

φ1
, π2,∗

)
> 0, if φ1 > 0.
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We obtain

∂f

∂π1

(
− 1

φ1
, π2,∗

)
= φ1

{
xλ(t)

[
V ′x(t, 0, 1)− V ′x(t, x, 0)

]
− x
(
σ1

φ1

)2

V ′′xx(t, x, 0)χ(t, V ′x(t, x, 0), 1)

}
,

and we observe that, since c∗(t, 0, h) = 0 for every t ≥ 0 and h ∈ {0, 1} (if we have no
wealth, we cannot consume), then

V ′x(t, 0, 1)− V ′x(t, x, 0) = u′ (c∗(t, 0, 1))− u′ (c∗(t, x, 0)) = u′(0)− u′ (c∗(t, x, 0)) ≥ 0

and the optimality of π1,∗
loc follows by recalling that V is increasing and strictly concave with

respect to x and that χ is positive.

Once more, as in the previous chapters, we deduce from Equation (5.1.5) that in the con-
sidered complete market, after τ , the investment strategy is not unique, due to redundancy
of the market.

In this specific setting we can obtain, as a corollary and using the results of the previous
chapter, the same result obtained in Proposition 4.2.1, concerning the investment strategy
before τ .

Corollary 5.1.1. The optimal consumption-investment strategy, corresponding to a wealth
x at time t, on the set {t ≤ τ}, is:

c∗(t, x, 0) = I
(
V ′x(t, x, 0)

)
= c∗(t, x, 1),

π1,∗(t, x, 0) = 0,

π2,∗(t, x, 0) =
ψ∗

xσ2

V ′x(t, x, 0)

V ′′xx(t, x, 0)
.

Proof. It follows immediately by definition of the value function. Indeed, we already know,
from Proposition 3.2.1, that the optimal consumption rate is here F-adapted (this derives
from the F-adaptability of Z∗). In particular, the trajectories of the consumption process
do not have any discontinuity at time τ , namely c∗(t, x, 0) = c∗(t, x, 1), so that V (t, x, 0) =

V (t, x, 1) and

χ(t, V ′x(t, x, 0), 1)− x = χ(t, V ′x(t, x, 1), 1)− x = χ(t, V ′x(t, x, 0), 0)− x = x− x = 0.

The following result, well known as Verification theorem (see, e.g., Fleming and Soner
[10, Th. IV.3.1] in the context of controlled Markov diffusions in Rn, or Øksendal and
Sulem [22, Th. 3.1] in the context of jump-diffusions) provides a useful tool to determine
the optimal feedback controls explicitly in two examples. Nevertheless, it assumes the
knowledge of a candidate value function and of the optimal wealth.
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Theorem 5.1.1. Let v(t, x, h) be a real valued function defined over [0, T )× R+ × {0, 1},
of class C1,2 with respect to, respectively, t and x, solution to the HJB Equation (5.1.3),
together with the boundary condition (5.1.4) and let (π∗, c∗) the pair defined in Proposition
5.1.1. If the pair is admissible, then v is the value function of our problem and (π∗, c∗) is
optimal.

We now apply the above theorem and the corollary in two examples, namely in the case
of the logarithmic and power utility function cases and we obtain explicitly the optimal
consumption rate and the investment strategy.

� The logarithmic and power utility cases

Proposition 5.1.2. Let us suppose that u(c) = ln(c). Then the explicit optimal solution
to our consumption maximization problem A, distinguishing between the cases h = 1 and
h = 0 is:

• after the shock τ ,

c∗(t, x, 1) =
x

T − t
,

π1,∗(t, x, 1)σ1 + π2,∗(t, x, 1)σ2 = −ψ∗.

The value function is
V (t, x, 1) = ln(x)(T − t) + q1(t),

where

q1(t) =

(
r +

(ψ∗)2

2

)
1

2
(T − t)2 − (T − t) ln(T − t).

• Before the shock τ ,

c∗(t, x, 0) =
x

T − t
,

π1,∗(t, x, 0) = 0,

π2,∗(t, x, 0) = −ψ
∗

σ2
.

The value function is
V (t, x, 0) = V (t, x, 1).

Proof. It suffices (notice that, thanks to Corollary 5.1.1, we only consider the case h = 1) to
make the following ansatz : V (t, x, 1) = ln(x)p1(t)+q1(t) and to choose the two functions p1

and q1 that solve the HJB equation, together with the boundary condition. In particular,
we find that p1(t) = T − t and that q1(t) has to satisfy

q′1(t) = 1 + ln(T − t)− (T − t)
(
r +

1

2
(ψ∗)2

)
, q1(T ) = 0,
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whose solution is given in the statement. Notice that the optimal consumption strategy
c∗(t, x, 1) = c∗(t, x, 0) is nonnegative.

To conclude, it remains to show that the wealth associated with the pair (π∗, c∗) is a.s.
positive, for every 0 ≤ t ≤ T . We find the dynamics

dX∗t = X∗t

[(
r + (ψ∗)2 − 1

T − t

)
dt− ψ∗dWt

]
, X∗0 = x0, (5.1.7)

that corresponds to

X∗t = x0 e
(r+ 1

2
(ψ∗)2)t e−ψ

∗Wt
T − t
T

=
x0e

rt(T − t)
Z∗t T

a.s. (5.1.8)

and the optimal wealth remains therefore always nonnegative over the time interval [0, T ],
since X0 = x0 ≥ 0, and it satisfies X∗T = 0 a.s.

By performing analogous computations, we find the optimal solution in the power utility
case.

Proposition 5.1.3. Let us suppose that u(c) = cγ

γ , c ≥ 0, γ < 1, γ 6= 0. Then the explicit
optimal solution to our consumption maximization problem A, distinguishing between the
cases h = 1 and h = 0 is:

• after the shock τ ,

c∗(t, x, 1) = x(β1(t))
1

γ−1 ,

π1,∗(t, x, 1)σ1 + π2,∗(t, x, 1)σ2 = −ψ∗ 1

1− γ

and the value function is

V (t, x, 1) =
xγ

γ
β1(t),

where β1(t) =
[

1−γ
K

(
e

K
1−γ (T−t) − 1

)]1−γ
and K = 1

2
γ

1−γ (ψ∗)2 + rγ.

• Before the shock τ ,

c∗(t, x, 0) = x(β1(t))
1

γ−1 ,

π1,∗(t, x, 0) = 0

π2,∗(t, x, 0) = −ψ
∗

σ2

1

1− γ
.

The value function is
V (t, x, 0) = V (t, x, 1).

Proof. The proof is analogous to the one in the previous Proposition, but in this case, the
ansatz we make is: V (t, x, 1) = xγ

γ β1(t).
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In both cases γ ∈ (0, 1) and γ < 0, it can be shown that β1(t) is positive and this implies
that the optimal consumption c∗(t, x, 1) = c∗(t, x, 0) is positive, too. The admissibility of
the optimal solution to our problem follows immediately, as before in the logarithmic case,
noticing that the wealth dynamics is given by

dX∗t = X∗t

[(
r +

(ψ∗)2

1− γ
− (β1(t))

1
γ−1

)
dt− ψ∗

1− γ
dWt

]
, X∗0 = x0 ≥ 0, (5.1.9)

or, equivalently, by

X∗t = x0 e

(
r− (ψ∗)2γ

(1−γ)2

)
t
e
− ψ∗

1−γWte−
∫ t
0 (β1(s))

1
γ−1 ds a.s.

An explicit computation of e−
∫ t
0 (β1(s))

1
γ−1 ds finally gives

X∗t = x0 e

(
r− (ψ∗)2γ

(1−γ)2

)
t e

K
1−γ T − e

K
1−γ t

e
K

1−γ T − 1
e
− ψ∗

1−γWt a.s., (5.1.10)

so that, in particular, X∗T = 0 a.s.

We conclude this section with the following remark.

Remark 5.1.4. The optimal solutions, relative to the logarithmic and power utility cases,
found in this subsection coincide with the solutions found in Section 4.2.1, namely, respec-
tively,

c∗,As =
x0

TZ∗s e
−rs = c∗(s,X∗s , 0) = c∗(s,X∗s , 1) =

X∗s
T − s

and, in the power utility case,

c∗,As =
x0

(e−rsZ∗s )
1

1−γ

1
2(ψ∗)2 γ

1−γ + rγ

(1− γ)

(
e

T
1−γ

(
1
2

(ψ∗)2 γ
1−γ+rγ

)
− 1

) = c∗(s,X∗s , 0) = c∗(s,X∗s , 1)

= X∗s

[
1− γ
K

(
e

K
1−γ (T−s) − 1

)]−1

= X∗s

1
2(ψ∗)2 γ

1−γ + rγ

(1− γ)

(
e

(T−s)
1−γ

(
1
2

(ψ∗)2 γ
1−γ+rγ

)
− 1

) ,
where in the last equality we have simply substituted the value of K = 1

2(ψ∗)2 γ
1−γ + rγ.

This can be proved by exploiting Equations (5.1.8) and (5.1.10), since x in c∗(s, x, ·) repre-
sents the wealth that we have at time s, that is X∗s (when we are at time s, we are supposed
to have optimally invested in the market up to that time).

5.2 Problem B

We introduce the objective function (notice that the investment-consumption strategy
is “hidden” in the wealth process X)

J(τ)(t, x, h;π, c) := E
[∫ T

t
(1−Hs)u(cs)ds|Xt = x,Ht = h

]
, (5.2.1)
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where x ∈ R+ and h ∈ {0, 1}, and the value function

V(τ)(t, x, h) := sup
(π,c)∈Aτ (t,x)

J(τ)(t, x, h;π, c), (5.2.2)

where Aτ (t, x) is the analog to Aτ (x0) defined in Equation (3.1.9), when the wealth Xt, at
time t, is equal to x.

Remark 5.2.1. By definition of V(τ) we have

V(τ)(t, x, 1) = 0, ∀ (t, x) ∈ [0, T ]× R+. (5.2.3)

A pair (π∗, c∗) is optimal for problem B if it is admissible and if J(τ)(t, x, h;π∗, c∗) =

V(τ)(t, x, h) for every t, x, h.
Since we work in the pre-shock time interval, π1

t is admissible if it satisfies suitable
integrability conditions and if, for every t ≤ τ , almost surely,

π1
t φ

1 ≥ −1. (5.2.4)

Furthermore, the results in Remark 5.1.2 and Lemma 5.1.1 can be easily adapted here and
also in this case the value function is increasing and strictly concave in x. The following
assumption will be necessary to derive the HJB equation.

Assumption 5.2.1. V(τ)(t, x, 0) is C1 with respect to t and C2 with respect to x.

Lemma 5.2.1. The value function V(τ)(·, ·, 0) : [0, T )×R+ → R, defined in (5.2.2), satisfies
the following fully nonlinear partial differential equation

V ′(τ),t(t, x, 0) + max
(π,c)∈Aτ (t,x)

[
A(τ)(t, π, c, x, 0) + u(c)

]
= 0, (5.2.5)

where

A(τ)(t, π, c, x, 0) = V ′(τ),x(t, x, 0)
[
rx+ π1x(µ1 − r − φ1λ(t)) + π2x(µ2 − r)− c

]
+

1

2
V ′′(τ),xx(t, x, 0)

(
π1xσ1 + π2xσ2

)2 − λ(t)V(τ)(t, x, 0),

with the boundary condition

V(τ)(T, x, 0) = 0, ∀ x ∈ R+. (5.2.6)

Proof. The HJB equation can be obtained from the Dynamic Programming Principle, notic-
ing that the Bellman principle can be written, for every pair (π, c) ∈ A(τ)(t, x) and for
ε ≥ 0, ε ≤ T − t, as

V(τ)(t, x, 0) ≥ E
[∫ t+ε

t
(1−Hs)u(cs)ds+ V(τ)(t+ ε,Xt+ε, Ht+ε)

∣∣Xt = x,Ht = 0

]
.
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We now apply Itô’s lemma to V(τ)(t+ε,Xt+ε, Ht+ε) (with starting time t) and, recalling that
(see Equation (3.1.3)) dHt = dMt + λ̄tdt = dMt + λt11{t<τ}dt and assuming that the local
martingale we find (that is given by a stochastic integral in dW plus a stochastic integral
in dM) is a martingale, a formal computation gives us

0 ≥ E
{∫ t+ε

t

[
(1−Hs)u(cs) +

∂V(τ)

∂t
(s,Xs, Hs) +

∂V(τ)

∂x
(s,Xs, Hs)

·
(
rXs + π1

sXs(µ
1 − r − φ1λ(s)11{s<τ}) + π2

sXs(µ
2 − r)− cs

)
+

1

2

∂2V(τ)

∂x2
(s,Xs, Hs)

(
π1
sσ

1Xs + π2
sσ

2Xs

)2
+ λ(s)11{s<τ}

·[V(τ)(s,Xs− +Xs−π
1
sφ

1, 1)− V(τ)(s,Xs−, 0)]
]
ds
∣∣ Xt = x,Ht = 0

}
.

It is crucial, now, to notice that the above integral is a continuous function of time, despite
of the fact that the integrand has a discontinuity at s = τ . We conclude, then, by standard
arguments (we have V(τ)(s,Xs− + Xs−π

1
sφ

1, 1) = 0), by dividing the right-hand side by ε
and taking the limit as ε goes to zero and noticing that equality holds for the optimal pair
(π∗, c∗).

In the following proposition, we provide the optimal consumption rate and the optimal
investment strategy in feedback form, we will give, then, explicit formulas in two examples.

Proposition 5.2.1. Suppose that there exists an optimal pair process (π∗, c∗) and that
the value function satisfies the HJB equation. Then, the optimal consumption-investment
strategy, corresponding to a wealth x at time t, is characterized as follows:

c∗(t, x, 0) = I
[
V ′(τ),x(t, x, 0)

]
,

π1,∗(t, x, 0) = − 1

φ1
,

π2,∗(t, x, 0) =
ψ∗

xσ2

V ′(τ),x(t, x, 0)

V ′′(τ),xx(t, x, 0)
+

σ1

σ2φ1
.

Proof. Being V(τ) solution to the HJB Equation (5.2.5), together with the boundary condi-
tion (5.2.6), the optimal consumption rate and the investment strategy have to maximize,
for all t,

V ′(τ),x(t,X∗t , 0)
[
rX∗t + π1X∗t (µ1 − r − φ1λ(t)) + π2X∗t (µ2 − r)− c

]
+1

2V
′′

(τ),xx(t,X∗t , 0)
(
π1X∗t σ

1 + π2X∗t σ
2
)2 − λ(t)V(τ)(t,X

∗
t , 0) + u(c).

c∗ is immediately obtained by considering the usual first order condition and so we focus
on (π1,∗, π2,∗). We have, indeed, to solve a maximization problem under the constraint

π1φ1 ≥ −1,
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namely, with a simplified notation, in order to obtain the optimal investment strategy we
have to maximize: {

max
π1,π2

f(τ)(π
1, π2)

π1φ1 ≥ −1, π2 ∈ R,
(5.2.7)

where (notice that we set X∗t = x)

f(τ)(π
1, π2) := V ′(τ),x(t, x, 0)

[
π1x(µ1 − r − φ1λ(t)) + π2x(µ2 − r)

]
+

1

2
V ′′(τ),xx(t, x, 0)

(
π1xσ1 + π2xσ2

)2
.

It is convenient to make the following change of variable, introducing

z := π1xσ1 + π2xσ2 ∈ R,

so that, recalling that ψ∗ = r−µ1
σ1 = r−µ2

σ2 , we can equivalently maximize

f(τ)(π
1, z) = −ψ∗zV ′(τ),x(t, x, 0)− π1xφ1λ(t)V ′(τ),x(t, x, 0) +

1

2
z2V ′′(τ),xx(t, x, 0)

over the domain {(π1, z) ∈ R2 : π1φ1 ≥ −1}. First order conditions, for a regular interior
maximum are given below:

∂f(τ)
∂π1 (π1, z) = −xφ1λ(t)V ′(τ),x(t, x, 0) = 0
∂f(τ)
∂z (π1, z) = −ψ∗V ′(τ),x(t, x, 0) + zV ′′(τ),xx(t, x, 0) = 0

π1φ1 ≥ −1, z ∈ R

and so z∗ is

z∗ = ψ∗
V ′(τ),x(t, x, 0)

V ′′(τ),xx(t, x, 0)
,

but we do not find π1,∗. The reason for this is evident a posteriori, since the optimal π1 is
on the boundary of its domain, i.e., π1,∗ = − 1

φ1
. In fact, we have (recall that we have to

distinguish between the two possible cases φ1 ∈ (−1, 0) and φ1 > 0):

• if φ1 ∈ (−1, 0), the domain with respect to π1 is π1 ≤ − 1
φ1

and f(τ) is increasing as a
function of π1 =⇒ the maximum is attained at π1,∗ = − 1

φ1
;

• if φ1 > 0, the domain with respect to π1 is π1 ≥ − 1
φ1

and f(τ) is decreasing as a
function of π1 =⇒ the maximum is attained at π1,∗ = − 1

φ1
.

The optimal π2,∗ follows by simply recalling that z = π1xσ1 + π2xσ2.

We apply now an analog to the Verification Theorem 5.1.1 to obtain the optimal feed-
back controls explicitly in the two usual examples.

� The logarithmic and power utility cases
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Proposition 5.2.2. Let us consider the case when u(c) = ln(c). The explicit optimal
solution to problem B is:

c∗(t, x, 0) =
x

a(t)

π1,∗(t, x, 0) = − 1

φ1
,

π2,∗(t, x, 0) = −ψ
∗

σ2
+

σ1

σ2φ1
,

where

a(t) = e
∫ t
0 λ(u)du

∫ T

t
e−
∫ s
0 λ(u)duds =

∫ T
t G(s)ds
G(t)

.

The value function is
V(τ)(t, x, 0) = ln(x)a(t) + b(t),

where

b(t) = −e
∫ t
0 λ(u)du

∫ T

t
e−
∫ s
0 λ(u)du(1 + f(s))ds,

with f(s) = ln a(s)− a(s)
(
r + λ(s) + 1

2(ψ∗)2
)
.

Proof. It suffices to make the following ansatz : V(τ)(t, x, 0) = ln(x)a(t) + b(t) and find a

and b that solve the HJB equation, together with the boundary condition. In particular, we
find that a(t) has to satisfy

a′(t) = λ(t)a(t)− 1, a(T ) = 0

and that b(t) is a solution to the following differential equation

b′(t) = λ(t)b(t) + 1 + ln a(t)− a(t)

(
r + λ(t) +

1

2
(ψ∗)2

)
, b(T ) = 0.

