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RÉSUMÉ 

Les réseaux sans fil ad hoc diffèrent des réseaux filaires traditionnels principalement par la 
multitude de perturbation auxquels ils sont sujets. Alors qu’une rupture de lien est un 
événement plutôt rare sur des réseaux filaires, et généralement imputable à l’état physique du 
matériel intermédiaire (câbles, routeurs, etc.), cet événement est courant avec les 
communications radio. Ceci peut être lié à la qualité du signal reçu de l’autre extrémité ou à la 
configuration de l’environnement (épaisseur et quantité des obstacles intermédiaires, 
perturbations électromagnétiques…). De plus, même si les perturbations causées par 
l’environnement ne mènent pas toujours à une rupture d’un lien, elles peuvent aussi avoir un 
impact sur la réception sans erreurs des données. Cette volatilité des liens est typique dans les 
réseaux sans fil alors que pour les réseaux traditionnels filaires ce problème est inexistant. 

Le protocole TCP, qui est prévu pour assurer la transmission fiable des données, n’a été conçu 
qu’en tenant compte des contraintes des réseaux filaires. Ainsi, certains événements dans la 
transmission de données sans fil peuvent être mal interprétés et engendrer une mauvaise 
réaction de la part de TCP. Cette mauvaise interprétation affaiblit les performances plus qu’elle 
ne l’améliorerait. 

Pour réduire le fossé de performance dont souffre TCP dans les réseaux sans fil ad hoc, 
l’objectif de cette thèse est double. Dans un premier temps, une étude complète des 
performances de TCP dans les réseaux ad hoc est dressée. Celle-ci concerne à la fois les débits 
atteignables mais aussi la consommation d’énergie induite par l’utilisation de ce protocole de 
transport dans un réseau sans fil ad hoc. Cette étude permet d’identifier les points 
d’amélioration du protocole TCP pour qu’il soit utilisable dans les réseaux sans fil ad hoc. Dans 
un second temps, nous proposons une nouvelle variante de TCP, appelée TCP-WELCOME, dont 
l’objectif est de traiter de façon adéquate les différents types de perte de paquets sur un réseau 
ad hoc sans fil et par la même optimiser la performance de TCP.   
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ABSTRACT 

Wireless ad hoc networks are differentiated from traditional wired networks by the 
multitude of data packet loss situations that they are subjected to. This is due to the intrinsic 
characteristics of the wireless channel (e.g. signal fading, interference, obstacles, and 
environment effects) that might obstruct the proper reception of data packet at the other 
communication end. Moreover, in some case, these vulnerabilities of the wireless channel can 
result in a complete link failure.  Although link failure is of low probability in wired networks 
since physical cables constitute the data transmission media, it is rather common wireless 
networks (due to nodes’ mobility, battery depletion, obstacles, or some other wireless-channel-
related effect). The volatility of the communication channel is a typical problem with wireless 
links, which is not the case with wired cables. 

TCP is a transport protocol that aims at ensuring high reliability and guaranteed reception of 
data packets. However, TCP was designed primarily for wired networks to address network 
congestion, which is the main cause for data packet loss in wired networks. Therefore, other 
types of data packet loss encountered in wireless networks are prone to misinterpretation by 
TCP, which, in turn, will lead to degradation in the performance of TCP within the network.  

In order to overcome the performance limitation of TCP when used within wireless ad hoc 
networks, the aim of this thesis is twofold. First, a complete performance evaluation study of 
TCP over wireless ad hoc networks is achieved. This evaluation deals with two performance 
metrics: the achievable throughput and the energy consumption of TCP within wireless ad hoc 
networks. This study allows identifying the potential room of improvement to enhance TCP 
efficiency in wireless ad hoc networks. Second, we propose a new TCP variant we called TCP-
WELCOME, that optimizes the performance of TCP in wireless ad hoc networks through its 
ability to distinguish among, and efficiently deal with, different data packet loss situations, 
encountered within wireless ad hoc networks.   
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GLOSSARY 

 

Ad Hoc 

 
A wireless, autonomous communication mode that does not 
require infrastructure configuration. 

 

Acknowledgement, ACK 

 
A packet message, used in the Transmission Control Protocol 
that is sent by the receiver to acknowledge the sender the 
receipt of a certain packet(s). 

 

Congestion 

 
A saturation of communication links due to much data 
transmitted simultaneously by the network’s nodes. This results 
in both data packet loss and extra transmission delays over the 
connection. 

 

Congestion Window, CWND 

 
The maximum amount of data bytes that can be sent out over 
the connection without being acknowledged. 

 

Congestion Avoidance 

 
A phase where TCP enters after Slow-Start phase. In this phase, 
the TCP CWND increases slowly in order to avoid network 
congestion. 

 

Duplicate ACK, dupack 

 
TCP receivers generate a duplicate acknowledgment when out-
of-sequence segment is received. This one acknowledges only 
some of packets outstanding at the start of the Fast Recovery. 

 

MANET 

 
A type of wireless ad hoc network that is self-configuring 
network of mobile devices connected through wireless links. 
Each MANET device is free to move independently. 

 

Segment 

 
A TCP segment is the packet of information that TCP uses to 
exchange data with its peers. TCP receives data from a data 
stream, segments it into chunks, and adds a TCP header creating 
a TCP segment. 

 

Slow Start Threshold, SSThresh 

 
The slow-start threshold that is used to define the transition 
from slow-start phase to congestion avoidance phase. 

 

Round Trip Time, RTT 

 
RTT is the delay that corresponds to the time needed by the TCP 
sender after sending a data packet to receive its 
acknowledgment. 

 

Retransmission Time out, RTO 

 
RTO is the maximum time that TCP waits for the data 
acknowledgment before declaring that the packet is lost. 
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CHAPTER 1. INTRODUCTION 

1.1 MOTIVATIONS 

The last decade has seen a tremendous boom in the mobile communications market. People 
have become accustomed to the convenience of making calls with mobile phones and browsing 
the Internet with notebooks via wireless connections. Two prime examples of this development 
are the great success of the Global System for Mobile Communication (GSM) and the huge 
number of Wireless Local Area Networks (WLANs) deployments. In the future, more and more 
mobile devices will become networked, following the trend toward ubiquitous networking. One 
of the main goals in current research is to design new wireless networks that are flexible, low-
cost, and require little administration. In this context, the principle of ad hoc networking 
received much interest during the past five years. In an ad hoc network, mobile devices 
communicate with each other in a peer-to-peer fashion; the nodes are independent and self 
organized. Each node of the network acts as a server, client, and forwards data packets for the 
other nodes of the network. This feature is not supported in current systems for wired and 
mobile communications. Hence, the existence of each node in an ad hoc network is of highly 
importance for the others in order to ensure the network connectivity.  

In parallel to that growth, most of the applications are designed to be compatible with TCP. 
This makes TCP the most famous protocol in the TCP/IP protocol stack with more than 90% of 
the Internet traffic today. TCP was developed to be implemented initially taking into 
consideration the characteristics of wired infrastructure networks. Its congestion control 
algorithm and the data flow mechanism it employs makes it performing well in such networks. 
Through controlling the number of data packets transmitted over the connection and taking into 
consideration the advertised data to be received at the receiver side, TCP has the ability to 
manage the utilization of the available bandwidth. The success of TCP within the wired 
networks, in addition to the wide variety of applications that are compatible with it, made TCP 
the first transport protocol to be used within almost all the  deployed data networks.  

Taking into consideration the differences between wired and wireless (infrastructure and 
infrastructure-less) data networks, we expect that TCP performance would differ when applied 
within each of them. Many researches [1] [2] [3] were done recently to help understand the 
performance of TCP within wireless cellular and wireless ad hoc networks. These researches 
reveal the problems that can be found within wireless networks and do not exist within wired 
ones, such as wireless channel errors and link failure problems. These problems represent new 
challenges to TCP since it was not originally developed to deal with underlying issues. In fact, 
TCP was developed to solve the problem of data packet loss due to congestion within network, 
and originally is a congestion-control-oriented protocol. This was logical since the main cause of 
data packet losses within wired network is the congestion. On the other hand, within wireless 
(infrastructure and infrastructure-less) networks, there are many other causes of data packet 
losses. Indeed, wireless ad hoc networks represent a highly challenging environment for TCP as 
it suffers from new causes of data packet losses that TCP was not designed to deal with. Actually, 
TCP underperforms drastically within wireless ad hoc networks. The researches done recently 
[4] show that the performance of TCP is highly impacted when used within wireless ad hoc 
networks, since, again, it was not designed to cope with wireless networks data packet loss 
causes. Therefore, it was our conclusion that TCP should be able to: 

1- Distinguish and cope with different data packet loss models over the connection, 
2- Recover from data packet losses in such a way to enhance its performance over such 

networks. 
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These TCP enhancements are among our major contributions within this thesis. Our final 
objective here is to present a new variant of TCP that is most adapted to the nature of wireless 
ad hoc networks and their most common data packet loss causes. 

As stated above, one of our final aims is to enhance the performances of TCP when this one is 
running over a wireless ad hoc network. The first question that rises from this is which 
performance metrics should be considered? In the wired Internet, the main performance 
measure parameter for TCP is the throughput that may be achieved by TCP while avoiding 
congestions. In wireless ad hoc networks, this performance measure cannot be the only one 
used. Indeed, since ad hoc network’s nodes are battery-operated, another performance metric is 
to be considered by any solution targeting such networks: the energy consumption. Contrarily to 
a common thought, this latter is not only due to the communication aspects (i.e. the energy spent 
by the network interface for data transmission and reception). The energy consumption is also 
due to computational cost of any implementation. Indeed, some heavy programs may lead to 
high energy consumption within the CPU unit while lighter programs leads to less computational 
energy cost. Hence, the total energy cost of any solution should include its communication 
energy cost as well as computational energy cost. It is thus important that our new TCP variant 
maximizes the reached throughput while minimizing the total energy cost as defined above. 

1.2 METHODOLOGY AND CONTRIBUTIONS 

Measuring all the performance metrics is not always possible using network simulators. 
Indeed, some nodes’ related performance metrics are not implemented into network simulators 
which are designed to deal with communication effects rather than node-specific effects. Among 
those effect that are not possible to measure through simulation we can find the computational 
energy cost of a particular protocol. Today, the evaluation of this parameter is only possible 
through real implementation experiments. On the other hand, building a real test-bed  
configuration of wireless ad hoc networks is expensive especially when configuring or deploying 
networks of a scale beyond a dozen of nodes. Emulation appears, then, as a good compromise 
between these two approaches: simulation and real test-bed setup. So, in order to be able  
to evaluate any performance metrics that is not available through simulations, especially the 
computational energy cost of an application or a protocol, we proposed, implemented and 
evaluated SEDLANE, which stands for “Simple Emulation of Delays and Losses for Ad hoc 
Network Environments”. SEDLANE, which constitutes the first contribution of this thesis, is a 
new emulator that allows evaluating the performances of any application or protocol running at 
the transport layer or over it. 

SEDLANE emulates data packets losses and delays over the connection and manipulates the 
real data packets traffic in order to generate the same effect as within wireless ad hoc networks. 
SEDLANE has the ability to emulate a wide range of wireless ad hoc network scenarios of any 
scale with only small number of physical machines. Our proposed emulator, SEDLANE, is used 
for studying the computational energy cost of the existing TCP variants and their congestion 
control mechanisms (Slow-Start, Fast Retransmit/Fast Recovery, and Congestion Avoidance).  

This constitutes the first step towards a complete study of the existing TCP variants 
performance. This complete study targets the evaluation of both throughput and energy 
consumption (communication energy consumption and computational energy consumption). 
This study is conducted in order to evaluate the performance of TCP in detail when confronted 
with different data packet loss situations within wireless ad hoc environments. The second 
contribution of this thesis concerns this complete performance study of different TCP variants in 
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terms of both throughput and energy consumption. This performance study is conducted in two 
phases. The first phase is a performance study through a network simulator (NS-2). Through this 
study, we evaluated the connection throughput and the nodes’ communication energy cost. The 
second phase is an experimental evaluation that uses SEDLANE to emulate the effect of wireless 
ad hoc network environment. This evaluation allowed measuring the computational energy cost 
of the studied TCP variants and their main TCP congestion control algorithms.  

The discussion of the obtained results allowed us to identify the undesired behavior of TCP 
that leads to underutilizing the network resources. The obtained results, also, helped us to 
define the best performance requirements of TCP to deal with each data packet loss situation 
over an ad hoc network. The new TCP variant is developed according to the conclusions gained 
from this performance study. It gave us some ideas about how to enhance its behavior. 

The problem of TCP within wireless ad hoc networks comes from its inability to distinguish 
between the different data packet loss models within the network. This often leads to an 
aggressive reaction from TCP when faced with a data packet loss that is not due to congestion. 
Indeed, dealing with any data packet loss as if it were due to congestion results in resource 
waste both at the network and nodes’ levels. This waste is represented by low bandwidth 
utilization and higher energy consumption. Therefore, in order to enhance the performance of 
TCP within wireless ad hoc networks, it is obvious that TCP should be able to identify each data 
packet loss cause and react accordingly, triggering the most suitable loss recovery action that 
optimizes both the network and node’s resources. 

The third contribution of this thesis is TCP-WELCOME, which stands for “TCP variant for 
Wireless Environment, Link-losses and COngestion packet loss ModEls”, a new TCP variant for 
wireless ad hoc networks. TCP-WELCOME is able to distinguish among and recover from the 
following data packet loss situations that we identified: (i) link failure, (ii) wireless channel 
related errors, and (iii) congestion. It includes a Loss Differentiation Algorithm (LDA) that is able 
to distinguish among the above mentioned data packet loss situations, and a Loss Recovery 
Algorithm (LRA) that is capable to recover from each of these different data packet loss 
situations. TCP-WELCOME is developed with the aim to optimize TCP performance from the 
following points of view. Maximizing the utilization of the available bandwidth (throughput), 
while minimizing the nodes overall (communication and computational) energy consumption. 
The performance evaluation of TCP-WELCOME, through simulations and SEDLANE enhanced 
experiments, allowed us to confirm that it allows optimizing TCP performance. 

Finally, a side contribution of this thesis concerns the introduction of the TCP computational 
energy cost within NS-2. With our implementation of TCP’s computational energy cost, NS-2 
now has the ability to calculate the overall TCP node’s energy consumption (including both 
communication and computational types). 

1.3 PLAN OF THE THESIS 

The organization of this thesis represents the evolution of our work as explained above.  

The second chapter discusses the evolution of TCP and its congestion control algorithm. The 
object of this chapter is to show the development of TCP and its characteristics that made it 
favorable to be implemented and used within data networks. Also, we show the problems that 
TCP faces when implemented within wireless cellular and ad hoc networks. This leads to a 
discussion about the improvement made to TCP to enhance its performance within these 
environments. This chapter states the work done in the domain and shows the problems that 
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still have to be taken into consideration to make TCP a suitable transport protocol for wireless 
ad hoc networks. 

The third chapter discusses the possibility of evaluating the performance of new networks 
applications and end-to-end protocols over wireless ad hoc network environments using 
emulation, and presents the new wireless ad hoc emulator SEDLANE. This chapter explains the 
main idea of SEDLANE, its characteristics, its algorithms, and its functionalities. At the end of the 
chapter, we test and validate our emulator using a realistic test-bed configuration and prove that 
SEDLANE is capable of emulating the characteristics of an entire ad hoc network, more precisely 
the experienced delays and losses over wireless links using a small and an inexpensive network 
configuration. 

In the forth chapter, we conduct a complete performance study of different variants of TCP. In 
this study, three TCP performance parameters are evaluated: TCP connection throughput, TCP 
communication energy consumption, and TCP computational energy consumption. The first two 
parameters were evaluated through NS-2. While the computational energy cost was measured 
through a realistic test-bed configuration. In this chapter also, we show how SEDLANE can be 
used in a realistic test-bed configuration in order to measure the TCP computational energy cost 
of a wireless ad hoc network node. The results obtained and the underlying discussions in this 
chapter are the guidelines that led to the design of our TCP variant as explained in the fifth 
chapter. Also, in the same chapter, we discuss the extension of the NS-2 energy model through 
introducing the computational energy cost of TCP within it. 

In the fifth chapter, we discuss the need of a new TCP variant that is most adapted for 
wireless ad hoc networks. This is realized according to the results obtained from the 
performance study in the previous chapter. We present the main requirements of this variant in 
order to enhance the performance of TCP within such networks from two points of view: (i) 
network’s throughput, and (ii) nodes’ total energy consumption. We describe the main 
algorithms of this new variant that we called TCP-WELCOME. We also show, the evaluation 
results of TCP-WELCOME demonstrating that it outperforms the other studied TCP variants both 
in terms of throughput and energy consumption. 

 
The last chapter concludes the work done during this thesis, and lists some perspectives that 

were identified for future work.  
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CHAPTER 2. EVOLUTION OF THE TRANSPORT CONTROL 
PROTOCOL 

2.1 INTRODUCTION 

The Transmission Control Protocol (TCP) is a reliable transmission protocol that provides an 
ordered delivery of a stream of bytes over the communication link between the sender and the 
receiver. TCP was originally designed to be deployed within wired networks where the 
communicating nodes are connected through physical cables. Physical cables are considered as 
reliable transmission media where congestion is the most common cause to data packet losses. 
That’s why TCP is a congestion-control-oriented algorithm. TCP deploys flow control mechanism 
through its implemented algorithms (Slow-Start and Congestion Avoidance).  These algorithms 
tend to better utilize the available bandwidth and to avoid congestion episodes over the 
connection through the CWND and SSThresh parameters. 

In the following, we will discuss the history of evolution of the existing TCP congestion 
control algorithm and the different algorithms implemented in order to enhance its 
performance. The discussion will be based on two main characteristics: 

1. The available bandwidth utilization (TCP bandwidth). 
2. The complexity of the implemented algorithms and its effect on TCP performance. 

We will show, latter through this thesis that this second parameter is of a great interest when 
dealing with TCP performance enhancement over wireless ad hoc networks. 

The rest of this chapter is organized as follows: we start by providing an overview of the 
evolution of TCP congestion control algorithm and the main TCP variants developed for wired 
networks.  Then, we discuss quickly the performance of TCP within wireless infrastructure 
networks. After that, we present TCP performance issues within wireless ad hoc networks 
environment and the proposed enhancements of TCP within such environments. Finally, we 
summarize our ideas in this chapter and conclude it.   

2.2 TCP CONGESTION CONTROL ALGORITHM 

In this section, we present the evolution of TCP since its first version using congestion control 
algorithm to now. We will focus on the main variants that had been designed for wired Internet 
mainly. For each variant we discuss the main drawbacks that led to the other variants 
development. 

2.2.1 TCP TAHOE  

TCP Tahoe is the first TCP variant to incorporate congestion control mechanisms. Its 
implementation added a number of new algorithms and refinements to earlier implementations. 
Mainly, these algorithms and refinements are: Slow-Start, Congestion Avoidance, and Fast 
Retransmit [5] [6].  

The goal of Slow-Start and Congestion Avoidance is to keep the congestion window (CWND) 
around an optimal size as much as possible. Slow-Start (Figure 2.1) increases the congestion 
window size rapidly to reach maximum safety transfer rate (SSThresold) as fast as possible and 
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Congestion Avoidance increases the CWND slowly to avoid packet losses as long as possible. If a 
packet is not acknowledged after a predefined timeout, Retransmission Time Out (RTO), it is 
regarded as lost and is retransmitted. On the other hand, at the reception of three DUPlicate 
ACKnowledgments (3 DUPACKs), the first unacknowledged packet is also considered as lost. In 
this case, the Fast Retransmit algorithm (Figure 2.2) is in charge of retransmitting the lost packet 
without waiting for the RTO timer to expire. This speeds up the retransmission of the lost 
packet. Finally, note that in both situations, the packet retransmission is followed by a reduction 
of both the SSThresh, to CWND/2, and the CWND to its minimum (CWND=1 segment). The Slow-
Start phase is then triggered. Figure 2.3 summarizes the CWND variation of TCP Tahoe at both 
Slow-Start and Congestion Avoidance phases. It also shows how the congestion window and the 
SSThreshold are adapted according to the network conditions. 

 

 
 

FIGURE 2.1. TCP SLOW-START 
MECHANISM 

FIGURE 2.2. TCP FAST RETRANSMIT 
MECHANISM 

 

 
 

FIGURE 2.3. CONGESTION WINDOW (CWND) EVOLUTION OF TCP TAHOE 
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In case of data packet losses or out of order packets, TCP Tahoe triggers its congestion control 
algorithm. TCP retransmits the lost data packets and shrinks its congestion window (CWND) to 
minimum (CWND = 1 segment). This might be the right action in case of congestion but with out 
of order packets this is considered as waste of network resources. Congestion losses is of a burst 
nature (many packets are lost at a time), thus decreasing the data transmitted over the 
connection would be the right action to recover from the losses. However, out of order packets 
could be the result of load balancing mechanisms or routing protocols that implements multi-
path routing approaches for instance. The packets reach the destination in an out of order 
manner, but all the packets are received by the receiver. The problem with TCP Tahoe is that, it 
retransmits the out of order packets and triggers its congestion control algorithm unnecessarily. 
This leads to unnecessary data transmission rate reduction over the connection. This way, the 
reliability of TCP in this case results in waste of the available bandwidth utilization and more 
energy consumption in order to increase its CWND. Regarding the complexity of the 
implemented congestion control algorithm, we find that it is so simple and do not require much 
calculations at the CPU unit as it reduces blindly the data transmission rate to one segment after 
each data loss. 

2.2.2 TCP RENO 

The problem of TCP Tahoe was addressed and solved in TCP Reno [7] variant, by adding a 
new algorithm that differentiates between heavy congestion over the connection and light 
congestion or out of order packets situations, and acts accordingly to each of these cases.  

The congestion control mechanism of TCP Reno retains the enhancements incorporated into 
TCP Tahoe, but modifies the Fast Retransmit operation to include Fast Recovery [7] mechanism.  
The Slow-Start and the Congestion Avoidance algorithms are used by TCP Reno sender to 
control the amount of data injected into the network while Fast Retransmit and Fast Recovery 
are used to recover from data packet losses without the need for RTO timer expiration [8]. Fast 
Retransmit/ Fast Recovery [6] [5] algorithm is triggered in case of the arrival of three duplicate 
acknowledgements (i.e. that acknowledge the same packet) at the sender side. TCP considers, in 
this case, that there is a light congestion conditions over the connection and halves its data 
transmission rate instead of decreasing it to minimum as in TCP Tahoe. As can be noticed from 
Figure 2.4, TCP Reno recovers more quickly than TCP Tahoe, since it will not shrink the CWND to 
minimum each time it will encounter a packet loss as the case in TCP Tahoe (Figure 2.3). By 
doing so, it is expected that TCP Reno will enhance the network performance.  

 

 
 

FIGURE 2.4. CONGESTION WINDOW (CWND) VARIATION OF TCP RENO 

 

This mechanism of data loss recovery in TCP Reno is shown to perform better than TCP 
Tahoe, when a single packet loss occurs in one data segment (random error). Fast 
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Retransmit/Fast Recovery proved to enhance the performance of TCP in terms of throughput in 
wired networks, since it tends to better utilize the network resources and avoids unnecessary 
data packets retransmissions as possible. However, it can suffer from performance problems 
when multiple data packets are lost in one data segment (burst error). In this case the CWND 
will be significantly reduced and may return to its original size only after a considerable delay 
[8]. 

Additionally, the problem with TCP Reno comes from the fact that each time there is a loss 
over the connection; it retransmits all the CWND that contains the lost packet. This leads to high 
number of unnecessary data retransmissions over the connection causing a low throughput. In 
addition, with frequent random data packet losses, TCP Reno reduces its data transmission rate 
frequently and returns to perform as in Slow-Start phase leading to low throughput over the 
connection. Hence, TCP Reno tends to enhance the performance in case of random data packet 
losses (only one segment lost from the CWND), but it cannot cope with multiple data packets lost 
from the same CWND over the connection. 

2.2.3 TCP NEW RENO 

Another modification of TCP Reno congestion control algorithm is TCP New Reno [9]. TCP 
New Reno deploys partial acknowledgements that help to notify the TCP sender that the 
following segment in the sequence number is lost. This approach leads to less data packets 
retransmissions over the connection, hence better utilization of the available bandwidth. In TCP 
Reno, partial acknowledgements take TCP out of Fast Recovery by deflating the usable window 
back to the size of the congestion window. TCP Reno, then, retransmits all the data packets 
within the same segment and enters Slow-Start phase that leads to unnecessary data packets 
retransmissions. In TCP New Reno, partial acknowledgements do not take TCP out of Fast 
Recovery. Instead, partial acknowledgements received during Fast Recovery are treated as an 
indication that the packet immediately following the acknowledged packet in the sequence space 
has been lost, and should be retransmitted. Thus, when multiple packets are lost from a single 
window of data, TCP New Reno can recover without a retransmission timeout, retransmitting 
one lost packet per round-trip time (RTT) until all of the lost packets from the window have 
been retransmitted. TCP New-Reno remains in Fast Recovery until all of the outstanding data, 
ever since Fast Recovery was initiated, are acknowledged [8]. This way the TCP New Reno 
sender avoids to retransmit all the CWND that contains the lost packets; it resends only the lost 
ones and eliminates the unnecessary retransmissions. Also, this approach enables TCP to better 
deal with the problem of multiple random data losses within the same CWND, as it does not 
decrease its data transmission rate after each lost packet. Instead, it decreases its data 
transmission rate only once at the beginning of the Fast Retransmit/ Fast Recovery phase. TCP 
New Reno stays in this phase until retransmitting all the lost data packets.   

TCP New Reno can recover from multiple losses, and is therefore more suited than TCP Reno 
for the mobile wireless environment, where multiple data packet losses are likely to occur 
during the same transmission window. However, during this recovery, the TCP New Reno 
sender retransmits only one packet per RTT, since it must wait for the partial acknowledgement 
from the receiver side as it does not know all the lost packets and the loss might be random (not 
burst). Consequently, when multiple losses occur, TCP New-Reno usually recovers after a 
considerable delay, which is still a major drawback [10]. 
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2.2.4 TCP SACK 

Traditional implementations of TCP use an acknowledgement number field that contains 
cumulative acknowledgement, indicating that the TCP receiver has received all of the data up to 
the indicated byte. A selective acknowledgement (SACK) option allows receivers to additionally 
report non-sequential data they have received. The SACK option is used within an 
acknowledgement packet to indicate which packets were received precisely [8] and thus allows 
the sender to deduce which packets had been lost. This option aims to speed up the 
retransmission of lost packets and avoids retransmitting the whole window of data. Adding 
SACK to TCP does not change the basic underlying congestion control algorithms. TCP SACK 
implementation preserves the properties of TCP Tahoe and TCP Reno of being robust in the 
presence of out-of-order packets, and uses retransmit timeouts as the recovery method of last 
resort. The main difference between the TCP SACK implementation and the TCP New Reno 
implementation is the behaviour when multiple packets are dropped from one window of data 
[8]. TCP SACK sender maintains a list of segments deemed to be missing (based on all the SACKs 
received) and sends new or retransmitted data when the estimated number of packets in the 
path is less than the congestion window. When a retransmitted packet is itself dropped, the 
SACK implementation detects the drop with a retransmission timeout, retransmitting the 
dropped packet and then slow-starting. TCP SACK exits Fast Recovery under the same 
conditions as TCP New Reno. Figure 2.5 demonstrates an example of TCP SACK option. 

 

 

 

 

 

(A) TCP SACK CONNECTION (B) TCP SACK OPTION 

 

FIGURE 2.5. EXAMPLE OF TCP SACK OPTION 

 

The SACK option of TCP will acknowledge the packets that have been correctly received and 
the sender will deduce the lost packets from the received SACK coming from the receiver side. In 
the above Figure, as an example, the receiver acknowledges that the packets from 2000 to 2500 
and those from 3000 to 3500 have been duly received. Therefore, upon receiving this 
acknowledgment, the TCP sender realizes that the packets between 1500 and 2000, as well as, 
those between 2500 and 3000 are lost. 

This algorithm improves the transmission of data packets over the connection, but on the 
other side, it complicates the calculation process at the sender side as it should retain a complete 
list of sequence numbers of all the transmitted data packets in order to deduce the numbers of 
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lost ones when needed. This complexity might affect the overall performance of TCP over the 
connection. 

2.2.5 TCP WESTWOOD 

Another way to improve the performance of TCP was to implement a bandwidth estimation 
algorithm as in TCP Westwood [11] variant. The bandwidth estimation algorithm opts to 
estimate the available bandwidth over the connection through measuring and averaging the rate 
of the returning acknowledgements. TCP Westwood then, adapts its data transmission rate 
according to the available bandwidth over the connection. This enhancement improves the 
performance of TCP over wireless data networks as it optimizes the usage of the available 
bandwidth. 