Notice that the optimal consumption strategy is nonnegative. To conclude, it remains
to show that the wealth associated with the pair (π∗, c∗) is a.s. nonnegative, for every
0 ≤ t ≤ T . We find, by substituting the optimal strategy into Equation (3.1.6), the
dynamics

dX∗t = X∗t−

[(
r + λ(t) + (ψ∗)2 − 1

a(t)

)
dt− dHt − ψ∗dWt

]
= X∗t−

[(
r + (ψ∗)2 − 1

a(t)

)
dt− dMt − ψ∗dWt

]
, X∗0 = x0 ≥ 0,

(5.2.8)

that corresponds to{
X∗t = x0 e

(r+ 1
2

(ψ∗)2)t e
∫ t
0 λ(s)ds e−ψ

∗Wt e
−
∫ t
0

1
a(s)

ds a.s., t < τ,
X∗t = 0 a.s., t ≥ τ.

(5.2.9)
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More precisely, explicitly computing e−
∫ t
0

1
a(s)

ds, we find X∗t = x0 e
(r+ 1

2
(ψ∗)2)t e

∫ t
0 λ(s)ds

∫ T
t G(s)ds∫ T
0 G(s)ds

e−ψ
∗Wt a.s., t < τ,

X∗t = 0 a.s., t ≥ τ,
(5.2.10)

and the optimal wealth remains therefore always nonnegative over the time interval [0, T ]

and we always have X∗T∧τ = 0 a.s. Furthermore, when {τ > T}, the optimal consumption
rate satisfies

lim
t→T

c∗(t, x, 0) = +∞,

meaning that, when T approaches, the optimal consumption rule consists in consuming at
a maximum rate, in order to get X∗T = 0 a.s.

By performing analogous computations, we find the optimal solution in the power utility
case.

Proposition 5.2.3. Let us suppose that u(c) = cγ

γ , c ≥ 0, γ < 1, γ 6= 0. Then the optimal
solution to problem B is:

c∗(t, x, 0) = x(α(t))
1

γ−1 ,

π1,∗(t, x, 0) = − 1

φ1
,

π2,∗(t, x, 0) = −ψ
∗

σ2

1

1− γ
+

σ1

σ2φ1

and the value function is

V(τ)(t, x, 0) =
xγ

γ
α(t),

where

α(t) =

(
e
− K

1−γ te
∫ t
0 λ(s)ds

∫ T

t
e

K
1−γ se−

∫ s
0 λ(u)duds

)1−γ

=

(
e
− K

1−γ t

G(t)

∫ T

t
e

K
1−γ sG(s)ds

)1−γ

,

and where (recall Proposition 5.1.3) K = 1
2

γ
1−γ (ψ∗)2 + rγ.

Proof. We make the ansatz : V(τ)(t, x, 0) = xγ

γ α(t) and we find that V(τ) solves the HJB
Equation (5.2.5), together with the boundary condition (5.2.6) if α satisfies the following
Bernoulli type differential equation

α′(t) = [−K + λ(t)(1− γ)]α(t)− (1− γ)(α(t))
γ
γ−1 , α(T ) = 0,

where K = 1
2

γ
1−γ (ψ∗)2 + rγ, whose solution is given in the statement of the proposition.

The optimal consumption c∗(t, x, 1) = c∗(t, x, 0) is positive and the admissibility of the
optimal solution follows immediately, noticing that the wealth dynamics is given by

dX∗t = X∗t−

{[
r + λ(t) +

(ψ∗)2

1− γ
− (α(t))

1
γ−1

]
dt− dHt −

ψ∗

1− γ
dWt

}
, X∗0 = x0, (5.2.11)
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that corresponds to X∗t = x0 e

(
r+

(ψ∗)2
1−γ −

1
2

(ψ∗)2

(1−γ)2

)
t
e
∫ t
0 λ(s)ds e

− ψ∗
1−γWt e−

∫ t
0 α(s)

1
γ−1 ds a.s., t < τ,

X∗t = 0 a.s., t ≥ τ.

(5.2.12)

By explicitly computing the integral
∫ t

0 α(s)
1

γ−1ds we finally have, a.s., X∗t = x0 e

(
r+

(ψ∗)2
1−γ −

1
2

(ψ∗)2

(1−γ)2

)
t
e
∫ t
0 λ(s)ds

∫ T
t e

K
1−γ sG(s)ds∫ T

0 e
K

1−γ sG(s)ds
e
− ψ∗

1−γWt a.s., t < τ,

X∗t = 0 a.s., t ≥ τ.

(5.2.13)

In particular, X∗T∧τ = 0 a.s. and it is interesting to notice, as previously done in the
logarithmic case, that, if t < (T ∧ τ),

lim
t→T

c∗(t, x, 0) = +∞,

meaning that the optimal strategy, when approaching T , consists in consuming at a maxi-
mum rate, in order to get X∗T = 0 a.s.

Remark 5.2.2. Easy computations show immediately that, in the two examples, the optimal
consumption rate c∗,B found by means of the “direct approach” in Section 4.2.3 coincides
with the solution c∗ to the HJB equation (5.2.5) (recall the analog Remark 5.1.4).

5.3 Problem C

We introduce the objective function (for notational simplicity in what follows we will
use x instead of x0 to denote the initial wealth)

J∞(x, h;π, c) = E
[∫ +∞

0
e−ρsu(cs)ds|X0 = x,H0 = h

]
and we define the value function

V∞(x, h) := sup
(π,c)∈A∞(x)

J∞(x, h;π, c). (5.3.1)

Our purpose is to find a pair (π∗, c∗) that is admissible and that satisfies
J∞(x, h;π∗, c∗) = V∞(x, h). Notice that the value function does not depend on time and it
is crucial to point out that x in V∞ denotes the initial investor’s wealth.

For what concerns the properties of the value function, given the specific form of the
Radon-Nikodým derivative Z∗, that in the case of deterministic coefficients is given in
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Equation (4.1.9) (despite the presence of a jump in the market, Z∗ is a diffusion process),
we can use Theorem 3.9.18 in Karatzas and Shreve [14] to state that, under Assumption
3.2.4, V∞ is finite and continuously differentiable for every h ∈ {0, 1}. Furthermore, by its
definition, V∞ is increasing as a function of x and we can extend to this case the proof of
Lemma 5.1.1 to show that, for any h ∈ {0, 1}, x 7→ V∞(x, h) is strictly concave. It is, then,
evident that the function x 7→ V ′x(x, h) admits an inverse defined on R+, that we denote
χ∞(·, h). Nevertheless, we have to suppose that the value function is two times differentiable
with respect to the space variable (some comments on this assumption are given below in
Remark 5.3.1).

Assumption 5.3.1. For h = 0 and h = 1, V∞(x, h) is C2 with respect to x.

5.3.1 The Hamilton-Jacobi-Bellman equation

As before in the case of the finite horizon T , it is possible to show that V∞ solves a fully
nonlinear partial differential equation. Notice that in this case, in order to write the HJB
equation, we need the intensity rate of τ , λ(t), t ≥ 0, to be constant. We set λ(t) ≡ λ.

Lemma 5.3.1. The value function V∞ : R+ × {0, 1} → R satisfies the Hamilton-Jacobi-
Bellman equation of dynamic programming

−ρV∞(x, h) + max
(π,c)∈A∞(x)

[A∞(π, c, x, h) + u(c)] = 0, (5.3.2)

where

A∞(π, c, x, 0) = V ′∞,x(x, 0)
[
rx+ π1x(µ1 − r − φ1λ(t)) + π2x(µ2 − r)− c

]
+

1

2
V ′′∞,xx(x, 0)

(
π1xσ1 + π2xσ2

)2
+λ
[
V∞(x+ xπ1φ1, 1)− V∞(x, 0)

]
and

A∞(π, c, x, 1) = V ′∞,x(x, 1)
[
rx+ π1x(µ1 − r) + π2x(µ2 − r)− c

]
+

1

2
V ′′∞,xx(x, 1)(π1xσ1 + π2xσ2)

2
.

Remark 5.3.1. Important!
As noticed in Remark 5.1.3 relative to problem A, also here the problem naturally splits into
two sub-problems, that are solved recursively. First, we solve the PDE satisfied by V∞(x, 1)

and then we substitute this function into the analogous PDE for V∞(x, 0). We then deal
with two classical PDEs and Assumption 5.3.1 is “standard” in this context.

For an overview on existence and uniqueness results concerning the solution to the HJB
equation in the infinite horizon case we refer to Fleming and Soner [10, Section IV.5, pag.
165-166]. We now provide the optimal consumption-investment strategy in feedback form,
i.e., in terms of the value function V∞.
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Proposition 5.3.1. Suppose that there exists an optimal pair process (π∗, c∗) and that
the value function satisfies the HJB Equation (5.3.2). Then, the optimal consumption-
investment strategies, corresponding to an initial wealth x, in the two possible cases {h = 1}
and {h = 0}, are characterized as follows:

• after the shock τ the optimal consumption rate is

c∗(x, 1) = I
[
V ′∞,x(x, 1)

]
and the optimal investment strategy (π1,∗(x, 1), π2,∗(x, 1)) solves

π1,∗(x, 1) xσ1 + π2,∗(x, 1) xσ2 = ψ∗
V ′∞,x(x, 1)

V ′′∞,xx(x, 1)
. (5.3.3)

• Before the shock τ

c∗(x, 0) = I
[
V ′∞,x(x, 0)

]
π1,∗(x, 0) =

1

xφ1

{
χ∞

(
V ′∞,x(x, 0), 1

)
− x
}

π2,∗(x, 0) =
ψ∗

xσ2

V ′∞,x(x, 0)

V ′′∞,xx(x, 0)
− σ1

xσ2φ1

{
χ∞

(
V ′∞,x(x, 0), 1

)
− x
}
,

where I is the inverse function of u′, ψ∗ was introduced in Equation (4.1.7) and we recall
that χ∞ is the inverse function of V ′∞,x.

Proof. It is exactly the same as the proof of Proposition 5.1.1 and we omit it. We only
remark a posteriori that the optimal solutions are actually admissible.

We now state the analog to Corollary 5.1.1 and we provide an interesting result based
on the fact that, from previous results, we know that the value function is the same before
and after the shock.

Corollary 5.3.1. The optimal consumption-investment strategy, corresponding to an initial
wealth x, before the shock τ , is:

c∗(x, 0) = I
[
V ′∞,x(x, 0)

]
= c∗(x, 1),

π1,∗(x, 0) = 0,

π2,∗(x, 0) =
ψ∗

xσ2

V ′∞,x(x, 0)

V ′′∞,xx(x, 0)
.

Proof. It is exactly the same as the one of Corollary 5.1.1, namely it is based on the fact
that, for every x, V∞(x, 1) = V∞(x, 0) and we omit it.

The Verification Theorem below will be the key tool in order to obtain the explicit
solutions in the two subsequent examples.
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Theorem 5.3.1. Let v(x, h) be a real valued function defined over R+ × {0, 1}, of class C2

with respect to x, solution to the HJB Equation (5.3.2) and let (π∗, c∗) the pair defined in
Proposition 5.3.1. If the pair is admissible, then v is the value function of our problem and
this pair is optimal.

� The logarithmic and power utility cases

Proposition 5.3.2. Let us suppose that u(c) = ln(c). The explicit optimal solution to
problem C is:

• after the shock τ ,

c∗(x, 1) = ρx,

π1,∗(x, 1)σ1 + π2,∗(x, 1)σ2 = −ψ∗.

The value function is

V∞(x, 1) = ln(x)A1 +B1 =
1

ρ

[
ln(x) +

r

ρ
+

(ψ∗)2

2ρ
− 1 + ln ρ

]
,

where A1 = 1
ρ and

B1 =
1

ρ

[
r

ρ
+

(ψ∗)2

2ρ
− 1 + ln ρ

]
.

• Before the shock τ ,

c∗(x, 0) = ρx,

π1,∗(x, 0) = 0,

π2,∗(x, 0) = −ψ
∗

σ2
.

The value function is
V∞(x, 0) = V∞(x, 1).

Proof. We start by making an ansatz concerning the value function (notice that, given
Corollary 5.3.1, we only consider the case h = 1), namely we suppose that V∞(x, 1) =

ln(x)A1 + B1 and then we solve the HJB equation, finding A1 and B1. To conclude, we
have to check that the optimal solution leads to a positive wealth process and here it is the
case (if x0 > 0), since we have, for every t,

dX∗t = X∗t

[(
r + (ψ∗)2 − ρ

)
dt− ψ∗dWt

]
, X0 = x0 ≥ 0,

that corresponds to
X∗t = x0e

(r−ρ)te
1
2

(ψ∗)2te−ψ
∗Wt a.s.
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Analogously, in the power utility case we obtain the following result.

Proposition 5.3.3. Let us suppose that u(c) = cγ

γ , c ≥ 0, γ < 1, γ 6= 0. Then the explicit
optimal solution to our consumption maximization problem C is:

• after the shock τ ,

c∗(x, 1) = xA
1

γ−1 ,

π1,∗(x, 1)σ1 + π2,∗(x, 1)σ2 = − ψ∗

1− γ
and the value function is

V∞(x, 1) =
xγ

γ
A,

where A =
[

γ
1−γ

(
ρ
γ −

1
2

(ψ∗)2

1−γ − r
)]γ−1

.

• Before the shock τ ,

c∗(x, 0) = xA
1

γ−1 = c∗(x, 1),

π1,∗(x, 0) = 0

π2,∗(x, 0) = − ψ∗

σ2(1− γ)
.

The value function is
V∞(x, 0) = V∞(x, 1).

Proof. The result can be shown, without additional difficulties, as in the previous cases.
Here it is only interesting to notice that the admissibility of the optimal consumption rate
derives from the positivity of A, that was required in Equation (4.2.15). Furthermore, the
optimal wealth always remains positive (provided that x0 > 0), since we have, for every t,

dX∗t = X∗t

[(
r +

(ψ∗)2

1− γ
− (A)

1
γ−1

)
dt− ψ∗

1− γ
dWt

]
, X0 = x0 ≥ 0,

that corresponds to

X∗t = x0e
rte

(ψ∗)2
1−γ t

e
− 1

2
(ψ∗)2

(1−γ)2
t
e−(A)

1
γ−1 te

− ψ∗
1−γWt a.s.

Remark 5.3.2. a) The admissibility of the optimal consumption rate process, i.e., the
positivity of A, derives from (4.2.15), that was introduced in the power utility case, when
applying a direct method, in order to ensure the existence of an optimal solution c∗.
b) As done in Remark 5.1.4 and Remark 5.2.2, it is possible to show that, in both examples,

c∗,Cs = c∗(X∗s , 0) = c∗(X∗s , 1).

Notice that the optimal solution c∗(x, ·) does not depend on time: x in c∗(x, ·) represents the
investor’s wealth at the beginning of the investment period.
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5.4 A reduced information setting: problem B1

We are now interested in studying problem B from a different point of view, namely we
consider consumption-investment strategies that are F−predictable (and no moreG−predictable,
recall Definition 3.1.1). It is the problem of an investor with a reduced set of information,
who has not access to the full information filtration G. In particular, he does not observe
τ (think for example of τ as the power supply interruption of a power plant). We will see
that, in order to maximize his consumption up to time T , he will consider an alternative
problem, denoted B1, in the filtration F, by modifying his utility function u.

Indeed, since the filtration F does not include the observation of the event τ , we re-write
the objective function as follows

E
(∫ T∧τ

0
u(cs)ds

)
= E

(
11{τ>T}

∫ T

0
u(cs)ds+ 11{τ≤T}

∫ τ

0
u(cs)ds

)
= E

[
E
(

11{τ>T}

∫ T

0
u(cs)ds|FWT

)]
+ E

(
11{τ≤T}

∫ τ

0
u(cs)ds

)
= E

(
G(T )

∫ T

0
u(cs)ds

)
+ E

(∫ T

0
υ(θ)dθ

∫ θ

0
u(cs)ds

)
,

where we have used the fact that the consumption rate c is F-adapted, that Gt = P(τ >

t|FWt ) = P(τ > t) = G(t) (it is a consequence of the independence of τ of F, recall Lemma
4.1.1) and we have integrated with respect to the law υ of τ . We finally have, by applying
Fubini-Tonelli’s theorem,

E
(∫ T∧τ

0
u(cs)ds

)
= E

(
G(T )

∫ T

0
u(cs)ds

)
+ E

(∫ T

0
u(cs) [G(s)−G(T )] ds

)
= E

(∫ T

0
G(s)u(cs)ds

)
= E

(∫ T

0
ũ(s, cs)ds

)
,

where ũ : [0, T ]× R+ → [−∞,+∞) is

ũ(s, cs) := G(s)u(cs) = e−
∫ s
0 λ(u)duu(cs). (5.4.1)

Notice that, for each s ∈ [0, T ], ũ(s, ·) is a utility function, so that the investor with a reduced
set of information acts on the market with a modified utility function, that incorporates
the conditional law of the non-observable random variable τ . With respect to the objective
function of problem B, here the investment horizon is larger, but the utility of consuming
is lower, since in the integrand u(cs) is multiplied by G(s) satisfying 0 < G(s) < 1.

We can now state problem B1, that is analogous to problem B, where AF(x0) corre-
sponds to Aτ (x0) (to indicate that consumption-investment strategies are F− predictable):

B1 sup
(π,c)∈AF(x0)

E
∫ T

0
ũ(s, cs)ds. (5.4.2)
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We solve B1 by means of a mixed use of both the techniques developed in the previous
sections: we characterize the optimal consumption strategy c∗,B1 using the martingale ap-
proach and we obtain the optimal investment strategies by solving the HJB equation relative
to problem B1.

Proposition 5.4.1. Given the market structure (3.1.2), the optimal consumption rate solv-
ing problem B1 in (5.4.2), with the terminal condition X∗T = 0, is given by

c∗,B1
s = I

(
νe−rsZ∗s
G(s)

)
a.s., (5.4.3)

where I denotes the inverse function of u′ and ν > 0 is a real parameter satisfying

EQ∗
[∫ T

0
e−ruI

(
νe−ruZ∗u
G(u)

)
du
]

= E
[∫ T

0
e−ruZ∗uI

(
νe−ruZ∗u
G(u)

)
du
]

= x0.

Proof. It is analogous to the one of Proposition 3.2.1: given the concavity property of u and
the definition of c∗,B1 in (5.4.3), we have:

E
(∫ T

0
G(s)[u(cs)− u(c∗,B1

s )]ds
)
≤ E

(∫ T

0
G(s)(cs − c∗,B1

s )u′(c∗,B1
s )ds

)
= E

(∫ T

0
(cs − c∗,B1

s )νe−rsZ∗sds
)

≤ ν(x0 − x0) = 0,

where in the last inequality we have used the fact that c and c∗,B1 are admissible (recall
Section 3.1.2). The optimality of c∗,B1 is proved.

In order to compare the optimal consumption strategies of the two investors with dif-
ferent levels of information, c∗,B1

s and c∗,Bs , we explicitly characterize them in the usual two
cases.
� The log-utility case.
Straightforward computations show that the F−adapted optimal consumption rate is given
by

c∗,B1
s =

x0G(s)

Z∗s e
−rsE

∫ T
0 G(u)du

=
x0G(s)

Z∗s e
−rs
∫ T

0 G(u)du
a.s., (5.4.4)

meaning that an investor not having information concerning τ consumes, at time s, at a
rate that depends on P(τ > s|Fs) = P(τ > s), i.e., on the law of the random time τ in
his filtration. The comparison with the solution in Equation (4.2.9) can be summarized as
follows (notice that we have distinguished between the case “before” and “after” the shock,
even if c∗,B1

s in practice does not depend on τ){
c∗,B1
s ≤ c∗,Bs a.s., s ≤ τ,
c∗,B1
s > c∗,Bs = 0 a.s., s > τ.

(5.4.5)
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� The power-utility case.
We find

c∗,B1
s =

x0G(s)
1

1−γ (e−rsZ∗s )
1

γ−1

E
∫ T

0 G(u)
1

1−γ (e−ruZ∗u)
γ
γ−1du

a.s. (5.4.6)

Explicit computations in the case when the intensity of τ is constant and equal to λ, recalling
that G(u) = e−λu, give us

c∗,B1
s =

x0G(s)
1

1−γ

(e−rsZ∗s )
1

1−γ

rγ
1−γ + 1

2(ψ∗)2 γ

(γ−1)2
− λ

1−γ

e
T
(
rγ
1−γ+ 1

2
(ψ∗)2 γ

(γ−1)2
− λ

1−γ

)
− 1

a.s.

First of all, in order to make a comparison with c∗,Bs , that on the set {s ≤ τ}, is equal to

c∗,Bs = x0
(e−rsZ∗s )

1
γ−1

E
∫ T

0 (1−Hu)(e−ruZ∗u)
γ
γ−1du

a.s.

(on the set {s > τ}, c∗,Bs = 0 a.s.), we observe that, being 1
1−γ > 0 and 0 < G(s) < 1,

G(s)
1

1−γ < 1.

We then have to compare the denominators in c∗,B1
s and in c∗,Bs , namely, if we apply Fubini-

Tonelli’s theorem and we use the independence of τ of F,∫ T

0
G(u)

1
1−γE(e−ruZ∗u)

γ
γ−1du and

∫ T

0
G(u)E(e−ruZ∗u)

γ
γ−1du.

We have, for every u ∈ [0, T ],{
G(u)

1
1−γ < G(u), 0 < γ < 1,

G(u)
1

1−γ > G(u), γ < 0,

and so the comparison is possible only in the case γ < 0, in which, for s ≤ τ ,

c∗,B1
s < c∗,Bs a.s.

We now obtain the F−predictable optimal investment strategies π1,∗
t , π2,∗

t , for every 0 ≤ t ≤
T , by solving the corresponding Hamilton-Jacobi-Bellman equation. For this purpose, we
introduce the objective function

JF(t, x;π, c) := E
[∫ T

t
G(s)u(cs)ds|FWt

]
(5.4.7)

and the value function
VF(t, x) := sup

(π,c)∈AF(t,x)
JF(t, x;π, c), (5.4.8)
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where AF(t, x) is the equivalent of AF(x0) for a wealth equal to x at time t. Notice that
here H is no more a state variable, since the investor’s filtration is F, but we suppose,
nevertheless, that at time t the investor observes his wealth process.

Due to the similarity with problem A and given that 0 < G(s) < 1, for very s ≥ 0, the
results in Remark 5.1.2 and Lemma 5.1.1 can be easily adapted here. Before deriving the
HJB equation we make the following assumption.

Assumption 5.4.1. VF(t, x) is C1 with respect to t and C2 with respect to x.

Lemma 5.4.1. The value function VF : [0, T ) × R+ → R, defined in (5.4.8), satisfies the
following fully nonlinear partial differential equation

V ′F,t(t, x) + max
(π,c)∈AF(t,x)

[AF(t, π, c, x) + ũ(t, c)] = 0, (5.4.9)

where

AF(t, π, c, x) = V ′F,x(t, x)
[
rx+ π1x(µ1 − r − φ1λ(t)G(t)) + π2x(µ2 − r)− c

]
+

1

2
V ′′F,xx(t, x)

(
π1xσ1 + π2xσ2

)2
+λ(t)G(t)

[
VF(t, x+ xπ1φ1)− VF(t, x)

]
,

with the boundary condition

VF(T, x) = 0, ∀ x ∈ R+. (5.4.10)

Proof. The HJB equation above can be obtained, as usual, starting from the Dynamic
Programming Principle, namely by noticing that the Bellman principle can be written, for
every pair (π, c) ∈ AF(t, x) and for h ≥ 0, h ≤ T − t, as

VF(t, x) ≥ E
[∫ t+h

t
G(s)u(cs)ds+ VF(t+ h,Xt+h)|FWt

]
.

We then apply Itô’s lemma to VF(t + h,Xt+h) and, assuming that the local martingale we
find is a martingale, a formal computation gives us

0 ≥ E
{∫ t+h

t

[
G(s)u(cs) +

∂VF
∂t

(s,Xs) +
∂VF
∂x

(s,Xs)
(
rXs + π1

sXs(µ
1 − r − φ1λ(s)11{s<τ})

+π2
sXs(µ

2 − r)− cs
)

+
1

2

∂2VF
∂x2

(s,Xs)
(
π1
sσ

1Xs + π2
sσ

2Xs

)2
+λ(s)11{s<τ}[VF(s,Xs− +Xs−π

1
sφ

1)− VF(s,Xs−)]
]
ds
∣∣ FWt }.

At this point we have to pay attention to the fact that here the reference filtration is
F and, even if the consumption-investment strategy is, by definition here, F-predictable
and the constant and deterministic coefficients, too, (11{t<τ})t≥0

is not. That is why in
the HJB equation we find the conditional survival probability G(t), that we introduce in
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the integrand by using the “tower property” of the conditional expectation, namely by
considering a second conditional expectation made with respect to FWs ⊇ FWt . We conclude
by standard arguments by dividing the right-hand side by h and taking the limit as h goes
to zero and noticing that equality holds for the optimal pair (π∗, c∗).

Remark 5.4.1. The above HJB Equation (5.4.9) is similar to Equation (5.1.3) found for
problem A, but here we are working under the filtration F, so that, as we have already
pointed out, we do not have access to τ and so the process H cannot be included in the state
variable’s set. As a consequence, in the HJB equation, the intensity λ(t) is multiplied by
G(t) = P(τ > t|FWt ) = P(τ > t): the information we have about τ is its distribution.

Explicit solutions are given in feedback form.

Proposition 5.4.2. Suppose that there exists an optimal pair process (π∗, c∗) and that
the value function satisfies the HJB equation. Then, the optimal consumption-investment
strategy is characterized, at time t, as follows

c∗(t, x) = I

(
V ′F,x(t, x)

G(t)

)
, (5.4.11)

π1,∗(t, x) = 0, (5.4.12)

π2,∗(t, x) =
ψ∗

xσ2

V ′F,x(t, x)

V ′′F,xx(t, x)
. (5.4.13)

Remark 5.4.2. The above result shows that the investor with reduced information, who
cannot observe the random time τ , does not invest in the risky asset S1 at all. This strategy
seems to us an intuitive one and it is, indeed, different from the optimal strategy of an
investor facing problem B.

By applying a Verification theorem analogous to Theorem 5.1.1 we obtain the explicit
solutions in the two usual examples.

� The logarithmic and power utility cases.

Proposition 5.4.3. Let us suppose that u(c) = ln(c). The explicit F−adapted optimal
solution to problem B1 is:

c∗(t, x) =
xG(t)∫ T
t G(s)ds

,

π1,∗(t, x) = 0,

π2,∗(t, x) = −ψ
∗

σ2
.

The value function is

VF(t, x) = ln(x)

∫ T

t
G(s)ds+ q(t),

147



where

q(t) =

∫ T

t

[
p(s)

(
r +

1

2
(ψ∗)2

)
−G(s) +G(s) ln

G(s)

p(s)

]
ds

and p(s) =
∫ T
s G(u)du.

Proof. As usual we make an ansatz : VF(t, x) = ln(x)p(t) + q(t) and we choose the two
functions p and q that solve the HJB equation, together with the boundary condition.

Notice that the optimal consumption strategy is positive and that the optimal solution
is F−adapted, as required. Furthermore, the optimal wealth has the dynamics

dX∗t = X∗t

[(
r + (ψ∗)2 − G(t)

p(t)

)
dt− ψ∗dWt

]
,

that is equivalent to

X∗t = x0e
(r+ 1

2
(ψ∗)2)te

−
∫ t
0
G(s)
p(s)

ds
e−ψ

∗Wt

= x0e
(r+ 1

2
(ψ∗)2)te−ψ

∗Wt

∫ T
t G(s)ds∫ T
0 G(s)ds

a.s.

The optimal wealth is, therefore, positive, given that X0 = x0 > 0 and the terminal condi-
tion X∗T = 0 a.s. is satisfied.

Remark 5.4.3. The comparison with the optimal consumption rate and the optimal wealth
found in problem A (recall Proposition 5.1.2) is possible if we compare, at time t,

G(t)∫ T
t G(s)ds

and
1

T − t
.

Since 0 < G(s) < 1, s ∈ (0, T ], we have

1∫ T
t G(s)ds

>
1

T − t

so that if G(t) = 1, meaning that we are sure that τ will arrive after time t, then the optimal
consumption rate solving problem B1 is greater than the one found in problem A, otherwise
no general comparison is possible.

Analogously, in the power utility case we find the following result.

Proposition 5.4.4. Let us suppose that u(c) = cγ

γ , c ≥ 0, γ < 1, γ 6= 0. Then the explicit
F−adapted optimal solution to our consumption maximization problem B1 is:

c∗(t, x) = x

(
β(t)

G(t)

) 1
γ−1

,

π1,∗(t, x) = 0,

π2,∗(t, x) =
ψ∗

σ2(γ − 1)
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and the value function is

VF(t, x) =
xγ

γ
β(t),

where

β(t) =

[
e

L
1−γ t

∫ T

t
e
− L

1−γ sG(s)
1

1−γ ds
]1−γ

and
L = −1

2
(ψ∗)2 γ

1− γ
− rγ.

In this case too, the optimal investment-consumption strategy is F-adapted and c∗ is posi-
tive. Furthermore, we easily find

dX∗t = X∗t

{[
r +

(ψ∗)2

1− γ
−
(
β(t)

G(t)

) 1
γ−1

]
dt− ψ∗

1− γ
dWt

}
, X∗0 = x0,

that corresponds to

X∗t = x0 e

(
r+

(ψ∗)2
1−γ −

1
2

(ψ∗)2

(1−γ)2

)
t
e
− ψ∗

1−γWt e
−
∫ t
0

(
β(s)
G(s)

) 1
γ−1 ds a.s.

By explicitly computing the integral
∫ t

0

(
β(s)
G(s)

) 1
γ−1ds, we finally have,

X∗t = x0 e

(
r+

(ψ∗)2
1−γ −

1
2

(ψ∗)2

(1−γ)2

)
t
e
− ψ∗

1−γWt

∫ T
t e
− L

1−γ sG(s)
1

1−γ ds∫ T
0 e
− L

1−γ sG(s)
1

1−γ ds
a.s.

In particular, X∗T = 0 a.s.

Remark 5.4.4. Also in this case, as previously in the logarithmic utility case, no general
comparison with the optimal solutions to problem A (recall Proposition 5.1.3) is possible,
since we would need to compare

x

(
β(t)

G(t)

) 1
γ−1

and x(β1(t))
1

γ−1

where

β(t) =

[
e

L
1−γ t

∫ T

t
e
− L

1−γ sG(s)
1

1−γ ds
]1−γ

and β1(t) =

[
e
−K
1−γ t

∫ T

t
e

K
1−γ sds

]1−γ

with L = −K. The fact is that we have G(t)
1

1−γ < 1 and

(β(t))
1

1−γ < (β1(t))
1

1−γ

and we cannot conclude.

Remark 5.4.5. As observed in Remark 5.1.4, easy computations show immediately that, in
the two examples, the optimal consumption rate found by means of the martingale method
c∗,B1 coincides with the solution c∗ to the HJB equation.
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Chapter 6

The exponential utility case

In this section, we consider the utility function

u(c) = −e−ηc, c ∈ R, η > 0,

as a separate example, since u is strictly increasing, strictly concave and continuously dif-
ferentiable, but its domain is R (and not, respectively, R+

∗ and R+, as in the previous
logarithmic and power utility cases) and so it does not satisfy the first condition in Equa-
tion (3.1.11). We denote by I : R+

∗ → R the continuous and strictly decreasing inverse of
u′, that is

I(y) = −1

η
ln

(
y

η

)
.

Notice that we are not interested in solving problems of maximization of the utility from
terminal wealth, so that we will not generalize the definition of admissible investment-
consumption strategy (Definition 3.1.1), requiring that the corresponding wealth satisfies,
for all t ∈ [0,+∞),

Xt ≥ −K̄, a.s.,

for a sufficiently large K̄ > 0 (that is the usual requirement that can be found in the
literature focusing on such problems). We will rather continue working with admissible
strategies in the sense of Definition 3.1.1, namely, whose corresponding wealth remains
always positive over time.

For simplicity, in order to obtain “explicit” results, we directly consider here the same
deterministic coefficients case introduced in Chapter 4. All the general remarks and consid-
erations in Section 4.1 remain valid here.

6.1 Problem A

In this case, Proposition 3.2.1 (adapted to the deterministic coefficients case) is no more
valid here, since I takes now values in R and so c∗ is no more guaranteed to be positive.
On the contrary, Lemma 5.1.2 remains valid, but we did not manage to obtain an explicit

151



solution to the HJB equation in this exponential case. We focused, then, on the solution to
problem A by means of a direct approach.

Proposition 6.1.1. Given the market structure (4.1.1), the optimal consumption rate solv-
ing problem A in the exponential utility case is

c∗,As = I(νe−rsZ∗s ) ∨ 0 =

[
−1

η

(
ln
ν

η
− rs+ ψ∗Ws −

1

2
(ψ∗)2s

)]
∨ 0 a.s., (6.1.1)

where ν > 0 is a real parameter satisfying

EQ∗
(∫ T

0
e−ru

[
I(νe−ruZ∗u) ∨ 0

]
du
)

= E
(∫ T

0
e−ruZ∗u

[
I(νe−ruZ∗u) ∨ 0

]
du
)

= x0

(6.1.2)

and we recall that Z∗ is the Radon-Nikodým density process introduced in Equation (4.1.9).

Proof. For simplicity we define Is := I(νe−rsZ∗s ). We have, given the concavity of u,

u(cs)− u(c∗,As ) ≤ (cs − c∗,As )u′(c∗,As ) = (cs − c∗,As )u′(c∗,As )
(
11{Is>0} + 11{Is≤0}

)
= (cs − c∗,As )νe−rsZ∗s11{Is>0} + csu

′(0)11{Is≤0}

= csu
′(0)11{Is≤0} + (cs − c∗,As )νe−rsZ∗s − (cs − c∗,As )νe−rsZ∗s11{Is≤0}

= csu
′(0)11{Is≤0} + (cs − c∗,As )νe−rsZ∗s − csνe−rsZ∗s11{Is≤0}

= cs11{Is≤0}
(
u′(0)− u′(Is)

)
+ (cs − c∗,As )νe−rsZ∗s

≤ (cs − c∗,As )νe−rsZ∗s ,

where the last inequality follows from the fact that u′ is decreasing and cs ≥ 0. We then
find (we proceed as in the proof of Proposition 3.2.1)

E
∫ T

0

[
u(cs)− u(c∗,As )

]
ds ≤ E

∫ T

0
(cs − c∗,As )νe−rsZ∗sds ≤ ν(x0 − x0) = 0,

where in the last inequality we have used the budget constraint (recall Section 3.1.2) and
Equation (6.1.2), namely the fact that any admissible consumption rate c and the optimal
one c∗,A satisfy, respectively,

E
∫ T

0
e−rucuZ

∗
udu ≤ x0, E

∫ T

0
e−ruc∗,Au Z∗udu = x0.

The existence of such an optimal consumption strategy is the subject of Remark 6.1.2.
As done before in Section 4.2.2, we can now directly compute the optimal wealth corre-

sponding to c∗,A, by recalling that

X∗t = ert EQ∗
(∫ T

t
e−rsc∗sds|Gt

)
a.s., t ≤ T.
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Remark 6.1.1. By definition, given the positivity of the optimal consumption rate process,
the optimal wealth is positive at any time.

Proposition 6.1.2. The optimal wealth process corresponding to the optimal consumption
rate given in Proposition 6.1.1 is, for t ≤ T , a.s.

X∗t = ert
∫ T

t
e−rs

1

η

[
|ψ∗|
√
s− t√

2π
e
−

Y 2
t,s

2(ψ∗)2(s−t) + Yt,sΦ

(
Yt,s

|ψ∗|
√
s− t

)]
ds, (6.1.3)

where Yt,s := ln
(η
ν

)
+ rs− 1

2(ψ∗)2s− ψ∗W ∗t and Φ(x) := 1√
2π

∫ x
−∞ e

− y
2

2 dy.

Proof. The optimal wealth at time t ≤ T is given by ertEQ∗
(∫ T

t e−rsc∗sds|Gt
)
, namely, if

we apply Fubini-Tonelli’s theorem, we have to compute EQ∗ (c∗s|Gt), for s in [t, T ]. We have,
from Equation (6.1.1) and passing under the measure Q∗,

EQ∗ (c∗s|Gt) = EQ∗
(
−1

η

(
ln
ν

η
− rs+ ψ∗W ∗s +

1

2
(ψ∗)2s

)
∨ 0
∣∣∣Gt)

=
1

η
EQ∗

((
ln
η

ν
+ rs− ψ∗W ∗s −

1

2
(ψ∗)2s

)
11{Ks>0}

∣∣∣Gt) .
where Ks := ln η

ν + rs−ψ∗W ∗s − 1
2(ψ∗)2s. If we then recall that W ∗ is a (G,Q∗)−Brownian

motion, we find

EQ∗ (c∗s|Gt) =
1

η
EQ∗

((
ln
η

ν
+ rs− ψ∗(W ∗s −W ∗t )− ψ∗W ∗t −

1

2
(ψ∗)2s

)
11{Ks>0}

∣∣∣Gt)
=

1

η
EQ∗

(
(−ψ∗(W ∗s −W ∗t ) + Yt,s) 11{−ψ∗(W ∗s −W ∗t )+Yt,s>0}

∣∣∣Gt) ,
where Yt,s = ln

(η
ν

)
+ rs − 1

2(ψ∗)2s − ψ∗W ∗t is a Gt−measurable random variable (that
depends also on s). It now suffices to use the properties of conditional expectation to find

EQ∗ (c∗s|Gt) =
1

η
EQ∗

(
(−ψ∗(W ∗s −W ∗t ) + y) 11{−ψ∗(W ∗s −W ∗t )+y>0}

)∣∣∣y=Yt,s

and we now make the direct computations, distinguishing between the two possible cases
ψ∗ ≥ 0 and ψ∗ < 0 and recalling thatW ∗s−W ∗t has same law as

√
s− tZ0, with Z0 v N (0, 1).