TCP Westwood is a sender-side modification of the TCP congestion window algorithm that is 
intended to bring performance improvements to TCP New Reno and TCP Reno in wired as well 
as wireless networks. In fact, there are two variants of TCP Westwood, one is based on TCP Reno 
and the other is based on TCP New Reno. Our explanation here, as well as, our study in this 
thesis is based on the latter. The improvement is also targeted to be more significant in wireless 
networks with lossy links. TCP Westwood [11] relies on end-to-end bandwidth estimation to 
identify the cause of packet loss (congestion or wireless channel effect), which is a major 
problem in TCP New Reno, and then adapts the CWND size accordingly. This loss cause 
identification is based on measured RTT values. 

When the pipe size, calculated by multiplying the estimated bandwidth (BWE) by the 
minimum RTT value (RTT min) is smaller than CWND, it is more likely that packet losses are due 
to congestion. This is because the connection is using a CWND value much higher than its share 
of pipe size, thus congestion is likely to be the cause of packet losses. On the other hand, when 
“BWE×RTTmin” > CWND, it indicates that wireless channel errors are more likely to be the cause 
of the packet losses. 

The key idea of TCP Westwood is to exploit TCP acknowledgement packets to derive rather 
sophisticated measurements as follows. First, the source performs an end-to end estimation of 
the bandwidth available along a TCP connection by measuring and averaging the rate of 
returning acknowledgements. Second, after a packet loss episode (i.e. the source receives three 
duplicate acknowledgements or a timeout) the source uses the measured bandwidth to properly 
set the congestion window and the slow-start threshold. By backing off to CWND and SSThresh 
values that are based on the estimated available bandwidth (rather than simply halving the 
current values as TCP New Reno does), TCP Westwood avoids overly conservative reductions of 
CWND and SSThresh; and thus resulting in achieving higher throughput. 

2.2.6 TCP VEGAS 

Another enhancement of TCP’s congestion control algorithm is the network congestion 
avoidance algorithm implemented within TCP Vegas [12]. TCP Vegas relies on measured RTT 
values of sent packets to extend Reno’s retransmission mechanisms. According to this 
measurement, the RTO value is updated. When a duplicate acknowledgement is received, Vegas 
checks to see if the difference between the current time and the timestamp recorded for the first 
unacknowledged segment (i.e. its RTT) is greater than the timeout value. If so, then it 
retransmits the segment without having to wait for three duplicate acknowledgements. Also, 
TCP Vegas uses RTT values to calculate the actual transmission rate in the network. Hence, by 
comparing this value with the expected throughput in the network, TCP Vegas decides how to 
adapt its transmission rate.  
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TCP Vegas still contains Reno’s coarse-grained timeout code as a fallback mechanism. Notice 
that the congestion window should only be reduced due to losses that happened at the current 
sending rate, and not due to losses that happened at an earlier, higher rate. In TCP Reno, it is 
possible to decrease the congestion window more than once for losses that occurred during one 
RTT interval. In contrast, TCP Vegas only decreases the congestion window if the retransmitted 
segment was previously sent after the last decrease. Any losses that happened before the last 
window decrease do not imply that the network is congested for the current congestion window 
size, and therefore, do not imply that it should be decreased again. This change is motivated by 
the fact that TCP Vegas detects losses much sooner than TCP Reno [12]. 

First, TCP Vegas sets “BaseRTT” to the minimum of all measured round trip times (RTT); it is 
commonly the RTT of the first segment sent by the connection, before the router queues 
increase due to traffic generated by this connection. If we assume that we are not overflowing 
the connection, then the “Expected” throughput is given by:  

BaseRTTWindowSizeExpected /  

Where, “WindowSize” is the size of the current congestion window, which we assume for the 
purpose of this discussion, to be equal to the number of bytes in transit. 

Second, TCP Vegas calculates the “Actual” sending rate. This is done by recording the sending 
time for a distinguished segment, recording how many bytes are transmitted between the times 
that segment is sent and its acknowledgement is received, computing the RTT for the 
distinguished segment when its acknowledgement arrives, and dividing the number of bytes 
transmitted by the sample RTT. This calculation is done once per round-trip time. 

Third, TCP Vegas compares “Actual” to “Expected”, and adjusts the window accordingly. Let
ActualExpectedDiff ! . Note that Diff is positive or zero by definition since “Actual> 

Expected” implies that we need to change “ BaseRTT ” to the latest sampled RTT. Also, TCP 
Vegas, defines two thresholds, “ "# $ ”, roughly corresponding to having too little and too much 

extra data in the network, respectively. When “ #$Diff ”, Vegas increases the congestion 

window linearly during the next RTT, and when “ "%Diff ”, Vegas decreases the congestion 

window linearly during the next RTT. TCP Vegas leaves the congestion window unchanged when 
“ "# $$ Diff ”. 

Intuitively, the farther away the actual throughput gets from the expected throughput, the 
more congestion there is in the network, which implies that the sending rate should be reduced. 
The "   threshold triggers this decrease. On the other hand, when the actual throughput rate 

gets too close to the expected throughput, the connection is not utilizing the available 
bandwidth. The #  threshold triggers this increase. The overall goal is to always keep between 
#  and "  extra bytes in transit. 

This enhancement improves the performance of TCP in term of throughput as it discovers the 
loss of data packets faster than the other variants and in turn recovers from losses faster, in the 
case of good estimation or measurement of the RTT value over the connection. But,  in case of 
wrong measurement of RTT values, as if the connection starts and there is already congestion 
over the network links, the calculation of the data transmission rate will be wrong and might 
cause a persistent congestion over the connection. In addition, TCP Vegas performs badly in case 
of route changes over the network. Actually, if the route changes over the connection and the 
measured RTT value increases, TCP will not be able to distinguish if that increase is due to 
congestion or due to route changes. This way, TCP will decrease its data transmission rate 
interpreting that increase as if is due to congestion. This action is considered as a waste of 
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bandwidth over the connection. Also, an important computational complexity is added for RTT 
and RTO calculations and adjustments at the reception of each acknowledgement.  

2.3 TCP WITHIN WIRELESS MOBILE NETWORKS 

As stated earlier, TCP had been initially designed in order to cope with congestion-related 
packet losses in wired data networks. However, nowadays the networks include more and more 
wireless links. In the following, we discuss briefly the problems of TCP performance within 
wireless mobile network environments, and the proposed solutions to overcome these 
problems. 

Wireless mobile networks are infrastructure networks that use wireless radio channels as the 
last hop connection. Cellular Networks, networks in which a mobile host is connected to the 
fixed network with the help of Base Stations, is the most common form of wireless networks. 
Even that this type of networks contains only one wireless link, the performance of TCP is highly 
affected. A key factor for that unsatisfactory performance is the wireless radio channel quality 
that can fluctuate greatly in time due to channel fading and user mobility, leading to a high 
variability of transmission time and delay as well as to data packet losses. Furthermore, the 
possibility to handoff from one base station to another may lead to sudden and high increase of 
data packets delay over the connection and a burst data packet loss episode. 

In addition to data packet losses due to the wireless channel inefficiencies, high fluctuations 
of RTT values over the connection may lead the TCP Retransmission Time-Out to expire. This 
will invoke the TCP sender to trigger its congestion control algorithm. This leads to TCP data 
packets retransmission; although that the retransmitted packet is not actually lost but simply 
delayed. As a result, TCP decreases its CWND to minimum and under-utilizes the available 
bandwidth unnecessarily. In addition, TCP sender consumes more energy to retransmit the 
considered to be lost data packets without need (redundant retransmission). 

Within wireless mobile networks, losses are often due to wireless link channel errors such as 
interference, variable RTT delays, or nodes’ mobility.  All the above reasons lead to TCP 
performance degradation in such environments as it was mainly developed to deal with 
congestion over wired networks and not other data packet loss types (such as those due to 
wireless radio channels). In order to improve the performance of TCP within such networks, 
many proposals were introduced. These solution proposals can be categorized as follows: 

- Split-connection approaches,  
- Link layer related approaches,  
- End-to-end approaches.   

The split-TCP [13] approach divides the end-to-end TCP connection between the mobile node 
and the corresponding node into two separate, independent connections with a proxy serving as 
a common point between the two connections. This proxy is usually located at the base station. 
The main idea in this approach is to isolate impacts of wireless link errors and variable RTT 
delays over it from the impact of the wired connection (mainly congestion in this second). 
Consequently, TCP congestion control, timeout and retransmission mechanisms in the wired link 
will not suffer from the fluctuating quality of the wireless radio channel. Even that this approach 
can optimize the wireless link performance, this approach introduces extra TCP protocol 
overhead over the connection (extra buffer required for each connection, and higher overall 
delay), which in turn causes performance degradation. This also, complicates the handoff 
process over the network. Also, the main idea of the split-TCP violates the end-to-end semantics 
of TCP. 
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Many other approaches, such as Snoop, [14] [15] was developed for networks with high 
wireless channel errors. In this approach, all the modifications are done at the base station side. 
The main idea of Snoop is very similar to that of split-TCP, snoop tends to hide and isolate the 
wireless channel errors and looses from the wired network, and avoids the frequent fast 
retransmit triggering at the other end of the TCP connection (the wired network). This action 
leads to faster recovery due to the local data packets retransmissions, and hence to better 
throughput performance than in the split-TCP solution. However, the problems of TCP 
performance degradation in case of nodes’ mobility are not treated or considered in this 
solution. 

The third approach proposed in order to enhance the performance of TCP within wireless 
mobile networks applies explicit loss notification (ELN) [15] messages to distinguish between 
congestion-induced and non-congestion-induced losses. However, the transmission of such 
messages leads to more computational complexity at the TCP node as it introduces more 
protocol overheads over the TCP connection. 

The Wireless Transmission Control Protocol (WTCP) [16] is an example of the end-to-end 
approaches. WTCP is an end-to-end TCP modification to improve its performance within 
wireless mobile network. In this variant of TCP, the detection of losses due to congestion is done 
at the receiver side through the measured inter-packet separation delay. Hence, most of the 
computations and calculations for the congestion control are done at the receiver side. Even 
that, WTCP shows the ability to detect and handle both loss types, the fact that most of the 
calculations are done at the receiver side increases the complexity of the approach and requires 
protocol modification at both sides (sender and receiver).  

All the above discussed solutions may give help to enhance the performance of TCP within 
wireless mobile networks where only the last communication hop is a wireless channel. 
However, if all the communication channels are wireless such as within wireless ad hoc 
networks, we expect that the performance of TCP would be dramatically influenced. In the 
following section, we discuss the main issues that may influence TCP performance within 
wireless ad hoc network environments. We also discuss some of the proposed solutions in order 
to improve its performance within such networks. 

2.4 TCP WITHIN WIRELESS AD HOC NETWORKS 

Wireless ad hoc networks are infrastructure-less networks that do not require pre-existing 
network configuration or a centralized administration. Wireless ad hoc devices are totally 
connected though wireless radio channels, which are considered as scarce resources. In such 
networks, nodes are independent and self-organized; each device in wireless ad hoc network 
can take the role of an end system, a server, a router, a gateway, or all of them at the same time. 
This behavior as well as the implied characteristics may lead to diverse performance issues as 
explained in the following. 

2.4.1 TCP PERFORMANCE ISSUES WITHIN WIRELESS AD HOC NETWORKS 

Wireless ad hoc networks inherit some of the wireless networks problems, more precisely, 
the wireless channel related problems. In addition, ad hoc networks suffer from other problems 
related to their specific characteristics, such as network partitions, route failures that would 
result from nodes mobility, node battery depletion, and multi-hop communications. Some other 
issues may also influence TCP performance. In order to improve TCP performance over wireless 
ad hoc networks, it must be able to distinguish and to recover from the new data packet loss 
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types those arise within such networks. The new challenges that TCP would confront within 
such networks are: wireless lossy channels, multi-path routing, network partitions, network 
topology and the surrounding environment, link failures, and power constraints. We will discuss 
these issues in the following. 

2.4.1.1 WIRELESS LOSSY CHANNEL 

Wireless channel errors (bit errors) cause packets to get corrupted and result in TCP data 
packets (segments or acknowledgements) losses. When acknowledgements do not arrive at the 
TCP sender within a certain amount of time (the Retransmission Time-Out or RTO), the TCP 
sender retransmits the segment, exponentially backs off its retransmission timer for the next 
retransmission, reduces its congestion control window threshold (SSThreshold), and closes its 
congestion window (CWND) to one segment. Frequent wireless channel errors lead to having 
continuously small congestion window at the sender side resulting in low connection 
throughput [17]. The appropriate behavior in such situation is to simply retransmit lost packets 
without shrinking the congestion window to avoid the delay and the energy consumed and in 
turn to increase the congestion window size. It is important here to mention that, in the case of 
CSMA/CA (802.11) based networks, there will be an error correction algorithm; meaning that 
not all the packets will be lost. In fact, some of them will be corrected and resent again correctly 
while other will not reach the destination. Furthermore, the CSMA/CA correction action 
introduces some delay in the network and in the mean time will waste some of the bandwidth 
resource. Obviously, the delay introduced will increase the RTT value resulting in poor TCP 
achieved throughput and also a certain energy waste (as ad hoc nodes are battery operated). 
This situation in ad hoc networks happens on each wireless link which increases the probability 
that a data packet does not reach the destination. 

2.4.1.2 MULTI-PATH ROUTING 

Some routing protocols implement multi-path routing approaches and maintain multiple 
routes between source and destination pairs, in order to minimize the frequency of route re-
computation or route discovery process. However, this may result in a significant number of out-
of sequence data packets arriving at the TCP receiver side. The TCP receiver generates duplicate 
acknowledgments that force the sender upon the reception of three duplicate acknowledgments 
those acknowledge the same packet, to invoke its congestion control algorithm [17]. This action 
leads to unnecessary retransmissions by TCP sender, resulting in bandwidth resource waste and 
high energy consumption.  

2.4.1.3 NETWORK PARTITIONS 

Wireless ad hoc networks may periodically get partitioned for several seconds at a time. If the 
TCP sender and receiver find themselves in different partitions, all the data packets will be 
dropped. Hence, TCP sender invokes its congestion control algorithm. If the network remains 
partitioned for an important amount of time relatively to the Retransmission Time-Out, the 
situation gets even worse because of phenomena called serial timeouts. A serial timeout is a 
condition wherein multiple consecutive retransmissions of the same segment are transmitted to 
the TCP receiver while it is disconnected from the sender side. All these retransmissions are thus 
lost. Since the retransmission timer at the sender side is doubled with each unsuccessful 
retransmission attempt (until it reaches 64 sec), several consecutive failures can lead to 
inactivity that might last for one or two minutes even when the sender and receiver get 
reconnected [17]. However, the most adequate solution here is to stop the data transmission (to 
avoid flooding the network with packets that cannot be delivered) until that the TCP sender get 
reconnected to the receiver. 
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2.4.1.4 TOPOLOGY AND ENVIRONMENT 

Where the nodes are located as well as the nature of their surrounding environment 
determine which nodes can contact each other and the amount of interference from other nodes 
[18]. If the nodes are located close to each other, there will be a greater chance that the data will 
not have to make as many hops as in a network where the nodes are further apart. It is clear that 
the energy consumption of a mobile node increases with the distance between the two 
communicating nodes. For that, it is better that the nodes communicate through multi-hop 
network. Also, networks with a dense concentration of nodes will experience more contention 
for the available capacity and hence more collisions and interference leading to high TCP data 
packet losses and thus frequent TCP sender congestion control algorithm triggering. In addition, 
the environment affects TCP performance in a similar way. Actually, walls and other objects that 
hinder radio transmissions will lower the effect of high node density. 

2.4.1.5 LINK FAILURES 

In case of nodes’ mobility, each node might move out of the communication range of old 
neighbors or into the communication range of new ones. This leads to break the established 
routes (link failures) and also to trigger the establishment of new ones within the network. The 
implemented ad hoc routing protocol is the one in charge of recovering from the link failure 
allowing maintaining the communication session between the involved end points. Usually, a 
broken route results in performance degradation, since no data can be exchanged during the 
time where the new route is not yet available. To overcome this problem the network layer 
should find a new route as quickly as possible to resume the dropped communication. In fact, 
high mobility is not always a bad thing for ad hoc networks. Some authors have observed that 
mobility can increase performance by distributing traffic more evenly over the network [19]. 
The problem with TCP in the case of link failure situation is that after resuming the data 
communication session, TCP sender starts from the Slow-Start phase, with minimum CWND 
threshold over the links. Indeed, during a link failure multiple data packets can be lost in a 
bursty fashion. TCP sender shrinks its CWND to minimum considering that the loss is due to 
congestion. However, in case of link failure, the new discovered route might have higher link 
capacity compared to the old lost one. Thus, TCP sender will waste the available bandwidth 
(which is a scarce network resource) over the connection. 

2.4.1.6 POWER CONSTRAINS 

Within wireless ad hoc networks, the devices are independent and battery operated. Thus, in 
order to ensure the network connectivity, it is obvious to increase the network nodes lifetime as 
long as possible. Increasing the nodes’ battery lifetime can be done through minimizing the 
node’s energy consumption. In addition, losing a node due to battery depletion leads to broken 
communication sessions (link failure) even if the node is not the sender or the receiver side of 
that session. This is because each node within the network forwards the data packets of its 
neighbors when it participates to multi-hop path. Thus, we get the same effect on TCP 
performance as in link failure case. 

2.4.2 TCP PROPOSED ENHANCEMENTS FOR WIRELESS AD HOC NETWORK 
ENVIRONMENT 

All the above discussed factors affect the performance of TCP within wireless ad hoc 
networks in different ways, but they are all having a great influence on both the TCP connection 
throughput and may also have an influence on the node’s energy consumption. Let us now 
discuss the main TCP enhancement approaches to improve its performance within wireless ad 
hoc networks. 
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There are many proposals introduced in order to improve the performance of TCP within 
wireless ad hoc networks. Some proposals dealt directly with enhancing TCP, others dealt with 
other OSI layers such as network layer and link layer. Also, some other proposed solutions that 
improved the performance of TCP through cross layer interactions. We discuss in the following 
the main proposed solutions to improve the performance of TCP within wireless ad hoc 
networks while dividing them into two categories:  

1. TCP enhancements at the transport layer proposals. 
2. TCP enhancements through cross layer proposals.  

There are also, many other mechanisms that opt to enhance the performance of TCP within 
such environments and to help distinguish between different data packet loss causes over the 
connection at other OSI layers, such as network layer proposals. These proposals tend to deal 
with link failures and link layer proposals to deal with wireless channel related problems over 
the connection. However, these proposals are out of the scope of this thesis as we tend to 
enhance the performance of TCP without modifying the lower layers. 

2.4.2.1 TRANSPORT LAYER SOLUTIONS 

Many proposals that only deal with the transport layer were introduced in order to enhance 
TCP performance within wireless ad hoc networks. Fixed-RTO and TCP DOOR are examples of 
those proposals. We discuss here the main idea of both mechanisms and their issues within such 
networks. 

 Fixed RTO [20] is a sender side based mechanism that does not imply feedback messages 
over the connection. This mechanism is able to distinguish between link failure induced and 
congestion induced data packet losses. When two consecutives retransmission timeout 
expiration occurs, the TCP sender interprets the loss as a link failure induced loss. Hence, it 
retransmits the unacknowledged data packet but keeps the RTO value un-changed. Remind 
having the same situation in the case of standard TCP implementation leads to using 
“exponential” back-off algorithm. In Fixed-RTO, the RTO values remains fixed until the failed link 
is recovered and the retransmitted data packet is acknowledged. The assumption that any two 
consecutive retransmission timeouts are the exclusive results of link failures requires more 
investigations, as it may be also the case with persistent network congestion. In addition, this 
solution takes into consideration only two of the wireless ad hoc network data packet loss cases, 
and ignores the wireless channel related losses which are also common within such 
environments. 

TCP Detection of Out-of-Order and Response (TCP DOOR) [21] is an end-to-end TCP 
enhancement solution that does not imply any intermediate nodes cooperation. TCP DOOR deals 
mainly with out-of-order data packets over the connection. The reception of out-of-order data 
packets is interpreted as an indication of link failure over the connection. In order to detect the 
out-of-order data packets, another mechanism is needed, either at the TCP sender or receiver 
side. The TCP sender side based mechanism profits from the non-decreasing property of the 
acknowledgements’ sequence number to detect the out-of-order data packets. In case of 
duplicate acknowledgements arriving at the sender side, they all have the same sequence 
number. However, this is not enough for the TCP sender to detect the out-of-order data packets. 
Hence, the TCP sender uses a one byte option that is added to acknowledgement packets and 
called Acknowledgement Duplication Sequence Number (ADSN). The ADSN option is 
incremented and transmitted with each duplicate ACK. On the other side, when implementing a 
receiver side based mechanism to detect the out-of-order data packets; the TCP receiver 
requires an additional two-bytes TCP option that is called TCP Packet Sequence Number (TPSN). 
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The TPSN option is incremented and transmitted with each transmitted TCP data packet 
(including retransmitted packets). When the TCP receiver detects out-of-order data packets, it 
uses a specific option bit within the acknowledgement packet header to notify the TCP sender. 
At the reception of this notification at the TCP sender side, it disables its congestion control 
algorithm, and enters into congestion avoidance phase. The mechanisms implemented within 
TCP-DOOR take into consideration only the out-of-order data packets, and ignore other data 
packet loss causes over the wireless ad hoc network. Also the modifications implemented with 
the TCP data packet header may cause some incompatibility problems with other TCP existing 
variants in case the sender or receiver does not support TCP-DOOR. 

2.4.2.2 CROSS LAYER SOLUTIONS 

Cross layer proposed solutions are mainly based on the explicit exchange of notification 
messages between the TCP sender and receiver. Here, we introduce some of these proposed 
solutions. 

TCP Feedback (TCP-F) [22] is a feedback based approach that deals with route failures within 
wireless ad hoc networks. This approach helps the TCP sender to distinguish losses due to route 
failures from those due to network congestion. When the TCP node’s routing agent detects the 
disruption of a route over the connection, it explicitly sends a Route Failure Notification (RFN) 
packet to the TCP sender. At the reception of the RFN packet, the TCP sender enters into a 
snooze state: stops data packet transmission, and freezes all its connection variables (e.g. timers 
and congestion window size). The TCP sender stays in this snooze state until that the routing 
agent recovers from the link failure. In this case, the routing agent sends a Route Re-
establishment Notification (RRN) packet to the TCP sender side. When the TCP sender receives 
the RRN packet, it leaves the snooze state and resumes data packet transmission using the 
previous sender window and timeout values. In order to avoid that the TCP sender stay blocked 
in the snooze state, it triggers a route failure timer at the reception of a RFN packet. This way, 
when this timer expires the TCP sender leaves the snooze state and triggers its congestion 
control algorithm. It is clear that this approach can only be used in the specific case of ad hoc 
network using a reactive routing approach. 

Another TCP feedback based approach is the Explicit Link Failure Notification technique 
(ELFN) [4]. This one had been designed in order to distinguish the cause of data packet loss and 
to avoid a wrong interpretation of TCP as if it is due to network congestion.  To do so, ELFN uses 
a real interaction between TCP and the ad hoc routing protocol. This is done through informing 
the TCP sender of the route failure by messages like “host unreachable” Internet Control 
Message Protocol (ICMP) message. Then, the TCP sender disables its retransmission timers and 
enters into a “standby” mode. During the standby period, the TCP sender probes the network to 
check if the route is recovered or not. When the TCP sender receives the acknowledgment of the 
probe packet, it leaves the standby mode, resumes its retransmission timers, and continues its 
communication session. Feedback messages consume nodes’ as well as network resources. As 
for node’s resources, sending feedback leads to supplemental energy consumption. Using 
feedback messages increases the TCP protocol messages overhead over the connection and 
consumes part of the available bandwidth. In addition, some researches [23] [24] show that 
ELFN performs badly within wireless ad hoc networks (worse than the standard TCP 
implementation) especially in case of high network loads (for example in case of 25 TCP 
connection over the network). 

Ad hoc Transport Control Protocol (ATCP) [17] also, employs network layer feedback 
messages. ATCP tries to deal with both wireless channel related problems and link failure 
problems. The TCP sender can switch between four different connection states according to the 
cause of the data packet losses: normal state, persist state, congestion control state or retransmit 
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state. In this proposal, a layer called ATCP is inserted between the TCP and IP layers of the TCP 
sender side. At the beginning of the connection, ATCP is always in the normal state. ATCP listens 
to the network state information provided by the ECN messages [25] and ICMP “Destination 
Unreachable” message; then ATCP chooses the appropriate connection state to be in. At the 
reception of a “Destination Unreachable” message, TCP sender perceives that there is a link 
failure over the connection and enters into the persist state. During this state, the TCP sender 
stops data packets transmission until finding a new route towards the destination (this is done 
by probing the network). ECN is used in order to notify the TCP sender about network 
congestion situation over the TCP connection. When the TCP sender receives the ECN packet, it 
triggers its congestion control algorithm without waiting for the retransmission timeout timer to 
expire. This is called the congestion control state.  Wireless channel induced data packet losses 
are detected through the reception of three duplicate acknowledgements. ATCP then switches to 
the persist state and quickly retransmits the lost packet from TCP’s buffer (this is known as the 
retransmit state). After receiving the next ACK, ATCP leaves the persist state to the normal state. 
Even that ATCP show better performance than standard TCP implementation, the feedback 
messages used within ATCP have the same drawbacks as in the above mentioned ELFN 
mechanism, especially when implemented within high load wireless ad hoc networks. This leads 
to high TCP protocol messages overhead and more energy consumption at the TCP nodes. 

2.4.2.3   DISCUSSION 

From the above discussed TCP enhancements, we notice that each proposed solution opts to 
overcome one specific data packet loss problem over TCP connections (a single point of view). 
Some were using feedback messages and others not. Results show that, the solutions that 
implement feedback messages over the connection enhance TCP performances better than the 
others. However, using feedback messages over the connection is a network resources 
consuming algorithm, especially the TCP nodes’ energetic resources (nodes’ batteries). 

Hence, we argue in this thesis the need of a new TCP variant for wireless ad hoc network 
environment that adapts the multi-point of view nature of packet losses within such networks. 
This variant should optimize the performance of TCP within such networks, in both terms of 
throughput and energy consumption, taking into consideration all the common data packet loss 
causes within such environment. In addition, in order to avoid resource (bandwidth and energy) 
waste, we aim at proposing a TCP variant that does not use any additional feedback in the 
network.  

2.5 SUMMARY OF TCP EVOLUTION AND NEXT STEPS 

TCP was developed in order to deal with data packet losses within wired networks. We found 
that, within wired networks, data packet losses are mainly due to congestion. From which comes 
the name of its main algorithm: Congestion Control Algorithm. For many decades, TCP proved to 
be highly reliable for data exchange over wired links. Its reliability through the use of 
acknowledgments insures data integrity and success of delivery at the receiver side. This gives 
TCP its popularity and helps developing applications that are compatible with it. As a new kind 
of data networks are introduced, TCP remains the most popular transmission protocol to be 
used for data exchange over their links.  

Many researches [26] [4] [3] had been conducted to show the performance of TCP  
within wireless and ad hoc networks. All of them had proved that the performances of  
TCP degrade highly within such networks. This is due to the fact that TCP was not designed  
to deal with the new causes of data packet losses emerged within these new networks.  
The main problem here is that TCP always reacts to data packet loss, as if it was due to  



24 

 

network congestion. As we mentioned above, within wireless and ad hoc networks,  
we have more than one possible cause for data packet losses. Dealing with all models  
of data packet loss as if it was due to congestion, leads to TCP performance degradation.  
We will see later that each cause of data packet loss requires a particular reaction of TCP  
in order optimize TCP performance. 

Many TCP variants had been developed, in order to enhance its performance within  
both wired and wireless infrastructure networks. We have seen also, that the challenges  
that TCP encounter within wireless ad hoc networks are more complicated than  
those found within wireless infrastructure networks. This is due to the fact that wireless  
ad hoc networks are totally based on links that are wireless. Thus, the problems that can  
be found over the last hop of wireless infrastructure networks are multiplied over  
the many wireless channels of the ad hoc network. 

According to the above discussion, we note that in order to make TCP capable to deal  
with any type of data packet loss over the connection (especially wireless links), it  
must distinguish between different types of data packet loss causes. Congestion-induced  
and non-congestion induced or wireless related losses. Many researches dealt with this  
problem and many proposals where done in order to define this classification concept.  
But all these researches were conducted for wireless infrastructure networks; where only  
the last hop is the wireless link. 