• If ψ∗ ≥ 0,

EQ∗
(
−ψ∗(W ∗s −W ∗t )11{−ψ∗(W ∗s −W ∗t )+y>0}

)
= E

(
−ψ∗Z0

√
s− t11{Z0<

y
ψ∗
√
s−t}

)
=

∫ y
ψ∗
√
s−t

−∞
−ψ∗z

√
s− t 1√

2π
e−

z2

2 dz

=
ψ∗
√
s− t√
2π

e
− y2

2(ψ∗)2(s−t)

and

EQ∗
(
y11{−ψ∗(W ∗s −W ∗t )+y>0}

)
= y P

(
Z0 <

y

ψ∗
√
s− t

)
= y Φ

(
y

ψ∗
√
s− t

)
;
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• If ψ∗ < 0,

EQ∗
(
−ψ∗(W ∗s −W ∗t )11{−ψ∗(W ∗s −W ∗t )+y>0}

)
= E

(
−ψ∗Z0

√
s− t11{Z0>− y

(−ψ∗)
√
s−t}

)
=

∫ +∞

− y
(−ψ∗)

√
s−t

−ψ∗z
√
s− t 1√

2π
e−

z2

2 dz

=
(−ψ∗)

√
s− t√

2π
e
− y2

2(ψ∗)2(s−t)

and

EQ∗
(
y11{−ψ∗(W ∗s −W ∗t )+y>0}

)
= y P

(
Z0 > −

y

(−ψ∗)
√
s− t

)
= y Φ

(
y

(−ψ∗)
√
s− t

)
.

The conclusion follows by replacing y with Yt,s.

Being the optimal consumption strategy F-adapted, the optimal wealth has the same
property and, as a consequence, it cannot have a jump at time τ . For this reason, in the
stochastic differential dX∗ there will be no term in dM and so we immediately find

π1,∗
t = 0 a.s., t ≤ τ.

In order to fully obtain the optimal investment strategy we are only interested in terms in
dW ∗. We have, then, differentiating Equation (6.1.3) with respect to t in Yt,s,

dX∗t = ert
{∫ T

t
e−rs

1

η

[ |ψ∗|√s− t√
2π

e
−

Y 2
t,s

2(ψ∗)2(s−t)
Yt,s

(ψ∗)2(s− t)
ψ∗

− ψ∗Φ

(
Yt,s

|ψ∗|
√
s− t

)
+ Yt,s

1√
2π
e
−

Y 2
t,s

2(ψ∗)2(s−t)
−ψ∗

|ψ∗|
√
s− t

]
ds
}
dW ∗t

= −ertψ
∗

η

∫ T

t
e−rsΦ

(
Yt,s

|ψ∗|
√
s− t

)
ds dW ∗t

and the optimal π1,∗
t , π2,∗

t satisfy the following equation{
π1,∗
t = 0 a.s., t ≤ τ ;

π1,∗
t σ1 + π2,∗

t σ2 = − ert

X∗t

ψ∗

η

∫ T
t e−rsΦ

(
Yt,s

|ψ∗|
√
s−t

)
ds a.s., t ≤ T, (6.1.4)

which is, unfortunately, not so expressive.

Remark 6.1.2. Despite of the fact that we have already found the optimal solution, its
existence is, a priori, based on the assumption (the analog to Assumption 3.2.1) that the
function

ΨA
e (ν) := EQ∗

(∫ T

0
ers[I(νe−rsZ∗s ) ∨ 0]ds

)
(6.1.5)
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is finite for every 0 < ν < ∞. The computations performed to obtain the optimal wealth,
setting t = 0, give us

EQ∗
(∫ T

0
ers[I(νe−rsZ∗s ) ∨ 0]ds

)
=

1

η

∫ T

0
e−rs

[
|ψ∗|
√
s√

2π
e
−

Y 2
0,s

2(ψ∗)2s + Y0,sΦ

(
Y0,s

|ψ∗|
√
s

)]
ds,

where Y0,s is now deterministic, Y0,s = ln
(η
ν

)
+rs− 1

2(ψ∗)2s. Then, ΨA
e (ν) is, indeed, finite

for any ν ∈ (0,∞) (notice, e.g., that Φ takes values in [0, 1]).

6.2 Problem B

As previously in the case of problem A, we were not able to solve the HJB Equation
(5.2.5) in the case when u is exponential. Nevertheless, Remark 3.2.2 remains valid here
and we immediately find

π1,∗
t = − 1

φ1
a.s. 0 ≤ t ≤ τ.

The following two results are the analog to Proposition 6.1.1 and of Proposition 6.1.2,
respectively.

Proposition 6.2.1. Given the market structure (4.1.1), the optimal consumption rate solv-
ing problem B in the exponential utility case is

c∗,Bs = I(νe−rsZ∗s ) ∨ 0 =

[
−1

η

(
ln
ν

η
− rs+ ψ∗Ws −

1

2
(ψ∗)2s

)]
∨ 0 a.s., (6.2.1)

where ν > 0 is a real parameter satisfying

EQ∗
(∫ T∧τ

0
e−ru

[
I(νe−ruZ∗u) ∨ 0

]
du
)

= E
(∫ T∧τ

0
e−ruZ∗u

[
I(νe−ruZ∗u) ∨ 0

]
du
)

= x0.

Proof. It is exactly the same as the proof of Proposition 6.1.1 and we omit it.

Remark 6.2.1. a) The existence of the optimal c∗ will be justified in Remark 6.2.2.
b) It is also possible to prove that Proposition 3.2.3 holds here too, meaning that before the
shock τ , an investor facing problem B consumes at a higher rate than an investor facing
problem A.

We can now obtain the positive optimal wealth corresponding to c∗,B, by computing

X∗t = ert EQ∗
(∫ T

t
11{s≤τ}e

−rsc∗sds|Gt
)
, t ≤ T.

Proposition 6.2.2. The optimal wealth process corresponding to the optimal consumption
rate given in Proposition 6.2.1 is, for t ≤ T , a.s.,

X∗t =
ert

G(t)

∫ T

t
e−rsG(s)

[
1

η

(
|ψ∗|
√
s− t√

2π
e
−

Y 2
t,s

2(ψ∗)2(s−t) + Yt,sΦ

(
Yt,s

|ψ∗|
√
s− t

))]
ds,

(6.2.2)
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where Yt,s := ln
(η
ν

)
+ rs− 1

2(ψ∗)2s− ψ∗W ∗t and Φ(x) := 1√
2π

∫ x
−∞ e

− y
2

2 dy.

Proof. The proof is completely analogous to the one of Proposition 6.1.2, the only extra
difficulty here is that, instead of EQ∗ (c∗s|Gt), we have to compute EQ∗ (11{s≤τ}c∗s|Gt). How-
ever, we can pass to a conditional expectation made with respect to FWt , thanks to the
“key-Lemma” 3.2.2, in order to exploit the independence of τ of F and we are, then, led
to the same computations as in the proof of Proposition 6.1.2, since the survival proba-
bility function G(t), t > 0, is a deterministic function of time (that can be taken out of
the conditional expectation) and W ∗ is not only a (G,Q∗)−Brownian motion, but also a
(F,Q∗)−Brownian motion.

The computations that lead to the optimal investment strategies are the same as the
ones in the previous section and we obtain{

π1,∗
t = − 1

φ1
a.s., t ≤ τ ;

π1,∗
t σ1 + π2,∗

t σ2 = − ert

X∗t G(t)
ψ∗

η

∫ T
t e−rsG(s)Φ

(
Yt,s

|ψ∗|
√
s−t

)
ds a.s., t ≤ T.

(6.2.3)

Remark 6.2.2. The existence of the optimal solution was based on the assumption (the
analog to Assumption 3.2.2) that the function

ΨB
e (ν) := EQ∗

(∫ T∧τ

0
e−rs [I(νe−rsZ∗s ) ∨ 0]ds

)
is finite for every 0 < ν < ∞. The computations performed to obtain the optimal wealth,
setting t = 0, give us (exactly as in Remark 6.1.2)

EQ∗
(∫ T∧τ

0
e−rs [I(νe−rsZ∗s ) ∨ 0]ds

)
= 1
ηG(0)

∫ T
0 e−rsG(s)

 |ψ∗|√s√
2π

e
−

Y 2
0,s

2(ψ∗)2s+Y0,sΦ
(

Y0,s
|ψ∗|
√
s

)ds,

where Y0,s = ln
(η
ν

)
+ rs− 1

2(ψ∗)2s. Then, ΨB
e (ν) is, indeed, finite for any ν ∈ (0,∞).

6.3 Problem C

Since we were not able to solve the HJB Equation (5.3.2) in the exponential utility case,
we focused on the direct approach.

Proposition 6.3.1. Given the market structure (4.1.1), the optimal consumption rate solv-
ing problem C in the exponential utility case is, almost surely,

c∗,Cs = I(νe(ρ−r)sZ∗s ) ∨ 0 =

[
−1

η

(
ln
ν

η
+ (ρ− r)s+ ψ∗Ws −

1

2
(ψ∗)2s

)]
∨ 0, (6.3.1)

where ν > 0 is a real parameter satisfying

EQ∗
(∫ T∧τ

0
e−ru

[
I(νe(ρ−r)uZ∗u) ∨ 0

]
du
)

= E
(∫ T∧τ

0
e−ruZ∗u

[
I(νe(ρ−r)uZ∗u) ∨ 0

]
du
)

= x0.
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Proof. It is exactly the same as the proof of Proposition 6.1.1 and we omit it.

Remark 6.3.1. a) The existence of c∗ will be justified in Remark 6.2.2.
b) It is also possible to prove that Proposition 3.2.5 (that is about a comparison between
c∗,A1 and c∗,C) holds here, too.

We can now obtain the positive optimal wealth corresponding to c∗,C , by computing

X∗t = ert EQ∗
(∫ +∞

t
e−rsc∗sds|Gt

)
, t < +∞.

Proposition 6.3.2. The optimal wealth process corresponding to the optimal consumption
rate given in Proposition 6.3.1 is, for t <∞, a.s.,

X∗t = ert
∫ +∞

t
e−rs

1

η

(
|ψ∗|
√
s− t√

2π
e
−

Z2
t,s

2(ψ∗)2(s−t) + Zt,sΦ

(
Zt,s

|ψ∗|
√
s− t

))
ds, (6.3.2)

where Zt,s := ln
(η
ν

)
+ (r − ρ)s− 1

2(ψ∗)2s− ψ∗W ∗t and Φ(x) := 1√
2π

∫ x
−∞ e

− y
2

2 dy.

Proof. The proof is completely analogous to the one of Proposition 6.1.2 and we omit it.

The computations that lead to the optimal investment strategies are the same as the
ones in the two previous sections. In particular, being the optimal consumption F-adapted,
we find here, too, that

π1,∗
t = 0 a.s., t ≤ τ.

By identification with the coefficients in the stochastic differential dX under Q∗, we finally
obtain, {

π1,∗
t = 0 a.s., t ≤ τ ;

π1,∗
t σ1 + π2,∗

t σ2 = − ert

X∗t

ψ∗

η

∫∞
t e−rsΦ

(
Zt,s

|ψ∗|
√
s−t

)
ds a.s., t ≤ T. (6.3.3)

Remark 6.3.2. The existence of the optimal solution was based on the assumption (the
analog to Assumption 3.2.4) that the function

ΨC
e (ν) := EQ∗

(∫ ∞
0

e−rs [I(νe(ρ−r)sZ∗s ) ∨ 0]ds
)

is finite for every 0 < ν <∞. By considering the optimal wealth X∗0 we find (exactly as in
Remark 6.1.2)

EQ∗
(∫ ∞

0
e−rs [I(νe(ρ−r)sZ∗s ) ∨ 0]ds

)
=

∫ +∞

0
e−rs

1

η

(
|ψ∗|
√
s√

2π
e
−

Z2
0,s

2(ψ∗)2s + Z0,sΦ

(
Z0,s

|ψ∗|
√
s

))
ds,

where Z0,s = ln
(η
ν

)
+ (r − ρ)s− 1

2(ψ∗)2s. ΨC
e (ν) is, indeed, finite for any ν ∈ (0,∞).
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Chapter 7

A more general stochastic model

7.1 Market model

In this chapter, we consider a market model similar to the one introduced in Chapter 3,
but where we do not suppose (recall Assumption 3.1.1 a)) that the reference filtration F is
immersed in the progressively enlarged filtration G. Let us now briefly introduce the model
and the working hypothesis.

On a probability space (Ω,G,P), equipped with a Brownian motion (Wt)t≥0, we consider
a non-negative random variable τ , satisfying P(τ = 0) = 0 and P(τ > t) > 0, for any t ∈ R+.
The law of τ is denoted by υ, υ(dθ) = P(τ ∈ dθ). We assume that υ is absolutely continuous
with respect to Lebesgue measure and we write, with a slight abuse of notation,

P(τ ∈ dθ) = υ(dθ) = υ(θ)dθ.

We denote by F := FW = (FWt )t≥0 the filtration generated by W , representing the informa-
tion at disposal to investors before τ and by G := (Gt)t≥0 the progressively enlarged filtration
G = F ∨H, where H = (Ht)t≥0 is the natural filtration of the process Ht := 11{t≥τ}, t ≥ 0.
The filtration G is the smallest filtration containing F, that makes τ a stopping time.

In the sequel, the following will be our standing assumption (it is exactly the same as
Assumption 3.2.3, introduced in Section 3.2.4 and it is the main hypothesis of the following
Part V).

Assumption 7.1.1. (E)-Hypothesis
The F-(regular) conditional law of τ is equivalent to the law of τ , i.e.,

P(τ ∈ dθ|FWt ) ∼ υ(θ)dθ for every t ≥ 0, P− a.s.

One of the consequences of the above assumption (for all the details we refer to Part V) is
that there exists a “regular” family of strictly positive (P,F)-martingales (pt(θ))t≥0, θ ≥ 0,
such that, for s ≥ 0,

P
(
τ > s|FWt

)
=

∫ ∞
s

pt(θ)υ(θ)dθ for every t ≥ 0, P− a.s. (7.1.1)
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A similar hypothesis (called “density hypothesis”) is made in Pham and Jiao [23] when
studying problems of maximization of expected utility from terminal wealth. An exhaustive
study of the role of this hypothesis for credit risk modeling has been recently made by El
Karoui, Jeanblanc and Jiao in [9].

The market dynamics are given by
dS0

t = rtS
0
t dt, S0

0 = 1,
dS1

t = S1
t−
(
µ1
tdt+ σ1

t dWt + φ1
tdMt

)
, S1

0 = s1
0,

dS2
t = S2

t

(
µ2
tdt+ σ2

t dWt

)
, S2

0 = s2
0,

(7.1.2)

where the interest rate r is assumed to be a nonnegative uniformly bounded G-adapted
process, and the coefficients µ1, σ1, φ1, µ2, σ2 are G-predictable and uniformly bounded
processes, with σ1

t > 0, φ1
t > −1, φ1

t 6= 0, σ2
t > 0, t ≥ 0, a.s. and σ2 6= σ1 a.s.

In the assets’ dynamics (7.1.2), M represents the compensated martingale associated
with H. In this setting, it is known (see, e.g., Proposition 4.4 in El Karoui, Jeanblanc and
Jiao [9]) that the process M , defined as

Mt := Ht −
∫ t∧τ

0
λsυ(s)ds = Ht −

∫ t

0
λ̄sυ(s)ds, t ≥ 0, (7.1.3)

is a (P,G)-martingale, where

λ̄t := 11{t<τ}
pt(t)

Gt
= 11{t<τ}λt, t ≥ 0,

is the G-adapted intensity of τ .
As previously in Chapter 3, the compensator of H is absolutely continuous with respect to
the Lebesgue measure, meaning that τ is a G−totally inaccessible stopping time.

At this stage, without the (H) hypothesis between F and G (recall Assumption 3.1.1
a)), we do not know, in all generality, that the F-martingale W is a G semi-martingale.
Nevertheless, because of the (E)-Hypothesis, Jacod’s criterion ensures that the continuous
F-martingaleW is a semi-martingale in the initially enlarged filtration Gτ := F∨σ(τ) (for all
the details we refer to the following Part V and to the lecture notes [12]). Furthermore, W
is G-adapted and so, from Stricker’s Theorem in [24], it is a G semi-martingale. The explicit
canonical decomposition of W as a G semi-martingale is given in terms of the density p as
follows (see, e.g., Part V or Section 2.5 in the lecture notes [12])

Wt = WG
t +

∫ t∧τ

0

d〈W,G〉s
Gs−

+

∫ t

t∧τ

d〈W,p.(θ)〉s
ps−(θ)

∣∣∣
θ=τ

=: WG
t +At, (7.1.4)

where WG is a (P,G)-Brownian motion and A is a G-adapted finite variation process.
Moreover, it can be shown (see, e.g., Proposition 2.5.1 in [12]) that here the process A admits
a representation in the form At =

∫ t
0 asds. Indeed (recall what was done in Section 3.2.4),

p(θ) is, for any θ ≥ 0, a (P,F)-martingale, that admits the (predictable) representation

dtpt(θ) = pt(θ)qt(θ)dWt, p0(θ) = 1,
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for some family of F-predictable integrable processes q(θ), θ ≥ 0, so that the survival process
Gt = P(τ > t|FWt ) =

∫ +∞
t pt(u)υ(u)du satisfies

dGt =

(∫ ∞
t

pt(θ)qt(θ)υ(θ)dθ

)
dWt − pt(t)υ(t)dt, G0 = 1

and the predictable brackets in the above decomposition (7.1.4) can be explicitly computed.
We find

d〈W,p.(θ)〉t = pt(θ)qt(θ)dt and d〈W,G〉t =

(∫ ∞
t

pt(θ)qt(θ)υ(θ)dθ

)
dt,

so that the G-canonical decomposition of W is (notice that G and p(θ), θ ≥ 0, are continu-
ous)

Wt = WG
t +

∫ t∧τ

0

1

Gs

∫ ∞
s

ps(θ)qs(θ)υ(θ)dθ ds+

∫ t

t∧τ
qs(τ)ds = WG

t +At. (7.1.5)

It is, then, clear that the G-adapted process a in A =
∫ ·

0 asds can be explicitly written, for
t ≥ 0, as

at = 11{t<τ}
1

Gt

∫ ∞
t

pt(θ)qt(θ)υ(θ)dθ + 11{τ≥t}qt(τ) =: 11{t<τ}ãt + 11{τ≥t}at(τ). (7.1.6)

The market structure is, then, equivalently given by
dS0

t = rtS
0
t dt, S0

0 = 1,
dS1

t = S1
t−
(
(µ1
t + at)dt+ σ1

t dWG
t + φ1

tdMt

)
, S1

0 = s1
0,

dS2
t = S2

t

(
(µ2
t + at)dt+ σ2

t dWG
t

)
, S2

0 = s2
0,

(7.1.7)

where WG and M are (P,G)-martingales. As previously done in Chapter 3, recalling that
any G-predictable process Y can be written in the form

Yt(ω) = ỹt(ω)11{t≤τ(ω)} + yt(ω, τ(ω))11{t>τ(ω)}, t ≥ 0,

where ỹ is F-predictable and where the function (t, ω, u) → yt(ω, u) is P(F) ⊗ B(R+)-
measurable, we distinguish between the values of the coefficients before and after τ , as
shown in the following table (that is different from the corresponding one in Section 3.1,
due to the G-predictability, here, of processes µ2 and σ2).

r µ1 σ1 φ1 µ2 σ2

{t ≤ τ} r̃t µ̃1
t σ̃1

t φ1
t µ̃2

t σ̃2
t

{t > τ} rt(τ) µ1
t (τ) σ1

t (τ) 5 µ2
t (τ) σ2

t (τ)

Furthermore, we make the following assumption, that will be necessary in order to avoid
arbitrage opportunities, as we will see later on in Section 7.1.1. Notice that on the set
{t < τ} we have, by hypothesis, υ(t) > 0.

161



Assumption 7.1.2. The model coefficients satisfy
σ̃2
t (r̃t − µ̃1

t − ãt)− σ̃1
t (r̃t − µ̃2

t − ãt)
φ1
tσ

2
t λtυ(t)

> −1 a.s., t ≤ τ ;

rt(τ)− µ1
t (τ)− at(τ)

σ1
t (τ)

=
rt(τ)− µ2

t (τ)− at(τ)

σ2
t (τ)

a.s., t > τ.

(7.1.8)

Introducing the investment-consumption strategy (π, c) as in Chapter 3, the investor’s
wealth dynamics (starting with an initial wealth x0 ≥ 0) is given here by the following
stochastic differential equation (the analog to Equation (3.1.6))

dXt =
[
rtXt + π1

tXt

(
µ1
t + at − rt − φ1

t λ̄tυ(t)
)

+ π2
tXt(µ

2
t + at − rt)− ct

]
dt+

π1
t φ

1
tXt−dHt +

[
π1
t σ

1
tXt + π2

t σ
2
tXt

]
dWG

t , X0 = x0. (7.1.9)

The Definition 3.1.1 of admissible investment-consumption strategy, the statement of prob-
lems A, B and C (recall Equation (3.1.7), together with Equations (3.1.8), (3.1.9) and
(3.1.10)) and the utility function’s properties are the same as in Chapter 3.
We now pass to the characterization of the unique EMM Q∗.

7.1.1 The unique EMM Q∗

From the predictable representation theorem in the case of filtration G (see, e.g., Part V)
if P and Q are equivalent probability measures, we know that there exist two G−predictable
processes ψ and γ, with γ > −1 a.s., such that the Radon-Nikodým density of Q with respect
to P (that is a strictly positive (P,G)-martingale) admits the representation

Zt :=
dQ
dP |Gt

= 1 +

∫
]0,t]

Zu−

(
ψudWG

u + γudMu

)
, t ≥ 0.

In this case,

W̄t := WG
t −

∫ t

0
ψsds, t ≥ 0,

is a (Q,G)-Brownian motion and the process

M̄t := Mt −
∫

]0,t]
γsλ̄sυ(s)ds = Ht −

∫
]0,t]

(1 + γs)λ̄sυ(s)ds

is a (Q,G)-martingale, orthogonal to W̄ .
Here we show that, under Assumption 7.1.2, the market is complete. In fact, by imposing

the (local) martingale property to the discounted value processes of S1 and S2, under Q∗,
we find that ψ∗ and γ∗ in the Radon-Nikodým density Z∗ (provided that this process is a
true martingale, as in our case, given the uniform boundedness of the model coefficients)
have to satisfy the following two conditions, for t ≥ 0, in order to have at least one EMM,

µ1
t + at − rt + σ1

tψ
∗
t + φ1

tγ
∗
t λ̄tυ(t) = 0

µ2
t + at − rt + σ2

tψ
∗
t = 0.

(7.1.10)
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By distinguishing between values before and after the shock, we find that there exists at
least one EMM Q∗ if (recall that ψ∗ and γ∗ are by definition G-predictable)

ψ∗t =


ψ̃∗t =

r̃t − µ̃2
t − ãt
σ̃2
t

, a.s., t ≤ τ ;

ψ∗t (τ) =
rt(τ)− µ1

t (τ)− at(τ)

σ1
t (τ)

=
rt(τ)− µ2

t (τ)− at(τ)

σ2
t (τ)

, a.s., t > τ ;

γ∗t =


σ̃2
t (r̃t − µ̃1

t − ãt)− σ̃1
t (r̃t − µ̃2 − ãt)

σ̃2
t φ

1
tλtυ(t)

> −1, a.s., t ≤ τ ;

any predictable γ∗t > −1, a.s., t > τ.

Given Assumption 7.1.2, such an EMM exists and the market is arbitrage free. Furthermore,
the processes ψ∗ and γ∗ are uniquely determined, so that the market is complete. The
Radon-Nikodým density Z∗ is unique and it is given, for every t ≥ 0, by

Z∗t = e
∫ t
0 ψ
∗
sdW

G
s − 1

2

∫ t
0 (ψ∗s )2ds e−

∫ t
0 γ
∗
s λ̄sυ(s)ds (1 + γ∗τ )Ht a.s. (7.1.11)

Furthermore, the wealth dynamics under Q∗ is given by

dXt = (rtXt − ct) dt+ π1
t φ

1
tXt−dM∗t +Xt

(
π1
t σ

1
t + π2

t σ
2
t

)
dW ∗t , X0 = x0, (7.1.12)

where

W ∗t := WG
t −

∫ t

0
ψ∗sds, M∗t := Mt −

∫
]0,t]

γ∗s λ̄sυ(s)ds.

7.2 The solution to problem A: the log-utility case

Since the results presented in Section 3.1.2, that concern the budget constraint, are valid
here too, we focus now on the optimal solution to problem A. The optimal consumption
process c∗ is given as in Proposition 3.2.1, namely

c∗,As = I
(
νe−

∫ s
0 ruduZ∗s

)
a.s.,

where I denotes the inverse function of u′, ν > 0 is a real parameter satisfying the budget
constraint

EQ∗
(∫ T

0
e−
∫ s
0 ruduI

(
νe−

∫ s
0 ruduZ∗s

)
ds
)

= x0

and where Z∗ is here the Radon-Nikodým density process introduced in Equation (7.1.11).
As previously in Chapter 3, in this more general setting we can provide an explicit

optimal solution (π∗, c∗) only in the logarithmic utility case.
� The optimal consumption
As in Chapter 3 (the difference here is in the Radon-Nikodým density process) we easily
find ν = T/x0, so that, for every 0 ≤ s ≤ T ,

c∗,As =
1

νe−
∫ s
0 ruduZ∗s

=
x0

Te−
∫ s
0 ruduZ∗s

a.s. (7.2.1)
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� The optimal investment strategy
A direct computation, applying the conditional version of Fubini-Tonelli’s theorem and
recalling that (Z∗)−1 is a (Q∗,G)−martingale, gives us

EQ∗
(∫ T

t
e−
∫ s
0 ruduc∗s ds | Gt

)
=

x0

T

∫ T

t
EQ∗

[
(Z∗s )−1|Gt

]
ds =

x0(T − t)
T Z∗t

a.s.,

so that the optimal wealth is (notice that X∗T = 0)

X∗t = e
∫ t
0 rsds

x0(T − t)
T Z∗t

, a.s., t ≤ T.

In order to obtain the stochastic differential of X∗, we we first compute

d

(
1

Z∗t

)
=

1

Z∗t−

[
−ψ∗t dW ∗t −

γ∗t
1 + γ∗t

dM∗t

]
, (7.2.2)

so that, exactly as in Section 3.2.2,

dX∗t = X∗t−

[(
rt −

1

T − t

)
dt− ψ∗t dW ∗t −

γ∗t
1 + γ∗t

dM∗t

]
, X∗0 = x0. (7.2.3)

Comparing the coefficients with the ones in Equation (7.1.12) we finally find a more general
optimal investment strategy than the one in Equation (3.2.8), due to the G-predictability
of all the model’s coefficients

π1,∗
t = − γ∗t

φ1
t (1 + γ∗t )

, π2,∗
t = − ψ̃

∗
t

σ̃2
t

+
γ∗t σ̃

1
t

φ1
t (1 + γ∗t )

a.s., t ≤ τ ;

π1,∗
t σ1

t (τ) + π2,∗
t σ2

t (τ) = −ψ∗t (τ) a.s., t > τ.

7.3 The solution to problem B: the log-utility case

All the general results presented in Section 3.2.3 are still valid here, so that the optimal
consumption process c∗ is given as in Proposition 3.2.2, namely

c∗,Bs = I
(
νe−

∫ s
0 ruduZ∗s

)
a.s., s ≤ (T ∧ τ),

where ν > 0 is a real parameter satisfying the budget constraint

EQ∗
(∫ T∧τ

0
e−
∫ s
0 ruduI

(
e−
∫ s
0 ruduνZ∗s

)
ds
)

= x0.

As done in the previous section, we provide an explicit optimal solution (π∗, c∗) in the
logarithmic utility case.
� The optimal consumption
As in Section 3.2.3, ν is found to be equal to ν = E(T ∧ τ)/x0, so that

c∗,Bs =
x0

E(T ∧ τ)Z∗s e
−
∫ s
0 rudu

a.s., s ≤ (T ∧ τ). (7.3.1)
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� The optimal investment strategy
The optimal wealth, exactly as in Section 3.2.4, is obtained by performing explicit compu-
tations. Indeed, passing under P, applying Fubini-Tonelli’s theorem and the “key-Lemma”
3.2.2, we find (notice that in particular, X∗T∧τ = 0 a.s.)

X∗t = e
∫ t
0 rsds

x0

E(T ∧ τ)

1

Z∗t
E
(
Z∗t

∫ T

t
11{s<τ}

1

Z∗s
ds | Gt

)
= e

∫ t
0 rsds

x0

E(T ∧ τ)

1

Z∗t

∫ T

t
E
(
11{s<τ}|Gt

)
ds

= e
∫ t
0 rsds

x0

E(T ∧ τ)

(1−Ht)

Z∗t Gt

∫ T

t
P
(
τ > s|FWt

)
ds

= e
∫ t
0 rsds

x0

E(T ∧ τ)

(1−Ht)

Z∗t Gt

∫ T

t
ds
∫ ∞
s

pt(θ)υ(θ)dθ a.s.,

where we used Equation (7.1.1). In order to differentiate X∗, to obtain the optimal invest-
ment strategy π∗, we apply the Itô-Kunita-Ventzell formula, given in Theorem 3.2.1.

Noticing that the strictly positive (P,F)-martingale p(θ) admits the (predictable) rep-
resentation

pt(θ) = 1 +

∫ t

0
pu(θ)qu(θ)dWu, t ≥ 0,

with q(θ) an integrable F-predictable process, for every θ ≥ 0, we find (for all the details
we refer to Section 3.2.4)

d

(∫ T

t
ds
∫ ∞
s

pt(θ)υ(θ)dθ

)
=

(∫ T

t
ds
∫ ∞
s

pt(θ)qt(θ)υ(θ)dθ

)
dWt −

(∫ ∞
t

pt(θ)υ(θ)dθ

)
dt

=

(∫ T

t
ds
∫ ∞
s

pt(θ)qt(θ)υ(θ)dθ

)
dWt −Gtdt

=

(∫ T

t
ds
∫ ∞
s

pt(θ)qt(θ)υ(θ)dθ

)(
dWG

t + atdt
)
−Gtdt

and, analogously,

dGt =

(∫ ∞
t

pt(θ)qt(θ)υ(θ)dθ

)(
dWG

t + atdt
)
− pt(t)υ(t)dt,

where we have used the canonical decomposition of W in G, i.e., Equation (7.1.4). We now
finally compute the differential of X∗, that we re-write below using Equation (7.1.11),

X∗t =
x0

E(T ∧ τ)
e
∫ t
0 [rs+γ∗s λ̄sυ(s)+ 1

2
(ψ∗s )2]ds−

∫ t
0 ψ
∗
sdW

G
s

(1−Ht)

(1 + γ∗τ )Ht
1

Gt

∫ T

t
ds
∫ ∞
s

pt(θ)υ(θ)dθ,

namely (notice that the jump factor (1 + γ∗τ )Ht equals one on the set {t < τ}, where Ht = 0,
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so that in practice it does not affect the above equation)

dX∗t = X∗t−

[
(rt + γ∗t λ̄tυ(t) + (ψ∗t )

2)dt− ψ∗t dWG
t − dHt

]
+

X∗t
Gt

[
−
∫ ∞
t

pt(θ)qt(θ)υ(θ)dθ
(
dWG

t + atdt
)

+ pt(t)υ(t)dt+
1

Gt

(∫ ∞
t

pt(θ)qt(θ)υ(θ)dθ

)2

dt

]

+
X∗t
Ft(t)

[∫ T

t
ds
∫ ∞
s

pt(θ)qt(θ)υ(θ)dθ
(
dWG

t + atdt
)
−Gtdt

]
,

where Ft(t) :=
∫ T
t ds

∫∞
s pt(θ)υ(θ)dθ. By identification with Equation (7.1.9)

dXt = [. . . ]dt+ π1
t φ

1
tXt−dHt +

[
π1
t σ

1
tXt + π2

t σ
2
tXt

]
dWG

t , X0 = x0,

we find the optimal investment strategies π1,∗
t and π2,∗

t as the solutions to the following
system of equations

π1,∗
t = − 1

φ1t
a.s., t ≤ τ ;

π1,∗
t σ1

t + π2,∗
t σ2

t = −ψ∗t −
1

Gt

∫ ∞
t

pt(θ)qt(θ)υ(θ)dθ

+
1

Ft(t)

∫ T

t
ds
∫ ∞
s

pt(θ)qt(θ)υ(θ)dθ a.s., 0 ≤ t ≤ T.

(7.3.2)

7.4 The solution to problem C: the log-utility case

All the general results presented in Section 3.2.5 are still valid here, so that the optimal
consumption process c∗ is given as in Proposition 3.2.4, namely

c∗,Cs = I
(
νeρse−

∫ s
0 ruduZ∗s

)
a.s., s ≥ 0,

where ν > 0 is a real parameter satisfying the budget constraint

EQ∗
(∫ ∞

0
e−
∫ s
0 ruduI

(
νeρse−

∫ s
0 ruduZ∗s

)
ds
)

= x0.

As previously done, we provide an explicit optimal solution in the log-utility case.
� The optimal consumption
Here, as in Section 3.2.5,

c∗,Cs =
1

νZ∗s e
ρse−

∫ s
0 rudu

a.s., s ≥ 0

and ν satisfies

E
(∫ +∞

0

e−ρs

ν
ds
)

= x0.
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In this case, then, the optimal consumption is, indeed, well defined (recall Assumption
3.2.4), since the above integral is finite, given that ρ is by definition positive. We find
ν = 1

ρx0
and finally

c∗,Cs =
ρx0

Z∗s e
ρse−

∫ s
0 rudu

a.s., s ≥ 0.

� The optimal investment strategy
A direct computation, applying the conditional version of Fubini-Tonelli’s theorem and
recalling that (Z∗)−1 is a (G,Q∗)−martingale, gives us

X∗t = e
∫ t
0 rsds EQ∗

(∫ +∞

t
e−
∫ s
0 ruduc∗s ds | Gt

)
= e

∫ t
0 rsdsρx0

∫ +∞

t
e−ρs EQ∗

(
1

Z∗s

∣∣Gt) ds

= x0 e
−ρt e

∫ t
0 rsds

1

Z∗t
a.s.

Equivalently, in differential form, recalling Equation (7.2.2), we find

dX∗t = X∗t−

[
(rt − ρ) dt− ψ∗t dW ∗t −

γ∗t
1 + γ∗t

dM∗t

]
, X∗0 = x0. (7.4.1)

To determine π1,∗ and π2,∗ it suffices to identify, term by term, the above equation and
Equation (7.1.12), that is,

dXt = (rtXt − ct) dt+ π1
t φ

1
tXt−dM∗t +Xt

(
π1
t σ

1
t + π2

t σ
2
t

)
dW ∗t , X0 = x0.

We finally have
π1,∗
t = − γ∗t

φ1
t (1 + γ∗t )

, π2,∗
t = − ψ̃

∗
t

σ̃2
t

+
γ∗t σ̃

1
t

φ1
t (1 + γ∗t )

a.s., t ≤ τ ;

π1,∗
t σ1

t (τ) + π2,∗
t σ2

t (τ) = −ψ∗t (τ) a.s., t > τ,

that is a more general optimal investment strategy than the one in Equation (3.2.25) (be-
cause of the G-predictability of all the model coefficients).
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Chapter 8

“Carthaginian” filtrations

This is a joint work with Prof. M. Jeanblanc and B. Zargari.

Abstract: in this work we provide, having a pedagogical aim in mind, an overview of some
well-known key results in the theory of initial and progressive enlargement of a reference
filtration F with a random time τ , providing, in a very specific setting, alternative proofs
to the already existing ones.

Keywords: initial and progressive enlargement of filtration, predictable projection, canon-
ical decomposition, predictable representation theorem.
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8.1 Introduction and preliminaries

Let us consider a pair of filtrations F = (Ft)t≥0 and F̃ = (F̃t)t≥0 on the same probability
space, such that Ft ⊂ F̃t, for any t ≥ 0. In filtering theory, this structure is suitable to
describe the evolution of a stochastic system that is partially observable (as in the previous
Parts II and III of this thesis). In enlargement of filtration theory, the point of view is
the opposite one (see, e.g., the summary in Jeulin [25]): F is considered to be a reference
filtration, to which we add some information, thus leading us to the larger filtration F̃.