Within wireless ad hoc networks, we have a new cause for data packet losses that  
might be due to nodes’ mobility or energetic resources depletion. As stated before, in  
ad hoc networks, each node relays data packets for the other nodes. Thus, when an  
intermediate node moves out of the communication range of other nodes, the  
communication session between the communicating end points may be interrupted  
or closed. Also, the same scenario may be repeated if the intermediate node runs out  
of battery. We note here the difference between wireless infrastructure networks and  
wireless infrastructure less networks (ad hoc networks) from the point of view of  
nodes’ availability.  For wireless infrastructure networks, the host or the node is one  
of the communicating end points and does not take part in the communication of other  
nodes or sessions within the network. This means that if the node disappears, only  
that communication session will be affected and not the part of the network that is  
concerned by other communication sessions, which is the case of ad hoc networks. From  
where, comes the importance of keeping the ad hoc networks’ nodes on line as long as  
possible in order to maintain the network connectivity and keep the communication  
sessions. Also, that results in a new type of data packet losses that is called link-failure-induced 
loss. Link failure-induced loss can be either the result of nodes mobility or energetic  
resources depletion. 

Thus, in order to get the best adapted TCP variant for wireless ad hoc network that optimize 
both network and nodes resources, we have to take into consideration two points: 

1. Maximizing the utilization of wireless available bandwidth. 
2. Minimizing the overall energy consumption of the networks nodes. 

2.6 CONCLUSION 

From the evolution history of TCP and the advances that accompanied it, we can say that  
TCP may be suitable for any kind of networks as soon as it is adapted to deal with  
its specifications. Concerning wireless ad hoc networks, we also conclude that TCP still needs  
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to be modified in order to deal with different data packet losses that can be found within  
such networks. The main key in this modification will be the ability to distinguish between  
the different data packet loss causes over the connection and the ability to take the  
most appropriate action to recover from that loss taking into consideration the optimization  
of both network and node resources. 

Proposing a TCP variant that allows achieving this goal is the final aim of this thesis. All the 
contributions that will follow are in order to reach this final aim. 
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CHAPTER 3. SEDLANE: SIMPLE EMULATION OF DELAYS AND 
LOSSES FOR AD HOC NETWORK ENVIRONMENT 

3.1 INTRODUCTION 

Wireless ad hoc network consists of independent nodes that communicate with each other 
through wireless radio channels with no need for a fixed network infrastructure or a centralized 
administration. Due to its specific nature, many researches had been performed in order to 
study wireless ad hoc networks performance. Consequently, new network protocols and 
applications were introduced. However, it is important to evaluate these new protocols and 
applications within wireless ad hoc network environment. Generally, the following three 
approaches can be used to carry out this evaluation: 

 !"#$%&$'(!)!*+)%!,+-,-bed for wireless ad hoc networks with the desired network conditions, 
protocols and applications. Although that this approach is very realistic, it is expensive to setup. 
Moreover, the fact that the experiments are not reproducible does not make it always the best 
choice. Actually, no researches were done in a scale beyond a dozen of nodes. 

 !.-$'(!)!network simulator, such as Network Simulator version 2 (NS-2) [27]. Simulating a 
network is always easier than constructing a real test-bed. However, the simulator traffic is 
generated by traffic models that sometimes do not match real applications behavior. Also, some 
performance parameters cannot be evaluated through simulations (e.g. node related 
performance parameters such as CPU usage and computational energy consumption). 

 !/0#%),$1'!$-!)!2103*10$-+!4+,5++'!,6+!,51!)33*1)26+- above. Emulators are a scalable, 
cost-effective solution that can offer controlled and reproducible network configurations for test 
and evaluation. 

Emulation is considered both as lower cost and a more realistic approach to test and evaluate 
network applications and protocols. Indeed, emulating wireless ad hoc networks and taking into 
consideration their specific characteristics such as nodes’ mobility nodes and energy constrains 
could be of high interest. Therefore, one of our major goals is to build such emulator that allows 
for an easy evaluation of end-to-end applications and protocols in wireless ad hoc networks.  

The rest of this chapter is organized as follows: we start by discussing the motivation behind 
our work, and then we review some of the existing ad hoc network emulators and discuss their 
advantages and disadvantages. After, we provide a brief background of Dummynet and Network 
Simulator (NS-2) tools. Then, we present SEDLANE, our emulation tool, and discuss its main 
algorithms and operation modes. After discussing all the details of SEDLANE, we validate its 
functionality using a test-bed and show and analyze the obtained results.  Finally, we conclude 
our work in this chapter and give some ideas for future work. 

3.2 MOTIVATION AND PROBLEM STATEMENT 

TCP throughput can be calculated using both RTT delay and data packet loss rate over the 
connection. Floyd et al. [28] and Ott et al. [29] propose a model to estimate the throughput of a 
TCP connection under known delay and loss conditions as follows (equation 3.1): 
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Where: TCPr  is the TCP connection throughput, M  is the maximum packet length, & is the 

round trip time (RTT) of the connection and l is the average loss measured during the lifetime of 
the connection. From such a model, we can conclude that TCP performance depends mainly on 
RTT values and loss rates over the connection. Hence, in order to evaluate the performance of 
TCP variants or applications and protocols running over them, we can use an emulator that 
manipulates RTT and loss values according to realistic network performance scenarios. 

Our goal is to propose a simple emulator that helps in evaluating new wireless ad hoc 
network applications and protocols running over TCP. From this perspective, we characterize a 
useful wireless ad hoc network emulator by the following features: 

 !7$03%+!)'&!+)-8!,1!$03%+0+',9 

 !:1+-!'1,!*+;#$*+!)'8!-3+2$<$2!1*!+=3+'-$>+!'+,51*?$'( hardware, 

 !@6+!experiments must be controlled and repeatable, 

 !@6+!)4$%$,8!,1!use non-complex (easy to extract) characteristics of the connection (such as 
loss and delay values) to emulate multiple wireless ad hoc network configurations and 
parameters (such as ad hoc routing protocols, nodes’ mobility, and connection throughput), 

 !/0#%),$'(!0#%,$-hop wireless ad hoc network of any size using a small number of physical 
machines. 

In this chapter, we propose a new wireless multi-hop ad hoc network emulator that is able to 
emulate wireless ad hoc network environments of any scale using only small number of physical 
machines (even only one) and two of the connection’s characteristics (RTT values and Losses). 
We developed a user friendly version of SEDLANE in order to facilitate its usage (Appendix ONE: 
SEDLANE Available V).  If we take into consideration that most network experimentations begin 
with simulations, it would be useful to extend the simulation results beyond the scope of the 
simulator’s capabilities by using an emulator that gives the same network circumstances 
(through the network simulator trace files). Since it is easier to control the network 
environment using a simulation tool, we profit from this advantage by generating the desired 
scenarios within wireless ad hoc network environment using NS-2 as a network simulation tool. 
Then we inject the trace files into Dummynet as a traffic shaping tool to apply the same effects 
on a real traffic scenario, as if we construct a real multi-hop wireless ad hoc network 
environment. In this way, we obtain a Simple Emulation of Delays and Losses for Ad Hoc 
Networks Environment (SEDLANE). SEDLANE allows for emulating a multi-hop wireless ad hoc 
network of any scale in a virtual way and with any mobility scenario without the need of 
physically moving the ad hoc nodes. SEDLANE does not need any additional knowledge of new 
emulating tools. It uses the well known and freely available network simulation (NS-2) [27] and 
traffic shaping (Dummynet) [30] tools. Additionally, it is an inexpensive tool and does not need a 
special hardware setup. This tool enables us to test the performance of network protocols and 
applications (transport layer and above) at the end points of any wireless ad hoc network 
(emulated by SEDLANE). Our aim is to test the end-to-end nodes’ performance that cannot be 
obtained through simulations, such as hardware-related parameters (i.e. computational energy 
cost at end points). SEDLANE allows for evaluating the tested applications when running in real 
situations. The entire wireless ad hoc network environment is emulated using only one machine 
(e.g. a particular machine installed in the middle of the two communicating end points; or even 
one of the communication end-points that can also play this role). SEDLANE emulates network 
nodes’ mobility, ad hoc routing protocol, and TCP connection throughput through RTT values 
(delays) and data packet losses within the network. 
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The objective of this chapter is to demonstrate that such emulation tool is capable of 
emulating effectively the end-to-end delays and data packet losses of a wireless ad hoc network. 

3.3 RELATED WORK 

In this section, we review the most known wireless and ad hoc networks emulators, in order 
to find the one that meets our needs. Portable real-time Emulator (PoEm) [31] is a TCP/IP-based 
real-time MANET software emulator that is developed for testing and evaluating MANET routing 
protocols. PoEm works in a client/server structure model and can be run over any hardware 
platforms providing that they are connected through TCP/IP connections. Each client is 
represented as a Virtual MANET Node at the server. Several clients can be connected to the 
server to build an emulated network. PoEm includes multi-radio environment emulation. In 
order to imitate a real-time MANET environment, PoEm’s emulation server receives packets 
from emulation clients and then relays them to the corresponding clients according to the 
emulated network topology configuration. PoEm is one of the few emulators that support multi-
radio MANETs environment by using the channel-ID indexed neighbor tables. Nevertheless, the 
structure of the emulator (as server/client architecture) requires many physical machines to be 
used in order to build the emulated architecture. Thus, the higher the number of nodes to be 
emulated the more complex and expensive the structure becomes. 

User Mode Linux (UML) [32] is a system that can be used for emulating wireless networks. It 
uses several independent Linux instances each of them running an adapted version of a 
complete Linux kernel in user mode. It provides a shared network environment through the 
base Linux system.  In [33] the authors state that, UML emulation performance is severely 
reduced when used to create wireless ad hoc network emulations. This is due to the fact that 
UML runs in user mode and privileged operating system functions must be emulated by the 
underlying kernel running on the real hardware. This means that context switching within the 
virtual UML take up to 100 times longer than on a standard Linux system. In addition, UML 
offers only a virtual Ethernet interface and not a virtual WLAN wireless interface (i.e. 802.11b 
interface). UML itself emulates only a single wireless node. To emulate an entire network, a 
central controlling instance is required to monitor and control all UML instances. Mobility 
Emulator (MobiEmu) [34] is one of such central control solutions that emulate a basic wireless 
network based on UML. MobiEmu have a separate physical machine for each emulated node. 
These limitations made UML and MobiEmu non-scalable. 

 ModelNet [35] was initially developed for testing large-scale distributed services for wired 
wide-area network environments. ModelNet architecture is composed of Edge Nodes and Core 
Nodes. Edge Nodes in ModelNet can run arbitrary architectures and operating systems. They run 
native IP stacks and function in the way they would in real environments with the exception that 
they are configured to route IP traffic through ModelNet cores. Whereas, Core Nodes run a 
modified version of FreeBSD in order to emulate topology-specific hop-by-hop network 
characteristics. To decrease the number of edge machines required for large-scale evaluations, 
ModelNet architecture employs Virtual Edge Nodes (VNs). VNs enable the multiplexing of 
multiple application instances on a single edge machine, with each instance getting its own 
unique IP address. ModelNet edge machines use internal IP addresses (10.*), thus the number of 
interfaces that can be multiplexed onto an edge node is not limited by IP address space 
limitations, but rather by the amount of computational resources (e.g. threads, memory) that a 
target application uses. ModelNet configures all VNs to route their traffic through a particular 
ModelNet core.  

MobiNet [36] is another emulator that has a similar architecture to that of ModelNet. 
MobiNet’s architecture is composed of edge nodes and core nodes. The edge nodes support a 
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variety of platforms and operating systems. As in ModelNet, MobiNet edge nodes host multiple 
virtual nodes (VNs) to allow for large-scale emulations. MobiNet core nodes emulate wireless 
network behavior at multiple layers while eventually routing packets to the edge node hosting 
the destination VN. MobiNet incorporates mobile wireless ad hoc network characteristics (i.e. 
nodes’ mobility behavior, routing module, and MAC layer collisions). Although the number of 
physical devices required in ModelNet and MobiNet is reduced, and the platform seems to be 
well developed for mobile wireless ad hoc environments emulation, its setup remains complex. 

Mobile Network Emulator (MNE) [37] uses a static network infrastructure to interconnect 
devices. Each device has two interfaces: one act as a mobile emulation control channel while the 
other is used for the emulated wireless network. The latter can be a wireless interface, allowing 
for some lower layer effects (such as collisions) to be taken into account as well. Information 
about topology changes is sent through the control channel, causing the nodes to set or remove 
IPtables-rules accordingly; similar to the way it is done in MobiEmu. The main problem of this 
approach is that it still needs a separate device for each emulated wireless host and thus does 
not allow for emulating large ad hoc networks. 

Emulation of Mobile WIreless Networks (EMWIN) [38] improves the issue with the number 
of physical machines by allowing each node to have several network interfaces, each acting as a 
separate wireless node. EMWIN provides emulation of some MAC layer effects by introducing an 
additional emulated MAC (eMAC) layer. Even if the number of the required physical machines is 
reduced, it remains high. So, this approach is still impractical. Although this tool offers some 
interesting features, its scalability remains limited. 

Network Emulator for Mobile Ad-Hoc Networks (NEMAN) [39] can emulate a relatively large 
scale, up to hundreds of nodes, wireless network using a single physical machine. Using ns-2 
scenario descriptions; NEMAN is able to control the physical connectivity between virtual 
mobile nodes. NEMAN uses Open Link State Routing Protocol (OLSR) [40] in order to establish 
and maintain the IP layer of the emulated network. NEMAN can be used to develop new ad hoc 
networks protocols and applications (such as SKiMPy [41]). In addition, the developed code can 
be easily deployed on wireless devices. Furthermore, NEMAN’s architecture components can be 
run in the user space of the Linux kernel; root-privilege is only needed when configuring the 
virtual network interfaces. For its performance, NEMAN suffers from a degradation of 
performance with high number of neighbors that are directly connected and be turned on at the 
same time. Also, the GUI’s performance drastically degrades as the total number of emulated 
nodes and active links increase. 

Wireless Ad-Hoc Network Emulation Using Microkernel-Based Virtual Linux System [42] 
uses multiple Linux instances running on top of a modified microkernel. A special multiplexer 
component is implemented in order to interconnect between the Linux instances and the 
physical networks. Controlling the network connections between different instances helps 
emulating node movement and error conditions within the network. The presented system for 
mobile wireless ad hoc network can emulate multiple nodes using a single physical node, and 
consume significantly less resources than other approaches based on UML. Using the Fiasco1

                                                             

1 Fiasco is a second-generation microkernel that concentrates on only implementing the most basic 
operating system functionality, leaving advanced aspects to server modules running in a non-privileged 
system mode. 

 
[43] microkernel system, which is a descendant of the L4 microkernel development [42], 
improves the system’s performance. Using this system helps emulating mobile wireless ad hoc 
networks by utilizing a set of Linux instances on top of a L4 microkernel, and allows wireless 
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network connection conditions modeling as well as error injection with varying levels of details. 
However, the proposed system provides only coarse grain emulations. 

Scenario Driven Network Emulation (SDNE) [44] was developed to help developing  
and testing the Conference Controller Architecture (CCA2

Table 3.1

) without real users connecting 
through real networks. It emulates both network and users that are engaged in a multimedia 
conference. SDNE configuration is based on a scenario organization module that is composed  
of: (i) a map file that describes the physical area under emulation, and (ii) configuration script 
that describes the emulation scenario. SDNE can emulate different mobility patterns for  
the wireless nodes, and their effects on the connection behavior. The map files that are used  
in the system are difficult to produce; trial and error process is needed to find the most suitable 
map. Also, traffic shaping is performed only on the outgoing packets, which adds to system 
complexity in order to perform traffic shaping over incoming packets. Other emulation tools also 
exist in the literature [45] [46].  

 summarizes the main characteristics of most common wireless and ad hoc network 
emulators discussed in the Related Work section. 

 

PoEm UML MobiEmu MobiNet MNE EMWIN NEMAN
Micro kernel-

based
SDNE

Low costs  x x x x  x   

Scalability x     x x   

Portability x x x x x x x   

Routing x  x x x  x  x 

Simplicity      x x   

Mobility x x x  x x  x x 

User - GUI x  x x x  x   
 

TABLE 3.1.  DIFFERENT AD HOC NETWORKS EMULATORS CHARACTERISTICS 

From the table above, we can conclude that none of the presented emulator tools answers 
our needs. Furthermore, none of the emulation tools presented above emulates an ad hoc 
network taking the TCP connection characteristics into consideration. 

3.4 BACKGROUND 

In this section, we describe briefly, the main tools used to design and implement our 
emulator SEDLANE, both Dummynet [30] and NS-2 [27]. 

                                                             

2 CCA is a framework that is designed to support interactive multimedia conference users connecting 
from a diverse range of network connection types. 
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3.4.1 DUMMYNET 

Dummynet is a traffic shaping tool that has been originally designed for testing networking 
protocols [30]. Through Dummynet, we can enforce delays, packet losses, queue size, and 
bandwidth limitations.  

Figure 3.1 illustrates the main function of Dummynet. Dummynet is entirely controlled by the 
system’s ipfw (IP Fire-Wall) commands and a set of sysctl (System Control) variables. The ipfw 
commands help the user to define the rules to be applied, by Dummynet, on the packets crossing 
a particular network interface on its input or output. Unlike many other traffic shaping packages, 
Dummynet has a very little overhead. All processing is done within the kernel and no data 
copying involved in moving packets through pipes. Dummynet implements the concept of pipes, 
which are defined as a communication channels between the source and the destination. It is 
capable of handling thousands of pipes. Each packet will be manipulated according to the rules 
associated with each pipe (communication channel), and a packet can undergo several rules. We 
can use the same command to configure different network parameters, such as bandwidth, 
delay, queue size, and packet loss. For more details about Dummynet configurations and control, 
please refer to [30]. 
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FIGURE 3.1. THE PRINCIPLE OF DUMMYNET OPERATION 

 

Our decision to use Dummynet was based on the fact that, Dummynet helps implementing 
data packet losses and delay constraints efficiently within the system’s kernel, and with 
minimum processing overhead. 

3.4.2' NETWORK SIMULATOR – VERSION 2 

Network Simulator version 2 (NS-2) [27] is an open source simulation tool that is used to 
simulate a wide range of data networks, wired and wireless data networks. NS-2 provides 
substantial support of simulating different TCP variants, many routing protocol, and multicast 
protocols over wired and wireless networks.  

 NS-2 is built in C++ and provides a simulation interface through OTcl, an Object-oriented 
Tool Command Line. The user describes a network topology by writing OTcl scripts, and then 
the main ns program simulates that topology with the specified parameters. 

3.5' SIMPLE EMULATION OF DELAYS AND LOSSES FOR AD HOC NETWORKS 
ENVIRONMENT (SEDLANE) 

The main idea of SEDLANE is to configure the Dummynet pipes (defining rules) using the  
NS-2 trace files (cf. Figure 3.2). SEDLANE uses the NS-2 TCP trace files to identify different data 
packet classes. This is done by gathering the packets that have similar RTT values. Then, 
SEDLANE dedicates one pipe, or communication channel, for each group of packets. Packet loss 
percentage can be either calculated; from the NS-2 TCP trace file or NS-2 standard trace file; and 
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then applied to Dummynet pipes. Hence, according to the identified classes of packets, RTT 
values, and loss rates that are distributed among classes, SEDLANE dynamically generates the 
Dummynet rules to be applied on data packets. The different algorithms used by SEDLANE are 
described below. 
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FIGURE 3.2. THE PRINCIPLE OF SEDLANE OPERATION 

 

3.5.1' SEDLANE OPERATION MODES 

We have two operation modes in which we can run SEDLANE: Simultaneous and Sequential. 
The choice of using either depends on the user’s experimentation methodology. We will show in 
the evaluation study the advantages of each of these modes. 

3.5.1.1' SIMULTANEOUS OPERATION MODE 

 Dummynet, by default, configures the communication channels (ipfw pipes) simultaneously, 
meaning that it configures all the communication channels at once (in parallel).  In simultaneous 
operation mode, SEDLANE follows the default operation mode of Dummynet, and configures all 
ipfw rules (Dummynet communication channels) at once, assigning each pipe a different 
probability (calculating probability values will be explained later). SEDLANE operates in 
simultaneous mode by default. This mode reflects the normal operation mode of the system’s 
ipfw.  Figure 3.3 describes this operation mode.  
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FIGURE 3.3. SEDLANE SIMULTANEOUS OPERATION MODE 

 

As can be shown in the Figure, using simultaneous operation mode applies all the ipfw rules 
without time constrains. Thus, if the user needs to emulate an ad hoc network for a time greater 
than that of the simulation scenario, SEDLANE’s simultaneous mode will be the right choice. This 
constitutes the main advantage of this operation mode.  

3.5.1.2' SEQUENTIAL OPERATION MODE 

In the sequential operation mode, as shown in Figure 3.4, SEDLANE configures only one ipfw 
rule at a time. Each rule will be flushed after a certain “lifetime” (the time during which the 
simulated connection remained at a particular RTT values range) before a new rule (with a new 
average RTT and loss values) is configured. The “lifetime” of each rule, known also as Sequential 
Delay, is extracted from the NS-2 TCP trace file. Each rule will have a different lifetime 
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corresponding to that in the NS-2 TCP trace file (i.e. the time during which RTT values stays 
close to an average value). The algorithm used to calculate the sequential delay values from the 
TCP trace file will be explained later. In this operation mode, SEDLANE tries to emulate the 
performance values exactly as extracted from the NS-2 TCP Trace file, and respecting the time of 
the simulation scenario. 
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FIGURE 3.4. SEDLANE SEQUENTIAL OPERATION MODE 

3.5.2' SEDLANE FUNCTIONAL ARCHITECTURE AND ALGORITHMS 

SEDLANE starts by reading NS-2 trace files, provided by the user. According to the traces 
contained in these files and the users’ provided arguments, SEDLANE decides which of its 
calculation algorithms will be triggered. Figure 3.5 shows the SEDLANE functional architecture 
and its main calculation algorithms. These algorithms will be discussed in details below. 

3.5.2.1' INPUT DATA FROM TRACE FILES 

SEDLANE extracts the following data from the NS-2 trace files specified by the user: 

 !"#$%&'!and values of different RTT samples found in the file, 

 !()$&*+,$-!./!&,01!2((!+',3*)+).3, 

 !(.+,4!5,+,!%6+&*!+',3*$)++&5!,35!during each RTT, 

 !(.+,4!5,+,!%6+&*!'&+',3*$)++&5!,35!during each RTT, 

 !(.+,4!0.33&0+).3!+)$&, 

 !7)/&+)$&!/.'!&,01!2((, 

 !(.+,4!5,+,!%6+&*!5'.--&5!,35!during each RTT. 

All of the data extracted above represent the targeted connection parameters to be emulated. 
These values are used to calculate the communication channels configuration. The calculation 
algorithms used are discussed in details below. 

 



34 

 

 

FIGURE 3.5. SEDLANE OPERATION FUNCTIONS  
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3.5.2.2' NUMBER OF COMMUNICATION CHANNELS (N) 

This argument defines the number of rules to be configured according to the desired 
accuracy. Note that configuring a large number of rules requires more CPU resources and might 
affect the performance of the test-bed. If the number of different RTT samples found in the TCP 
trace file (K) is equal to or less than the number of communication channels provided by the 
user (N), SEDLANE dedicates a Dummynet pipe for each RTT value. Otherwise, SEDLANE 
calculates new RTT values that correspond to the specified number of pipes (N) as given by the 
user. Calculating the new RTT values is done through RTT calculation algorithm, which is 
explained below. 

3.5.2.3' RTT CALCULATION ALGORITHM 

If the number of the different RTT samples found in the TCP trace file (K) is greater than 
maximum number of pipes defined by the user (N), SEDLANE triggers its RTT calculation 
algorithm (as shown in Figure 3.5). This algorithm is used to calculate new RTT samples from 
the original ones found in the TCP trace file. These new values are calculated as shown in 
equation 3.2.  
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Where: 
1,...,2,1 "nnewRTT  are the new generated RTT samples; iRTT  and 1 iRTT  are two original 

consecutive RTT samples.  

SEDLANE repeats the calculations until the new number of RTT samples matches the defined 
number of pipes (N). It is possible that the number of resulting ipfw rules becomes less than the 
targeted number of pipes. This comes from the fact that SEDLANE does not allow configuring 
two consecutive pipes with equal RTT values. Therefore, in simultaneous mode, only unique RTT 
values are allowed. Thus, there will be one rule per RTT value. The resulting RTT values are 
average values. 

3.5.2.4' PROBABILITY CALCULATION ALGORITHM  

Probability is used by Dummynet to represent the probability of getting a match on this rule 
meaning that this data packet will be manipulated by this ipfw rule. The probability assigned to 
each ipfw rule depends on the SEDLANE’s operation mode: either sequential or simultaneous. In 
sequential mode, each rule will have a deterministic probability; since there is only one rule 
configured at a time. In simultaneous mode, the probability assigned to each rule is the ratio of 
the transmitted data bytes during a certain RTT lifetime to the total number of data bytes 
transmitted over the connection, as extracted from the NS-2 TCP trace file. Equation 3.3 
demonstrates how probability values are calculated for each RTT sample.  

total

RTT

RTT
txbytes

txbytes
prob i

i
!              (3.3) 
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Where: 
iRTTprob  is the assigned probability for iRTT , 

iRTTtxbytes  is the data bytes 

transmitted during the iRTT  lifetime, and totaltxbytes  is the total data bytes transmitted over the 

emulated connection.  

In case, the number of RTT transitions in the trace file (K) is higher than the targeted number 
of pipes (N), the probability of each new RTT value is calculated according to equation 3.4.  
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Mprobprob
prob iRTTiRTT

new
  and so on.             (3.4) 

Where: 
1newprob is the new generated probability; RTTiprob  and 

1 iRTTprob  are two original 

consecutive probability values; M is the length of original probability list (number of pipes 
corresponding to the number of original RTT values); M-1 is the length of the new generated 
probability list. This operation will be repeated in iteration till M becomes equal to the targeted 
number of pipes N. 

3.5.2.5' PACKET LOSS RATIO (PLR) CALCULATION ALGORITHM 

In order to calculate the packet loss ratio for each ipfw rule, SEDLANE performs the following 
operations: 

 !8,40#4,+&!+1&!,$.#3+!./!5,+,!bytes transmitted during each RTT lifetime, 

 !8,40#4,+&!+1&!,$.#3+!./!5,+,!bytes dropped or retransmitted during each RTT lifetime, 

 ! 8,40#4,+&! +1&! 972! /.'! &,01! 2((! by dividing the corresponding amount of dropped or 
retransmitted data bytes by the amount of sent data bytes. 

These operations are detailed below. 

3.5.2.5.1' CALCULATING THE AMOUNT OF TRANSMITTED DATA BYTES 

SEDLANE calculates the amount of transmitted data bytes for each RTT, RTTtxbytes , as well as 

the total amount of data bytes transmitted, totaltxbytes . If the number of RTT values retrieved 

from the NS-2 TCP trace file (K) is greater than the desired number of pipes (N) to be configured, 

the following iteration takes place and a new list of RTTtxbytes  values is generated using 

equation 3.5.  

2

)1()(

)(

  
! iRTTiRTT

newiRTT

txbytestxbytes
txbytes                           (3.5) 

The algorithm then calculates the new sum of transmitted data bytes, as in equation 3.6. 

)! newiRTTnewTotal txbytestxbytes )(            (3.6) 

The algorithm maintains always the original total amount of transmitted data bytes. This is 
done by using equation 3.7.  

newTotal

total
newiRTTadaptediRTT

txbytes

txbytes
txbytestxbytes *! )()(

                                         (3.7) 
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Thus, after each iteration round, the total amount of transmitted data bytes will always be 

equal to totaltxbytes . The iteration above will continue till we have a number of RTTtxbytes  values 

that is equal to the desired number of pipes to be configured. 

3.5.2.5.2' CALCULATING THE AMOUNT OF LOST DATA BYTES 

SEDLANE adopts two methods to calculate lost data bytes. By default, SEDLANE uses NS-2 
TCP trace file to calculate the data packet loss ratio. It records the number of retransmitted data 
bytes during each RTT lifetime, and uses this value as the amount of lost data bytes. The 
retransmitted data bytes include data bytes retransmissions due to retransmission time out 
(RTO) and fast retransmit (FR). Alternatively, SEDLANE is able to calculate the data packet loss 
ratio from the standard NS- 2 trace file. In this case, SEDLANE counts the amount of dropped 
data bytes during the lifetime of each RTT as in equation 3.8. In case the number of RTT values 
retrieved from the NS-2 TCP trace file (K) is greater than the desired number of pipes (N) to be 
configured, SEDLANE executes the algorithm explained in the previous section and maintains 
the total amount of lost data similarly. 