Here we only consider the case where the enlargement of filtration F is done by means of
a random variable τ . Nevertheless, there are, of course, many other ways to do that, such
as, for example, setting F̃t = Ft∨F̄ , t ≥ 0, where F̄ is a σ-algebra, or defining F̃t = Ft∨F̄t,
t ≥ 0, where F̄ = (F̄t)t≥0 is another filtration.

There are two ways to add information to F by means of a random variable τ : either
all of a sudden at time 0 (initial enlargement), or progressively, by considering the smallest
σ-algebra containing F that makes τ a stopping time (progressive enlargement).

The “pioneers” who started exploring this research field were Barlow (in [4]), Jacod,
Jeulin and Yor (see the references that follow in the text) at the end of the seventies. The
main question that raised was the following: “Does an F-martingale X remain an F̃ semi-
martingale?”. And, in this case: "What is the semi-martingale decomposition in F̃ of the
F-martingale X?”

Notice that a general (but not so practice) necessary and sufficient condition in order
for an F-local martingale to remain a F̃ semi-martingale is given in Jeulin [25], page 12.
Moreover, very technical existence and regularity results (that we will need in the sequel),
which are fundamental in enlargement of filtration theory, were proved at the very beginning,
in the late seventies.

A recent detailed introduction to this subject can be found, e.g., in Chesney, Jeanblanc
and Yor [8], in Mansuy and Yor [27] and in Protter [29]. Furthermore, many authors,
such as Ankirchner (see, e.g., [3]), Amendinger (e.g., in [2]), Baudoin [5], Corcuera et al.
[10], Eyraud-Loisel [15], Gasbarra et al. [17], Grorud and Pontier (see, e.g., [18]), Hillairet
[21], Imkeller [22], Kohatsu-Higa and Øksendal [26] and Wu [33] were recently interested in
applying enlargement of filtration theory to insider trading in finance.

The main contribution of this work is to show how, in a very specific setting, all the well-
known fundamental results can be proved in an alternative (and, in some cases, simpler)
way. Nevertheless, it is important to make precise that the goal of this work is neither to
present the results in the most general case, nor to study carefully regularity or existence
properties.

Let us start, then, by motivating the title, by introducing some notation and by stating
the preliminary results that are needed henceforth. Inspired by a visit to the Tunisian
archaeological site of Carthage, where one can find remains of THREE levels of different
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civilizations, we decided to use the catchy adjective “Carthaginian” associated with filtration,
since in this chapter there will be THREE levels of filtrations.

We consider, then, three nested filtrations

F ⊂ G ⊂ Gτ ,

where G and Gτ stand, respectively, for the progressive and the initial enlargement of F
with a finite positive random time τ . We address the following problems:

• Characterization of G-martingales and Gτ -martingales in terms of F-martingales (in
Section 8.2);

• Canonical decomposition of an F-martingale, as a semimartingale, in G and Gτ (in
Section 8.3);

• Predictable Representation Theorem in G and Gτ (in Section 8.4).

The exploited idea is the following: assuming that the F-conditional law of τ is equiva-
lent to the law of τ , after an ad hoc change of probability measure, the problem is reduced
to the case where τ and F are independent. Working under this newly introduced probabil-
ity measure, in the initially enlarged filtration, is, then, “easier”. Then, under the original
probability measure, for the initially enlarged filtration, the results are achieved by means
of Girsanov’s theorem. Finally, by projection, one obtains the results of interest in the pro-
gressively enlarged filtration (notice that, alternatively, they can be obtained with another
application of Girsanov’s theorem, starting from the newly introduced probability measure,
with respect to the progressively enlarged filtration).

The “change of probability measure viewpoint” for treating the problems on enlargement
of filtrations was remarked in the early 80’s and developed by Song [31] (see also Jacod [23],
Section 5). For what concerns the idea of recovering the results in the progressively enlarged
filtration starting from the ones in the initially enlarged, we have to cite Yor [34].

Let us now become more precise about the setup and the preliminary results. Consider
a probability space (Ω,A,P) equipped with a filtration F = (Ft)t≥0 satisfying the usual
hypotheses of right-continuity and completeness. We assume that F0 is the trivial σ-field.
Let τ be a finite positive random variable with law ν, ν(du) = P(τ ∈ du). In what follows, we
assume, moreover, that the probability measure ν has no atoms. Our standing assumption
is the following:

Assumption 8.1.1. (E)-Hypothesis
The F-(regular) conditional law of τ is equivalent to the law of τ . Namely,

P(τ ∈ du|Ft) ∼ ν(du) for every t ≥ 0, P− a.s.
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Notice that this assumption, in the case when t ∈ [0, T ], corresponds to the equivalence
assumption in Amendinger’s thesis [1, Assumption 0.2] and to hypothesis (HJ) in the papers
from Grorud and Pontier (see, e.g., [18]).

Amongst the consequences of the (E)-Hypothesis, Lemma 1.8 in Jacod [23] states (un-
der the weaker requirement of absolute continuity) that there exists a positive function
(t, ω, u) → pt(ω, u), càdlàg in t, optional with respect to the filtration generated by Ft ⊗
B(R+) on Ω× R+, such that for every u ∈ R+, p(u) is a (P,F)-martingale and

P(τ > θ|Ft) =

∫ ∞
θ

pt(u)ν(du) for every t ≥ 0, P− a.s.

The family pt(·) is called the (P,F)-conditional density of τ with respect to ν, given Ft, or
the density of τ if there is no ambiguity.
Furthermore, under the (E)-Hypothesis, the assumption that ν has no atoms implies that
the default time τ avoids the F-stopping times, i.e., P(τ = ξ) = 0 for every F-stopping time
ξ (see, e.g., Corollary 2.2 in El Karoui, Jeanblanc and Jiao [14]).

The initial enlargement of F with τ , denoted by Gτ = (Gτt , t ≥ 0) is defined as Gτt =

Ft ∨ σ(τ). It was shown in Amendinger [1] (cf. Proposition 1.10 therein) that the strict
positiveness of p(u) implies the right-continuity of filtration Gτ .

Let H = (Ht)t≥0 denote the smallest filtration with respect to which τ is a stopping
time, i.e., Ht = σ(τ ∧ t). The progressive enlargement of F with a random time τ , denoted
by G = (Gt)t≥0, is defined as G = F∨H. The right-continuity of G was proved by Bélanger,
Shreve and Wong (see [6, Prop. A.6]).

Next, we consider a useful (equivalent) change of probability measure introduced, inde-
pendently, by Grorud and Pontier in [19] and Amendinger in [1]. Having verified that the
process L, defined by Lt = 1

pt(τ) , t ≥ 0, is a (P,Gτ )-martingale, with E(Lt) = L0 = 1, they
defined a locally equivalent probability measure P∗ by setting

dP∗|Gτt = Lt dP|Gτt =
1

pt(τ)
dP|Gτt .

They proved that, under P∗, the r.v. τ is independent of Ft for any t ≥ 0 and, moreover,
that

P∗|Ft = P|Ft for any t ≥ 0, P∗|σ(τ) = P|σ(τ).

The above properties imply that P∗(τ ∈ du|Ft) = P∗(τ ∈ du), so that the (P∗,F)-density of
τ , denoted p∗(u), u ≥ 0, is a constant equal to one, P∗ ⊗ ν-a.s.

Remark 8.1.1. Notice that it is not possible to state that: “Under P∗, the r.v. τ is inde-
pendent of F∞”, since we do not know a priori whether p(τ) is uniformly integrable or not,
so that P∗ is not even defined on Gτ∞. A similar problem is studied by Föllmer and Imkeller
in [16] (it is therein called “paradox”) in the case when the reference (canonical) filtration is
enlarged by the information about the endpoint at time t = 1.
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Furthermore, projecting L on G yields to the corresponding Radon-Nikodým density on
G:

dP∗|Gt = `t dP|Gt ,

where (with an application of Lemma 3.1.2 in Bielecki et al. [7]),

`t = E(Lt|Gt) = 11t<τ
1

Gt
E
(

11t<τ
1

pt(τ)
|Ft
)

+ 11τ≤t
1

pt(τ)

= 11t<τ
1

Gt

∫ ∞
t

ν(du) + 11τ≤t
1

pt(τ)
= 11t<τ

G(t)

Gt
+ 11τ≤t

1

pt(τ)
,

where we have used the notation G (resp. G(·)) for conditional survival process (resp.
function) under the probability measure P (resp. P∗ and, equivalently, P). More precisely,

Gt := P(τ > t|Ft) =

∫ ∞
t

pt(u)ν(du), (8.1.1)

G(t) := P∗(τ > t|Ft) = P∗(τ > t) = P(τ > t) =

∫ ∞
t

ν(du). (8.1.2)

Note, in particular, that (Gt)t≥0 is an F super-martingale, whereas G(·) is a (deterministic)
continuous and decreasing function. Furthermore, it is clear that, under the (E)-Hypothesis,
G does not vanish.

Obviously, one has
dP|Gτt = L∗t dP∗|Gτt ,

where L∗ = 1/L is a (P∗,Gτ )-martingale and

dP|Gt = `∗t dP∗|Gt ,

where `∗ = 1/` is a (P∗,G)-martingale.

Remark 8.1.2. Let x = (xt, t ≥ 0) be a (P,F)-martingale. Since P and P∗ coincide on F, x
is a (P∗,F)-martingale, hence, using the fact that τ is independent of F under P∗, a (P∗,G)-
martingale (and also a (P∗,Gτ )-martingale). Because of these facts, the measure P∗ is
called by Amendinger “martingale preserving probability measure under initial enlargement
of filtrations”.

Notation 8.1.1. In this paper, as we mentioned, we deal with three different levels of
information and two equivalent probability measures. In order to distinguish objects defined
under P and under P∗, we will use a superscript ∗ when working under P∗. For example,
E and E∗ stand for the expectations under P and P∗, respectively. For what concerns the
filtrations, when necessary, we will use the following illustrating notation: x,X,Xτ to denote
processes adapted to F,G and Gτ , respectively.

Furthermore, for simplicity in this chapter we drop the double brackets “{” and “}” in
the functions 11t<τ and 11τ≤t.
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We now recall some important facts concerning the compensated martingale of H. We
know, from the general theory (see for example El Karoui et al. [14]), that denoting by H
the default indicator process Ht = 11τ≤t, t ≥ 0, the process M defined as

Mt := Ht −
∫ t∧τ

0
λs ν(ds), t ≥ 0, (8.1.3)

with λt = pt(t)
Gt

is a (P,G)-martingale and that

M∗t := Ht −
∫ t∧τ

0
λ∗(s) ν(ds), t ≥ 0, (8.1.4)

with λ∗(t) = 1
G(t) , is a (P∗,G)-martingale. Furthermore, being λ∗ deterministic, M∗ (being

H-adapted) is a (P∗,H)-martingale, too.
We conclude this introductive section with the following general result, that will be very

useful in the sequel.

Proposition 8.1.1. Projection
Let x be a uniformly integrable (P,F)-martingale and F̃ a filtration larger than F, i.e., F ⊂ F̃.
Then there exists a (P, F̃)-martingale X such that E(Xt|Ft) = xt, t ≥ 0.

Proof. First note that in view of the uniform integrability assumption on x, x∞ exists (it
is the L1 limit of xt for t → ∞) and, furthermore, E(x∞|Ft) = xt (see, e.g., Chesney,
Jeanblanc and Yor [8, pag. 22] and [30, Ch. II, Th. 2.10]). Now, the process X, defined
by Xt = E(x∞|F̃t), t ≥ 0, is an F̃-martingale. Moreover, E(Xt|Ft) = E

(
E(x∞|F̃t)|Ft

)
=

xt.

Remark 8.1.3. The uniqueness of such a martingale X is not claimed in the above propo-
sition and it is not true in general.

In the sequel, we denote by P(F) the predictable σ-algebra corresponding to F on R+×Ω

(an accurate characterization of predictable σ−fields is given, e.g., in Dellacherie and Meyer
[11, Ch. IV, Th. 67]). In the sequel, the natural filtration associated with a process X will
be denoted by FX .

8.1.1 Measurable processes

Before focusing on the three topics announced since the beginning, we recall some im-
portant results on the characterization of G and Gτ -measurable processes and random vari-
ables, that will be useful in the sequel. The necessary part of the result below, in the case
of predictable processes, is due to Jeulin [25, Lemma 3.13].

Proposition 8.1.2. One has

(i) A random variable Y τ
t is Gτt -measurable if and only if it is of the form Y τ

t (ω) =

yt(ω, τ(ω)) for some Ft ⊗ B(R+)-measurable random variable yt(·, u).
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(ii) A process Y τ is Gτ -predictable if and only if it is of the form Y τ
t (ω) = yt(ω, τ(ω)),

t ≥ 0, where (t, ω, u) 7→ yt(ω, u) is a P(F)⊗ B(R+)-measurable function.

Proof. It is fundamental here that (see, e.g., Jacod [23]): P(F⊗ B(R+)) = P(F)⊗ B(R+).
(ii) For the necessity (see [25, Lemma 3.13 a)]) it suffices to notice that the processes of the
form Xt(ω) = xs(ω)f

(
τ(ω)

)
11s≤t, t ≥ 0, with xs ∈ Fs and f a bounded Borel function on

R+, generate the Gτ -predictable σ-field. We then obtain the result applying a monotone
class argument (see, e.g., Theorem 21, Ch. I in Dellacherie and Meyer [11]).

Conversely, if (t, ω, u) 7→ yt(ω, u) is an elementary P(Ft)⊗B(R+)-measurable function,
we have yt(ω, u) = hs(ω)11s≤tf(u), with hs ∈ Fs and f bounded Borel on R+. It is, then,
clear that by substituting u by τ(ω), we find yt(ω, τ(ω)) = hs(ω)11s≤tf(τ(ω)), t ≥ 0, that is
by definition a predictable process in the enlarged filtration Gτ .

The proof of part (i) is analogous, recalling that Gτt -measurable random variables are
generated by random variables of the form Xt(ω) = xt(ω)f

(
τ(ω)

)
, with xt ∈ Ft and f

bounded Borel on R+.

For the sake of simplicity in notation, we will often drop the dependence on ω and we
will write Y τ

t = yt(τ).

For what concerns the progressive enlargement setting, the following result is the analog
to Proposition 8.1.2. The necessity of part (ii) is already proved in Jeulin [25, Lemma 4.4].

Proposition 8.1.3. One has

(i) A random variable Yt is Gt-measurable if and only if it is of the form Yt(ω) =

ỹt(ω)11t<τ(ω)+ŷt(ω, τ(ω))11τ(ω)≤t for some Ft-measurable random variable ỹt and some
Ft ⊗ B(R+)-measurable random variable ŷt(·, u), t ≥ u.

(ii) A process Y is G-predictable if and only if it is of the form Yt(ω) = ỹt(ω)11t≤τ(ω) +

ŷt(ω, τ(ω))11τ(ω)<t, t ≥ 0, where ỹ is F-predictable and (t, ω, u) 7→ ŷt(ω, u) is a P(F)⊗
B(R+)-measurable function.

Proof. (ii) As previously done in the proof of Proposition 8.1.2, it suffices to notice that G-
predictable processes are generated by processes of the form Xt(ω) = xs(ω)f(s∧ τ(ω))11s<t,
t ≥ 0, for xs ∈ Fs and f measurable bounded, defined on R+, so that, before τ we will
consider generators of the form xs(ω)f(s)11s≤t, t ≥ 0 and, after τ , of the form xs(ω)f(s ∧
τ(ω))11s≤t, t ≥ 0.

For part (i) it is fundamental to recall that Gt-measurable random variables are generated
by random variables of the form Xt(ω) = xt(ω)f

(
t ∧ τ(ω)

)
, with xt ∈ Ft and f bounded

Borel on R+.
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8.1.2 Expectation and projection tools

Lemma 8.1.1. Let Y τ
t = yt(τ) be a Gτt -measurable, P and P∗-integrable random variable.

(i) If yt(τ) = 0 P-a.s. then, for ν-a.e. u ≥ 0, yt(u) = 0 P-a.s.
(ii) For s ≤ t one has, respectively under P∗ and P,

E∗
(
yt(τ)|Gτs

)
= E∗

(
yt(u)|Fs

)∣∣u=τ
= E

(
yt(u)|Fs

)∣∣u=τ

E
(
yt(τ)|Gτs

)
=

1

ps(τ)
E
(
yt(u)pt(u)|Fs

)∣∣
u=τ

.

Proof. (i) We have, by applying Fubini-Tonelli’s Theorem,

0 = E
(
|yt(τ)|

)
= E

(
E
(
|yt(τ)|

∣∣Ft)) = E
(∫ ∞

0
|yt(u)| pt(u)ν(du))

)
=

∫
Ω
dP(ω)

∫ ∞
0
|yt(ω, u)| pt(ω, u)ν(du),

where here, since we work with yt(ω, τ(ω)), we do not drop the dependence on ω in pt(u)

and we write pt(ω, u). Then
∫∞

0 |yt(u)| pt(u)ν(du) = 0 P-a.s. and, given that pt(u) is strictly
positive for any u and that ν is non atomic, we have that for ν-almost every u, yt(ω, u) = 0

P-a.s.
(ii) The result under P∗ follows from the independence of τ of Ft, for any t ≥ 0, with an
application of Lemma 8.6.1 in the Appendix and given that P and P∗ coincide on Ft, for
any t ≥ 0. The result under P is an immediate consequence, since it suffices, by means of
(conditional) Bayes’ formula, to pass under the measure P∗. Namely, for s < t, we have

E
(
yt(τ)|Gτs

)
=

E∗
(
yt(τ)pt(τ)|Gτs

)
E∗
(
pt(τ)|Gτs

) =
1

ps(τ)
E
(
yt(u)pt(u)|Fs

)∣∣
u=τ

,

where in the last equality we have also used the fact that p(τ) is a (P∗,Gτ )-martingale.

We will also need the lemma below.

Lemma 8.1.2. Let Y τ = y.(τ) be a Gτ -adapted, P-integrable process. Then, for s ≤ t,

E(Y τ
t |Gs) = E(yt(τ)|Gs) = ỹs11s<τ + ŷs(τ)11τ≤s,

with

ỹs =
1

Gs
E
(∫ +∞

s
yt(u)pt(u)ν(du)|Fs

)
,

ŷs(u) =
1

ps(u)
E
(
yt(u)pt(u)|Fs

)
.

Proof. From the above Proposition 8.1.3 it is clear that E(yt(τ)|Gs) has to be written in the
form ỹs11s<τ + ŷs(τ)11τ≤s. On the set before τ we have, applying Lemma 3.1.2 in Bielecki
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et al. [7] and using the (E)-Hypothesis (see also El Karoui, Jeanblanc and Yiao [14] for
analogous computations),

11s<τE(yt(τ)|Gs) = 11s<τ
E [E(yt(τ)11s<τ |Ft)|Fs]

Gs
= 11s<τ

1

Gs
E
(∫ +∞

s
yt(u)pt(u)ν(du)|Fs

)
=: 11s<τ ỹs.