)!
lifetime

iRTTiRTT DropbytesLostbytes )()(
         (3.8) 

3.5.2.5.3' CALCULATING THE PACKET LOSS RATIO 

After determining the amount of both transmitted and lost data bytes for each pipe, PLR is 
calculated simply using equation 3.9.   
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iRTT

iRTT

iRTT
txbytes

lostbytes
plr !                                                                     (3.9) 

Where: )(iRTTplr  is the packet loss ratio of iRTT ; )(iRTTlostbytes  and )(iRTTtxbytes  are the lost 

data bytes and transmitted data bytes of iRTT  respectively. 

3.5.2.6' SEQUENTIAL DELAY CALCULATION ALGORITHM 

Sequential delay is the lifetime of each RTT value. This argument could be calculated from NS-
2 TCP trace file or provided by the user as a fixed number. If entered by the user, this value will 
be used for all configured ipfw pipes. Meaning that, all RTT values will have the same lifetime 
duration. If calculated from NS-2 TCP trace file, it will be calculated using equation (3.10). 

 RTTiiRTTlifeTime TSTSRTTi "!  )1(         (3.10) 

Where: lifeTimeRTTi  is the lifetime of RTTi ; RTTiTS  and )1(  iRTTTS  are the timestamps of 

RTTi and )1(  iRTT  respectively. 

3.5.3' SEDLANE VALIDATION 

In order to validate SEDLANE, we tested it using different wireless ad hoc network scenarios. 
The validation test-bed is shown in Figure 3.6.  

We use TTCP (Test TCP) [47] as a TCP traffic generation tool between the source and 
destination. The laptop in the middle runs SEDLANE and is configured to be the ip routing 
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gateway to the other two. Thus, we guarantee that the traffic exchanged between the end point 
laptops must pass through the SEDLANE station, where we deploy the emulation rules. We send 
16Mbytes of TCP data using TTCP. We analyze the traffic using Tcpdump [48] and Tcptrace [49]. 
Tcpdump is a powerful open source tool that allows us to sniff network packets and make some 
statistical analysis out of those dumps. Tcptrace is an analysis tool. It can take the files produced 
by several popular packet-capture programs, such as Tcpdump, as input. Tcptrace can produce 
several types of output containing information on each connection, such as elapsed time, data 
bytes and segments sent, received and retransmitted, round trip times, window advertisements, 
and connection throughput. It can also produce a number of graphs for further analysis.   

We configured our simulation scenarios using NS-2 (in order to get TCP trace files) as 
follows: each simulation consists of a 20 nodes network confined in a (670m x 670m) area. 14 
TCP connections were established (ftp traffic used with a packet size of 1000 bytes). The 
simulation time is set to 400 seconds. We used the Optimized Link State ad hoc Routing protocol 
OLSR [40] as an ad hoc routing protocol in our simulations, since it was developed for mobile ad 
hoc networks and can be considered as stable in such environments. We test both simultaneous 
and sequential operation modes of SEDLANE. In our simulations, we vary the nodes’ mobility 
rate (5 and 30 m/s) to get different loss and delay variations. 

 

 
 

FIGURE 3.6. SEDLANE VALIDATION TEST-BED 

 

In order to evaluate SEDLANE performance, we compare the data extracted from the NS-2 
trace files (simulation results) with SEDLANE results (emulation results). The output results are 
captured by Tcpdump at the sender side, and then analyzed by Tcptrace. In the sequential 
operation mode, we examine two parameters: evolution of RTT values and average connection 
throughput between the communicating end points. While in the simultaneous operation mode, 
we evaluate the probability distribution of RTT values with respect to the total amount of data 
transmitted. 
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3.5.4' SEDLANE RESULTS 

In this section, we analyze SEDLANE validation results obtained using the real test-bed 
configuration shown in Figure 3.6 for the two operation modes.  

3.5.4.1' SEDLANE SEQUENTIAL OPERATION MODE 

In this operation mode, ipfw pipes are configured and applied according to NS-2 TCP trace 
file. Thus, the RTT evolution applied by SEDLANE should follow the RTT transitions sequence in 
the input file. In addition, the time during which an RTT value will be applied on data packets 
should correspond to the RTT lifetime in the NS-2 TCP trace file. Figure 3.7, Figure 3.8, Figure 
3.9, and Figure 3.10, compare the performance of the simulations done by NS-2 and the 
experiments done using SEDLANE. We compare the evolution of the RTT values over the 
connection (Figure 3.8, and Figure 3.10) and the TCP throughput (Figure 3.7, and Figure 3.9) in 
each case. Both Figures 3.8 and 3.10 confirm that SEDLANE highly respects the delay of data 
packets (RTT values) over the connection and the duration of each transition as found in the NS-
2 trace file. When emulating losses and delays within an ad hoc network, it is expected to view 
the effect of these parameters on the end-to-end average throughput of the emulated 
connection. So, this behavior should be the same in SEDLANE as in the simulation results. We 
calculate the average throughput from the NS-2 TCP trace file (simulation result) and compare it 
with the average throughput of the communicating nodes in our test-bed (SEDLANE). The 
obtained results are drawn in Figure 3.7 and Figure 3.9. It can be shown from these figures that, 
the effect of losses and delays imposed by SEDLANE lead to the same degradation behavior as in 
the simulations regardless of the data transmission rate. It is worth to note that, the total 
number of data bytes transmitted by NS-2 simulation scenarios is not necessarily the same as in 
the test-bed scenarios. However, we get always the same average throughput behavior which is 
our target. 

 

 

 

 

FIGURE 3.7. AVERAGE THROUGHPUT AT 5M/S 
MOBILITY RATE 

FIGURE 3.8. RTT EVOLUTION AT 5M/S MOBILITY 
RATE 
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FIGURE 3.9. AVERAGE THROUGHPUT AT 30M/S 
MOBILITY RATE 

FIGURE 3.10. RTT EVOLUTION AT 30M/S 
MOBILITY RATE 

The lifetime of an RTT value is the time during which the RTT value stays unchanged. Each 
RTT value can have a different lifetime according to the network environment characteristics. In 
SEDLANE sequential mode, the RTT values are applied in a sequential manner (one after 
another) according to the lifetime of each RTT value traced within the simulation trace file. Thus, 
respecting the exact values of RTT lifetime is an important aspect to get exactly the same 
performance as in the performed simulation.  

Figure 3.11 shows that SEDLANE is able to accurately calculate and apply the RTT values 
lifetimes that are found within the simulation trace file. The RTT lifetimes traced from the 
simulation trace file are identical to those applied by SEDLANE to manipulate the data packets 
over the connection (as can be verified from the figure). 

 

 
 

FIGURE 3.11. RTT LIFETIME IN SECONDS AT 5 M/S MOBILITY RATE 
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3.5.4.2D SEDLANE SIMULTANEOUS OPERATION MODE 

In SEDLANE simultaneous operation mode, the ipfw pipes are configured according to NS-2 
TCP trace file but applied according to its calculated probability. This probability reflects the 
amount of data bytes transmitted for each RTT transition with respect to the total amount of 
data bytes transmitted over the emulated connection. In this operation mode, SEDLANE follows 
the default ipfw operation guidelines. Figure 3.12 shows that SEDLANE respects the distribution 
of RTT probabilities within the used NS-2 TCP trace file. Here again, the results are confirmed 
regardless of the amount of data bytes transmitted within the simulation scenarios. Note that 
simultaneous operation mode does not provide a fine grain emulation of the scenario 
represented by the TCP trace file.; as it uses a probabilistic approach to apply the ipfw rules. 

 

 
 

FIGURE 3.12. PROBABILITY DISTRIBUTION OF RTT VALUES  

AT 5M/S MOBILITY RATE 

 

In Figure 3.13, we show the accuracy of SEDLANE when applying the exact data loss ratios at 
each RTT value within the simulation trace file. We can see clearly from the figure that SEDLANE 
has the ability to well calculate and impose the right values of loss ratios over the connection 
and at the exact time (the corresponding RTT value). 
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FIGURE 3.13. RTT LOSS RATIO VALUES A T 5M/S MOBILITY RATE 

3.5.5D SUMMARY 

In this chapter, we proposed a new and simple emulation tool, SEDLANE. SEDLANE takes 
advantage of network simulation tools to control the desired network conditions, since it uses 
the simulations trace files to introduce the same effects on real data traffic in a simple and 
inexpensive test-bed configuration. SEDLANE uses both data losses and RTT delay values as 
network performance parameters in order to emulate the targeted connection. SEDLANE 
implements many calculation algorithms that extract the necessary data information from the 
simulation trace file, and calculate the connection parameters used to configure the ipfw rules or 
the communication channels applied to manipulate traffic data packets over the emulation test-
bed. SEDLANE can be used in two different operation modes: simultaneous and sequential 
operation modes. The validation results confirm that SEDLANE is capable of emulating the 
different network parameters and having an accurate emulation of network performance. The 
results also show that SEDLANE can emulate wireless ad hoc network scenarios and gives the 
same performance in terms of delay and data packet losses as in the network simulator. Thus, 
SEDLANE helps in testing and evaluating many wireless ad hoc network features (such as 
mobility rates, ad hoc routing protocols, and transmission control protocol). 

3.6D CONCLUSION 

Emulation is an evaluation and testing approach that can be used in order to build realistic 
and inexpensive test-bed configurations and conduct the experiments that cannot be done 
through simulations. SEDLANE is a new multi-hop wireless ad hoc network emulator that is 
used to test and evaluate wireless ad hoc networks’ protocols and applications.  SEDLANE helps 
emulating wireless ad hoc networks of any size using only one physical node. It can emulate 
nodes’ mobility without needing to physically moving the communicating machines. SEDLANE 
can be used to test the applications and protocols that run over the transport layer. SEDLANE 
emulates the network connection through the data packets delays and loss rates over the 
connection. There are different versions of SEDLANE, which were developed in order to 
facilitate its usage. The results show that SEDLANE has the ability to efficiently emulate the 
connection characteristics and respect the emulated network conditions.  

Building a complete test-bed configuration that meets all the conditions needed and to vary 
them to get the desired results would be costly. Thus, using SEDLANE within a simple and 
realistic test-bed configuration of only three physical nodes and having the effect of an entire 
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wireless ad hoc network environment is the equivalent low-cost and non-complex solution of 
building the entire test-bed. 

As a future work, we aim to extend SEDLANE in order to facilitate the evaluation of Peer-to-
peer (P2P) applications that involve multiple parties. This extension should help emulating 
multiple connections between peers within the wireless ad hoc network and to use more 
complex simulation configurations. 

In the next chapter, we will show how SEDLANE could be used to evaluate and measure one 
of the wireless ad hoc networks’ nodes related performance parameters: the computational 
energy cost of TCP within wireless ad hoc network nodes. Indeed, this parameter cannot be 
measured using simulations.  
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CHAPTER 4.D COMPARATIVE STUDY OF TCP VARIANTS WITHIN 
WIRELESS AD HOC NETWORKS  

4.1D INTRODUCTION 

TCP (Transmission Control Protocol) is considered the most popular reliable transport 
protocol today. Several different TCP variants have been developed for both wired and wireless 
networks. Improving the performance of TCP within wireless ad hoc network environments is 
one of the major aspects of this thesis. It is necessary; however, that we first deeply evaluate the 
performance of existing TCP variants in the context of wireless ad hoc networks.  

We present in this chapter a complete performance study and analysis of the most known 
TCP variants. We aim to study some TCP variants that employ different congestion control 
algorithm approaches in order to study the effect of such algorithms on TCP performance within 
wireless ad hoc network environments. Some of these variants were developed to be 
implemented within wired networks, while others were developed for wireless environments. 
The studied variants in this chapter are the most common ones: TCP New Reno, TCP SACK, TCP 
Vegas, and TCP Westwood. These variants and the performance of each will be discussed in 
details. 

In this chapter, we try to answer a couple of questions: Could the existing TCP Variants be 
used for wireless mobile ad hoc networks? What will be the performance of each in wireless ad 
hoc networks? The answers to these questions conclude the purpose of our work in this chapter. 
As a conclusion of this discussion, we show the necessity of having a new TCP variant for the 
modern wireless ad hoc networks and the possibility to capitalize on the existing variants to 
develop this new variant. 

The chapter is organized as follows: The first section discuses the related works. Then, we 
present an overview of the different TCP variants evaluated in our performance study, their 
algorithms, and functionalities. In the third section, we describe the methodology we use to 
evaluate the performance of each of these TCP variants (simulations and realistic test-bed). 
Finally, we show the results obtained through our study and analyze them which lead us to the 
conclusion of this chapter. 

4.2D RELATED WORK AND MOTIVATIONS 

During the last few years, many researchers have been studying TCP performance in terms of 
energy consumption and average throughput within wireless mobile networks [1] [2] [3] [50]. 
Due to the specific issues related to wireless ad hoc networks, such as nodes’ mobility, 
bandwidth and energy constrains, it is expected that the performance of TCP will be 
considerably affected in these environments. Some research projects were specifically 
interested in studying TCP performance (energy consumption and/or throughput) within such 
environments.  In [3], the authors studied the energy consumption and throughput of three TCP 
variants (TCP Reno, TCP New Reno, and TCP SACK) through test-bed experiments. They 
evaluated TCP total energy consumption and subtracted the idle energy consumption of the TCP 
nodes. However, the authors applied random RTT delays and packet losses in their experiments. 
We note here, that RTT delays and data packet loss ratios over wireless ad hoc networks are 
highly correlated. Therefore, studying TCP using random values does not really reflect the 
behavior of wireless ad hoc network environment. The authors in [2] evaluated the energy 
consumption of the standard TCP over wireless links with and without the SACK option. Their 
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study was conducted considering different wireless-related loss situations (e.g. interference). In 
this work, the authors do not study TCP throughput over the connection or compare their 
results with other TCP variant performance. 

In [4], the authors studied the effect of mobility on TCP performance in terms of throughput 
within mobile ad hoc networks, through simulations. They conclude that TCP throughput drops 
significantly in the case of link-failure-induced losses due to nodes’ mobility. However, in this 
work, the authors do not evaluate TCP energy consumption. Additionally, they consider only the 
standard TCP variant in their study. In [18], the author investigates the behavior of the standard 
TCP implementation in terms of throughput and compares it with that of ATCP [17], considering 
different data packet loss situations. ATCP is intended to enhance the performance of TCP within 
wireless mobile ad hoc networks. This study is conducted through simulations. However, the 
author in [18] , as well as, in [23] does not evaluate the TCP energy consumption. 

In [26], the authors study the performance of different TCP variants (TCP Tahoe, TCP Reno, 
TCP New Reno, and TCP SACK) within wireless static ad hoc networks taking into consideration 
different ad hoc routing protocols (DSDV, DSR, and AODV). Using simulations, they evaluate both 
TCP throughput and communication energy consumption. However, the performance in case of 
link failure due to nodes’ battery depletion was not taken into consideration. The computational 
energy cost of the standard TCP implementation was studied in [50]. The study was conducted 
through test-bed experiments in which they applied random RTT delays and packet losses. Here, 
again, using random values does not represent the actual behavior of wireless connection, since 
both RTT delays and data packet losses are correlated. Additionally, the authors in [50] do not 
evaluate the TCP throughput and do not study other TCP variants.  

None of the above mentioned studies considers evaluating TCP throughput, communication 
energy cost and computational energy cost in the same work. Also, using random values to 
represent RTT values or data packet losses cannot reflect accurate ad hoc network 
characteristics since losses and delays are correlated. In this chapter, we aim to make a clear and 
complete comparison study between the most common TCP variants (New Reno, SACK, Vegas, 
and Westwood) under different data packet loss situations. This study incorporates 
communication and computational energy consumption as well as throughput.  Also, we extend 
the experimental test-bed used in [50] [3]to measure the computational energy cost by using a 
realistic ad hoc network emulator (SEDLANE3

The ultimate goal of our study, in this chapter, is to understand the impact of the different 
TCP loss recovery mechanisms on TCP performance in wireless ad hoc environments. Hence, our 
conclusions can be used to derive design guidelines for new TCP enhancements suited for ad hoc 
networks. 

 [51]) in order to enhance the quality of the 
obtained results. In fact, using SEDLANE allows for representing more realistic data packet 
losses and delays over the connection compared to what had been used so far. 

The decision to use test-bed experiments is based on the fact that most of the node’s related 
characteristics (such as the computational energy cost spent within the node’s CPU unit) cannot 
be obtained using simulators. So far, simulations allowed only for obtaining the nodes’ 
communication energy cost. Here, however, we incorporate the computational energy cost of the 
TCP congestion control algorithms within the energy model of NS-2 to be capable of evaluating 
the total energy consumption of TCP variants (both communication and computational) using 
simulations.   

                                                             

3 SEDLANE: Simple Emulation of Delays and Losses for Ad hoc Networks Environment. 
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4.3D COMPARATIVE STUDY OF TCP VARIANTS 

In this section, we study the performance of TCP variants mentioned earlier in terms of 
communication energy consumption, computational energy cost, and average throughput taking 
into consideration different data packet loss events. The studied loss situations include losses 
due to wireless channel errors (interferences, and signal losses), losses due to link failures 
between the communicating nodes, and losses due to network congestion. We mention that, 
both TCP Tahoe and TCP Reno are not studied in this work, since they are obsolete even within 
wired networks.  

The performance metrics mentioned above cannot all be obtained using the same evaluation 
tool. For both the throughput and communication energy consumption, we obtain them through 
simulations using Network Simulator version 2 (NS-2) [27]. On the other hand, the 
computational energy cost cannot be traced using simulations (network simulators only include 
the communication energy cost). The node’s level characteristics are not yet applied at network 
simulators. Hence, in order to measure the computational energy cost of TCP variants, we build a 
realistic test-bed with a special configuration set-ups. The simulations and the test-bed 
configuration, as well as the methodology used to measure the computational energy cost are 
detailed below.  

4.3.1D SIMULATION SCENARIOS AND TOPOLOGIES 

In order to have a wide range of results that help to better understand the behavior of TCP in 
front of different data loss situations, we define different data loss scenarios that represent these 
most common data packet losses over wireless ad hoc network environments. Our predefined 
data loss scenarios are: (i) network congestion, (ii) interference, (iii) link losses and (iv) signal 
losses. Each scenario is described in this section. First, let’s describe the reason behind the 
choice of the ad hoc routing protocol used in our evaluations.  

The choice of the ad hoc routing protocol algorithm is important from two points of view: (i) 
its robustness and promptness to recover from a link failure, (ii) the overhead and frequency of 
its routing information update messages which might result in a congestion or traffic 
interference over the network links. For example, if the time needed by the implemented ad hoc 
routing protocol to recover from link failures is longer than the TCP’s RTO, TCP triggers its 
congestion control algorithm, and backs off for a certain period of time, then enters Slow-Start 
phase. Also, it might happen that the routing protocol recovers from the link failure but TCP 
stays in the idle state, since TCP does not know about the link recovery.  On the other hand, if the 
time taken by the ad hoc routing protocol is lower than TCP’s RTO, TCP may recover from data 
packet loss without entering Slow-Start phase and decreasing its CWND to minimum. Moreover, 
the overhead of ad hoc routing update messages could aggravate the congestion situation over 
the TCP connection. This leads to more congestion control actions triggered to recover from the 
packet losses.  
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Ad hoc routing 

protocol 

Start-up time 

(sec) 

Route recovery 

(sec) 

AODV  !"#"$  !" 

DSDV  !%"  !#" 

DSR  !"#"&  !$%& 

OLSR  !'  !( 
 

TABLE 4.1. COMPARATIVE STUDY OF AD HOC ROUTING PROTOCOLS 

Table 4.1 discusses the start-up time, i.e. the time needed by the ad hoc routing protocol to 
build up its routing information table (in case of proactive protocol) or finding a new route (in 
case of reactive protocol) in order to start communicating, as well as, the route recovery time 
needed. The comparison is shown for four main ad hoc routing protocols: Ad hoc On-Demand 
Distance Victor (AODV) routing protocol [52], the Dynamic Source Routing (DSR) protocol [53], 
the Destination-Sequenced Distance Vector (DSDV) routing protocol [54], and the Optimized 
Link State Routing (OLSR) protocol [55]. The values depicted in Table  4.1 allow us to recall that 
in reactive ad hoc routing protocols (AODV and DSR), the routing protocol triggers its route 
discovery process only when the sender has to send data towards the destination or when a 
used route is broken. Contrarily, proactive protocols (DSDV and OLSR) needs longer time to 
build their routing table and also to recover from a route failure. This is due to the fact that they 
build their routing tables for the whole network before any communication request can be 
triggered. 

Our main concern is to evaluate TCP performance over MANET. Therefore, we decided to run 
the best MANET configuration. So, according to the table above, we choose to run our 
simulations using Ad hoc On-Demand Distance Victor (AODV) ad hoc routing protocol. Although 
the figures in the above table show that DSR has a shorter route recovery time than AODV due to 
its caching feature, we found, through simulations, that it has higher routing messages overhead 
than AODV, since any intermediate node has the right to answer to the route discovery request. 
Also, the caching feature on the intermediate nodes sometimes causes problems when 
responding by stale routes that are in their cache. Hence, our decision to implement AODV since 
it has the lowest routing messages overhead [52]. Extending our performance evaluation to 
other routing protocols is outside the scope of our work, though, this would constitute an 
interesting evaluation study.  

The TCP simulation scenarios, using NS-2, are implemented as follows: 

1) Congestion scenario: In this scenario, we create a congested node at the middle of a five-
node topology by generating three TCP data traffic flows that must pass by this intermediate 
node to reach the other communicating end point (Figure 4.1). Different levels of data 
congestion can be generated by controlling the number of TCP data flows crossing this particular 
network node at a certain time (Figure 4.1). 

2) Interference between neighboring nodes: In this case, two TCP connections are established 
in parallel. The main TCP connection (TCP data flow 1 in Figure 4.2) is disturbed by the 
interferences generated by the second TCP connection (TCP data flow 2 in Figure 4.2). Indeed, 
the node acting as forwarder for the main TCP connection is placed within the interference 
range of the second TCP connection sender. So, this situation creates interference and thus data 
packet losses. 

3) Link loss and communication route changes: In this model we force TCP to change its 
communication path by shutting down the intermediate node between the communicating end 
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points. In addition, we employ routes with different number of hops (Figure 4.3). Thus, each 
time TCP changes the communication route, the characteristics of the path between the 
communicating nodes change. It is obvious that the choice and the establishment delay of the 
new route will be dependent on the implemented ad hoc routing protocol. Packet losses and 
delay changes will also be generated by the link loss and the new chosen route. 

4) Signal loss scenario: This scenario illustrates the situation where the wireless signal is not 
stable. The communicating nodes loose the connection due to signal loss then they resume the 
communication when the signal comes back. Signal losses are generated by moving one of the 
intermediate nodes out of the radio range of its connection neighbors (Figure 4.4). Signal loss 
event is repeated twice within the described scenario, the first one is for duration of 25 seconds 
and then for 15 seconds. Indeed, the simulations were repeated considering signal loss 
durations ranging from 2 seconds to 25 seconds and the results were similar. 

 

 

 
 

FIGURE 4.1. NETWORK CONGESTION 
SCENARIO  

FIGURE 4.2. INTERFERENCE SCENARIO 

 

 

 

 

FIGURE 4.3.  LINK FAILURE AND 
COMMUNICATION ROUTE CHANGES 

FIGURE 4.4. SIGNAL LOSS SCENARIO  
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4.3.2D TCP’S THROUGHPUT AND COMMUNICATION  
ENERGY CONSUMPTION EVALUATION 

According to the scenarios described above, we, first, study two TCP performance 
parameters. The first is the energy consumed in transmission, reception, forwarding and 
retransmission of data packets. This energy is calculated in proportion to the amount of received 
data, i.e. energy consumed per received bit. The second parameter studied is the TCP’s 
connection throughput. Each simulation was run ten times in order to obtain the results 
discusses below. 

More precisely, we discuss in details the results obtained through NS-2 simulation tool. We 
evaluate and compare both throughput and communication energy consumption of the studied 
TCP variants taking into consideration different data packet loss scenarios (network congestion, 
interference, link failure and signal loss). 

4.3.2.1D NETWORK CONGESTION 

From Figure 4.5 and Figure 4.6, we can see that TCP SACK can be considered as the best 
performing variant in terms of connection throughput. This is due to the Selective ACK feature 
that allows TCP SACK to terminate the retransmission of lost packets more quickly than TCP 
New Reno (which has to wait for all partial ACKs to identify the missing segments at the 
receiver). In addition, TCP SACK has the ability to resend only the lost data packets without 
retransmitting the entire data window that contains the lost packets. TCP Westwood has the 
best performance among others in terms of communication energy cost. The ability of TCP 
Westwood to adapt its data transmission rate according to the estimated bandwidth leads to 
savings in terms of energy consumption. Whereas, TCP New Reno and TCP SACK, both resume 
the communication, after a congestion event, staring from minimum data transmission rate (1 
segment). The algorithm of TCP Vegas is based on the principal that there are signs prior to 
congestion in the network. For example, an increase in RTT values is a sign indicating that 
router’s queue is building up and that congestion is about to happen, so it triggers its congestion 
avoidance mechanisms. This will lead to faster recovery from packet losses. However, the high 
communication energy cost of TCP Vegas comes from the fact that TCP Vegas detects the would-
be losses much sooner than TCP New Reno and the other variants, then retransmits the would-
be lost packet after receiving the first duplicate acknowledgement. In some cases, such as during 
congestion periods, the delay over the connection increases due to buffering, leading to a 
mistaken action, as the packet is only delayed and not lost. In this case, retransmitting the 
assumed to be lost packet contribute to an unnecessary increase in the communication energy 
consumption and leads to a waste of bandwidth. Indeed, the simulations results show that, TCP 
Vegas has no lost bytes over the connection compared to other variants. However, the 
precipitance of TCP Vegas to recover from losses results in a high number of unnecessary 
retransmissions.   

 

FIGURE 4.5. COMPARISON OF TCP COMMUNICATION ENERGY CONSUMPTION 
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FIGURE 4.6. COMPARISON OF TCP THROUGHPUT 

4.3.2.2D INTERFERENCE 

Figure  .7 and Figure 4.8 show, that TCP SACK has the highest connection throughput 
compared to the other studied variants. The ability of TCP SACK to resend only the lost data 
packets one after another without the need to wait for RTT before sending them (as in TCP New 
Reno), leads to better throughput over the connection. 

Both TCP Vegas and TCP Westwood outperform TCP New Reno in terms of both 
communication energy cost and connection throughput, since both variants have the ability to 
adapt their CWND after data packet loss according to the network conditions. Although that, 
both TCP Vegas and TCP Westwood have almost a comparable performance in terms of 
communication energy consumption, TCP Vegas outperforms TCP Westwood in terms of 
connection throughput since it is capable to recover from data losses at the reception of the first 
duplicate acknowledgment with no need to wait for the third duplicate acknowledgment as in 
TCP West wood. 

 

 

FIGURE 4.7. COMPARISON OF TCP COMMUNICATION ENERGY CONSUMPTION 

 

 

FIGURE 4.8. COMPARISON OF TCP THROUGHPUT 
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4.3.2.3D LINK FAILURE 

In mobile wireless ad hoc network, it is obvious that the nodes are prone to broken 
communication paths between the communicating end points (due to mobility or depletion of 
nodes’ batteries). This type of data loss situations results in burst data packet losses over the 
connection. Although, burst data losses might be the result of network congestion, treating them 
consistently as such might result in suboptimal performance. 

The simulations results show that all TCP variants, in case of link loss events, detect data 
packet losses through RTO. Thus, they all perform similarly by backing off and entering Slow-
Start phase. This can be seen in the Figures (Figure 4.9 and Figure 4.10) below. The four TCP 
variants are shown to have comparable performance levels in terms of both communication 
energy consumption and throughput. The similar behavior of all the studied TCP variants 
confirms that none of them is able to deal with link failure loss situations over the connection.  

 

FIGURE 4.9. COMPARISON OF TCP COMMUNICATION ENERGY CONSUMPTION 

 

FIGURE 4.10. COMPARISON OF TCP THROUGHPUT 

 

4.3.2.4D SIGNAL LOSS 

Intermittent loss of the radio signal is another cause for end-to-end communication 
disruption. Signal loss can be a result of encountering geographical obstacles or unfavorable 
weather conditions. This results in data packet losses over the TCP connections. 

Signal loss can be considered as a special case of link failure case. In signal loss situation the 
network becomes partitioned due to missing wireless channel signal. This means that there is no 
possible connection between the two partitions unless the wireless signal comes back. In this 
case, the results (Figure 4.11 and Figure 4.12) show that all TCP variants, studied in this work, 
have almost the same performance in terms of both communication energy consumption and 
throughput. They all back off for a certain period of time then restart the communication (after 
the wireless signal comes back) from the Slow-Start phase. 
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FIGURE 4.11. COMPARISON OF TCP COMMUNICATION ENERGY CONSUMPTION 

 

FIGURE 4.12. COMPARISON OF TCP THROUGHPUT 

4.3.3D TCP COMPUTATIONAL ENERGY CONSUMPTION MEASUREMENTS 

In order to complete the results obtained by simulations and to get the overall performance 
results of each of the studied TCP variants.  We study now the third performance parameter of 
TCP which is the node’s computational energy cost. The computational energy cost of TCP is the 
energy consumed by the node’s CPU unit in order to perform the various copy operations, 
checksums computation, responding to timeouts and triple duplicate ACKs, adjusting timers, and 
other book keeping operations. This cost is thus linked to the execution of the different TCP 
congestion control algorithms (Slow-Start, Fast Retransmit/Fast Recovery, and Congestion 
Avoidance). It is important to note that this is complementary to the evaluation realized in the 
previous section that analyzed the radio-related energy cost of TCP variants (i.e. the energy 
consumption due to the transmission, retransmission and forwarding of TCP segments by  
ad hoc nodes). 

Here, we also evaluate the same four major TCP variants: TCP New-Reno, TCP Vegas, TCP 
SACK and TCP Westwood. In order to measure the computational energy cost while executing 
TCP’s different congestion control algorithms, we implement different data packet loss models 
(the same data loss scenarios used in the simulations above). Measuring the node-level energy 
consumption is realized using a realistic test-bed configuration. This configuration should 
introduce the effect of a real wireless mobile ad hoc network environment (i.e. realistic data 
packet delays and losses). We introduce such effects using SEDLANE, our MANET delay and 
packet-loss emulation tool presented in CHAPTER 3. Recall that SEDLANE uses NS-2 simulation 
results in order to generate realistic data packet delays and losses in MANETs. The use of such a 
hybrid approach enables our evaluation to take advantage of both simulation and test-bed 
experiments approaches. Hence, thanks to SEDLANE, the effect of different data packet loss 
models (congestion, interference, link failure, and signal loss) and ad hoc routing protocol  
are introduced.  
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Our study, in this section, has multiple benefits. The main foreseen benefits that motivated 
our work are: (1) to enable the understanding of the energy consumption model of TCP at the 
CPU level and thus to facilitate the future development of new TCP congestion control 
algorithms for MANETs that are energy-efficient; (2) to give to other researchers working on 
analytical modeling of TCP a set of results to develop energy models for the computational cost 
of TCP congestion control algorithms; and (3) to allow the incorporation of our node-level 
energy models into any network simulators (NS-2 for example) so as to obtain the overall 
energy cost, computational and radio costs of TCP connections. Currently, network simulators 
only include the radio energy cost. 

4.3.3.1D MEASUREMENT METHODOLOGY 

The methodology used in our computational energy consumption measurements extends  
the one previously used in [50] as we add the use of SEDLANE.  Our test-bed configuration  
(as shown in Figure 4.13), is composed of a laptop as a sender end while the receiver end  
side is a Personal Computer (PC). Between the communicating nodes we implement  
SEDLANE (on a second PC), to get the effect of a wireless ad hoc network environment  
between the sender and receiver sides. The laptop communicates with the PC over a  
wireless link channel. In order to calculate TCP energy consumption within the CPU unit:  
we measure both (i) the total energy consumption within the laptop, and (ii) the  
energy consumed within the wireless card for packet transmission and reception. The  
difference between the two measured values will be the computational energy consumption. 
Obviously, the measurements are taken at the TCP sender, since the TCP algorithms  
are executed at the sender side.  

In order to correlate this computational energy consumption to the TCP operations, we  
use a minimal Linux distribution; in which we turn off the display, the power management  
and the x-server. This allows for minimizing the effect of any other running applications on  
the measured current. The reason for turning off power management as described in [50] is  
the fact that it helps better to determine the current draw which corresponds to TCP  
code execution. We do not use the battery in the laptop because, as noted in [56], avoiding  
the use of battery allows for a more steady voltage to be supplied to the device which  
allows a more accurate measurement. Thus, all the processes/daemons/features that  
are not necessary to TCP operations are simply removed from the Linux distribution  
making it strictly minimal. By taking all these precautions, we ensure that the remaining  
energy consumption is due to TCP congestion control algorithms execution and  
timer adjustments. 

Energy consumption is determined by measuring the input voltage and current draw  
using two Agilent 34401A digital multi-meters that have a resolution of one millisecond.  
In order to directly measure the current and voltage draw of the wireless 802.11b PCMCIA  
card, the card was attached to a Sycard PCCextend 140A CardBus Extender [57] that in  
turn attaches to the PCMCIA slot in the laptop. In this way, we can separately but  
simultaneously measure the current draw of the laptop and the current draw of the  
wireless 802.11b PCMCIA card. Sycard PCCextend 140 CardBus extender card is a debug tool  
for development and testing of PC cards and hosts. Figure 4.14 shows the real measurements 
test-bed implementation. 
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FIGURE 4.13. TCP ENERGY CONSUMPTION MEASUREMENTS TEST-BED 

 

 

FIGURE 4.14. THE IMPLEMENTED MEASUREMENTS TEST-BED 

 

 

In this study, we use the same scenarios used in NS-2 simulation study: network congestion, 
interference, link failure, and signal loss. By using the same scenarios, we intend to complement 
the results obtained by simulations with test-bed measurements to get the overall results for 
each TCP variant. Using simple network scenarios that define precise and deterministic data loss 
situations is done explicitly in order to study the exact reaction of TCP faced with each data loss 
situation separately.  
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4.3.3.2D TCP COMPUTATIONAL ENERGY COST CALCULATION 

In order to calculate the TCP computational energy cost, we calculate first the total energy 
consumed at the laptop (the system), then we subtract the wireless communication energy due 
to data transmission/reception over the wireless network card as well as the idle energy (i.e. the 
energy consumed when TCP is not running). The following equations illustrate how the TCP 
computational energy is calculated. 

First, we calculate the radio communication energy consumption ( RE ):  

RRR VTIE **              (4.1) 

where RI  is the measured radio current (over the wireless network card), T  is the time in 

seconds during which the measurement are taken,  and RV  is the wireless card voltage (5v). 

Then, we calculate the system’s total energy consumption ( TE ):  

TTT VTIE **               (4.2) 

where  TI  is the measured total current going into the system (the power supply current), T  

is the time in seconds during which the measurement are taken,  and TV  is the power supply 

voltage (20v). 

Then, we calculate the system’s idle energy consumption when TCP is not running ( idleE ):  

Tidleidle VTIE **                      (4.3) 

where idleI  is the calculated idle current (deduced from the measurement data), T  is the 

time in seconds during which the measurement are taken,  and TV  is the power supply voltage 

(20v). 

Finally, we calculate the TCP’s computational energy cost ( compE ):  

RidleTcomp EEEE !!                        (4.4) 

 

4.3.3.3 TCP COMPUTATIONAL ENERGY COST RESULTS 

Contrarily to previous studies that concentrated on the operating system, hardware and 
device-level energy consumption due to TCP [58], the objective of our analysis is to analyze the 
energy cost of each TCP function and variant in order to facilitate improving their behavior in 
MANETs. So, in the following we first analyze the computational energy cost of the main TCP 
functions: Slow-Start, Fast Retransmit/Fast Recovery and Congestion Avoidance. Then, we make 
a comparison of the different TCP variants in terms of computational energy cost. This is 
realized according to the different data packet loss models: network congestion, interference, 
link loss, or signal loss. For each TCP variant, the computational energy cost is calculated and 
compared to the end to end performance characteristics. Finally, we identify and briefly discuss 
a set of design features that a new TCP variant should have to be resource-efficient (energy and 
bandwidth) when used in MANETs. We note that the computational energy cost is measured at 
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the sender side, since most of TCP calculations (CWND and RTO calculations) are done at the 
TCP sender node. Hence, the computational energy cost in this section is measured and 
calculated according to the total number of transmitted data bytes. 

4.3.3.3.1 TCP FUNCTIONS COMPUTATIONAL ENERGY COST 

In order to obtain the energy consumption of the main TCP functions (Slow-start, Fast 
Retransmit/Fast Recovery, and Congestion Avoidance), we use log files at the sender side to log 
the start and end times of each TCP function. Then, we use this information to match the energy 
consumption by each function using the energy consumption measurement record. 

 

  

FIGURE 4.15. TCP COMPUTATIONAL ENERGY 
COST (JOULE/SEC) 

FIGURE 4.16. TCP ENERGY COST     
(JOULE/SEC/SENT BYTE) 

 

FIGURE 4.17. DATA BYTES TRANSMITTED/TCP FUNCTION 

The results show that the computational energy cost of the Fast Retransmit/Fast Recovery 
phase is extremely high compared to that of both the Slow-Start and Congestion Avoidance 
phases (Figure 4.15). Indeed, Figure 4.15 shows that the energy consumption is almost doubled. 
However, this is no longer the case when the energy consumption is calculated per the amount 
of data sent by TCP (Figure 4.16). This is due to the fact that the TCP Fast Retransmit/Fast 
Recovery process consumes an important amount of energy when triggered but it does so for a 
short period of time during which it may send several TCP segments on one burst. Hence, the 
ratio energy-cost/data-sent remains low in the Slow-Start phase. During the Congestion 
Avoidance, TCP increases its transmission rate by one segment each RTT. Here, TCP has a 
regular throughput and computational overhead that are lower than the one of Fast 
Retransmit/Fast Recovery phase (Figure 4.15 and Figure 4.17). However, it has higher energy 
consumption per each sent byte compared to Fast Retransmit/Fast Recovery phase  
(Figure 4.16).  

Figure 4.18 shows an example of TCP New Reno computational energy cost when faced with 
packet losses due to network congestions. The Figure shows that, the computational energy cost 
of the system is higher during Fast Retransmit/Fast Recovery phase compared to that of both 
Slow Start and Congestion Avoidance phases for the reasons mentioned above. 
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FIGURE 4.18. TCP NEW-RENO COMPUTATIONAL ENERGY COST EXAMPLE 

4.3.3.3.2 COMPUTATIONAL ENERGY COST OF TCP VARIANTS 

This section aims at comparing the four TCP variants (New Reno, SACK, Vegas, and 
Westwood) faced with different packet loss situations encountered in wireless ad hoc networks: 
network congestion, interferences, link loss, and signal loss. We choose to use the Ad-hoc On-
demand Distance Vector (AODV) [52] as ad hoc routing protocol. AODV triggers a route 
discovery only when the sender needs to send data to the destination. This results in low routing 
protocol messages overhead over the network links. 

4.3.3.3.2.1 EFFECT OF NETWORK CONGESTION  

In order to isolate the effect of network congestion from the other packet loss reasons, we use 
a static ad hoc network without route changes. The results depicted in Figure 4.19  demonstrate 
that TCP Vegas has the higher computational energy cost per each sent byte among all the other 
variants. This is due to the fact that TCP Vegas is a variant that tries to avoid congestion. In order 
to achieve this, TCP Vegas continuously performs complex calculations in order to adapt its TCP 
transmission parameters with each received acknowledgement (ACK). This certainly leads to 
some degree of reliability in some cases. However, this behavior costs a lot in terms of 
processing that translates into higher computational energy cost compared to all the other 
studied variants (Figure 4.19). 

 

 
 

 

FIGURE 4.19. TCP COMPUTATIONAL ENERGY COST (JOULE/SEC/SENT BYTE) 
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On the other hand, we notice that TCP Westwood performs better in terms of computational 
energy cost, because it modifies its transmission parameters only when there is a data packet 
loss over the connection and not continuously as in TCP Vegas. This involves less computational 
overhead, despite the probable increase of the number of retransmissions compared to TCP 
Vegas. We also note that TCP Westwood and New Reno have almost the same performance in 
terms of energy consumption per each sent byte (Figure 4.19) despite that the loss ratio is 
higher with TCP New Reno in the case of congestion. From that we can conclude that the light 
computational cost (i.e. the one due to Fast Recovery/Fast retransmit process) of resending 
packets by TCP New Reno is neutralized by the computational overhead introduced by TCP 
Westwood (i.e. loss analysis to identify the packet loss cause).  

Finally, we note that though TCP SACK has the ability to resend the lost data packets  
faster than TCP New Reno due to the Selective ACK option; Figure 4.19 demonstrates that its 
cost is higher. Indeed, SACK implies an important overhead in terms of processing and storage in 
order to extract the numbers of lost data packets at the sender side. This leads to high energy 
consumption. 

4.3.3.3.2.2 EFFECT OF TRAFFIC INTERFERENCE 

In order to isolate the effect of network traffic interference from the other packet loss 
reasons, we use a static ad hoc network without route changes. Comparing Figure 4.19 
and Figure 4.20, we can note that the computational energy cost is increased in the case of 
interferences compared to the case of congestion. The fact that TCP uses congestion control 
algorithms, means that TCP has the ability to better deal with network congestion conditions 
than traffic interference ones. Therefore, the misbehaviour of TCP in front of data packet losses 
due to interference leads to higher computational energy cost. 

 

 
 

 

FIGURE 4.20. TCP COMPUTATIONAL ENERGY COST (JOULE/SEC/SENT BYTE) 

 

Referring to Figure 4.20 we can see that TCP Vegas has the worst performance in terms of 
computational energy cost compared to the other studied TCP variants. This is due to the same 
reasons as explained in the previous sections. As for TCP Westwood, though it has the lowest 
loss ratio compared to other TCP variants; its computational energy consumption is higher than 
that of both TCP New Reno and TCP SACK. This is due to the complexity of the algorithms used 
by TCP Westwood and their continuous triggering by packet losses (it recalculates and modifies 
its data transmission rate after each data packet loss). Note that in case of congestion, TCP 
Westwood has the same performance as TCP New Reno, while in case of losses due to wireless 
errors its behaviour becomes more complex without significant improvement to the throughput. 

TCP Computational Energy Cost using AODV 

(Joules/sec/sentbyte) (Interference)

!"67!!

<"68!G

:"68!G

H"68!G

L0) /0A( &54M N0B+. O0.*)((K

c
o

m
p

u
ta

ti
o

n
a
l 

e
n

e
rg

y



59 

 

Interestingly, we find that TCP New Reno and TCP SACK have almost the same performance 
in terms of computational energy cost. Although that the number of retransmitted data with TCP 
SACK is less than that in TCP New Reno, the processing overhead of TCP SACK neutralizes the 
advantages of the use of Selective acknowledgements. 

4.3.3.3.2.3 EFFECT OF LINK LOSS 

Figure 4.21 shows that the computational energy cost of most TCP variants increases 
compared to the two studied scenarios above. This is an expected observation because TCP as it 
is nowadays was not designed to cope with network link failures. In network link failure 
situations, we must expect burst packet losses to which TCP has an aggressive reaction. 

 

 
 

 

FIGURE 4.21. TCP COMPUTATIONAL ENERGY COST (JOULE/SEC/SENT BYTE) 
 

In case of Link Loss, we notice that all TCP variants in almost all cases identify the data packet 
loss through TCP Retransmission Time-Out (RTO). Since they are not designed to cope with such 
situations (link losses), they all react similarly: i.e. classify the packet loss as if it were due to 
strong network congestion and trigger the Slow-Start process. As mentioned earlier, the Slow- 
Start process is the least efficient one in terms of energy cost. Let us note here that, theoretically, 
triggering the Slow-Start phase is not necessary as the packet loss cause is not strong 
congestion.  

If we look now into each variant separately, we conclude that TCP Vegas and TCP Westwood 
can be considered as the first and second most performing variants respectively. This is because 
both variants have the ability to rapidly readjust the data transmission rate over the connection 
according to the characteristics of the new recovered route. TCP New Reno or TCP SACK are 
proved to be less rapid in that aspect and thus they consume more energy by staying in the 
Slow-Start phase and increasing their throughput slowly. 

4.3.3.3.2.4 EFFECT OF SIGNAL LOSS 

Signal loss can be considered as a special case of link failure. In fact, we consider here the 
special case when the signal is lost between two communicating end points; there is no way to 
resume the communication session unless the signal is restored. Thus, signal loss might be 
viewed as a network partitioning case where the communicating end points are totally 
disconnected from each other. The main difference between link failure and signal loss models is 
the ability to resume the communication session after the signal loss using the same route (that 
also has to be re-established by the routing protocol). In the link loss case, both nodes, the 
sender and the receiver, would search for another route to complete the session. While in the 
signal loss case, this is topologically not possible. After signal loss recovery, the TCP sender will 
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start the communication session from the beginning, (i.e. from Slow-Start phase). This will be 
the case, each time the communicating nodes get disconnected in the absence of wireless signal. 
Recall that in this loss scenario, signal losses are frequent. That’s why almost all TCP variants 
stay most of the connection’s lifetime in the Slow-Start phase. In addition, TCP data packet losses 
would be identified through RTO expiration. 

 

 
 

 

FIGURE 4.22. TCP COMPUTATIONAL ENERGY COST (JOULE/SEC/SENT BYTE) 

  

Figure 4.22 demonstrates that TCP SACK is the worst performing variant in terms of 
computational energy cost, since it requires calculating lost packets at the sender side. In 
addition, the sender side must keep a copy of all the sent data packets in case of a need to resend 
them. For TCP Westwood, after each data packet loss episode over the connection, it calculates 
and adjusts its CWND and SSThreshold parameters. This, therefore, leads to more calculations at 
the sender side and consequently more computational energy consumption than both TCP New 
Reno and TCP Vegas. TCP Vegas, however, will identify the losses as due to heavy congestion 
over the connection, and triggers its congestion control algorithm. This could be considered the 
right action in this case. Abstaining from resending data packets that would never reach the 
destination is an acceptable action. Thus, the trade-off between complexity and amount of data 
sent makes TCP Vegas the most energy-efficient. TCP New Reno can be considered as the second 
most performing variant due to its simplicity, since it stops data transmission and enters Slow-
Start after signal recovery. In TCP New Reno, no complex calculations are triggered. 

Finally, we should note that, we have studied the signal loss event using different levels of 
signal loss duration time ranging from few seconds to few dozens of seconds, and in all cases, the 
four TCP variants had the same behaviour.  

4.4 INCORPORATING TCP COMPUTATIONAL ENERGY COST INTO NS-2  

NS-2 energy model does not include the node’s TCP computational energy cost. It applies only 
the communication energy cost. That is why we thought of incorporating the results we had 
obtained through the earlier described test-bed into NS-2. By including the computational 
energy cost of TCP’s algorithms (Slow-Start, Fast Retransmit/ Fast Recovery, and Congestion 
Avoidance), we can get the total energy consumption at network nodes using NS-2 simulations. 
We have integrated the obtained values into NS-2’s energy consumption module and modified 
the code in such a way that each time TCP enters into a specified TCP function or algorithm it 
measures the time passed in this function and then calculates the computational energy 
consumption to subtract it from total available energy for each node. This is done with all TCP 
algorithms. After implementing our contribution into NS-2, we have repeated the above 
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described scenarios in order to get the Total Energy Consumption (communication energy and 
computational energy cost) using the same TCP variants studied above. 

We used the same loss scenarios (network congestion, interference, link failure, and signal 
loss) described in the evaluations above. The results are described below. 

4.4.1 TCP TOTAL ENERGY CONSUMPTION  

In this section, we discuss the TCP total energy consumption results obtained through 
simulations after incorporating our test-bed results in its energy module. 

 

  

(a) Network Congestion (b) Interference 

  

(c) Link Failure (d) Signal Loss 

FIGURE 4.23. TCP TOTAL ENERGY CONSUMPTION 

4.4.1.1 NETWORK CONGESTION                                                                               

From Figure 4.23 (A), we can conclude that TCP Vegas has the worst performance among all 
the studied variants, as it has the highest total energy consumption and the lowest connection 
throughput (c.f. Figure 4.6). We have seen in the previous sections that TCP Vegas has the 
highest communication and computational energy consumption compared to the other studied 
variants. The fact that TCP Vegas calculates and updates its performance parameters (CWND 
and RTO) at the reception of each acknowledgment leads to this high computational energy cost. 
Also, as TCP Vegas tries to retransmit the lost packets at the reception of the first duplicate 
acknowledgement, it increases the communication energy consumption due to unnecessary 
retransmissions in some cases as seen earlier.   

TCP Westwood has the least total energy consumption compared to other variants.  
TCP Westwood outperforms TCP New Reno due to its ability to adjust its data transmission  
rate according to the available bandwidth over the network. The difference between  
TCP Westwood and TCP Vegas is that TCP Westwood recalculates and adjusts its  
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performance parameters only after loss detection and not at the reception of  
each acknowledgement (each RTT) as in TCP Vegas. Less calculations means less  
processing overhead at the CPU leading to less computational energy cost. TCP SACK  
consumes more energy than TCP New Reno due to the fact that TCP SACK at the sender  
side must identify the lost packets to be sent through the SACK option upon each  
received acknowledgments from the receiver. It is also clear that TCP SACK has an  
important transmission, reception, and forwarding overhead linked to the selective 
acknowledgment that is not employed in the other TCP variants. 

We can conclude also, that TCP New Reno does not consume much energy because of  
its light processing overhead at the CPU level. TCP New Reno merely halves its data  
transmission rate (CWND) after losses recognized by 3 duplicate acknowledgements  
or minimizes it in case of RTO.  In addition, TCP New Reno avoids any unnecessary 
retransmissions as it triggers its congestion control algorithm directly after data packet  
losses identified through RTO. Thus, light processing overhead and lower retransmission  
rate leads to lower total energy consumption at the sender side. 

4.4.1.2 INTERFERENCE                                                                           

Regarding the total energy consumption of TCP Variants in the case of data loss due  
to interference (Figure 4.23 (B)), we find that TCP Vegas has the highest total  
energy consumption. Packet interference induced losses can be classified as wireless  
channel errors induced losses. For TCP Vegas, the computational energy cost due to CWND  
and RTO calculations at the reception of each acknowledgement from the receiver leads to  
high total energy consumption. 

 TCP New Reno has the lowest total energy consumption per received byte since it is able  
to recover from multiple data loss during the same window. It has low computational  
energy cost sine it employs very simple operations: it halves its data transmission rate after  
data losses recognized by three duplicate acknowledgements. Contrarily to TCP New Reno,  
TCP SACK retransmits the lost packets without need to wait for the receiver acknowledgements, 
which leads to better usage of the available bandwidth and slightly higher energy  
consumption per received byte compared to TCP New Reno. This slight difference, again, is due 
to the computational, storage and communication overhead of the selective acknowledgments. 

TCP Westwood has the ability to distinguish between congestion-induced data losses  
and wireless signal related data losses. This feature is of high interest in the case of interference. 
It allows for achieving a good throughput (Figure 4.8), but has a cost in terms of energy that 
makes its performance equivalent to TCP New Reno for this performance metric. 

4.4.1.3 LINK FAILURE AND SIGNAL LOSS                                                     

In these cases (Figure 4.23 (C) and (D)), TCP Vegas has the best performance in terms of  
total energy consumption per each sent byte. The ability of TCP Vegas to adapt its  
data transmission rate and RTO, after link loss or signal loss recovery, helps to decrease the  
total energy consumption.  

For TCP New Reno, and TCP SACK, they react similarly by backing off then entering slow-start 
phase, and decreasing data transmission rate to minimum. Though that, TCP Westwood  
has lower communication energy consumption than both TCP New Reno and TCP SACK  
(Figure 4.9), due to its ability to adapt its data transmission rate after data loss even, according 
to the network conditions. The processing overhead of TCP Westwood in order to identify  
the data packet loss neutralizes this advantage. 
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4.5 DISCUSSION 

It was proved that the congestion control algorithm in TCP variants affects the throughput 
and energy consumption within wireless ad hoc networks. In order to enhance TCP performance 
within wireless ad hoc networks, we proposed to first identify the different types of data packet 
loss situations within such networks, and then to study the performance of existing TCP variants 
when dealing with such data packet loss models. Our ultimate goal is to investigate the most 
appropriate TCP reaction in order to recover from each different data packet loss cause taking 
into consideration optimizing the usage of limited and scarce network resources (bandwidth 
and energy resources). 

Through simulations, we found that the ability of TCP to differentiate the data packet loss 
cause over the connection (as in TCP Westwood) helps to better react and recover from data 
packet loss according to the identified loss cause. Unfortunately, TCP Westwood is only able to 
recognize congestion-related and wireless-related (e.g. interference) packet loss causes. Our 
second conclusion here concerns the ability to adjust TCP’s data transmission rate after a loss 
episode (as in TCP Vegas). In some cases, such ability leads to better performance. 

Also, we studied the TCP computational energy cost using a hybrid approach (i.e. using 
simulation results to configure a real test-bed configuration and perform accurate repeatable 
experiments). We also identified some tracks to follow in order to create a novel TCP variant 
that is energy-efficient in wireless ad hoc networks. For example, classifying data packet loss 
causes and efficiently adapting the TCP connection parameters (e.g. CWND and RTO) can help 
avoiding unnecessary data packet retransmissions. Consequently, this leads to better bandwidth 
utilization and lower communication energy consumption.  

Our study shows that most of the TCP-related energy consumption occurs within the CPU of 
the sender node. Additionally, we found that, a significant part of the TCP communication energy 
consumption is due to unnecessary data packets retransmission because of: (i) inability of TCP 
to identify the data packet loss cause over the connection, or (ii) suboptimal TCP performance 
parameters (CWND, and RTO) adaptation. Knowing where the most TCP energy consumption 
occurs is the key improvement we can bring to TCP functions and their performance within 
wireless ad hoc networks. For example, helping TCP to avoid unnecessary retransmissions and 
minimize CPU calculations will help in optimizing TCP energy consumption and will lead to 
better usage of the network’s available bandwidth.  

4.6 CONCLUSION 

In this chapter, we conducted a complete performance study of four TCP variants (TCP New 
Reno, TCP SACK, TCP Vegas and TCP Westwood), within wireless ad hoc network environment. 
We started by identifying the different data packet loss situations that TCP may confront within 
wireless ad hoc networks: (i) network congestion, (ii) interference, (iii) link failure, and (iv) 
signal loss. Our study concerns both TCP connection throughput and energy consumption 
(computational end communication energy consumption). TCP throughput and communication 
energy cost results were obtained through NS-2, and the computational energy cost results were 
obtained through a realistic test-bed implementation. 

The above results show that TCP cannot cope with all data packet loss situations found within 
wireless ad hoc network (static or mobile). TCP’s behavior needs to be enhanced in order to 
handle the different loss causes other than congestion. When looking at the reaction of TCP 
when faced with non-congestion loss types, we can notice high degradation in performance 
leading to waste of scarce network resources; such as nodes’ available energy (batteries) and the 
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available wireless bandwidth. The existing TCP variants that were originally developed for 
wired networks do not always behave optimally when confronted with the different data packet 
loss models within wireless ad hoc networks. Some show good performance in certain cases and 
bad performance in others. It is worth to note that, when these variants were developed caring 
about the nodes’ energy consumption was not a big concern. Also, the variants that were 
developed with loss differentiation capabilities, as TCP Westwood, to enhance TCP performance 
within wireless networks do not take into consideration other data packet loss situations that 
would be faced within wireless ad hoc networks, such as link failures. 

The problem of TCP and its most existing variants within wireless ad hoc networks resides in 
its inability to distinguish between different data packet loss causes. Thus, TCP reaction is not 
always optimum which would lead to network performance degradation and resource waste. 
From this perspective, we need to design a new Loss Differentiation Algorithm (LDA) and a new 
Loss Recovery Algorithm. These new algorithms should have the capability to identify and deal 
with the most common packet loss models within wireless ad hoc networks environment.  This 
will constitute the objective of the next chapter. 
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CHAPTER 5. TCP-WELCOME: TCP VARIANT FOR WIRELESS 
ENVIRONMENT, LINK LOSSES, AND CONGESTION PACKET 

LOSS MODELS 

5.1 INTRODUCTION 

According to the obtained results in the previous chapter, we found that none of the existing 
TCP variants is well adapted to deal with all data packet loss situations that can be encountered 
within wireless ad hoc networks. The results show that, the performance of TCP degrades 
significantly within wireless ad hoc networks. Moreover, some of the studied TCP variants 
perform well in certain cases while they perform badly in other cases. In a wired network 
environment, the nodes always have an energy supply source and do not necessarily need to be 
energy conservative, as it is the case with wireless ad hoc network nodes that are battery-
dependent devices (the worst case is a wireless sensor network, WSN). 