On the complementary set we have, by applying Lemma 8.1.1,

11τ≤sE(yt(τ)|Gs) = 11τ≤sE [E(yt(τ)|Gτs )|Gs] = 11τ≤s
1

ps(τ)
E
(
yt(u)pt(u)|Fs

)∣∣
u=τ

=: 11τ≤sŷs(τ).

We conclude this subsection with the following two propositions, concerning the pre-
dictable projection (see Theorem 8.6.1 in the appendix for the definition and existence of
the predictable projection), respectively on F and on G, of a Gτ -predictable process. The
first result is due to Jacod [23, Lemme 1.10].

Proposition 8.1.4. Let Y τ = y(τ) be a Gτ -predictable, positive or bounded, process. Then,
the predictable projection of Y τ on F is given by

(p)(Y τ )t =

∫
R+

yt(u)pt−(u)ν(du) .

Proof. It is obtained by a monotone class argument and by using the definition of density of
τ , writing, for “elementary” processes, Y τ

t (ω) = Zt(ω)f(τ), with Z a bounded F-predictable
process and f a bounded Borel function. For this, we refer to the proof of Lemma 1.10 in
Jacod [23].

Proposition 8.1.5. Let Y τ = y(τ) be a Gτ -predictable, positive or bounded, process. Then,
the predictable projection of Y τ on G is given by

(p)(Y τ )t = 11t≤τ
1

Gt−

∫ ∞
t

yt(u)pt−(u)ν(du) + 11τ<tyt(τ) .

Proof. In this proof, for clarity, the left-hand side superscript “(pG)” denotes the predictable
projection on G, while the left-hand side superscript “(pF)” indicates the predictable pro-
jection on F. By the definition of predictable projection, we know (from Proposition 8.1.3
(ii)) that we are looking for a (unique) process of the form

(pG)(Y τ )t = ỹt11t≤τ + ŷt(τ)11τ<t, t ≥ 0,

where ỹ is F-predictable, positive or bounded, and (t, ω, u) 7→ ŷt(ω, u) is a P(F) ⊗ B(R+)-
measurable positive or bounded function, to be identified.

• On the predictable set {τ < t}, being Y τ a Gτ -predictable, positive or bounded,
process (recall Proposition 8.1.2 (ii)), we immediately find ŷ(τ) = y(τ);
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• On the complementary set {t ≤ τ}, introducing the G-predictable process

Y :=(pG)Y τ

it is possible to use Remark 4.5, page 64 of Jeulin [25] (see also Dellacherie and Meyer
[13], Ch. XX, page 186), to write

Y 11]]0,τ ]] =
1

G−
(pF)
(
Y 11]]0,τ ]]

)
11]]0,τ ]] =

1

G−
(pF)
(

(pG)(Y τ )11]]0,τ ]]

)
11]]0,τ ]].

We then have, being 11]]0,τ ]], by definition, G-predictable (recall that τ is a G-stopping
time),

Y 11]]0,τ ]] =
1

G−
(pF)
(

(pG)(Y τ11]]0,τ ]])
)

11]]0,τ ]] =
1

G−
(pF)
(
Y τ11]]0,τ ]]

)
11]]0,τ ]],

where the last equality follows by the definition of predictable projection, being F ⊂ G.
Finally, given the result in Proposition 8.1.4 we have

(pF)
(
Y τ11]]0,τ ]]

)
t

=

∫ +∞

t
yt(u)pt−(u)ν(du)

and the proposition is proved.

8.2 Martingales’ characterization

The aim of this section is to characterize (P,Gτ ) and (P,G)-martingales in terms of
(P,F)-martingales. The analogous results under P∗ will follow as special cases.

Proposition 8.2.1. Characterization of (P,Gτ )-martingales in terms of (P,F)-
martingales
A process Y τ is a (P,Gτ )-martingale if and only if Y τ

t = yt(τ), for some family of F-
adapted processes (yt(u), t ≥ 0), such that (yt(u)pt(u), t ≥ 0) is a (P,F)-martingale, for
ν-almost every u ≥ 0.

Proof. The sufficiency is a direct consequence of Proposition 8.1.2 and Lemma 8.1.1 (ii).
Conversely, assume that y(τ) is a Gτ -martingale. Then, for s ≤ t, from Lemma 8.1.1 (ii),

ys(τ) = E (yt(τ)|Gτs ) =
1

ps(τ)
E
(
yt(u)pt(u)|Fs

)
|u=τ

and the result follows from Lemma 8.1.1 (i).

Passing to the progressive enlargement setting, we state and prove a martingale charac-
terization result, essentially established by El Karoui et al. in [14] (see Theorem 5.7).
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Proposition 8.2.2. Characterization of (P,G) martingales in terms of (P,F)-martingales
A uniformly integrable process Yt := ỹt11t<τ + ŷt(τ)11τ≤t, t ≥ 0, is a (P,G)-martingale if and
only if the following two conditions are satisfied

(i) for every u > 0,
(
ŷt(u)pt(u), t ≥ u

)
is a (P,F)-martingale

(ii) the process
(
ỹtGt +

∫ t
0 ŷu(u)pu(u)ν(du), t ≥ 0

)
is a (P,F)-martingale.

Proof. If Y is a uniformly integrable (P,G)-martingale, then (from Proposition 8.1.1) Yt =

E(Y τ
t |Gt) for some (P,Gτ )-martingale Y τ . Proposition 8.2.1, then, implies that Y τ

t = yt(τ),
where for ν-almost every u ≥ 0 the process

(
yt(u)pt(u), t ≥ 0

)
is a (P,F)-martingale. We

then have

ỹt11t<τ + ŷt(τ)11τ≤t = Yt = E(Y τ
t |Gt) = 11t<τ

1

Gt

∫ ∞
t

yt(u)pt(u)ν(du) + 11τ≤tyt(τ)

= 11t<τ
1

Gt
E
(∫ ∞

t
yu(u)pu(u)ν(du)|Ft

)
+ 11τ≤tyt(τ),

where the last equality results from the (P,F)-martingale property of the process y(u)p(u),
for ν-almost every u ≥ 0. In order to conclude the first part of the proof and to find the
desired results, we have to consider separately the sets {t < τ} and {τ ≤ t} and to identify
the terms in the above equation.
On the set {τ ≤ t} we find ŷt(τ) = yt(τ) a.s. and this implies, using Lemma 8.1.1 (i), that
ŷt(u) = yt(u) for ν-almost every u ≤ t and we immediately find (i). Analogously, for t < τ ,
we have

ỹtGt = E
(∫ ∞

t
yu(u)pu(u)ν(du)|Ft

)
= E

(∫ ∞
0

yu(u)pu(u)ν(du)|Ft
)
−
∫ t

0
yu(u)pu(u)ν(du),

that immediately gives us (ii).
Conversely, assuming (i) and (ii), we verify E(Yt|Gs) = Ys for s ≤ t. Indeed,

E(Yt|Gs) = E
(
11t<τ ỹt + 11s<τ≤tŷt(τ)|Gs

)
+ E

(
11τ≤sŷt(τ)|Gs

)
= 11s<τ

1

Gs
E
(
11t<τ ỹt + 11s<τ≤tŷt(τ)|Fs

)
+ 11τ≤s

1

ps(τ)
E
(
ŷt(u)pt(u)|Fs

)
|u=τ

where we have used Lemma 3.1.2 in Bielecki et al. [7], and Lemma 8.1.2 to obtain the last
equality. Next, using condition (i), it follows that

E(Yt|Gs) = 11s<τ
1

Gs
E
(
ỹtGt +

∫ t

s
ŷu(u)pu(u)ν(du)|Fs

)
+ 11τ≤s

1

ps(τ)
ŷs(τ)ps(τ)

= 11s<τ
1

Gs
E
(
ỹtGt +

∫ t

0
ŷu(u)pu(u)ν(du)|Fs

)
− 11s<τ

1

Gs

∫ s

0
ŷu(u)pu(u)ν(du) + 11τ≤sŷs(τ)

= 11s<τ
1

Gs
ỹs + 11τ≤sŷs(τ) = Ys,

where we used the condition (ii) to obtain the next-to-last identity.
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We end this section with a “curiosity” linking martingales in the filtrations G and Gτ :
we already know, from Remarks 8.1.2, that any (P∗,F)-martingale remains a (P∗,Gτ )-
martingale, but it is not true that any (P∗,G)-martingale remains a (P∗,Gτ )-martingale.
Indeed, we have the following result.

Lemma 8.2.1. Any (P∗,G)-martingale X∗ is a (P∗,Gτ ) semi-martingale. In particular,
any (P,G)-martingale is a (P,Gτ ) semi-martingale.

Proof. The result follows immediately from Proposition 8.2.2 (under P∗), noticing that,
writing the (P∗,G) martingale Y ∗ as Y ∗t = ỹ∗t 11t<τ + ŷ∗t (τ)11τ≤t, in the filtration Gτ it is
the sum of two Gτ semi-martingales (indeed, from Proposition 8.2.2, by recalling that the
(P∗,F)-density of τ is a constant equal to one, we know that, for every u > 0,

(
ŷ∗t (u), t ≥ u

)
is an F-martingale and, by substituting the process G by G(·), we know that the process(
ỹ∗tG(t) +

∫ t
0 ŷ
∗
u(u)ν(du), t ≥ 0

)
is an F-martingale).

8.3 Canonical decomposition

In this section, we show that any F-local martingale x is a semi-martingale in both
the initially enlarged filtration Gτ and in the progressively enlarged filtration G. We also
provide the canonical decomposition of the F-local martingale as a semi-martingale in Gτ

and in G. Under the assumption that the F-conditional law of τ is absolutely continuous
w.r.t. the law of τ , these questions were answered in Jacod [23], in the initial enlargement
setting, and in Jeanblanc and Le Cam [24] and El Karoui et al. [14], in the progressive
enlargement case. Our aim here is to retain their results in an alternative manner.

We will need the following technical result, concerning the existence of the predictable
bracket 〈x, p.(u)〉: from Theorem 2.5 a) in Jacod [23], it follows immediately that, under the
equivalence assumption, for every (P,F)-(local)martingale x, there exists a ν-negligible set
B (depending on x), such that 〈x, p.(u)〉 is well-defined for u /∈ B. Hereafter, by 〈x, p.(τ)〉s
we mean 〈x, p.(u)〉s

∣∣
u=τ

.
Furthermore, according to Theorem 2.5 b) in Jacod [23], under the (E)-Hypothesis,

there exists an F-predictable increasing process A and a P(F)⊗B(R+)-measurable function
(t, ω, u)→ kt(ω, u) such that, for any u /∈ B and for all t ≥ 0,

〈x, p.(u)〉t =

∫ t

0
ks(u)ps−(u)dAs a.s. (8.3.1)

Furthermore, if A and k exist and they satisfy the above requirements, then∫ t

0
|ks(u)|dAs < ∞ a.s., for any t > 0. (8.3.2)

The following two propositions provide, respectively, under the (E)-Hypothesis, the
canonical decomposition of any (P,F)- local martingale x in the enlarged filtrations Gτ

and G. The first result is due to Jacod [23, Theorem 2.5 c)]
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Proposition 8.3.1. Canonical Decomposition in Gτ

Any (P,F)-local martingale x is a (P,Gτ )-semimartingale with canonical decomposition

xt = Xτ
t +

∫ t

0

d〈x, p.(τ)〉s
ps−(τ)

,

for some (P,Gτ )-local martingale Xτ .

Proof. In view of Remark 8.1.2, if x is a (P,F)-martingale, it is a (P∗,Gτ )-martingale, too.
Noting that dP

dP∗ = pt(τ) on Gτt , Girsanov Theorem tells us that the process Xτ , defined by

Xτ
t = xt −

∫ t

0

d〈x, p.(τ)〉s
ps−(τ)

is a (P,Gτ )-martingale.

In order to prove an analogous result in G, we need some preliminary results.
Recall that the Doob-Meyer decomposition of the Azéma super-martingale G, introduced
in Equation (8.1.1), writes Gt = µt −

∫ t
0 pu(u)ν(du), t ≥ 0, where

µt := 1−
∫ t

0
(pt(u)− pu(u)) ν(du)

(see, e.g., Section 4.2.1 in El Karoui et al. [14]). The following lemma provides a formula
for the predictable quadratic covariation process 〈x,G〉 = 〈x, µ〉 in terms of the density p.

Lemma 8.3.1. Let x be an F-martingale and µ the F−martingale part in the Doob-Meyer
decomposition of G. If kp is dA⊗ dν-integrable, then

〈x, µ〉t =

∫ t

0

∫ ∞
s

ks(u)ps−(u)ν(du)dAs, (8.3.3)

where k was introduced in Equation (8.3.1).

Proof. First consider the right-hand-side of (8.3.3), that is by definition predictable, and
apply Fubini-Tonelli’s Theorem (recall Equation (8.3.2))

ξt :=

∫ t

0
dAs

∫ ∞
s

ks(u)ps−(u)ν(du)

=

∫ t

0
dAs

∫ t

s
ks(u)ps−(u)ν(du) +

∫ t

0
dAs

∫ ∞
t

ks(u)ps−(u)ν(du)

=

∫ t

0
ν(du)

∫ u

0
ks(u)ps−(u)dAs +

∫ ∞
t

ν(du)

∫ t

0
ks(u)ps−(u)dAs

=

∫ t

0
〈x, p·(u)〉u ν(du) +

∫ ∞
t
〈x, p·(u)〉t ν(du)

=

∫ ∞
0
〈x, p·(u)〉t ν(du) +

∫ t

0
(〈x, p·(u)〉u − 〈x, p·(u)〉t) ν(du) .
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To verify (8.3.3), it suffices to show that the process xµ− ξ is an F-local martingale (since
ξ is a predictable, finite variation process). Note that for ν-almost every u ∈ R+, the
process (mt(u) := xtpt(u)− 〈x, p·(u)〉t, t ≥ 0) is an F-local martingale. Then, given that
1 =

∫∞
0 pt(u)ν(du) for every t ≥ 0, a.s., we have

xtµt − ξt = xt

∫ ∞
0

pt(u)ν(du)− xt
∫ t

0
(pt(u)− pu(u)) ν(du)

−
∫ ∞

0
〈x, p·(u)〉t ν(du) +

∫ t

0
(〈x, p·(u)〉t − 〈x, p·(u)〉u) ν(du)

=

∫ ∞
0

mt(u)ν(du)−
∫ t

0
(mt(u)−mu(u)) ν(du) +

∫ t

0
pu(u)(xt − xu)ν(du) .

The first two terms are martingale (because of the martingale property of m(u) for ν
almost every u ∈ R+). As for the last term, using the fact that ν has no atoms, we find

d

(
xt

∫ t

0
pu(u)ν(du)−

∫ t

0
pu(u)xuν(du)

)
= dxt

∫ t

0
pu(u)ν(du) + xtpt(t)ν(dt)− pt(t)xtν(dt)

=

∫ t

0
pu(u)ν(du) dxt

and we have, indeed, proved that xµ− ξ is an F-local martingale.

Now, any F-local martingale is a G-adapted process and a Gτ semi-martingale (from the
above Proposition 8.3.1), so in view of Stricker’s Theorem (see, e.g., [32]: in the case when
two filtrations F and F̃ satisfy F ⊂ F̃, ifX is an F̃ semi-martingale and it is F-adapted, then it
is also an F semi-martingale), it is also a G semi-martingale. The following proposition aims
to obtain the G-canonical decomposition of an F-local martingale. We refer to Jeanblanc
and Le Cam [24] for an alternative proof.

Proposition 8.3.2. Canonical Decomposition in G
Any (càdlàg) (P,F)-local martingale x is a (P,G) semi-martingale with canonical decompo-
sition

xt = Xt +

∫ t∧τ

0

d〈x,G〉s
Gs−

+

∫ t

t∧τ

d〈x, p.(τ)〉s
ps−(τ)

(8.3.4)

where X is a (P,G)-local martingale.

Proof. First of all let us recall that if the reference filtration F is right-continuous, any
F-martingale has a càdlàg version. We consider, then, here, this càdlàg version of the
martingale x.

From Proposition 8.3.1, any F-local martingale x can be decomposed as x = Xτ + C

where Xτ is a (P,Gτ )-local martingale and (recall Equation (8.3.1))

Ct =

∫ t

0

d〈x, p.(τ)〉s
ps−(τ)

=

∫ t

0
ks(τ)dAs .
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The idea is to project this decomposition on the filtration G:

xt =(o)xt =(o)Xτ
t +(o)Ct − C(p)

t + C
(p)
t ,

where the left-hand side superscript “(o)” indicates the optional projection (on G) and
where the right-hand side superscript “(p)” denotes the dual predictable projection (on G).
Now, the process X :=(o)Xτ +

(
(o)C − C(p)

)
is the sum of two G-martingales, hence it is

a G-martingale. From classical results on the predictable projection of processes (see for
instance Theorem 57, Chapter VI of [12]), we also have, being A predictable,

C
(p)
t =

∫ t

0

(p)(k(τ))sdAs . (8.3.5)

From Proposition 8.1.5, moreover,

(p)(k(τ))s = 11s≤τ
1

Gs−

∫ ∞
s

ks(u)ps−(u)ν(du) + 11τ<sks(τ) . (8.3.6)

Thus, substituting (8.3.6) in (8.3.5) and using Lemma 8.3.1, one obtains decomposition
(8.3.4).

8.4 Predictable Representation Theorems

The aim of this section is to obtain Predictable Representation Theorems (PRT here-
after) in the enlarged filtrations G and Gτ , both under P and P∗. We start by supposing
that there exists a (P,F)-local martingale z (eventually multidimensional), such that the
Predictable Representation Property holds in (P,F). Notice that z is not necessarily con-
tinuous.

Beforehand we introduce some notation: Mloc(P,F) denotes the set of (P,F)-local mar-
tingales, whileM2(P,F) denotes the set of (P,F)-martingales x, such that

E
(
x2
t

)
<∞, ∀ t ≥ 0.

Also, for a (P,F)-local martingale m, we denote by L(m,P,F) the set of F-predictable
processes which are integrable with respect to m (in the sense of local martingale), namely

L(m,P,F) =

{
ϕ ∈ P(F) :

(∫ ·
0
ϕ2
sd[m]s

)1/2

is P− locally integrable

}
.

Assumption 8.4.1. PRT for (P,F)

There exists a process z ∈Mloc(P,F) such that every x ∈Mloc(P,F) can be represented as

xt = x0 +

∫ t

0
ϕsdzs

for some ϕ ∈ L(z,P,F).
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For simplicity, we start investigating what happens under the measure P∗, in the initially
enlarged filtration Gτ , since here τ is independent of Ft, for any t ≥ 0, so that we expect
things to be easier.