The results of the previous chapter show that the ability of TCP to distinguish among 
congestion-induced and wireless-related data losses (as in TCP Westwood) leads to an improved 
performance in some cases. However, TCP variants that incorporate a loss differentiation 
algorithm do not consider all types of data packet loss that can be encountered within wireless 
ad hoc network environments. In fact, they consider congestion-induced and wireless-channel-
related losses only. While in wireless ad hoc networks, we have other data packet loss causes 
such as link failure that might be due to nodes’ mobility (in case of wireless mobile ad hoc 
networks) or nodes’ battery depletion. We also find that the TCP variant that is able to adjust its 
performance parameters (CWND and RTO) after data losses (as in TCP Vegas), in certain cases, 
can improve the performance within the network. However, adjusting TCP performance 
parameters regularly could result in performance degradation instead of improvement 
(especially in term of energy consumption). We also have to mention that the obtained results 
(in the last chapter) conclude that each data packet loss situation necessitates different data 
packet loss recovery reaction that optimizes TCP performance within the network. 

The work done in this domain addresses the problems of TCP within wireless infrastructure 
networks where only the last hop is the wireless channel.  Most of this work takes  
into consideration how to distinguish among wireless channel related and congestion  
data losses.  Within wireless infrastructure networks, link failure affects only the end user  
(the concerned node), while within wireless infrastructure-less networks (such as wireless  
ad hoc networks); link failure affects the whole network as each node might forward  
data packets to other network’s nodes. From this perspective comes the importance of  
dealing with link-failure-induced losses, since it is a very common situation within wireless  
ad hoc network environments. 

In this chapter, we present a new TCP variant that is able to deal with the most common data 
packet loss causes within wireless ad hoc network environment. To summarize, the key features 
of this new TCP variant (TCP WELCOME, TCP variant for Wireless Environment, Link losses, and 
COngestion packet loss ModEls) are: 

1- Loss Differentiation Algorithm (LDA) that has the ability to distinguish among these 
different data packet loss causes: (i) Network congestion induced losses, (ii) Wireless channel 
related losses (interference and signal loss), and (iii) Link failure induced losses. 

2- TCP Loss Recovery Algorithm (LRA) that is able to deal with each identified data packet 
loss cause accordingly by stopping data transmission when necessary or adjusting the TCP 
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performance parameters (CWND and RTO) when needed. LRA should take into consideration 
network resources optimization through: (i) Minimizing radio communication energy 
consumption, (ii) Minimizing total TCP’s node energy consumption, and (iii) Maximizing  
TCP throughput.  

This chapter describes the necessity of developing such a new TCP variant and its main 
characteristics and algorithms. Improving TCP performance within wireless ad hoc networks is 
the major goal of this thesis and the work done in this chapter accomplishes this objective. The 
chapter is organized as follows: after presenting the motivation behind our work in the 
following section. Then, we present an overview of the related work done within this domain. 
After that, we describe our proposed TCP variant and its main characteristics showing how it 
could enhance TCP performance within wireless ad hoc network environments. The 
methodology used to evaluate the performance of our proposed TCP variant and the obtained 
results are described after. Finally, the last section summarizes our work in this chapter and 
gives some perspectives. 

5.2 MOTIVATION AND PROBLEM STATEMENT 

Before going through our point of view concerning the proposed solution, we will state  
again the problem of TCP within wireless ad hoc networks. The current implementation  
of TCP loss recovery algorithm is a congestion oriented, as indicates the name:  
congestion control algorithm. This congestion orientation in TCP makes it incapable to deal  
with other data packet loss situations that TCP may suffer from. The problem of TCP resides  
in its inability to recognize the main cause of data packet loss within the network. The  
proposed solution must resolve this problem by finding how TCP could be more intelligent  
to differentiate between the most common situations of data packet losses within wireless  
ad hoc network environments. At the same time, TCP must be able to react accordingly by  
taking the most appropriate loss recovery action that optimizes both the nodes’ and  
network resources.  

In wired networks, the main cause for data packet loss is network congestion due to  
nodes’ buffer overflow. In such case, backing off and stopping data transmission is the  
right reaction. In addition, reducing data transmission rate (by decreasing the congestion 
window size) after a loss event helps avoiding repeated congestion conditions within  
the network. However, in wireless ad hoc network, we have three network situations that  
may lead to data packet losses:  

(i) High Bit Error Rate (BER) over the wireless communication channels, (ii) Link failure  
due to nodes’ mobility or power depletion, and (iii) Network congestion due to nodes’  
buffer overflow. 

 It is obvious that, each of these loss situations requires a different TCP reaction, as  
detailed below. Indeed, TCP implementation reacts similarly in front of all data packet losses  
as if they were due to network congestion events.  Hence, improving TCP in order to  
efficiently handle the different data packet loss situations within wireless ad hoc network is  
of a great interest.  

Next, we explain the importance of differentiating between these data packet loss  
situations, and our perspectives concerning the reaction of TCP in front of each data packet  
loss cause. This is demonstrated through some illustrative examples that show the undesirable 
behavior of TCP within wireless ad hoc network environment faced with different types  
of packet loss. 
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5.2.1 IMPERFECTIONS OF WIRELESS COMMUNICATION CHANNELS 

Communications between wireless ad hoc network nodes are established via wireless 
channels. This is considered as a scarce, unreliable communication media type. It is affected by 
the weather conditions, geographical obstacles along the route between source and destination, 
and the distance between communicating nodes. These factors have a varying impact on the 
reliability of data transmission over wireless communication channels. Experiencing different 
levels of Bit Error Rates (BER) over communication channels, results in data packet loss 
episodes within TCP sessions. In this case, TCP backs off and stops data transmission for a 
period of time equals to a Retransmission Time Out (RTO) value. Then, it resumes data 
transmission after decreasing its data transmission rate. This reaction leads to waste of both 
nodes’ and network resources (network bandwidth, and node’s energy), especially with 
repeated losses due to high BER over the wireless links. Stopping data transmission and 
reducing TCP transmission rate is considered as unnecessary, even an aggressive action in this 
case. A more optimal reaction here would be to retransmit the lost data packets and to resume 
data transmission with the same transmission rate as before the loss event. 

5.2.2 LINK FAILURE WITHIN THE NETWORK 

Losing a route between two communicating end points or an intermediate link within the 
route between them requires an action from the routing protocol. The ad hoc routing protocol is 
responsible for link loss recovery in the network by finding an alternative route towards the 
destination. In such a situation, TCP reacts as if it were network congestion. TCP backs off and 
stops data transmission for a certain time (RTO) and then resumes the communication using 
reduced data transmission rate. A more appropriate reaction here is to resume the data 
transmission immediately after link loss recovery or after finding an alternative route towards 
the destination. If the route recovery time is smaller than the RTO, TCP remains in idle state 
although that there might be an available route towards the other end point. In addition, 
decreasing TCP data transmission rate may not be necessary and could be a wasting of 
network’s bandwidth.  It is better here that TCP adjusts its data transmission rate and RTO timer 
values according to the new route conditions (i.e. the length and the load of the new discovered 
route represented by the new RTT delay over this new route). 

From the above, we can conclude that the efficiency of TCP to handle a data loss situation is 
highly dependent on its capability of identifying correctly the cause of this loss, since each data 
loss situation requires a different appropriate loss recovery action. 

Our objective is to develop an end-to-end TCP enhancement solution that includes: loss 
differentiation and loss recovery algorithms. Unlike feedback-based solutions, end-to-end 
solutions do not require any support or interaction from intermediate nodes within the network. 
Hence, the protocol messages overhead is lower than that in the case of feedback-based 
solutions.  This helps to avoid wasting the network’s available bandwidth as well as saving the 
nodes’ energy. Additionally, our proposed solution will be based on RTT measures at the sender 
side host, which does not require synchronizing clocks at both sending and receiving ends. 

5.3 RELATED WORK 

In this section, we discuss the main TCP congestion control enhancements proposed in order 
to improve its performance within wireless and ad hoc networks. We discuss mainly the loss 
classification algorithms developed. 
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 Loss classification algorithms can be categorized into two categories [59]: (i) implicit or end-
to-end, and (ii) explicit loss differentiation algorithms. Unlike implicit loss differentiation 
algorithms, explicit solutions use agents that are deployed on the network’s intermediate nodes. 
End-to-end or implicit solutions could involve the sender side only (e.g. TCP Westwood) or both 
the sender and receiver sides (e.g. the 3 Duplicate Acknowledgements sent by the receiver to 
notify the sender of the loss). 

5.3.1 IMPLICIT LOSS CLASSIFICATION ALGORITHMS  

TCP Westwood is an example of implicit loss classification algorithms. As described before, 
TCP Westwood [60] [11] [61] is a sender-side modification of TCP New Reno that estimates the 
connection bandwidth based on the rate of the received acknowledgements. TCP Westwood 
uses the estimated bandwidth to adjust and set its congestion window and Slow-Start threshold 
parameters. This is in contrast to traditional TCP congestion control implementation, where 
both congestion window size and Slow-Start threshold are halved whenever a data packet loss is 
detected within the connection [6]. This bandwidth estimation algorithm enhances the 
performance of TCP Westwood in front of random, sporadic data packet losses (wireless link 
errors). 

In [50] the authors illustrate that, in the link failure case, both TCP New-Reno and TCP 
Westwood recognize the packet loss with RTO expiration. Thus, both react the same way by 
backing off for a while entering Slow-Start phase. In the link failure case, the average goodput of 
TCP Westwood is less than that of TCP New-Reno. This is due to the lost ACKs. Indeed, in order 
to estimate the end-to-end bandwidth and discriminate among loss causes, TCP Westwood relies 
on the received acknowledgments. In a situation where there are several acknowledgments lost, 
this may lead to a wrong estimation of the end-to-end bandwidth and consequently to a TCP 
Westwood misbehavior. The authors found that TCP Westwood has higher energy consumption 
per received bit than TCP New-Reno in most cases. It can also be noticed that TCP Westwood 
energy consumption gets worse when BER increase. Its dependence on RTT measurements to 
calculate the estimated bandwidth is also responsible of this effect. Similarly to the link failure 
case, as BER increases over the wireless channels, the returned ACKs become prone to loss and 
corruption. These lost or corrupted ACKs can yield to mistaken estimated bandwidth 
calculations. 

5.3.2 EXPLICIT LOSS CLASSIFICATION ALGORITHMS 

Explicit loss identification can be performed through different estimation techniques. Many 
researches attempted to classify data packet losses within the network using Loss 
Differentiation Algorithms (LDA). The main LDA schemes are discussed in the following. 

In [62] a sender-side method of end-to-end loss differentiation and adaptive segmentation 
(Robin) is proposed, for enhancing TCP performance in heterogeneous4

                                                             

4 Heterogeneous networks mean a mixed wired/wireless environment. 

 networks. This loss 
differentiation algorithm enables the TCP sender to distinguish congestion losses from wireless 
error losses. Moreover, in order to improve the error recovery phase during a non-congestive 
period, an adaptive segmentation algorithm is proposed. This algorithm enables the TCP sender, 
if a non-congestive packet loss is detected, to retransmit smaller packets, having aggregate 
payload equal to the payload of the lost packet. Decreasing segment size reduces Packet Error 
Rate (PER) [63]. The evaluation results of this algorithm show that, in the case of high 
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propagation delays over the network, the improvement is negligible. We have to note here that 
the proposed solution assumes that only the last hop is a wireless link. While in the case of 
wireless ad hoc networks, all the communication links are wireless channels and the 
propagation delay will be higher than a simple one hop wireless network.  

In [64] the authors state that the loss differentiation is often performed at the receiver side 
and the congestion control at the sender side. Thus, they propose a simple checksum based 
approach for loss differentiation together with two loss notification schemes. The two proposed 
loss notification mechanisms based on a TCP option for the first one and based on sending three 
duplicate acknowledgements (3-dupack) for the second one. The TCP option explicitly signals 
non-congestion losses to the sender whereas the 3-dupack scheme instead implicitly influences 
the sender to retransmit faster. This solution is beyond the scope of our suggestions as we do 
not want to apply notifications mechanism. Indeed, applying notification mechanisms will 
increase the overhead of TCP execution (throughput and energy consumption). 

In [65] the authors propose a cross-layer solution based on two LDA algorithms in order to 
classify the loss origin on an 802.11 link and react accordingly. The first LDA scheme, acting at 
the MAC layer, allows differentiating losses due to signal failure caused by displacement or by 
noise from other loss types. In this case, it adapts the behavior of the MAC layer to avoid a costly 
end-to-end TCP resolution. The objective of the second LDA scheme, which acts at the TCP layer, 
is to distinguish losses due to interferences from those due to congestions and to adapt, the TCP 
behavior accordingly. The work done here is for wireless networks with only the last hop as 
wireless communication channel.   

In [66] the authors tried to augment the basic LIMD (Linear Increase/Multiplicative 
Decrease) [67] congestion control with additional mechanisms to predict the cause of packet 
losses and react accordingly. They present the LIMD/H algorithm, which has the following 
features: 

(i) LIMD/H uses the “history” of packet losses and the evolution of transmission rate for a 
connection in order to distinguish between congestion-induced and non-congestion 
induced packet losses, and  

(ii) LIMD/H reacts gently to non-congestion-induced losses and aggressively to congestion 
induced losses, thereby achieving high efficiency, fairness, as well as quick reaction to the 
onset of congestion. 

Biaz and Vaidya [68] looked at two different end-to-end loss differentiation approaches for 
TCP connections. They first looked at a set of “loss predictors” based upon three different 
analytic approaches to congestion avoidance that explicitly model connection throughput 
and/or round-trip time (e.g. TCP Vegas). The results show that, these algorithms perform badly 
in case of wireless losses. They could not correctly classify errors due to wireless problems. In 
subsequent work [69], they proposed a new algorithm that uses packet inter-arrival time at the 
receiver-side to differentiate losses. It assumes that the last hop is a wireless connection and 
that is the bottleneck. If the time between received packets is close to minimum, then a lost 
packet in-between is assumed to be lost due to wireless channel errors and not network 
congestion (buffers overflow). Using simulations, they show that it works very well in a network 
where the last hop is wireless and is the bottleneck link. Once again, such a solution would be 
inadequate for wireless ad hoc network environments where all the communication links are 
wireless channels and where more complex loss situations may happen. 

The Spike Scheme [70], at the receiver side, measures one-way delays. The receiver switches 
between congestion state and wireless state according to a certain threshold. If the delay 
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exceeds this threshold, it is a congestion state. Otherwise, it is a wireless state. The ZigZag 
Scheme presented in [71], extends the Spike scheme to include both the mean and standard 
deviation values of the measured one-way delays as well as the number of packet losses when 
computing the delay threshold used. According to this calculation, the higher the number of 
packet losses, the greater the threshold beyond which a congestion state is assumed to be. In 
other words, the wireless errors state becomes more likely the cause of data packet losses over 
the network.  

Samaraweera proposes a Non-Congestion Packet Loss Detection (NCPLD) algorithm [72] in 
order to differentiate between congestion and non-congestion data packet loss causes within the 
wireless network. NCPLD is based on the “Knee Point” concept of the throughput-load graph at 
which the network reaches its optimum performance. Before the knee point, no congestion is 
present. Then, increasing data transmission rate increases the throughput while the round trip 
delay remains relatively constant. On the other hand, after the knee point, queuing delay at the 
routers results in round trip delay increase. If the current or measured round trip delay is less 
than the delay threshold at the knee point, the packet loss is assumed to be due to wireless 
errors. Otherwise, it is assumed to be a network congestion case within the network. 

From the above, we can see that most of the work done in this domain addresses the 
problems of TCP within wireless infrastructure networks. All these contributions assume that 
the wireless channel connection is only the last network’s hop.  However, in wireless multi-hop 
ad hoc networks, all the communication channels are wireless links. In addition, the proposed 
LDA that addresses the link failure problem is implemented at the MAC layer level and not at the 
Transport layer. The cross-layer solutions will naturally increase the nodes’ computations and 
energy consumption.  

We will see in the next section that a link failure case within a wireless ad hoc network 
requires a specific reaction from TCP in order to recover from data packet losses. Link failure 
situation within such networks introduces burst data packet losses over the TCP connection. 
Although that burst losses could be the result of a network congestion event, the reaction of TCP 
in front of link failure data losses assuming that it is due to network congestion is an aggressive, 
inefficient reaction.  

Within wireless ad hoc network environments, we have the effect of wireless communication 
channels (e.g. fading, multi-path routing, interference), the effect of ad hoc network 
environments (mainly link failure due to mobility or battery depletion) in addition to the 
network congestion effects due to buffers overflow.  Hence, we have three different reasons (not 
only two as discussed in previous researches) to lose data packets within wireless ad hoc 
network environments. Therefore, we propose new TCP loss differentiation and loss recovery 
algorithms that can distinguish among the three loss situations mentioned above, within 
wireless ad hoc network environments. 

5.4 TCP-WELCOME: TCP VARIANT FOR WIRELESS ENVIRONMENT, LINK 
LOSSES, AND CONGESTION PACKET LOSS MODELS 

In order to enhance the performance of TCP in front of the different data packet loss 
situations within wireless ad hoc networks, TCP must be able to react differently when 
confronted with  each of them [Figure 5.1]. TCP reaction should be as follows: 

In the case of high BER over the wireless communication channels within the network, it is 
unnecessary to stop data transmission or to decrease TCP’s transmission rate after experiencing 
a loss event. 
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In case of link failure within the network (i.e. a broken route between the connection’s end 
points), it will be sufficient to stop data transmission till an alternative route towards the 
destination is found. The transmission rate here will be adjusted according to the available 
bandwidth of the new route. It is obvious that, the length and the load of the communication 
path have an impact on the Round Trip delay Time (RTT) between the end points. Hence, it 
would be necessary, in this case, to recalculate both the TCP data transmission rate (CWND) and 
the Retransmission Time Out (RTO) values according to the characteristics of the new route (e.g. 
length and load of the new route). 

When there is a congestion situation in the network, TCP keeps its normal behavior. It reacts 
according to how the congestion had been detected (3 Duplicate Acknowledgements or RTO). In 
all congestion cases, TCP stops data transmission during a certain period of time and resumes it 
after wards with a reduced data transmission rate. 
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FIGURE 5.1. TCP PROPOSED LDA AND LRA ALGORITHMS 

 

This section is organized as follows: we start by describing the rules that define how TCP-
WELCOME will distinguish among the data packet loss causes defined above. Then, we present 
the main algorithms of TCP-WELCOME: the TCP Loss Differentiation Algorithm that is used to 
classify the data packet loss cause and the Loss recovery Algorithm used to recover from each 
type of loss.  

5.5 TCP-WELCOME: LOSS DIFFERENTIATION ALGORITHM (LDA) RULES 

With respect to all the concerns and suggestions above, we need to have an adapted LDA 
algorithm that enables TCP to correctly classify the cause of data packet losses within wireless 
ad hoc network environments. This algorithm should differentiate between the predefined data 
loss situations above. 

In order to decrease the execution overhead of TCP algorithms and the interaction with the 
intermediate nodes within the network, our LDA and LRA algorithms are end-to-end, sender 
side modifications. In addition, TCP-WELCOME relies on the evolution of RTT samples of sent 
packets at the sender side in order to take its decisions. The evolution of RTT samples history is 
an efficient indication of the loss cause over the connection. We will see later how RTT samples 
evolution can be used to classify different data packet loss causes. 
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In order to detect the packet loss cause, let )(, tq id , )(, tP id and )(, tp id be the queuing, 

processing and propagation delays, respectively, of node i at a given time t .  

Figure 5.2 illustrates the delays experienced by a TCP sent data packet over the connection 
until receiving the acknowledgements at the sender side. 
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FIGURE 5.2. ROUND TRIP TIME (RTT) OF A TCP SENT DATA PACKET 

 

Thus, RTT value of TCP connection over a route that contains m hops at time t  is calculated 
as follows: 

"
 

## 
m

i

ididid tPtptqtRTT
1

,,, ))()()((2)(                                       (5.1) 

The above equation describes the RTT value of a sent packet over network links towards the 
destination host. Henceforth, we will consider only the propagation and queuing delays as these 
values are highly affected by network changes.  Whereas, processing delay depends solely on the 
communication node capabilities and not on network conditions. It is obvious that, when there is 
a link failure within the network, the propagation delay will change according to the new 
recovered route. Moreover, with network congestion, the queuing delay will increase. The next 
section describes the proposed Loss Differentiation Algorithm (LDA) for TCP enhancements 
which include the proposed RTT calculation and estimation algorithms to be used. As for how 
should TCP adjust its parameters (RTO, CWND, and SSThreshold) according to the packet loss 
cause identified by LDA, this will be discussed later.  

5.6 TCP-WELCOME: LOSS DIFFERENTIATION ALGORITHM (LDA) 

In this section, we identify the basic concept of our proposed LDA used to classify the 
different data packet loss causes over the TCP connection. The main idea is based on observing 
the history of RTT samples evolution within the network and the way in which TCP identifies the 
data packet loss [Figure 5.3]. 
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FIGURE 5.3. TCP PROPOSED LOSS DIFFERENTIATION ALGORITHM 

 

According to the evolution of RTT samples over the connection, TCP should be able to identify 
the cause of data packet losses. Next, we will discuss how TCP can use RTT values as an 
indication of each type of data packet loss. 

5.6.1 WIRELESS CHANNEL RELATED LOSSES  

If the evolution of RTT samples over the connection is not highly fluctuating, staying around 
an average value and the data packet loss is identified through three duplicate 
acknowledgements, thus the data packet loss is due to wireless channel inefficiency on one of 
the links over the communication path. In wireless channel BER case, both queuing and 
propagation delays are almost constant, and the RTT samples over the connection should not 
experience high fluctuations with time. Additionally, when there is a valid route between the 
source and the destination, despite the presence of link errors, the source can always receive 
acknowledgements from the destination. The corruption of acknowledgements is of a lesser 
probability since the acknowledgement packet size is relatively small. 

Thus, in the case of wireless channel induced losses, the RTT samples will stay around an 
average value (± RTT_THRESHOLD): 
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Hence, three Duplicate Acknowledgements and RTT values that are almost constant mean 
that data packet losses over the connection are due to wireless channel errors. 

5.6.2 LINK FAILURE LOSS EVENT  

If the evolution of RTT samples over the TCP connection is relatively constant and TCP 
recognizes data packet losses through Retransmission Time-Out (RTO) expiration, then data 
packet loss is due to a link failure situation along the route towards the destination. 

In this case, after link loss recovery, the following observations could be noticed: both 
Propagation and Queuing delays change suddenly since the new discovered route might (i) not 
be having the same length (i.e. number of hops) as the lost route, (ii) be more charged than the 
lost one. 

If the new recovered route between the source and destination does not have the same 
number of hops as the old lost one, then TCP connection will experience a sudden change in 
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propagation and queuing delays. Let k be the number of hops along the new recovered route. 
Then, RTT values of the new route can be calculated as follows: 

"
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FIGURE 5.4. RTT VARIATIONS WITHIN WIRELESS AD HOC NETWORK (LINK FAILURE) 

In the above simulated link failure situation [Figure 5.4], we can see that RTT evolution, after 
a certain time of the simulation’s onset (during which the ad hoc routing protocol finds a route 
towards the destination), the connection enters in a steady state phase where the RTT evolution 
stays almost constant. The Figure shows that before the link failure event, the RTT evolution 
fluctuation is not high and can be considered within an average value.  

 Hence, Retransmission Time Out and RTT values that are almost constant mean that data 
packet losses over the connection are due to link failure. 

Regarding the time required by the ad hoc routing protocol to recover from the link failure or 
to find an alternative one, we can see two situations: 

1. This time is less than TCP’s RTO. In this case TCP identifies data packet loss through 
duplicate ACKs. When the TCP sender side checks the evolution of RTT samples over the 
connection, it finds that it is relatively constant. Accordingly, TCP will classify this type of loss 
as a wireless channel BER, and will verify the CWND and modifies it to be relevant to the 
Slow-Start threshold (as will be seen below). This action will be less aggressive when 
compared to traditional TCP in which it is assumed that the losses are due to network 
congestion. 
 
2. If this time is longer than TCP’s RTO. In this case, the TCP sender identifies data packet 
losses through RTO. When the TCP sender checks the evolution of RTT samples and finds that 
the evolution is almost constant, TCP will classify the packet loss as a link failure related loss 
and reacts accordingly.  

5.6.3 NETWORK CONGESTION EVENT 

If the evolution of RTT samples at the sender side is increasing gradually. Then, the loss is due 
to network congestion. Regardless of how TCP recognizes the data packet losses: 3 Duplicate 
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Acknowledgments, or RTO expiration. In this case, the queuing delay increases gradually since 
the network nodes’ buffers are filled with time. 

 

 

FIGURE 5.5. RTT VARIATIONS WITHIN WIRELESS AD HOC NETWORK (NETWORK CONGESTION) 

 

It is clear from Figure 5.5, that before losing data packets due to a network congestion 
episode within the network, the evolution of RTT values over the TCP connection increases 
gradually. Thus, this gradual evolution is the indication of an imminent network congestion 
episode within the network. 

If the route between the source and the destination is constant (i.e. length of route is 

constant), the propagation delay stays almost constant over the connection. Let )(tqi  be the 

queue length at node i ; and ic  the link capacity at time it  . The  value at time t can be 

calculated as follows:  
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Hence, Retransmission Time Out and RTT values that are increasing gradually mean that data 
packet losses over the connection are due to network congestion. 

5.6.4 LOSS DIFFERENTIATION ALGORITHM SUMMARY  

As seen above, each cause of data packet loss can be characterized by its distinct RTT samples 
evolution history. Consequently, RTT estimation algorithm should be implemented to help TCP 
differentiate between the different data packet loss causes. 

 

RTT
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FIGURE 5.6. PSEUDO CODE OF TCP PROPOSED LDA RULES 

 

From the Pseudo code presented in Figure 5.6, we can see clearly how TCP can differentiate 
between the different data packet loss causes over the connection. If TCP identifies the packet 
loss through three duplicate acknowledgements, it checks the evolution of RTT samples over the 
connection. If the RTT samples evolution is almost constant, then the data packet loss is due to 
wireless channel errors. Otherwise, if the RTT samples evolution increases gradually, the data 
packet loss is due to network congestion. Similarly, when TCP recognizes data packet loss 
through RTO, if the RTT samples evolution is increasing gradually, then the packet loss is due to 
network congestion. Otherwise (RTT samples evolution does not fluctuate much before the loss 
episode), the packet loss is due to link failure within the path between the source and  
the destination. 

5.6.5 RTT CALCULATION ALGORITHM 

Since our proposed solution will be based on RTT samples evolution history, it is important 
to be sure that the RTT samples over the connection are accurately measured. Thus, we must 
decide how the RTT samples will be calculated. There are many proposed algorithms in the 
literature describing different mechanisms for measuring RTT samples [73]. Among them: 

1- Measuring from the first transmission [73]. 
2- Measuring from the most recent transmission [73]. 
3- Ignoring round-trip times for packets that have been retransmitted [73]. 
4- Karn’s algorithm [73]. 

Karn’s algorithm accepts only good samples and uses the retransmission back-off strategy to 
ensure that good samples will eventually be available even if round-trip times increase 
dramatically [73]. The main idea of Karn’s algorithm is to use RTO in order to obtain accurate 
RTT measurements that are not affected by retransmission ambiguity. This algorithm does not 
take into consideration the acknowledgements of retransmitted data packets.  Only the data 
packets that are acknowledged without retransmissions will be considered in RTO calculations. 
This action ensures that only accurate RTT measurements will be taken and used. Since Karn’s 
algorithm is recognized to be the best performing option [73], we decide to implement it in our 
proposed solution. 

5.6.6 RTT ESTIMATION ALGORITHM 

The RTT measurements have high-frequency characteristics that are desirable to detect. To 
be able to follow step changes in the RTT mean value due to increased network load, new 



77 

 

competing traffic flows, or sudden path changes, more advanced algorithms for RTT estimation 
are needed. Currently most TCP versions implement the first-order linear filter. In mobile ad hoc 
networks, network parameters estimation is difficult because network observations are noisy. 
Current RTT estimator in TCP uses only one exponentially-weighted moving average (EWMA) 
static filter [6]. When a new observation is available, the EWMA filter produces a new estimate 
using linear combination of the old estimate plus the new observation, each given some weight. 
In traditional EWMA filters, the gain that determines the proportional weight assigned to the 
new observation and the old estimate is fixed. When old estimates are given more weight, the 
filter provides good stability; it resists noise in individual observations. However, when new 
observations are given more weight, the filter provides good agility; it is able to detect 
performance changes quickly. These filters are either able to detect true changes quickly or to 
mask observed noise and transients, but cannot do both at the same time. Ideally, one would like 
to have a filter that is agile when possible but stable when necessary, depending on current 
circumstances. Therefore, filters should be adaptive. In [74], an adaptive Flip Flop filter is 
proposed. The Flip Flop filter uses two EWMA filters, one is agile with a gain of 0.1, and the other 
is stable with a gain of 0.9. A controller selects between the two. The underlying principle of this 
controller is to employ the agile filter when possible, but to fall back to the stable filter when 
observations are noisy (RTT samples vary drastically and become noisy).  

As previously discussed, our proposed LDA is based on the history of RTT variation over a 
TCP connection. If the network experiences a congestion condition, the variation of observed 
RTT samples will be noticeable. Otherwise, with wireless channel errors the variation of RTT 
samples will be relatively constant. We use a Flip Flop filter, and define an upper control limit, % 
or RTT_G_THRESHOLD excess value. Then, RTT samples that exceed the control limit, l or 
RTT_G_COUNT_THRESHOLD, are used as an indication of network congestion case within the 
network. In [59], the authors consider that much delayed packets (whose RTT exceeds the 
control limit) as “outliers”%.  

Figure 5.7 shows the modified pseudo code of our proposed solution using the Flip Flop filter. 
In our proposed algorithm, we will keep % at a fixed value5
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. Furthermore, it is proved that Flip 
Flop filter fairness is competitive to regular TCP and its overhead is lower than that of TCP 
Westwood. Lowering overhead is an important issue for battery-operated devices. 

 

 
 

 

FIGURE 5.7 PSEUDO CODE OF TCPPROPOSED LDA 

                                                             

5 This value will be defined empirically through simulations to find the most appropriate parameters. 
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5.7 TCP-WELCOME: LOSS RECOVERY ALGORITHM (LRA) 

After identifying the data packet loss cause through using the proposed LDA, TCP-WELCOME 
should react accordingly using the most appropriate actions. 

In the following sections, we explain how the TCP connection parameters (CWND and RTO) 
are adjusted after each data packet loss event over the connection. Before that, let us explain 
why we are interested in these two parameters. Indeed, the way in which TCP adapts its data 
transmission rate (CWND) has a direct impact on its performance in terms of throughput and 
energy consumption. More transmitted data packets and less retransmitted data packets over 
the connection leads to better exploitation of the available bandwidth. Also, more retransmitted 
data packets leads to higher energy consumption at the TCP node. In addition, the time that TCP 
waits after loss event and before resuming the communication session (RTO) has a severe 
impact on these performance parameters of the connection. For example, if the RTO is less than 
the RTT value over the connection, unnecessary data packet retransmissions will lead to TCP 
performance degradation in terms of the throughput and the energy consumption. Hence, 
efficient adaptation of both RTO and CWND over the connection is crucial to improving TCP 
performance. 

5.7.1 TCP-WELCOME: RTO ADAPTATION ALGORITHM 

RTO estimation differs from RTT estimation in three ways. First, the goal is not to accurately 
estimate the truly maximal possible RTT, but rather a good compromise that balances avoiding 
unnecessary retransmission timeouts due to low RTO value, versus being slow to detect that a 
retransmission is necessary. Second, the TCP sender needs to estimate the round-trip time of 
data packets, the time taken from the sender to the receiver plus the time required at the 
receiver side to generate an ACK. For example, a receiver employing the delayed 
acknowledgment algorithm may wait up to 500msec before transmitting an ACK. Thus, 
estimating a good value for the retransmission timer not only involves estimating a property of 
the network path, but also a property of the remote connection peer. Third, if loss is due to 
congestion, it might be necessary that the sender waits longer than the maximum RTT time, in 
order to give the congestion more time to diffuse from the network. If the sender retransmits as 
soon as the RTT time elapses, the retransmission could also be lost, whereas sending it later 
would be successful [75]. It has long been recognized that the setting of the retransmission timer 
cannot be fixed but needs to reflect the network path in use, and it generally requires dynamic 
adaptation because of the great extent to which RTTs could vary over the connection [76] [77]. 

TCP-WELCOME should adjust the RTO value according to the loss cause identified after each 
loss episode within the network. In the case of wireless channel errors, no RTO estimation will 
be done. Whereas, when there is a link failure case within the network, RTO value will be 
modified based on the length and the load of the new route recovered by the routing protocol. In 
this case, the estimation algorithm will depend on the new RTT value over the new recovered 
route. It is obvious that the number of hops within the route between the source and the 
destination of the TCP connection as well as the load of each link/node along this route affect the 
RTT value over that connection. The larger is the number of hops and/or the higher the load of 
the links/nodes, the longer the queuing delay will be experienced over the connection. The RTO 
value should be adapted in order to match the characteristics of the new route. A simple manner 
to do so is as follows: 

Let oldRTT  be the delay over the lost old route, and newRTT  be the delay over the new 

recovered route. Then, the new RTO could be calculated as follows: 
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          (5.5) 

However, when there is congestion within the network, the RTO evolution stays the same as 
in traditional TCP New Reno. 

5.7.2 TCP-WELCOME: TCP DATA TRANSMISSION RATE ADAPTATION  

Bandwidth estimation algorithm is needed by TCP in order to well adjust its data 
transmission rate. Determining the available bandwidth of a new connection is a big issue in 
TCP. Clearly, if a transport protocol sender knows the available bandwidth, it would like to 
immediately begin sending data at that rate. But in the absence of knowledge about the available 
bandwidth, TCP must estimate it. In TCP, this estimation is currently made by exponentially 
increasing the sending rate until experiencing packet losses. The loss is taken as an implicit 
signal that the rate had grown too big, so the rate is effectively halved and the connection 
continues in a more conservative fashion [75]. TCP bandwidth estimation algorithm can be a 
sender-side or a receiver-side estimation algorithm [75]. However, our proposed solution will be 
based on the sender-side bandwidth estimation algorithm, in order to eliminate the impact of 
interaction between intermediate nodes over the connection on TCP performance. 

Estimating TCP data transmission rate is dependent on the networks’ links capacity and the 
queuing or buffering conditions within the network’s nodes. Later, we will explain how the 
proposed TCP-WELCOME Loss Recovery Algorithm (LRA) should adjust its data transmission 
rate according to the data loss event (identified by LDA) within the network. 

In the case of wireless channel related losses, there will be no modification of data 
transmission rate in TCP-WELCOME. However, in case of link failure along the route between 
the source and the destination, TCP-WELCOME should adjust its data transmission rate 
according to the characteristics of the recovered link. In this case, we have some ideas about 
how TCP can change the connection data transmission rate: 

1. TCP-WELCOME can keep the actual data transmission rate as before the loss event, and we 
let TCP-WELCOME adjust it according to its congestion control algorithm, if necessary. 

 
2. Second solution, TCP-WELCOME might decrease its data transmission rate automatically 

after the data loss episode over the connection. We may propose to half the actual data 
transmission rate before loss. This could be considered as a conservative action of TCP-
WELCOME. In this way, we avoid having repeated congestion events over the links, in case 
the new route is more charged than the lost one. In this case, the CWND will be calculated as 
follows: 

2

old
new

CWND
CWND           (5.6) 

Where newCWND  is the adjusted TCP-WELCOME data transmission rate after the data loss 

episode, and oldCWND  is the actual data transmission rate before. 

At the same time the new Slow-Start threshold of TCP will be calculated as follows: 

min*RTTBwdssThreshol estimated         (5.7) 
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3- Third solution is to adjust TCP-WELCOME data transmission rate according to the 
proportion of the new RTT value over the new recovered route to that over the lost one. In 
this case, we follow also as in the previous solution, a conservative mechanism in order to 
prevent a network congestion episode over the network links. We assume that the new 
discovered route contains other competing data traffic. With this conservative algorithm we 
try to help enhancing TCP-WELCOME fairness within the network. The new values of CWND 
and SSThreshold will then be calculated as follows: 

Let oldRTT  be the delay over the lost old route, and newRTT  be the delay over the new 

discovered route. Thus, the new data transmission rate of TCP could be calculated as follows: 

oldnew CWNDaCWND .             AND,      &&
'

(
))
*

+
 

new

old

RTT

RTT
a                               (5.8)      

Where a, is the performance parameter modification factor.   

The number of the RTT samples needed by TCP in order to calculate its performance 
parameters (RTO_NEW_RTT_SAMPLES) is determined through simulations.  

And the new Slow-Start threshold of TCP will be calculated as follows: 

min*RTTBwdssThreshol estimated                                          (5.9) 

When there is network congestion over the TCP connection, TCP-WELCOME will keep its 
normal congestion control mechanism as in TCP New-Reno. 

5.7.3 LOSS RECOVERY ALGORITHM SUMMARY 
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FIGURE 5.8 PSEUDO CODE OF TCP PROPOSED LRA 

 

Figure 5.8, summarizes the behavior of TCP-WELCOME Loss Recovery Algorithm (LRA) in 
front of the different data packet loss cases within a wireless mobile ad hoc network 
environment. In case of wireless channel errors, TCP-WELCOME will calculate the slow-start 
threshold and verify that the congestion window is not greater than the allowed slow-start 
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threshold over the connection. Yet, RTO will stay unchanged. Whereas, in case of network 
congestion induced data loss, TCP-WELCOME will decrease its congestion window in proportion 
to the calculated slow-start threshold (to avoid decreasing the congestion window to minimum 
as in traditional TCP), in order to enhance the TCP throughput and saves the node’s energy.  

When there is a link failure within the route between the communicating end points, TCP-
WELCOME will adjust its parameters taking into consideration the characteristics of the lost and 
the new discovered route (RTT values). 

5.8 SUMMARY OF THE PROPOSED ENHANCEMENT ALGORITHMS 

As detailed above, TCP must be able to cope with different types of data packet loss situations 
within wireless mobile ad hoc networks. Our aim is to propose an algorithm that helps TCP to 
classify correctly the cause of data packet losses over the connection, and to react properly in 
front of each type of data loss situations. We define three different data packet loss situations; 
wireless channel errors over the communication links, link failure in the route between the 
communicating nodes, and network congestion due to nodes’ buffer overflow. Then, we 
introduce a new Loss Differentiation Algorithm (LDA) which aims to classify these different loss 
causes. Our proposed LDA takes into consideration a new data packet loss case (that has not 
been discussed in previous work), which is the link failure within the network. This loss event is 
very common in mobile ad hoc network environments and cannot be neglected. Also, TCP must 
react correctly and differently according to the classified (by LDA) packet loss cause. We 
propose a new algorithm that deals with TCP loss recovery in such cases. Our proposed Loss 
Recovery Algorithm (LRA) takes into consideration the characteristics (length and load) of the 
route between the communicating nodes when dealing with link failure induced losses within 
the network.  

Figure 5.9 illustrates the pseudo code of the proposed LDA and LRA algorithms to enhance 
TCP behavior within wireless mobile ad hoc network environments. 
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FIGURE 5.9. PSEUDO CODE OF TCP-WELCOME LDA AND LRA ALGORITHMS 
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5.9 TCP-WELCOME IMPLEMENTATION 

We implemented TCP-WELCOME within Linux kernel at first. More precisely, we 
implemented it over Linux kernel 2.6 since it supports pluggable congestion avoidance modules 
[78]. Pluggable congestion avoidance modules facilitate the introduction of new TCP congestion 
control mechanisms within Linux kernel. Then, we used “A Linux TCP implementation for NS2” 
patch [79] in order to import our Linux implementation code of TCP-WELCOME into the 
network simulator NS-2. In this way, we had the ability to test and validate our TCP-WELCOME 
implementation code through NS-2 simulations and realistic test-bed configuration 
measurements. The results of TCP-WELCOME through both approaches are detailed in the 
following sections.  

5.10 TCP-WELCOME VALIDATION THROUGH NETWORK SIMULATIONS-NS2 

In this section, we use the TCP-WELCOME implementation for NS-2 to validate its 
performance. We study both Tx/Rx energy cost and throughput. In addition, we compare TCP-
WELCOME results with the results of the other TCP variants studied in the previous chapter in 
order to demonstrate the improvement in TCP performance parameters when using TCP-
WELCOME within wireless mobile ad hoc networks.   

5.10.1 SIMULATION SCENARIOS 

In order to have a wide range of results that help to better understand the behavior of TCP-
WELCOME in front of different packet loss situations, we compared it to different TCP variants 
using different simulation scenarios that describe multiple data packet loss cases. We use the 
same simulation scenarios that are described in the previous chapter: (i) network congestion, 
(ii) data packets interference, (iii) link failure, and (iv) signal loss. We build our scenarios using 
Ad-hoc On-demand Distance Vector (AODV) [52] as an ad hoc routing protocol. AODV is a 
reactive ad hoc routing protocol that triggers only route discovery process when the source has 
data to be transmitted toward the destination. This leads to low routing messages overhead. The 
scenarios are defined to be run using NS-2 [27] as a Network Simulator tool. In our simulations, 
all nodes communicate through identical wireless radio settings using the standard MAC 802.11 
having a bandwidth of 2Mbps and a radio propagation range of 250 meters. The results are 
compared to those of the four other TCP variants (TCP New Reno, TCP SACK, TCP Vegas, and 
TCP Westwood) studied in the previous chapter.  

Table 5.1 defines the variables and default values used in our simulated  
TCP-WELCOME variant. 

Variable Value 

RTT_THRESHOLD  ! 

RTT_G_THRESHOLD 5 

RTT_G_COUNT_THRESHOLD 5 

RTO_NEW_RTT_SAMPLES 4 

 

TABLE 5.1. TCP-WELCOME IMPLEMENTATION VARIABLES AND VALUES 
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5.10.2 SIMULATION RESULTS 

In this section, we discuss the results of TCP-WELCOME validation process through 
simulations. In order to show the performance gains of TCP-WELCOME, its performance results 
are compared to the performance of the other TCP variants studied in the previous chapter (TCP 
New Reno, TCP SACK, TCP Vegas, and TCP Westwood). 

5.10.2.1 NETWORK CONGESTION SITUATION RESULTS 

The results demonstrate that, in the event of network congestion losses, TCP-WELCOME has 
almost the same performance compared to the other variants, in terms of energy consumption 
(Figure 5.11). This is expected as TCP-WELCOME reacts to congestion in the same manner (as in 
TCP New Reno). For the average throughput, we notice in Figure 5.10 that TCP-WELCOME has a 
comparable performance with most studied variants (TCP New Reno, TCP SACK, and TCP 
Westwood). This result confirms that TCP-WELCOME is able to classify correctly the losses 
induced from network congestion and takes the right actions to recover from these losses. 

  

FIGURE 5.10. TCP AVERAGE THROUGHPUT FIGURE 5.11. TCP TX/RX ENERGY 
CONSUMPTION 

5.10.2.2 INTERFERENCE SITUATION RESULTS 

Figure 5.12 and Figure 5.13, show clearly that in front of interference, TCP-WELCOME 
outperforms all the other variants both in terms of average throughput and energy consumption. 
The ability of TCP-WELCOME to classify the cause of a data packet loss, as wireless signal related 
problems, and not decreasing the data transmission rate improves its performance compared to 
other TCP variants which decrease their data transmission rate (halving data transmission rate 
in most cases). We notice also that TCP-WELCOME outperforms TCP Westwood, which was 
developed for wireless networks, and has the ability to differentiate between wireless and 
congestion induced losses, in both terms of throughput and energy consumption. The fact that 
TCP-WELCOME does not decrease its data transmission rate or modify it in the case of wireless 
induced losses as in TCP Westwood is the main difference between these two variants. 

  

FIGURE 5.12. TCP AVERAGE THROUGHPUT FIGURE 5.13. TCP TX/RX ENERGY 
CONSUMPTION 

TCP Average Throughput

<FG

<FH

<FI

<FJ

K&$ 3&,- LMNO P&?+( Q&(/$--7 QRSN=TR

A
v
e
ra

g
e
 T

h
ro

u
g

h
p

u
t 

(K
b

p
s
)

TCP Energy Consumption

FUV

FUH

BUV

BUH

K&$ 3&,- LMNO P&?+( Q&(/$--7 QRSN=TRE
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

J
 1

0
E

-6
/R

x
 b

it
)

TCP Average Throughput

V

<HV

BVV

GHV

IVV

K&$ 3&,- LMNO P&?+( Q&(/$--7 QRSN=TR

A
v
e
ra

g
e
 T

h
ro

u
g

h
p

u
t 

(K
b

p
s
)

TCP Energy Consumption

V

VUB

VUI

VUW

K&$ 3&,- LMNO P&?+( Q&(/$--7 QRSN=TRE
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

J
 1

0
E

-6
/R

x
 b

it
)



84 

 

5.10.2.3 LINK FAILURE SITUATION RESULTS 

In MANETs, it is obvious that the communication paths between the communicating end 
points can break (due to mobility or depletion of nodes’ batteries).  Figure 5.14 and Figure 5.15, 
show that the average throughput of TCP-WELCOME and its energy consumption are improved 
significantly compared to those of other TCP variants. The ability of TCP-WELCOME to detect 
that the packet losses are due to link failure and to react with the most appropriate action leads 
to a much better performance compared to all other TCP variants which react assuming that 
losses are due to congestions and decrease data transmission rate to minimum, thus, consuming 
more energy and leading to low throughput. In TCP-WELCOME, adjusting data transmission rate 
according to the new discovered route’s characteristics; helps conserving node’s energy and 
maximizing average throughput. 

  

FIGURE 5.14. TCP AVERAGE THROUGHPUT FIGURE 5.15. TCP TX/RX ENERGY 
CONSUMPTION 

5.10.2.4 SIGNAL LOSS SITUATION RESULTS 

Losing the radio signal might be considered as another reason to get disconnected from the 
other communicating end. In link loss, both nodes (sender and receiver) would search for 
another route to complete the session. While in signal loss, this is not possible. After signal loss 
recovery, most TCP variants’ sender will start the communication session from the beginning, 
starting from Slow Start phase. This will be the case, each time the communicating nodes get 
disconnected due to absence of wireless signal. TCP-WELCOME, however, recognizes this data 
packet loss as link failure and reacts accordingly. While the energy consumption of most variants 
is almost the same (Figure 5.17); TCP-WELCOME outperforms them all in terms of average 
throughput (Figure 5.16). Depending on the duration of the signal loss, the packet loss is 
detected through RTO or through 3 duplicated acknowledgements. In both cases, TCP-
WELCOME does not decrease its data transmission rate after data packet loss (as in TCP New 
Reno) leading to the observed throughput gain and to an optimum usage of wireless channel 
bandwidth resources. Although TCP Vegas has the least energy consumption among the others; 
its performance in terms of average throughput is mediocre. 

  

FIGURE 5.16. TCP AVERAGE THROUGHPUT FIGURE 5.17. TCP TX/RX TX/RX ENERGY 
CONSUMPTION 
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5.11 TCP-WELCOME VALIDATION THROUGH REALISTIC TEST-BED 

After validating TCP-WELCOME implementation code through NS-2, we evaluate its Linux 
kernel implementation through a realistic test-bed configuration. We study the computational 
energy consumption. The congestion control algorithm implemented in TCP involves running a 
number of complex mathematical operations to calculate the values of the different timers and 
other performance parameters. These are CPU-intensive operations that, in turn, lead to an 
increase in energy consumption at the TCP Node's CPU. Thus, in order to understand the effect 
of TCP congestion control algorithm in the case of different data packet loss cases, we need to 
study the TCP computational energy cost in the event of each data packet loss situation. 

In this section, we use the same test-bed configuration as in the previous chapter in order to 
evaluate the computational energy cost of TCP-WELCOME implementation.  

Figure 5.18 recalls this configuration. We use the same packet loss events used before to 
study the performance of the different TCP variants (congestion, interference, link loss, and 
signal loss). Here again, we compare our TCP-WELCOME computational energy cost to the four 
studied variants. 

 

 
 

FIGURE 5.18. TCP-WELCOME ENERGY CONSUMPTION MEASUREMENTS TEST-BED 

 

5.12 TEST-BED RESULTS (TCP-WELCOME COMPUTATIONAL ENERGY COST) 

In this section, we show and analyze the results of TCP –WELCOME evaluation experiments. 
The results are discusses according to different data packet loss situations studied. 

5.12.1 NETWORK CONGESTION SITUATION RESULTS 

We can see from Figure 5.19 that TCP-WELCOME computational energy cost is slightly higher 
than that of TCP New Reno in the event of network congestion. This is due to the fact that TCP-
WELCOME verifies the cause of data packet losses (Loss Differentiation Algorithm) before 
triggering the most appropriate data loss recovery action (Loss Recovery Algorithm). While in 
TCP New Reno, it stops data transmission without searching the cause behind data packet 
losses. This loss classification process in TCP-WELCOME necessitates more CPU calculations 
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which lead to more computational energy cost. Also, we notice from the same figures that TCP-
WELCOME still outperforms both TCP SACK and TCP Vegas in terms of computational energy 
cost. Indeed, these two variants use more complex algorithms without necessarily getting better 
results in terms of goodput. Similarly, recall that TCP-WELCOME sends more data than both TCP 
New Reno and TCP Westwood. 

 
 

FIGURE 5.19. TCP COMPUTATIONAL ENERGY CONSUMPTION 

 

5.12.2 INTERFERENCE SITUATION RESULTS 

Figure 5.20 shows that TCP-WELCOME has almost the same performance in term of 
computational energy cost as TCP Westwood. In the case of data interference loss event, both 
TCP-WELCOME and TCP Westwood have the ability to classify data losses as due to wireless link 
problems. While, other TCP variants will misinterpret data packet loss and consider it as if it 
were due to congestion. Also, the high computational energy cost of TCP Vegas is due to the fact 
of high computational processing of its performance parameters at the reception of each 
acknowledgment. 

 
 

FIGURE 5.20. TCP COMPUTATIONAL ENERGY CONSUMPTION 

 

5.12.3 LINK FAILURE AND SIGNAL LOSS SCENARIOS RESULTS 

For both Link failure and Signal loss situations, Figure 5.21 and Figure 5.22, we notice the 
high computational energy cost of TCP-WELCOME compared to other TCP variants. Actually, as 
none of the other variants has the ability to classify and recognize the data packet loss cause 
over the connection, they all react by stopping data transmission and enters slow-start phase. On 
the other hand, TCP-WELCOME classifies the data packet losses cause and then reacts by 
calculating and adapting its performance parameters (RTO, and CWND). This leads to more 
computational energy cost for TCP-WELCOME. 
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FIGURE 5.21. TCP COMPUTATIONAL 
ENERGY COST 

 

FIGURE 5.22. TCP COMPUTATIONAL ENERGY 
COST 

5.13 COMPARISON OF TCP’S TOTAL ENERGY COST 

The TCP total energy consumption contains both the communication energy consumption, at 
data packet transmission, reception, and forwarding, and the computational energy cost of the 
TCP’s algorithms execution at the nodes’ CPU unit. The Network Simulator (NS-2) simulation 
results give only the communication (Tx/Rx) energy cost, and not the computational energy 
cost. Hence, as a result, to obtain the computational energy cost of TCP, a realistic test-bed 
implementation is needed.  In order to get the total energy consumption of TCP using NS-2, we 
integrate the computational energy cost obtained through the test-bed experiments within the 
energy model of NS-2 code. With this contribution, we are able to get the TCP’s total energy cost 
through simulations using NS-2. 

This section provides the final TCP-WELCOME validation results through the modified 
version of NS-2 that incorporates the TCP computational energy cost. We compare the 
performance of TCP-WELCOME with the four other studied TCP variants in terms of total energy 
cost (i.e. Tx/Rx energy cost + computational energy cost). 

  

FIGURE 5.23. TCP TOTAL ENERGY 
CONSUMPTION (NETWORK CONGESTION) 

FIGURE 5.24. TCP TOTAL ENERGY 
CONSUMPTION (INTERFERENCE) 

  

FIGURE 5.25. TCP TOTAL ENERGY 
CONSUMPTION (LINK FAILURE) 

FIGURE 5.26. TCP TOTAL ENERGY 
CONSUMPTION (SIGNAL LOSS) 
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The above Figures show that TCP-WELCOME outperforms the other TCP studied variants, 
especially in interference, link loss, and signal loss cases (Figure 5.24, Figure 5.25 and Figure 
5.26). Figure 5.23 shows that TCP-WELCOME, in network congestion case, outperforms TCP 
Vegas and TCP SACK, but has slightly higher total energy consumption than TCP Westwood and 
TCP New Reno. We have to mention that, our aim of developing TCP-WELCOME was to deal with 
data packet losses that can be found within wireless ad hoc networks, faced to which existent 
TCP variants performance is negatively affected. 

The ability of TCP-WELCOME to adapt its data transmission rate and its RTO values if needed 
helps to better deal with data losses due to both link loss and signal loss situations within the 
network. Also, TCP-WELCOME does not decrease its data transmission rate after data losses due 
to wireless channel related problems (such as interference). This helps reducing the energy 
consumed to adapt the congestion window, as in the case of most other TCP variants. This as 
well leads to better usage of the available bandwidth. 

5.14 CONCLUSION 

TCP suffers from drastic degradation in performance when deployed within wireless  
ad hoc networks. This is due to the fact that TCP cannot differentiate between the different data 
packet loss situations over the connection. Misinterpreting the data packet loss cause and 
reacting as if it is due to congestion leads to waste of network and nodes resources (such as 
bandwidth and energy consumption). Hence, the ability of TCP to classify correctly the data 
packet loss cause over the connection helps to improve its performance within wireless ad hoc 
network environments. 

In this chapter we introduced TCP-WELCOME, a new TCP variant that is suitable for wireless 
mobile ad hoc network environments. Unlike other TCP variants, it uses a Loss Differentiation 
Algorithm (LDA) that is able to identify accurately the three common data packet loss causes 
within such network: network congestion, wireless channel errors, and link losses. Moreover, 
TCP-WELCOME adopts a new Loss Recovery Algorithm (LRA) that reacts efficiently to each 
identified data packet loss cause with the most appropriate action.     

In order to show the performance improvement of TCP-WELCOME we implemented it into 
both Linux Kernel and the Network Simulator version 2 tool (NS-2). We compared its 
performances to different TCP variants under different data packet loss scenarios (congestion, 
interference, link failure, and signal loss). This comparative study showed that both TCP average 
throughput and total energy consumption have been significantly improved. We also showed 
that TCP-WELCOME outperformed other TCP variants in most cases thanks to its ability to 
identify correctly the type of data packet loss through its loss differentiation algorithm and to 
take the most appropriate reaction to recover from data losses (loss recovery algorithm).  

As a future work, we opt to enhance the decision making process of the TCP loss 
differentiation algorithm through using the utility functions. This enhancement intends to 
minimize the grey area between the different data loss event borders in order to get more 
accurate decisions.  
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CHAPTER 6. CONCLUSION AND PERSPECTIVES 

6.1 CONCLUSION 

Wireless ad hoc networks gained a lot of interest in the last decade due to the increase of 
ubiquitous communications technologies. Wireless ad hoc nodes are connected through wireless 
channels. These nodes are independent and battery operated, since such networks do not have a 
fixed infrastructure or centralized administration. Each node acts as a client, a server, and a 
router for the other nodes within the network. Wireless ad hoc networks inherit the 
characteristics of wireless networks such as wireless related problems (e.g. fading and wireless 
link errors). In addition, such networks have specific characteristics such as nodes’ mobility and 
battery depletion events.  Our objective in this thesis was to improve the performance of TCP 
within such environment. 

The problem with TCP within wireless ad hoc networks results from its inability to 
distinguish between different data packet loss causes over the connection. TCP reacts as if all 
data packet losses are due to congestion. Many researches where conducted recently in order to 
improve the performance of TCP within wireless ad hoc networks. It was proved that the 
performance of TCP degrades dramatically when implemented within such environments. The 
main cause of this degradation is that TCP was originally developed for wired networks and is, 
thus, not capable to cope with data packet loss causes other than congestion. Many TCP variants 
were developed in order to improve the performance of TCP within wireless networks in 
general. These TCP variants have the ability to distinguish between non-congestion wireless 
related losses and congestion induced losses. We have to mention here, that within wireless ad 
hoc network environments, there would be data packet losses due to link failures as well. Link 
failure within an ad hoc environment could be the result of either mobility of nodes or networks 
devices’ energy depletion. Although that data packet loss caused by link failures is a very 
common data loss cause within wireless ad hoc networks, in our knowledge no TCP variant was 
developed to address this cause of data packet losses. Indeed, as we showed through this thesis, 
the reaction in front of such losses should not be the same as in the case of congestion induced 
or wireless related data packet loss. 