Notice that, under the equivalence assumption in [0, T ] and assuming a martingale rep-
resentation theorem in the reference filtration F, Amendinger (see [1, Th. 2.4]) proved a
martingale representation theorem in (P∗,Gτ ). This result was extended to (P,Gτ ), in the
case when the underlying (local) martingale in the reference filtration is continuous.

Proposition 8.4.1. PRT for (P∗,Gτ )

Under Assumption 8.4.1, every Xτ ∈Mloc(P∗,Gτ ) admits a representation

Xτ
t = Xτ

0 +

∫ t

0
Φτ
sdzs, (8.4.1)

where Φτ ∈ P(Gτ ). In the case where Xτ ∈ M2(P∗,Gτ ) and z ∈ M2(P,F), one has
E∗
( ∫ t

0 (Φτ
s)2d〈z〉s

)
<∞, for all t ≥ 0 and the representation is unique.

Proof. Let Xτ ∈ Mloc(P∗,Gτ ). From Proposition 8.2.1, Xτ
t = xt(τ) where for ν-almost

every u ∈ R+, the process
(
xt(u), t ≥ 0

)
is a (P∗,F)-martingale, hence a (P,F)-martingale.

Thus (for ν-almost every u ∈ R+), Assumption 8.4.1 implies that

xt(u) = x0(u) +

∫ t

0
ϕs(u)dzs ,

where (ϕt(u), t ≥ 0) is an F-predictable process, integrable with respect to z. Now the
process Φτ defined by Φτ

t = ϕt(τ) is Gτ -predictable, according to Proposition 8.1.2 and
satisfies (8.4.1), with X0(τ) = x0(τ).

If Xτ ∈ M2(P∗,Gτ ) and if z ∈ M2(P,F) (so that the predictable bracket of z exists),
from Ito’s isometry,

E
∫ t

0
(Φτ )2

sd〈z〉s = E
(∫ t

0
Φτ
sdzs

)2

= E(Xτ
t −Xτ

0 )2 <∞ .

Also, from this last equation, if Xτ − Xτ
0 ≡ 0 then Φτ ≡ 0 from which the uniqueness of

representation follows.

Passing to the progressively enlarged filtration G, that is given by G = F ∨ H, intu-
itively one needs two martingales to establish a PRT. Apart from z, intuition tells us that
a candidate for the second martingale might be the compensated martingale of H, that
was introduced, respectively under P (it was denoted M) and under P∗ (denoted M∗), in
Equation (8.1.3) and in Equation (8.1.4).

Proposition 8.4.2. PRT for (P∗,G)

Under Assumption 8.4.1, every X ∈Mloc(P∗,G) admits a representation

Xt = X0 +

∫ t

0
Φsdzs +

∫ t

0
ΨsdM

∗
s
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for some processes Φ ∈ L(z,P∗,G) and Ψ ∈ L(M∗,P∗,G). Moreover, if X ∈ M2(P∗,G)

and z ∈M2(P,F), one has, for any t ≥ 0,

E
(∫ t

0
Φ2
sd〈z〉s

)
<∞ , E

(∫ t

0
Ψ2
sλ
∗
sν(ds)

)
<∞ ,

and the representation is unique.

Proof. It is known that any (P∗,H) local martingale ξ can be represented as ξt = ξ0 +∫ t
0 ψsdM

∗
s for some process ψ ∈ L(M∗,P∗,H) (see, e.g., the proof in Chou and Meyer [9]).

Notice that ψ has a role only before τ and, for this reason (recall that H = (Ht)t≥0, where
Ht = σ(τ ∧ t)), ψ can be considered deterministic.

Under P∗, we then have

• F has martingale representation with respect to z,

• H has martingale representation with respect to M∗,

• F and H are independent.

From classical literature (see Lemma 9.5.3 of Chesney, Jeanblanc and Yor [8], for instance),
the filtration G = F∨H enjoys the predictable representation property under P∗ with respect
to the pair (z,M∗).

Now suppose that X ∈M2(P∗,G). We find

∞ > E(Xt −X0)2 = E
(∫ t

0
Φsdzs +

∫ t

0
ΨsdM

∗
s

)2

= E
∫ t

0
Φ2
sd〈z〉s + 2E

(∫ t

0
Φsdzs

∫ t

0
ΨsdM

∗
s

)
+ E

∫ t

0
Ψ2
sλ
∗
sν(ds),

where in the last equality we used the Itô isometry. The cross-product term in the last
equality is zero due to the orthogonality of z and M∗ (under P∗). From this inequality, the
desired integrability conditions hold and the uniqueness of the representation follows (as in
the previous proposition).

Proposition 8.4.3. PRT under P
Under Assumption 8.4.1, one has:

(i) Every Xτ ∈Mloc(P,Gτ ) can be represented as

Xτ
t = Xτ

0 +

∫ t

0
Φτ
sdZ

τ
s

where Zτ is the martingale part in the Gτ -canonical decomposition of z and Φ ∈
L(Zτ ,P,Gτ ).
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(ii) Every X ∈Mloc(P,G) can be represented as

Xt = X0 +

∫ t

0
ΦsdZs +

∫ t

0
ΨsdMs

where Z is the martingale part in the G-canonical decomposition of z, M is the (P,G)-
compensated martingale associated with H and Φ ∈ L(Z,P,G) and Ψ ∈ L(M,P,G).

Proof. The assertion (i) (resp. (ii)) follows from Proposition 8.4.1 (resp. Proposition 8.4.2)
and the stability of predictable representation property under an equivalent change of mea-
sure (see for example He, Wang and Yan [20]).

8.5 Concluding Remarks

• In the multi-dimensional case, that is when τ = (τ1, · · · , τd) is a vector of finite
positive random times, the same machinery can be applied. More precisely, under the
assumption

P(τ1 ∈ θ1, · · · , τd ∈ θd|Ft) ∼ P(τ1 ∈ θ1, · · · , τd ∈ θd)

one defines the probability P∗ on Gτt = Ft ∨ σ(τ1) ∨ · · · ∨ σ(τd), with respect to P, by

dP∗

dP |Gτt
=

1

pt(τ1, · · · , τd)
,

where pt(τ1, · · · , τd) is the (multidimensional) analog to pt(τ), and the results for the
initially enlarged filtration are obtained in the same way as the one-dimensional case.

As for the progressively enlarged filtration, one has to note that, in this case, a mea-
surable process is decomposed into 2d terms, depending on whether t < τi or τi ≤ t.

• Notice that honest times (recall that a random time L is honest if it is equal to an
Ft-measurable random variable on {L < t}; in particular, an honest time is F∞-
measurable) cannot be included in this study. Indeed, it was shown by Nikeghbali
and Yor in [28], Theorem 4.1, that, in the case when all F-martingales are continuous
and if the honest time L avoids any F-stopping time, then there exists a continuous
and nonnegative local martingale (Nt)t≥0, with N0 = 1 and limt→+∞Nt = 0, such
that:

P (L > t|Ft) =
Nt

St
,

where St := sups≤tNs. In our case, the above equation does not hold true, given the
(E)-Hypothesis (the survival processis absolutely continuous with respect to ν).

• Under immersion property and under the (E)-Hypothesis, pt(u) = pu(u), t ≥ u. In
particular, as expected (for all the details see, e.g., Corollary 1 in Jeanblanc and Le
Cam [24]), the canonical decomposition’s formulae presented in Section 8.3 are trivial.
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8.6 Appendix

Lemma 8.6.1. If F1 and F2 are two independent σ-fields and X an integrable random
variable independent of F2 then

E(X|F1 ∨ F2) = E(X|F1).

Proof. On may equivalently check that, for every Y ∈ F1 ∨ F2,

E(XY ) = E
(
E(X|F1)Y

)
In view of the monotone class theorem it suffices to show the above assertion for Y = Y1Y2

where Y1 ∈ F1 and Y2 ∈ F2. We have

E
(
E(X|F1)Y1Y2

)
= E

(
E(XY1|F1)Y2

)
= E

(
E(XY1|F1)

)
E(Y2) = E(XY1)E(Y2) = E(XY1Y2)

and the result is proved.

In order to define the optional and predictable projections of a process X with respect
to a filtration F, we first introduce the following two notions of σ-algebra associated with a
stopping time (for this we refer to Dellacherie and Meyer [11], Ch. IV, Definitions 52 and
54, page 186).

Definition 8.6.1. Let τ be a stopping time with respect to a filtration F satisfying the usual
hypotheses. The σ-algebra of events prior to τ , denoted Fτ , is defined as follows:

Fτ := {A ∈ F∞ : A ∩ {τ ≤ t} ∈ Ft, ∀ t} .

The σ-algebra of events strictly prior to τ , denoted Fτ−, is the smallest σ-algebra that
contains F0 and all the sets of the form A ∩ {t < τ}, t ≥ 0, for A ∈ Ft.

The following result can be found in Dellacherie and Meyer [12], Ch. VI, Th. 43.

Theorem 8.6.1. Optional and predictable projections
Let X be a bounded or positive measurable process and F a filtration satisfying the usual
hypotheses. There exists a unique optional process Y and a unique predictable process Z
such that

E [Xτ11τ<∞|Fτ ] = Yτ11τ<∞, a.s., for every stopping time τ,

E [Xθ11θ<∞|Fθ−] = Zθ11θ<∞, a.s., for every predictable stopping time θ.

The process Y is called the optional projection of X, while Z is called the predictable
projection of X.

191



192



Bibliography

[1] J. Amendinger. Initial Enlargement of Filtrations and Additional Information in Fi-
nancial Markets. PhD thesis, Technischen Universität, Berlin, 1999.

[2] J. Amendinger. Martingale representation theorems for initially enlarged filtrations.
Stochastic Processes and their Appl., 89:101–116, 2000.

[3] S. Ankirchner. Information and Semimartingales. PhD thesis, Humboldt Universität,
Berlin, 2005.

[4] M.T. Barlow. Study of filtration expanded to include an honest time. Z. Wahr. Verw.
Gebiete, 44:307–323, 1978.

[5] F. Baudoin. Modeling anticipations on financial markets, volume 1814 of Lecture Notes
in Mathematics, chapter Paris-Princeton Lecture on mathematical Finance 2002, pages
43–92. Springer-Verlag, 2003.

[6] A. Bélanger, S.E. Shreve, and D. Wong. A general framework for pricing credit risk.
Mathematical Finance, 14:317–350, 2004.

[7] T.R. Bielecki, M. Jeanblanc, and M. Rutkowski. Credit Risk Modeling. CSFI lecture
note series. Osaka University Press, 2009.

[8] M. Chesney, M. Jeanblanc, and M Yor. Mathematical Methods for Financial Markets.
Springer, 2009.

[9] C.S. Chou and P.A. Meyer. Sur la représentation des martingales comme intégrales
stochastiques dans les processus ponctuels. Séminaire de probabilités, IX:226–236, 1975.

[10] J.M. Corcuera, P. Imkeller, A. Kohatsu-Higa, and D. Nualart. Additional utility of
insiders with imperfect dynamical information. Finance and Stochastics, 8:437–450,
2004.

[11] C. Dellacherie and P.A. Meyer. Probabilités et Potentiel - Chapitres I à IV. Hermann,
Paris, 1975.

193



[12] C. Dellacherie and P.A. Meyer. Probabilités et Potentiel, Chapitres V à VIII, Théorie
des Martingales. Hermann, Paris, 1980.

[13] C. Dellacherie and P.A. Meyer. Probabilités et Potentiel, Chapitres XXVII à XXIV.
Processus de Markov(fin). Compléments de calcul stochastique. Hermann, Paris, 1992.

[14] N. El Karoui, M. Jeanblanc, and Y. Jiao. What happens after a default: the conditional
density approach. SPA, Revisited Version, 2009.

[15] A. Eyraud-Loisel. Bsde with enlarged filtration. Option hedging of an insider trader
in a financial market with jumps. Stochastic Processes and their Appl., 115:1745–1763,
2005.

[16] H. Föllmer and P. Imkeller. Anticipation cancelled by a girsanov transformation: a
paradox on wiener space. Ann. Inst. Henri Poincaré, 29(4):569–586, 1993.

[17] D. Gasbarra, E. Valkeika, and L. Vostrikova. Enlargement of filtration and additional
information in pricing models: a bayesian approach. In R. Lipster Yu. Kabanov and
editors J. Stoyanov, editors, From Stochastic Calculus to Mathematical Finance: The
Shiryaev Festschrift, pages 257–286. 2006.

[18] A. Grorud and M. Pontier. Insider trading in a continuous time market model. IJTAF,
1(3):331–347, 1998.

[19] A. Grorud and M. Pontier. Asymmetrical information and incomplete markets. IJTAF,
4(3):285–302, 2001.

[20] Sh. He, J. Wang, and J. Yan. Semimartingale theory and stochastic calculus. CRC
Press, 1992.

[21] C. Hillairet. Comparison of insiders’ optimal strategies depending on the type of side-
information. Stochastic Processes and their Appl., 115:1603–1627, 2005.

[22] P. Imkeller. Random times at which insiders can have free lunches. Stochastics and
Stochastics Reports, 74:465–487, 2002.

[23] J. Jacod. Grossissement initial, hypothèse (H’) et théorème de Girsanov. In Lecture
Notes in Mathematics, volume 1118. Springer-Verlag, 1985.

[24] M. Jeanblanc and Y. Le Cam. Progressive enlargement of filtrations with initial times.
Stochastic Processes and their Applications, 119:2523–2543, 2009.

[25] T. Jeulin. Semi-martingales et grossissement d’une filtration. In Lecture Notes in
Mathematics, volume 833. Springer-Verlag, 1980.

194



[26] A. Kohatsu-Higa and B. Øksendal. Enlargement of filtration and insider trading.
Preprint, 2004.

[27] R. Mansuy and M. Yor. Random Times and (Enlargement of) Filtrations in a Brownian
Setting, volume 1873 of Lectures Notes in Mathematics. Springer, 2006.

[28] A. Nikeghbali and M. Yor. Doob’s maximal identity, multiplicative decompositions
and enlargements of filtrations. In D. Burkholder, editor, Joseph Doob: A Collection
of Mathematical Articles in his Memory, volume 50 of Illinois Journal of Mathematics,
pages 791–814. 2007.

[29] P.E. Protter. Stochastic Integration and Differential Equations, Second edition, volume
Stochastic modelling and applied probability of Application of Mathematics. Springer-
Verlag, Heidelberg, 2005.

[30] D. Revuz and M. Yor. Continuous martingales and Brownian motion, 3rd edition, vol-
ume 293 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles
of Mathematical Sciences]. Springer-Verlag, Berlin, 1999.

[31] Sh. Song. Grossissement de filtration et problèmes connexes. PhD thesis, Université
Paris VI, 1987.

[32] C. Stricker. Quasi-martingales, martingales locales et filtrations naturelles. Zeitschrift
fur Wahr, 39:55–63, 1977.

[33] C.-T. Wu. Construction of Brownian motions in enlarged filtrations and their role in
mathematical models of insider trading. PhD thesis, Humbolt-Universität Berlin, 1999.

[34] M. Yor. Grossissement de filtrations et absolue continuité de noyaux. volume 1118 of
Lecture Notes in Mathematics. 1985.




	I Introduction
	Bibliography/I

	II An application to credit risk of a hybrid Monte Carlo-optimal quantization method
	1 Hybrid Monte Carlo-optimal quantization
	1.1 Introduction
	1.2 Market model and problem definition
	1.2.1 Reduction to a nonlinear filtering problem

	1.3 Approximation of the filter by optimal quantization
	1.3.1 A brief overview on optimal quantization
	1.3.2 General results on discrete time nonlinear filtering
	1.3.3 Estimation of the filter and related error
	1.3.4 Application to the estimation of Vs "026A30C FsS

	1.4 Survival probabilities under full information
	1.5 The error analysis
	1.6 Numerical results
	1.6.1 Simulation
	1.6.2 Calibration issues


	Bibliography/II

	III Portfolio optimization in defaultable markets under incomplete information
	2 Portfolio optimization
	2.1 Introduction
	2.2 The model
	2.2.1 Model dynamics
	2.2.2 Portfolios
	2.2.3 The partial information problem

	2.3 The filter
	2.4 The ``equivalent full information problem''
	2.4.1 Explicit solution in the log-utility case
	2.4.2 Particular case: full information about Zn
	2.4.3 Particular case: ZnZ unobserved
	2.4.4 Particular case: ZnZ fully observed

	2.5 Numerical results and the issue of robustness
	2.5.1 Shorting vs. no shorting
	2.5.2 Robustness

	2.6 Appendix
	2.6.1 Some ``final'' remarks: are there alternatives to DP?
	2.6.2 One clarifying (simple) example


	Bibliography/III

	IV Optimal consumption problems in discontinuous markets
	3 A stochastic model
	3.1 Market model and problem definition
	3.1.1 The unique EMM Q*
	3.1.2 From the admissibility conditions to the budget constraints

	3.2 The solution: martingale approach
	3.2.1 Problem A: optimal consumption
	3.2.2 Problem A: optimal investment strategy
	3.2.3 Problem B: optimal consumption
	3.2.4 Problem B: optimal investment strategy
	3.2.5 Problem C: optimal consumption
	3.2.6 Problem C: optimal investment strategy


	4 The deterministic coefficients case
	4.1 Introduction: peculiarities of the setting
	4.1.1 The unique EMM Q*

	4.2 The solution: martingale approach
	4.2.1 Problem A: optimal consumption
	4.2.2 Problem A: optimal investment strategy
	4.2.3 Problem B: optimal consumption
	4.2.4 Problem B: optimal investment strategy
	4.2.5 Problem C: optimal consumption
	4.2.6 Problem C: optimal investment strategy


	5 Solution via the Dynamic Programming approach
	5.1 Problem A
	5.1.1 The Hamilton-Jacobi-Bellman equation

	5.2 Problem B
	5.3 Problem C
	5.3.1 The Hamilton-Jacobi-Bellman equation

	5.4 A reduced information setting: problem B1

	6 The exponential utility case
	6.1 Problem A
	6.2 Problem B
	6.3 Problem C

	7 A more general stochastic model
	7.1 Market model
	7.1.1 The unique EMM Q*

	7.2 The solution to problem A: the log-utility case
	7.3 The solution to problem B: the log-utility case
	7.4 The solution to problem C: the log-utility case

	Bibliography/IV

	V Enlargement of filtrations
	8 Carthaginian filtrations
	8.1 Introduction and preliminaries
	8.1.1 Measurable processes
	8.1.2 Expectation and projection tools

	8.2 Martingales' characterization
	8.3 Canonical decomposition
	8.4 Predictable Representation Theorems
	8.5 Concluding Remarks
	8.6 Appendix

	Bibliography/V