A first step towards improving TCP performances in wireless ad hoc network  
environments, we have to be able to realize a complete evaluation implying all the performance 
metrics that are of interest in such environment. These metrics are two: the throughput  
and the total energy consumption. This latter, in turn, is comprised of the communication  
energy used for transmission, reception and forwarding of data packet as well as  
the computational energy cost that is due to the different algorithms and storage  
operations involved in TCP. This second parameter is only measurable through experiments. 
These experiments should be able to introduce the effect of the ad hoc network environment  
in order to get the computational energy cost of TCP when used in such environment. So,  
the first contribution of this thesis was to develop SEDLANE, a new wireless ad hoc  
network emulator that is able to emulate wireless ad hoc networks of any scale. More  
precisely, SEDLANE allows reproducing the end-to-end effects of wireless ad hoc environment 
through the emulation of the end-to-end data packets delays and losses over the  
connection. This is obtained while using a low number of physical nodes. SEDLANE has  
many interesting design feature. First, it is easy and simple. It has the ability to use  
non-complex (easy to extract) characteristics of the connection (such as losses and delays)  
to emulate many ad hoc network configurations and parameters (such as ad hoc  
routing protocols, node mobility, and connection throughput). Second, it has the ability  
to emulate multi-hop wireless ad hoc network of any size using a small number of  
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physical machines, and without the need for specific or expensive networking hardware.  
Finally, it allows performing controlled and repeatable tests. The validation results of  
SEDLANE show its capability to emulate ad hoc networks of any scale and that it  
respects accurately the ad hoc network emulated parameters over the connection.  

To better understand the behavior of TCP within wireless ad hoc networks. We conducted a 
comparative performance study of different TCP variants (TCP New Reno, TCP SACK, TCP Vegas, 
and TCP Westwood). The objective of this performance evaluation was to study the effect of 
different TCP congestion control algorithms on the performance of TCP within wireless ad hoc 
networks. We studied TCP’s throughput, communication energy cost and TCP’s computational 
energy cost through simulations and a realistic test-bed configured through SEDLANE. We 
studied the performance of TCP while facing the most common data packet loss scenarios that 
can be found within wireless ad hoc networks, such as interference, link failure, signal loss, and 
congestion. Each data packet loss case was studied in details and the performance of each of the 
studied TCP variants was analyzed. Using the test-bed, we also measured, the computational 
energy cost of the TCP’s congestion control algorithms, such as Slow-Start, Fast Retransmit/ Fast 
Recovery, and Congestion Avoidance. We used the obtained results to enhance the NS-2 energy 
model by incorporating the calculated computational energy consumption of TCP into this 
energy model. Hence, we are now able to get the total TCP energy consumption (both 
communication and computational) through NS-2 simulations. 

The results obtained from the detailed comparative study of TCP variants within wireless ad 
hoc networks show that the inability of TCP to distinguish between different data packet loss 
causes over the connection is the main reason behind the performance degradation of TCP 
within such networks. According to the obtained results, we designed and implemented a new 
TCP variant for wireless ad hoc networks. The new developed variant, which we called TCP-
WELCOME, comprises two main algorithms: 

1. Loss Differentiation Algorithm that can differentiate between the three common data 
packet losses within wireless ad hoc network environment (wireless channel errors, link 
failures, and congestions). 
 
2. Loss Recovery Algorithm that has the ability to recover, differently, from each of the 
data packet losses classified by the loss differentiation algorithm and react accordingly in 
such a way to optimize the performance of TCP, both in terms of throughput and energy 
consumption. 

We evaluated the performance of TCP-WELCOME and we compared the results with the 
other studied variants using both simulations (through NS-2) and realistic test-bed 
configuration experiments (configured through SEDLANE). The results show that TCP-
WELCOME is the most adapted variant for wireless ad hoc network environments. TCP-
WELCOME is able to identify correctly the cause of data packet losses over the connection, and 
to optimize TCP performance by triggering the most suitable reaction to recover from each data 
packet loss. The results demonstrate that TCP-WELCOME loss recovery algorithm is able to 
decrease the communication (Transmission and reception) energy consumption and increase 
the connection throughput. This is achieved while reducing unnecessary data packet 
retransmissions. Also, the adaptation of TCP-WELCOME performance parameters (CWND, and 
RTO) in case of link failure induced losses according to the characteristics of the new recovered 
route leads to better usage of the available bandwidth as well as the nodes’ energy resources. 
Hence, TCP-WELCOME optimizes both the TCP total energy consumption and the throughput 
compared with the other four studied TCP variants. 
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6.2 PERSPECTIVES 

In this thesis, two of our major contributions are: the SEDLANE emulator and our new TCP 
variant, TCP-WELCOME, for wireless ad hoc networks. Our future work concerns both of them.  

Even if it had been designed in order to allow evaluating the computational energy cost of 
TCP, it is clear that SEDLANE can be used to help evaluating the performances of any client-
server application or protocol when used in ad hoc networks. The client-server communication 
model was the only possible end-to-end communication model for more than two decades. 
However, at the end of the nineties appeared a new communication paradigm, known as Peer-
to-Peer (P2P), allowing multiple parties to interact at the application-level to perform a single 
communication. So, this new communication model that involves multiple parties should be 
considered. Evaluating the performances of the network services using such communication 
model over wireless ad hoc networks is not an easy task. One perspective may be to extend 
SEDLANE in order to facilitate such evaluation. As the P2P communication model involves 
multiple parties, it also involves multiple connections between peers within the wireless ad hoc 
network. It is clear that each of these connections can be emulated through SEDLANE. However, 
building a test-bed using a set of machines (representing the different peers) that should be 
properly interconnected, then running SEDLANE manually to configure each link may rapidly 
become a tremendous task. A system that allows extracting from simulations traces the different 
parameters necessary to automate all this process may be of great help. First, this control-board 
system should be able to help SEDLANE users to set up the evaluation test-bed for their 
application (i.e. guidelines of peers interconnection and configuration). When this is done, it 
should be able to easily deploy and configure the SEDLANE within the network. Obviously, these 
configurations are extracted from more complex simulation traces than the currently used. The 
design and evaluation of such a system is the target of our future work. We strongly believe that 
such a system, when designed and validated, would be of great help to the research community. 

As our second perspective, we propose to study the potential benefit of using the utility 
theory in order to further optimize the performance of TCP WELCOME within wireless ad hoc 
networks. Indeed, the limits or borders between the data packet loss classification areas as 
defined in CHAPTER 5 may be less clear sometimes. So, in some extreme and rare cases some 
classification errors may happen. The performance of TCP WELCOME, as designed in this thesis, 
may then be improved in these rare and extreme cases. This improvement may be realized 
through the use of the utility theory in order to adapt the parameters used by the classification 
rules. This rules will then became patterns to identify instead of fixed rules. Utility functions will 
then be used in the loss differentiation algorithm to govern the switching between different 
recovery-algorithms. The design and evaluation of these utility functions will be the target of our 
future work. The discussion of the interest to go deeper in the classification process, according 
to the obtained percentage of improvement, will also be the target of this future study. 

 

 

 

 

 

 

 



92 

 

 



93 

 

BIBLIOGRAPHY 

[1] M. Zorzi and R. Rao, "Energy Efficiency of TCP in a local wireless environment," In 
Proceedings of Mobile Networks and Applications, vol. 6, no. 3, July 2001. 

[2] S. Agrawal and S. Singh, "An Experimental Study of TCP’s Energy Consumption over a 
Wireless Link," In 4th European Personal Mobile Communications Conference, Febreuary 
2001. 

[3] H. Singh and S. Singh, "Energy consumption of TCP Reno, New Reno, and SACK in multi-hop 
wireless networks," In Proceedings of ACM SIGMETRICS’02, June 2002. 

[4] G. Holland and N. Vaidya, "Analysis of TCP Performance over Mobile Ad hoc Networks," In 
Proceddings of the 5th ACM/IEEE International Conference on Mobile Computing and 
Networking, pp. 219-230, August 1999. 

[5] M. Allman, V. Paxon, and W. Stevens, "TCP Congestion Control," RFC 2581, IETF, April 1999. 

[6] V. Jacobson, "Congestion Avoidance and Control," ACM SIGCOMM’88 symposium on 
communications architectures and protocols, vol. 18, no. 4, August 1988. 

[7] V. Jacobson, "Modified TCP Congestion Avoidance Algorithm," end2end-interest mailing list, 
(ftp://ftp.isi.edu/end2end/end2end-interest-1990.mail), April 1990. 

[8] K. Fall and S. Floyd, "Simulation-based comparison of Tahoe, Reno, and sack TCP," ACM 
Computer Communications Review, vol. 5, no. 3, July 1996. 

[9] S. Floyd, T. Henderson, Gurtov, and A., "The NewReno Modification to TCP's Fast Recovery 
Algorithm," RFC 3782, IETF, April 2004. 

[10] M. Michel, L.S. Nelson, and F José, "On the Performance of TCP Loss Recovery Mechanisms," 
In Proceedings of IEEE International Conference on Communications, vol. 3, pp. 1812- 1816, 
May 2003. 

[11] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang, "TCP Westwood: Bandwidth 
estimation for enhanced transport over wireless links," In 7th Annual International 
Conference on Mobile Computing and Networking, ICMCN’01, July 2001. 

[12] L. S. Brakmo, S. W. O’Malley, and Larry L. Peterson, "TCP Vegas: New Techniques for 
Congestion Detection and Avoidance," ACM SIGCOMM’94, pp. 24-35, August 1994. 

[13] S. Kopparty, S. Krishnamurthy, M. Faloutous, and S. Tripathi, "Split TCP for mobile ad hoc 
networks," In Proceedings of IEEE GLOBECOM, November 2002. 

[14] H. Balakrishnan, S. Seshan, and R. H. Katz, "Improving reliable transport and handoff 
performance in cellular wireless networks," ACM/Baltzer Wireless Networks Journal, vol. 1, 
no. 4, pp. 469-481, December 1995. 

[15] H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. H. Katz, "A Comparison of Mechanisms 
for Improving TCP Performance over Wireless Links," IEEE/ACM Transactions on 



94 

 

Networking, vol. 5, pp. 756-769, 1997. 

[16] P. Sinha, Venkitaraman N., R. Sivakumar, and V. Bharghavan, "WTCP: A Reliable Transport 
Protocol for Wireless Wide-Area Networks," In ACM Mobicom ’99, August 1999. 

[17] J. Liu and S. Singh, "ATCP: TCP for Mobile Ad Hoc Networks," IEEE Journal on Selected Areas 
in Communications, vol. 10, no. 7, July 2001. 

[18] Ola Westin, "TCP Performance in Wireless Mobile Multi-hop Ad Hoc Networks," SICS 
Technical Report T2003:24, Swedish Institute of Computer Science ISSN 1100-3154, 2003. 

[19] P. Johansson, T. Larsson, N. Hedman, B. Mielczarek, and M. Degermark, "Scenario-based 
Performance Analysis of Routing Protocols for Mobile Adhoc networks," In Proceedings of 
the fifth annual ACM/IEEE international conference on Mobile computing and networking, p. 
195–206, August 1999. 

[20] T. Dyer and R. Boppana, "A comparison of TCP performance over three routing protocols 
for mobile ad hoc networks," In Proceedings of ACM MOBIHOC, p. 56–66, 2001. 

[21] F. Wang and Y. Zhang, "Improving TCP performance over mobile ad hoc networks with out-
of-order detection and response," In Proceedings of ACM MOBIHOC, p. 217–225, June 2002. 

[22] K. Chandran, S. Raghunathan, S. Venkatesan, and R. Prakash, "A feedback based scheme for 
improving TCP performance in Ad-Hoc wireless networks," In Proceedings of the Personal 
Communications, IEEE, vol. 8, no. 1, pp. 34 - 39, February 2001. 

[23] V. Anantharaman, S.-J. Park, K. Sundaresan, and R. Sivakumar, "TCP performance over 
mobile ad hoc networks: A quantitative study," Journal of Wireless Communications and 
Mobile Computing, vol. 4, no. 2, p. 203–222, March 2004. 

[24] J. Monks, P. Sinha, and V. Bharghavan, "Limitations of TCP-ELFN for ad hoc networks," In 
Proceedings of Mobile and Multimedia Communications, October 2000. 

[25] K. Ramakrishnan, S. Floyd, and D. Black, "The addition of explicit congestion notification 
(ECN) to IP," RFC 3168, Category: Standards Track, September 2001. 

[26] V. Ramarathinam and M. A. Labrador, "Performance Analysis of TCP over Static Wireless ad 
hoc networks," In Proceedings of ISCA 15th International Conference on Parallel and 
Distributed Computing Systems, PDCS’02, September 2002. 

[27] NS-2. http://www.isi.edu/nsnam/ns/. 

[28] S. Floyd and F. Kevin, "Router mechanisms to support end-to-end congestion control," 
Technical report, February 1997, available at : ee.lbl.gov/nrg-papers.html. 

[29] T. Ott, J. Kemperman, and M. Mathis, "Window size behavior in TCP/IP with constant loss 
probability," In The Fourth IEEEWorkshop on the Architecture and Implementation of High 
Performance Communication Systems (HPCS97), June 1997. 

[30] Dummynet. http://info.iet.unipi.it/luigi/ip_dummynet/. 



95 

 

[31] W. Jiang and C. Zhang, "A portable real-time emulator for testing multi-radio MANETs," In 
Proceedings of the 20th IEEE International Parallel & Distributed Processing Symposium, 
IPDPS, p. 145, 2006. 

[32] J. Dike, "A User-Mode Port of the Linux Kernel," 5th Annual Linux Showcase and Conference, 
vol. 5, pp. 2 - 2, 2001. 

[33] M. Engel, M. Smith, S. Hanemann, and B. Freisleben, "Wireless Ad-Hoc Network Emulation 
Using Microkernel-Based Virtual Linux Systems," In Proceedings of the 5th EUROSIM 
Congress on Modelling and Simulation, EUROSIM Publis, pp. 198-203. 

[34] Y. Zhang and W. Li, "An Integrated Environment for Testing Mobile Ad Hoc Networks," In 
Proceedings of the 3rd ACM International Symposium on Mobile Ad Hoc Networking and 
Computing, pp. 104-111, 2002. 

[35] A. Vahdat et al., "Scalability and Accuracy in a Large-Scale Network Emulator," In 
Proceedings of the 5th Symposium on Operating Systems Design and Implementation (OSDI), 
December 2002. 

[36] P. Mahadevan, A. Rodriguez, and D., Vahdat, A. Becker, "MobiNet: A Scalable Emulation 
Infrastructure for Ad Hoc and Wireless Networks," Mobile Computing and Communications 
Review, vol. 10, no. 2, 2004. 

[37] J. P. Macker, W. Chao, and J. W. Weston, "A Low-Cost, IP-based Mobile Network Emulator 
(MNE)," MILCOM 2003 - IEEE Military Communications Conference, pp. 481-486, 2003. 

[38] P. Zheng and L. Ni, "EMWIN: Emulating a Mobile Wireless Network using a Wired Network," 
In Proceedings of WOWMOM, September 2002. 

[39]  !"#$%&'("')*"+!"#,'-./'))0"123 425"4").678(9"./$,'68(":8("/8;<,."'*-hoc networks," In 
Proceedings of the 8th International Conference on Telecommunications, ConTEL 2005, 2005. 

[40] T. Clausen and P. Jacquet, "Optimized Link State Routing Protocol (OLSR)," RFC3626, IETF, 
2003. 

[41]  !"#$%&'(")!"*+,-'../+("0!"#1&2-3&++("&+,"4!"5/$,6-'("7896 #:;"*"863<1-"9-:" &+&2-3-+="
Protocol for MANETs in Emergency and Rescue Opera-tions," Technical Report, Department 
of Informat-ics, University of Oslo, February 2005. 

[42] M. Engel and B. Freisleben, "Wireless Ad-Hoc Network Emulation Using Microkernel-Based 
Virtual Linux Systems," Proceedings of EuroSIM 2004, p. 198–203, 2004. 

[43] M. Hohmuth, "The Fiasco Kernel: Requirements Definition," TU Dresden Technical Report 
TUDFI98-12, 1998. 

[44] M. Bateman, C. Allison, and A. Ruddle, "A Scenario Driven Emulator for Wireless, Fixed and 
Ad Hoc Networks," In Proceedings of PGNet2003, pp. 273-278, June 2003. 

[45] J. Flynn, H. Tiwari, and D. O’Mahony, "A Real-Time Emulation System for Ad Hoc Networks," 
In Proceedings of the Communication Networks and Distributed Systems Modelling and 
Simulation Conference, January 2002. 



96 

 

[46] G. Judd and P. Steenkiste, "Using Emulation to Understand and Improve Wireless Networks 
and Applications," In Proceedings of NSDI, May 2005. 

[47] TTCP. http://www.pcausa.com/Utilities/pcattcp.htm. 

[48] TCPDump. http://www.ethereal.com/docs/manpages/tcpdump.8.html. 

[49] TCPTrace. http://jarok.cs.ohiou.edu/software/tcptrace/. 

[50] A. Seddik-Ghaleb, Y. M. Ghamri Doudane, and S.-M. Senouci, "A Performance Study of TCP 
variants in terms of Energy Consumption and Average Goodput within a Static Ad Hoc 
Environment," July 2006. 

[51] A. Seddik-Ghaleb, Y. M Ghamri Doudane, and S.-M. Senouci, "Emulating End-to-End Losses 
and Delays for Ad Hoc Networks," In Proceedings of IEEE International Conference on 
Communications, ICC’07, June 2007. 

[52] C. E. Perkins and E. M. Royer, "Ad-hoc On-Demand Distance Vector Routing," In proceedings 
of 2nd IEEE Wksp. Mobile Comp. Sys. And Apps, WMCSA’99, February 1999. 

[53] D. B. Johnson and D. A. Maltz, "Dynamic Source Routing in Ad Hoc Wireless Networks," 
Mobile Computing, T. Imielinski and H. Korth, editors, Kluwer Academic Publishers, pp. 
Chapter 5, pp. 153-181, 1996. 

[54] C. E. Perkins and P. Bhagwat, "Highly Dynamic Destination-Sequenced Distance-Vector 
Routing (DSDV) for Mobile Computers," ACM Computer Communications Review, October 
1994. 

[55] T. Clausen, "Comparative Study of Routing Protocols for Mobile Ad-Hoc NETworks," 
Research Report, RR-5135, INRIA, March 2004. 

[56] P. Gauthier, D. Harada, and M. Stemm, "Reducing power consumption for the next 
generation of pdas: It’s in the network interface," In Proceedings of MoMuC’96, Septembre 
1996. 

[57] Sycard technologies, "Sycard technologies, pccextend 140 cardbus extender," July 1996. 

[58] B. Wang and S. Singh, "Computational energy cost of TCP," In Proceedings of IEEE 
INFOCOM’04, March 2004. 

[59] D. Barman and I. Matta, "Effectiveness of Loss Labeling in Improving TCP Performance in 
Wired/Wireless Networks," Boston University, Technical Report, 2002. 

[60] L. A. Grieco and S. Mascolo, "TCP Westwood and Easy RED to Improve Fairness in High-
Speed Networks," In Seventh International Workshop on Protocols For High-Speed Networks 
(PfHSN’2002), April 2002. 

[61] R. Wang, M. Valla, M. Y. Sanadidi, B. K. F. Ng, and M. Gerla, "Efficiency/Friendliness 
Tradeoffs in TCP Westwood," In ISCC 2002: Seventh IEEE Symposium on Computers and 
Communications, July 2002. 



97 

 

[62] M. Mancuso, "A Novel Scheme of Loss Differentiation and Adaptive Segmentation to 
Enhance TCP Performance over Wireless Networks," Politecnico di Milano, Dept. of 
Electronics and Information. 

[63] G. Xylomenos, G.C. Polyzos, Mahonen P., and M. Saaranen, "TCP Performance Issues over 
Wireless Links," IEEE Communications Magazine, vol. 39, no. 4, pp. 52-58, April 2001. 

[64] J. Garcia and A. Brunstrom, "Transport Layer Loss Differentiation and Loss Notification," In 
Proceedings of First Swedish National Computer Networking Workshop (SNCNW), September 
2003. 

[65] L. Stéphane, Y. Ghamri Doudane, and G. Pujolle, "Cross-Layer Loss Differentiation 
Algorithms to improve TCP Performances in WLANs," in the 11th IFIP International 
Conference on Personal Wireless Communications (PWC'06), September 2006. 

[66] T. Kim, S. Lu, and V. Bharghavan, "Improving Congestion Control Performance Through Loss 
Differentiation," International Conference on Computers and Communications Networks '99, 
October 1999. 

[67] D.-M. Chiu and R. Jain, "Analysis of the Increase and Decrease Algorithms for Congestion 
Avoidance in Computer Networks," Journal of Computer Networks and ISDN Systems, vol. 17, 
no. 1, pp. 1-14, June 1989. 

[68] S. Biaz and N. Vaidya, "Distinguishing congestion losses from wireless transmission losses: 
A negative result," In Proceedings of Seventh International Conference on Computer 
Communications and Networks, pp. 722-731, October 1998. 

[69] S. Biaz and N. H. Vaidya, "Discriminating Congestion Losses from Wireless Losses using 
Inter-Arrival Times at the Receiver," In ASSET 1999: IEEE Symposium on Application-specific 
Systems and Software Engineering & Technology, p. 10–17, March 1999. 

[70] Y. Tobe, H. Aida, Y. X Aida, and H. Tokuda, "Detection of Congestion Signals from Relative 
One-Way Delay," IPSJ Journal, vol. 42, no. 12, 2001. 

[71] S. Cen, P. C. Cosman, and G. M. Voelker, "End-to-End Differentiation of Congestion and 
Wireless Losses," In MMCN2002: SPIE Multimedia Computing and Networking, vol. 4673, pp. 
1-15, January 2002. 

[72] N.K.G. Samaraweera, "Non-Congestion Packet Loss Detection for TCP Error Recovery using 
Wireless Links," In IEEE Proceedings Communications, vol. 146, no. 4, pp. 222-230, August 
1999. 

[73] P. Karn and C. Partridge, "Improving Round-Trip Time Estimates in Reliable Transport 
Protocols," In Proceedings of ACM SIGCOMM ’87, August 1987. 

[74] M. Kim and B. Noble, "Mobile Network Estimation," In Mobicom 2001: The Seventh Annual 
International Conference on Mobile Computing and Networking, July 2001. 

[75] M. Allman and V. Paxson, "On Estimating End-to-End Network Path Properties," ACM 
SIGCOMM, vol. 29, no. 4, pp. 263-274, October 1999. 



98 

 

[76] J. Nagle, "Congestion Control in IP/TCP Internetworks," RFC 896, IETF, January 1984. 

[77] D. Dykeman, M. Kaiserswerth, B.W. Meister, H. Rudin, and R. Williamson W. Doeringer, "A 
Survey of Light-Weight Transport Protocols for High-Speed Networks," vol. 38, no. 11, p. 
2025–2039, November 1990. 

[78] Pluggable congestion avoidance modules. http://lwn.net/Articles/128681/. 

[79] A Linux TCP implementation for NS2 Linux. 
http://netlab.caltech.edu/projects/ns2tcplinux/ns2linux/. 

[80] P. Karn and C. Partridge, Improving Round-Trip Time Estimates in Reliable Transport 
Protocols, August 1987. 

[81] K. Jacobsson, H. Hjalmarsson, and K. H. Johansson, Unbiased bandwidth estimation in 
communication protocols, July 2005. 

[82] A. Capone and F. Martignon, "Bandwidth Estimates in the TCP Congestion Control Scheme," 
In Proceedings of Tyrrhenian Int’l Workshop Digital Comm., pp. 614 - 626, September 2001. 

[83] Chuang-Yueh Chen, Sandra I. Woolley, Andrew J. Forgham, and Keith P. Jones, "A QoS 
Dynamic Bandwidth Partitioning (Q-DBP) Using Fermi-Utility Functions," INC2002 3rd 
International Network Conference, July 2002. 

[84] X. Gao, T. Nandagopal, and V. Bharghavan, "Achieving application level fairness through 
utility-based wireless fair scheduling," In Proceedings of IEEE GLOBECOM, pp. 3257-3261, 
November 2001. 

[85] J. Hoe, "Start-up Dynamics of TCP’s Congestion Control and Avoidance Scheme," Master’s 
Thesis, MIT, June 1995. 

[86] Srisankar S. Kunniyur and Rayadurgam Srikant, "End-to-end congestion control schemes: 
utility functions, random losses and ECN marks," IEEE/ACM Trans. Networking, vol. 11, no. 
5, pp. 689-702, 2003. 

[87] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, "TCP Selective Acknowledgement 
Options," RFC 2018, IETF, Octobre 1996. 

[88] D. C. Montgomery, "Introduction to Statistical Quality Control," John Wiley & Sons, (1st 
edition, 1985, 2nd edition, 1991). 

[89] V. Rakocevic, J. M. Griffiths, and G. Cope, "Dynamic Partitioning of Link Bandwidth in 
IP/MPLS Networks," In Proceedings of IEEE ICC2001, vol. 9, pp. 2918-2922, 2001. 

[90] K. Ravindran, "Dynamic Protocol –level Adaptations for Performance and Availability of 
Distributed Network Services," In 2nd IEEE International Workshop on Modelling Autonomic 
Communications Environments , MACE’07, October 2007. 

[91] A. Seddik-Ghaleb, Y. M Ghamri Doudane, and S.-M. Senouci, "Effect of Ad Hoc Routing 
Protocols on TCP Performance within MANETs," In IEEE International Workshop on 
Wireless Ad-hoc and Sensor Networks, IWWAN’06, June 2006. 



99 

 

[92] H. Singh, S. Saxena, and S. Singh, "Energy Consumption of TCP in Ad Hoc Networks," Journal 
Wireless Networks, vol. 10, no. 5, September 2004. 

 

 

  



100 

 

APPENDIX ONE: SEDLANE AVAILABLE VERSIONS 

We have developed different versions of SEDLANE: command line tool, graphical user 
interface version and SEDLANE distributed tool. The command line tool can be used by the bash 
expert users. In this version, the user should have the necessary knowledge about all the 
SEDLANE arguments and options and their meanings. These arguments and options include:  

The source IP address and the destination IP address; 

NS TCP trace file from which SEDLANE will get the required parameters needed for 
Dummynet configuration (RTT Classes, BW,  Loss Rates); 

The number of pipes corresponding to the maximum number of Dummynet's pipes or 
communication channels to be configured on the SEDLANE machine. It is used to group the 
packets together. The higher the number of pipes used, the most accurate the results can be 
found; 

Data flow direction corresponding to the direction on the local machine. It can be "out" or 
"in". If "out", Dummynet rules will be applied before the data packets being sent, and if "in", 
Dummynet rules will be applied on the incoming data packets; 

The interface option is used to specify the interface on which the ipfw rules will be applied. 
Naturally, this must be the interface that is used to send, receive, or relay data packets between 
the source and the destination. This is helpful when there are many interfaces within the 
machine; 

SEDLANE operation mode option (simultaneous or sequential), when this option is not used, 
SEDLANE acts in simultaneous mode (the default mode); 

In the Verbose mode option, if used, SEDLANE produces detailed display about the rules’ 
configuration and asks for user’s confirmation before launching ipfw configuration. Verbose 
mode can be skipped, simply do not supply [-v] as a command line argument and SEDLANE will 
pass directly to the configuration phase; 

The Flow type option enables the user to use SEDLANE with a specified data packet type 
(TCP, UDP, and ICMP). The user may simply ignore this option, and the default will be any  
IP traffic. 

The second available version of SEDLANE is the graphical user interface. In this version, the 
user does not need to know the argument names as the SEDLANE interface screen specifies the 
needed arguments according to the desired operation mode. The user only fills in the variables 
in the window and presses Launch. This version is simple to use and does not require any 
additional knowledge with the underlying configuration of SEDLANE. The arguments used by 
the graphical user interface version have the same significance as in the command line tool. Only 
“verbose” mode is not available when using SEDLANE graphical user interface.  

Finally, a distributed tool is also available. SEDLANE is used between any two communicating 
end points in order to introduce the effect of ad hoc network characteristics over the connection. 
When we think about having a realistic test-bed with more than one connection, having many 
SEDLANE emulators within the network would be a good idea (e.g. testing applications like 
video games over such networks). The idea of the distributed mode is as follows: instead of 
moving around to install SEDLANE on each desired node, we propose using a centralized tool to 
distribute the required configuration and the NS-2 files to be used over the network. Through a 
centralized machine we can install SEDLANE remotely over all the other machines over the 
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network. This is done through graphical user interface tool; the user opens a remote session 
with the selected machines to install SEDLANE emulation tool on them. After installing SEDLANE 
over these machines, the user will be able to configure the ipfw rules used by SEDLANE 
(remotely by running SEDLANE with all the necessary arguments for each machine separately; 
such as in simple graphical user interface mode). The distributed version of SEDLANE facilitates 
the configuration of SEDLANE over large scale networks where more than one emulation node is 
needed. In addition, the user can configure each SEDLANE instance over the network with 
different connection conditions by specifying different NS-2 trace file for each connection and he 
can also vary all the SEDLANE arguments according to the emulation requirements needed. 
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